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Monte-Carlo methods are extensively used in financial tutsbns to compute European
options prices, to evaluate sensitivities of portfoliovémious parameters and to compute risk
measurements.

Let us describe the principle of the Monte-Carlo methodsroalamentary example. Let

fx)da,
[0,1]¢
wheref(-) is a bounded real valued function. RepreseasE(f(U)), whereU is a uniformly
distributed random variable df, 1]¢. By the Strong Law of Large Numbers,(i/;, i > 1) is a
family of uniformly distributed independent random vatison|0, 1]¢, then the average

Sv =5 2 f () (1)

converges td( f(U)) almost surely wheV tends to infinity. This suggests a very simple algo-
rithm to approximatd: call a random number generatrtimes and compute the averagé
Observe that the method convergesdayintegrable function off0, 1]¢ : f is not necessarily a
smooth function.

In order to efficiently use the above Monte-Carlo method, @edito know its rate of con-
vergence and to determine when it is more efficient than ohétéstic algorithms. The Central
Limit Theorem provides the asymptotic distribution @iV(Sy — I) when N tends to+oo.
Various refinements of the Central Limit Theorem, such asyBEssen and Bikelis theorems,
provide non asymptotic estimates.

The preceding consideration shows that the convergeneefa Monte Carlo method is
rather slow (/+v/N). Moreover, the approximation error is random and may takgel values
evenifN is large (however, the probability of such an event tendsab@n N tends to infinity).
Nevertheless, the Monte-Carlo methods are useful in pedtor instance, consider an integral
in a hypercubé0, 1]%, with d large ¢ = 40, e.g.). Itis clear that the quadrature methods require
too many points (the number of points increases expongntveh the dimension of the space).
Low discrepancy sequences are efficient for moderate vdldebat this efficiency decreases
drastically wheni becomes large (the discrepancy behavesd]&é)bgd# where the constant
C(d) may be extremely large.). A Monte-Carlo method does not Isavd disadvantages :
it requires the simulation of independent random vectais . . ., X;), whose coordinates are
independent. Thus, compared to the computation of the onergional situation, the number
of trials is multiplied byd only and therefore the method remains tractable even whisn
large. In addition, another advantage of the Monte-Carlthous is their parallel nature: each
processor of a parallel computer can be assigned the tasklohgia random trial.
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To summarize the preceding discussion : probabilisticrélyms are used in situations
where the deterministic methods are unefficient, espgcidiien the dimension of the state
space is very large. Obviously, the approximation erroarslom and the rate of convergence
is slow, but in these cases it is still the best method known.

1 On the convergence rate of Monte-Carlo methods

In this section we present results which justify the use ohMeCarlo methods and help to
choose the appropriate number of simulationsof a Monte-Carlo method in terms of the
desired accuracy and the confidence interval on the accuracy

Theorem 1.1 (Strong Law of Large Numbers) Let (X;,7 > 1) be a sequence of independent
identically distributed random variables such tiat| X |) < +oc. The one has :

1
lim —(X; +---+X,) =E(X;)as.

n—-4oo N,
Remark 1.2 The random variableX; needs to be integrable. Therefore the Strong Law of
Large Numbers does not apply wh&n is Cauchy distributed, thatis when its densitﬁii?).
Convergence rate We now seek estimates on the error

1
0 =E(X) = (X1 4+ X,).

The Central Limit Theorem precises the asymptotic distiduof v/ Ne .

Theorem 1.3 (Central Limit Theorem) Let (X;,i > 1) be a sequence of independent identi-
cally distributed random variables such thBf X?) < +occ.Leto? denote the variance of;,
that is

o? = E(X}) —E(X — 1)’ = E ((X; - E(X,))?).

Then:
<@en) converges in distribution tér,
g

whered is a Gaussian random variable with me@and variancel.

Remark 1.4 From this theorem it follows that for atl < ¢
lim P ( T o <e <2 ) / ? 2 dr

m —c € < —Cy | = e .

n—-+o0 \/ﬁ b= \/ﬁ 2 1 V2T

In practice, one applies the following approximate rule,idarge enough, the law af, is a
Gaussian random variable with me@and variance? /n.




Note that it is impossible to bound the error, since the stuppbany (nhon degenerate)
Gaussian random variablelis Nevertheless the preceding rule allow one to define a cordale
interval : for instance, observe that

P (|G| < 1.96) ~ 0.95.

