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Monte-Carlo methods are extensively used in financial institutions to compute European
options prices, to evaluate sensitivities of portfolios tovarious parameters and to compute risk
measurements.

Let us describe the principle of the Monte-Carlo methods on an elementary example. Let
∫

[0,1]d
f(x)dx,

wheref(·) is a bounded real valued function. RepresentI asE(f(U)), whereU is a uniformly
distributed random variable on[0, 1]d. By the Strong Law of Large Numbers, if(Ui, i ≥ 1) is a
family of uniformly distributed independent random variables on[0, 1]d, then the average

SN =
1

N

N
∑

i=1

f(Ui) (1)

converges toE(f(U)) almost surely whenN tends to infinity. This suggests a very simple algo-
rithm to approximateI: call a random number generatorN times and compute the average (??).
Observe that the method converges forany integrable function on[0, 1]d : f is not necessarily a
smooth function.

In order to efficiently use the above Monte-Carlo method, we need to know its rate of con-
vergence and to determine when it is more efficient than deterministic algorithms. The Central
Limit Theorem provides the asymptotic distribution of

√
N(SN − I) whenN tends to+∞.

Various refinements of the Central Limit Theorem, such as Berry-Essen and Bikelis theorems,
provide non asymptotic estimates.

The preceding consideration shows that the convergence rate of a Monte Carlo method is
rather slow (1/

√
N). Moreover, the approximation error is random and may take large values

even ifN is large (however, the probability of such an event tends to 0whenN tends to infinity).
Nevertheless, the Monte-Carlo methods are useful in practice. For instance, consider an integral
in a hypercube[0, 1]d, with d large (d = 40, e.g.). It is clear that the quadrature methods require
too many points (the number of points increases exponentially with the dimension of the space).
Low discrepancy sequences are efficient for moderate value of d but this efficiency decreases
drastically whend becomes large (the discrepancy behaves likeC(d) logd(N)

N
where the constant

C(d) may be extremely large.). A Monte-Carlo method does not havesuch disadvantages :
it requires the simulation of independent random vectors(X1, . . . , Xd), whose coordinates are
independent. Thus, compared to the computation of the one-dimensional situation, the number
of trials is multiplied byd only and therefore the method remains tractable even whend is
large. In addition, another advantage of the Monte-Carlo methods is their parallel nature: each
processor of a parallel computer can be assigned the task of making a random trial.
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To summarize the preceding discussion : probabilistic algorithms are used in situations
where the deterministic methods are unefficient, especially when the dimension of the state
space is very large. Obviously, the approximation error is random and the rate of convergence
is slow, but in these cases it is still the best method known.

1 On the convergence rate of Monte-Carlo methods

In this section we present results which justify the use of Monte-Carlo methods and help to
choose the appropriate number of simulationsN of a Monte-Carlo method in terms of the
desired accuracy and the confidence interval on the accuracy.

Theorem 1.1 (Strong Law of Large Numbers)Let (Xi, i ≥ 1) be a sequence of independent
identically distributed random variables such thatE(|X1|) < +∞. The one has :

lim
n→+∞

1

n
(X1 + · · ·+ Xn) = E(X1) a.s.

Remark 1.2 The random variableX1 needs to be integrable. Therefore the Strong Law of
Large Numbers does not apply whenX1 is Cauchy distributed, that is when its density is1

π(1+x2)
.

Convergence rate We now seek estimates on the error

ǫn = E(X) − 1

n
(X1 + · · · + Xn).

The Central Limit Theorem precises the asymptotic distribution of
√

NǫN .

Theorem 1.3 (Central Limit Theorem) Let (Xi, i ≥ 1) be a sequence of independent identi-
cally distributed random variables such thatE(X2

1) < +∞.Letσ2 denote the variance ofX1,
that is

σ2 = E(X2
1 ) −E(X − 1)2 = E

(

(X1 − E(X1))
2
)

.

Then :
(√

n

σ
ǫn

)

converges in distribution toG,

whereG is a Gaussian random variable with mean0 and variance1.

Remark 1.4 From this theorem it follows that for allc1 < c2

lim
n→+∞

P

(

σ√
n

c1 ≤ ǫn ≤ σ√
n

c2

)

=

∫ c2

c1

e−
x2

2
dx√
2π

.

In practice, one applies the following approximate rule, for n large enough, the law ofǫn is a
Gaussian random variable with mean0 and varianceσ2/n.
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Note that it is impossible to bound the error, since the support of any (non degenerate)
Gaussian random variable isR. Nevertheless the preceding rule allow one to define a confidence
interval : for instance, observe that

P (|G| ≤ 1.96) ≈ 0.95.

Therefore, with a probability closed to0.95, for n is large enough, one has :

|ǫn| ≤ 1.96
σ√
n

.