Therefore, with a probability closed 095, for n is large enough, one has :

g
L < 1.96——.
len| < NG

How to estimate the variance The previous result shows that it is crucial to estimate the
standard deviation of the random variable. Its easy to do this by using the samples as

for the expectation. LeX be a random variable, ari(y, . .., X) a sample drawn along the
law of X. We will denote byXy the Monte-Carlo estimator d&(X) given by

a3 is often called the empirical variance of the sample. No#af can be rewritten as
N
N 1 -
=2 2 2
=—— | = E X, — Xy |-
INTN- (N - N)

On this last formula, it is obvious thaty anda? can be computed using only’ " | X; and
S X

Moreover, one can prove, whé(X?) < +oo, thatlimy_. ., 0% = o2, almost surely,
and thatE (5%,) = o2 (the estimator is unbiased). This leads to an (approxintaafidence
interval by replacingr para, in the standard confidence interval. With a probability nefar
0.95, E (X) belongs to the (random) interval given by

- 1.960n - 1.960
Xy— 2N X+ — 2N

So, with very little additional computations, (we only hawecomputes, on a sample already
drawn) we can give an reasonable estimate of the error doappximatinge (X) with X .
The possibility to give an error estimate with a small nurwedrcost, is a very useful feature of
Monte-Carlo methods.

In some situation the Central limit theorem can be improvEae Berry—Esseen Theorem
gives a speed of convergence of the Central Limit Theorem.



Theorem 1.5 (Berry—Esseen)Let (X;),>1 be a sequence of independent and identically dis-
tributed random variables with zero mean. Denotestthie common standard deviation. Sup-
pose that

E(|X1]*) < +o0.

Z;'V:lXj
Fy(xz) =P (W < x) :

and¢,the distribution function of a Gaussian law with zero mead anit variance, as

I

DefineFy

Then it holds that

en = sup |Fi(z) — o(2)]
zeR

- CE|X,|?
3N
Furthermore0.398 < C' < 0.8.

For a proof of the preceding theorem, see Shiryayv This theorem can be extended when
E(|X1]*79) < 400, forad > 0. In this case, it is known as the Bikelis theorem.

Theorem 1.6 (Bikelis) Let (X,,,n > 1) be a sequence of independent real valued random
variables, which are identically distributed. SupposettBdX;) = 0 and that there exists
0 < § < 1 such thatE(]X;]**?) < +o00. Set

o = E(X?).

Denote byd the distribution function of a Gaussian law with zero mead anit variance.
There exists a universal constadt independent ofV and of the sequenceX,,,n > 1)
such that, for all,
AE(|X,[*)
NO2g2H3(1 4 |])2+8

[ F () — ®(2)] <

There is no precise estimate of the constanibut one knows that

1
— < A<

V2r

2 Simulation methods of classical laws

The aim of this section is to give a short introduction to shngpmethods used in finance.
Our aim isnot to be exhaustive on this broad subject (for this we refer 1g., €[?]) but to
describe methods needed for the simulation of random Jasafidely used in finance. Thus
we concentrate on Gaussian random variables and Gaussians/e
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3 Simulation of the uniform law

In this section we present basic algorithms producing secpseof “pseudo random numbers”,
whose statistical properties mimic those of sequencesdefiendent and identically uniformly
distributed random variables. For a recent survey on rargkmmerators see, for instance, and
for mathematical treatment of these problems, see Niat&Er{€] and the references therein.
To generate a deterministic sequence which “looks like'epehdent random variables uni-
formly distributed on(0, 1], the simplest (and the most widely used) methods are contialie
methods. They are defined through four integers m andU,. The integell, is the seed of
the generatory is the order of the congruencejs the multiplicative term. A pseudo random
sequence is obtained from the following inductive formula:

U, = (aU,_1 + b) (mod.m)

In practice, the seed is setitf at the beginning of a program and must never be changed inside
the program.

Observe that a pseudo random number generator consists ahplately deterministic
algorithm. Such an algorithm produces sequences whicistatatly behaves (almost) like se-
guences of independent and identically uniformly distiéourandom variables. There is no
theoretical criterion which ensures that a pseudo randambeun generator is statistically ac-
ceptable. Such a property is established on the basis ofiealgests. For example, one builds
a sample from successive calls to the generator, and onefipdies the Chi—square test or the
Kolmogorov—Smirnov test in order to test whether one casaeably accept the hypothesis
that the sample results from independent and uniformlyidiged random variables. A gen-
erator is good when no severe test has rejected that hypgti®eod choice for, b, m are
given in [?] and [?]. The reader is also refered to the following web site ehtidevoted to
Monte-Carlo simulationht t p: // random mat . sbg. ac. at/ | i nks/.

4 Simulation of some common laws of finance

We now explain the basic methods used to simulate laws indiaemodels.

Using the distribution function in simulation The simplest method of simulation relies on
the use of the distribution function.

Proposition 4.1 Let X be a real random variable with strictly positive and contius density
px(x). Let F' be its distribution function defined by

F(z)=P(X < z).

LetU be a uniformly distributed if0, 1] random variable. TheX and F~!(U) have the same
distribution function, that is to say( and '~ (U) have the same law.

Proof : Clearly, asF~! is strictly increasing, we have

P(F'(U)<z)=P (U < F(z)).



Now, asF(z) < 1, we haveP (F~}(U) <z) = F(z). SoF~'(U) and X have the same
distribution function and, hence, the same law. [ |

Remark 4.2 Simulation of an exponential law

This result can be extended to a general case (that is to sayvaHich does not admit a density,
or with density not necessarily strictly positive). In ticisse we have to define the inverse!

of the increasing functio#’ by

F~'u) =inf{z € R, F(z) > u}.

If we note thatF"~'(u) < x if and only if u < F(z) the end of the previous proof remains the
same.

Remark 4.3 Simulation of asset models with jumps uses random variakitrsexponential
laws. The preceding proposition applies to the simulatibaroexponential law of parameter
A > 0, whose density is given by

Aexp(—Az)1g, (z).

In this case, a simple computation leadsitor) = 1 — ¢=**, so the equatio’(z) = u can

be solved ag: — 20~ |f U/ follows a uniform distribution orf0, 1], —24=) (or &)

follows an exponential law with parametgy.

Remark 4.4 This method can also be used to sample Gaussian randomlearidbf course
neither the distribution function nor its inverse are ekakhown but some rather good poly-
nomial approximations can be found, for instance,h [This method is humerically more
complex than Box-Muller method (see below) but can be useenwising low discrepancy
sequences to sample Gaussian random variables.

Conditional simulation using the distribution function In stratification methods, described
later in this chapter, it is necessary to sample real randamaie X, given that this random
variable belongs to a given intervgi, b|. This can be easily done by using the distribution
function. LetU be a random variable uniform df, 1], I be the distribution function ok,
F(x) =P(X < x)andF~! be its inverse. The law df defined by

Y =F~' (F(a) + (F(b) = F(a)U),

is equal to the conditional law of given thatX €]a, b]. This can be easily proved by checking
that the distribution function of” is equal to the one ok knowing thatX €]a, b].

Gaussian Law The Gaussian law with medmand variancé onR is the law with the density
given by

1 < 932)
——exp| -2 ).
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Therefore, this distribution function of the Gaussian @ndsariableX is given by

513'2

P(X <2z2)= \/%/ exp <—?) dx, Vz € R.

The most widely used simulation method of a Gaussian laweBibx-Muller method. This
method is based upon the following result (See exer¢rder a proof.).

Proposition 4.5 Let U and V' be two independent random variables which are uniformly dis
tributed on|0, 1. LetX andY” be defined by

X = y/—2logUsin(27V),
Y = /—2logU cos(2nV)

ThenX andY are two independent Gaussian random variables with nteand variancel.

Of course, the method can be used to simuldténdependent realizations of the same real
Gaussian law. The simulation of the two first realizationpasformed by calling a random
number generator twice and by computiigandY” as above. Then the generator is called two
other times to compute the corresponding two new values ahdY’, which provides two new
realizations which are independent and mutually indepenoliethe two first realizations, and
So on.

Simulation of a Gaussian vector To simulate a Gaussian vector
X=X . X%

with zero mean and with@x d covariance matrix' = (¢;;, 1 <i,j < n)with¢;; = E(X'X7)
one can proceed as follows.

C is a covariance matrix, so it is positive (since, for each R¢, v.Cv = E ((v.X)?) > 0).
Standard results of linear algebra prove that there exigts @ matrix A, called a square root
of C' such that

AA* =C,

whereA* is the transposed matrix of = (a;;, 1 <1i,j < n).

Moreover one can compute a square root of a given positivestnic matrix by specifying
thata,;; = 0 for 7 < j (i.e. A is a lower triangular matrix). Under this hypothesis, itsyeto see
that A is uniquely determined by the following algorithm

ail = A/
For2 <i<d
) Ci1
a1 =
a1



theni increasing fron® to d,

i—1
Qi = Cii — Z |aij|27
j=1

Forj<i:<d

Q55 = G — Ej;ll aikajk?
Forl <i<j "

a;; = 0.

This way of computing a square root of a positive symmetritrixé known as the Cholevsky
algorithm.

Now, if we assume that: = (G*,...,GY) is a vector of independent Gaussian random
variables with mean and variancd (which are easy to sample as we have already seen), one
can check that” = AG is a Gaussian vector with mearet with covariance matrix given by
AA* = (C. As X etY are two Gaussian vectors with the same mean and covarianog, e
law of X andY are the same. This leads to the following simulation altanit

Simulate the vecto(G",. .., G?) of independenGaussian variables as explained
above. Then return the vectar = AG.

Discrete law Consider a random variabl€ taking values in a finite sdtr,, k = 1,..., N}.
The valuer,, is taken with probabilityp,. To simulate the law ofX, one simulates a random
variableU uniform on|0, 1]. If the valueu of the trial satisfies

k—1 k
dopi<u<) p;
=0 =0

one decides to return the valug. Clearly the random variable obtained by using this prooedu
follows the same law aX'.

Bibliographic remark A very complete discussion on the simulation of non unifoamdom
variables can be found ir?], results and discussion on the construction of pseudderan
sequences in Knutl?[. [?],[?] and [?] are reference books on simulation methods. See also the
survey paper by Niederreite?][and the references therein, in particular these which &anc
nonlinear random number generators.

5 Exercises and problems

Exercise 5.1Let X andY be two independent Gaussian random variables with mesamd
variancel.

1. Prove that, ifR = vV X2+ Y2 and@ is the polar angle, thef/2r andexp(—R?/2) are
two independent random variables following a uniform lawj@n |.
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2. Using the previous result, deduce proposi®én

Exercise 5.2Let A andK be two real positive numbers such that K and.X,, be the random
variable

Xm = ()\eU(G+m) - K)+ e_mG_mTz.

We denote its variance by?,. Give an expression for the derivative @f with respect to
m as an expectation, then deduce thitis a decreasing function of: whenm < my =

log(K/\)/o.
Problem 5.3 Let Z be a random variable given by
7 — )\1651X1 + )\2652)(2,

where (X;, X,) is a couple of real random variables akd )\, 5, and 3, are real positive
numbers. This problem studies various methods to compatpribe of an index option given
byp=P(Z>1).

1. In this question, we assume thaf;, X,) is a Gaussian vector with me@nsuch that
Var(X;) = Var(X,) = 1 and CoV¥ X, X5) = p, with [p| < 1. Explain how to simulate
random samples along the law.6f Describe a Monte-Carlo method allowing to estimate
p and explain how to estimate the error of the method.

2. Explain how to use low discrepancy sequences to compute

3. We assume that; and X, are two independent Gaussian random variables with hean
and variancéd. Letm be a real number. Prove thatan be written as

p = E ¢(X1, X2)1{)\16ﬁ1(X1+"L)+)\2€ﬁ2(x2+7”)Zt}] )

for some functionp. How can we choose: such that
1

P()\1661(X1+m) + )\2662(X2+m) > t) > _9
- 774

Propose a new Monte-Carlo method which allows to computExplain how to check
on the drawings that the method does reduce the variance.

4. Assuming now thaf; and X, are two independent random variables with distribution
functionsF; (z) and F»(z) respectively. Prove that

P = E [1 - G2 (t - )\1651)(1)} y
whereG,(x) is a function such that the variance of
1— G2 (t - )\16>\1X1) y

is always less than the variance b{heﬁlxl PhaeheXani): Propose a new Monte-Carlo
method to computge.

5. We assume again th@X';, X,) is a Gaussian vector with me&mand such that V4rx, ) =
Var(X,) = 1 and Co¥ X, X5) = p, with |[p| < 1. Prove thap = E[1 — F;, (¢(X4))]
whereFs; is the repartition function ok, and¢ a function to be computed.

Deduce a variance reduction method computing
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