How to estimate the variance The previous result shows that it is crucial to estimate the
standard deviationσ of the random variable. Its easy to do this by using the same samples as
for the expectation. LetX be a random variable, and(X1, . . . , XN) a sample drawn along the
law of X. We will denote byX̄N the Monte-Carlo estimator ofE(X) given by

X̄N =
1

N

N
∑

i=1

Xi.

A standard estimator for the variance is given by

σ̄2
N =

1

N − 1

N
∑

i=1

(

Xi − X̄N

)2
,

σ̄2
N is often called the empirical variance of the sample. Note that σ̄2

N can be rewritten as

σ̄2
N =

N

N − 1

(

1

N

N
∑

i=1

X2
i − X̄2

N

)

.

On this last formula, it is obvious that̄XN andσ̄2
N can be computed using only

∑N
i=1 Xi and

∑N
i=1 X2

i .
Moreover, one can prove, whenE(X2) < +∞, that limN→+∞ σ̄2

N = σ2, almost surely,
and thatE (σ̄2

N) = σ2 (the estimator is unbiased). This leads to an (approximate)confidence
interval by replacingσ par σ̄n in the standard confidence interval. With a probability nearof
0.95, E (X) belongs to the (random) interval given by

[

X̄N − 1.96σ̄N√
N

, X̄N +
1.96σ̄N√

N

]

.

So, with very little additional computations, (we only haveto computēσN on a sample already
drawn) we can give an reasonable estimate of the error done byapproximatingE(X) with X̄N .
The possibility to give an error estimate with a small numerical cost, is a very useful feature of
Monte-Carlo methods.

In some situation the Central limit theorem can be improved.The Berry–Esseen Theorem
gives a speed of convergence of the Central Limit Theorem.
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Theorem 1.5 (Berry–Esseen)Let (Xi)i≥1 be a sequence of independent and identically dis-
tributed random variables with zero mean. Denote byσ the common standard deviation. Sup-
pose that

E(|X1|3) < +∞.

DefineFN

FN(x) = P

(

∑N
j=1 Xj

σ
√

N
≤ x

)

,

andφ,the distribution function of a Gaussian law with zero mean and unit variance, as

φ(x) =

∫ x

−∞

e−u2/2 du√
2π

.

Then it holds that

ǫN = sup
x∈R

|FN (x) − φ(x)|

≤ CE|X1|3
σ3
√

N
.

Furthermore,0.398 ≤ C ≤ 0.8.

For a proof of the preceding theorem, see Shiryayev [?]. This theorem can be extended when
E(|X1|2+δ) < +∞, for aδ > 0. In this case, it is known as the Bikelis theorem.

Theorem 1.6 (Bikelis) Let (Xn, n ≥ 1) be a sequence of independent real valued random
variables, which are identically distributed. Suppose that E(X1) = 0 and that there exists
0 < δ ≤ 1 such thatE(|X1|2+δ) < +∞. Set

σ2 = E(X2
1).

Denote byΦ the distribution function of a Gaussian law with zero mean and unit variance.
There exists a universal constantA, independent ofN and of the sequence(Xn, n ≥ 1)

such that, for allx,

|FN(x) − Φ(x)| ≤ AE(|X1|2+δ)

N δ/2σ2+δ(1 + |x|)2+δ
.

There is no precise estimate of the constantA, but one knows that

1√
2π

≤ A < 1.

2 Simulation methods of classical laws

The aim of this section is to give a short introduction to sampling methods used in finance.
Our aim isnot to be exhaustive on this broad subject (for this we refer to, e.g., [?]) but to
describe methods needed for the simulation of random variables widely used in finance. Thus
we concentrate on Gaussian random variables and Gaussian vectors.
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3 Simulation of the uniform law

In this section we present basic algorithms producing sequences of “pseudo random numbers”,
whose statistical properties mimic those of sequences of independent and identically uniformly
distributed random variables. For a recent survey on randomgenerators see, for instance, [?] and
for mathematical treatment of these problems, see Niederreiter [?] and the references therein.
To generate a deterministic sequence which “looks like” independent random variables uni-
formly distributed on[0, 1], the simplest (and the most widely used) methods are congruential
methods. They are defined through four integersa, b, m andU0. The integerU0 is the seed of
the generator,m is the order of the congruence,a is the multiplicative term. A pseudo random
sequence is obtained from the following inductive formula:

Un = (aUn−1 + b) (mod.m)

In practice, the seed is set toU0 at the beginning of a program and must never be changed inside
the program.

Observe that a pseudo random number generator consists of a completely deterministic
algorithm. Such an algorithm produces sequences which statistically behaves (almost) like se-
quences of independent and identically uniformly distributed random variables. There is no
theoretical criterion which ensures that a pseudo random number generator is statistically ac-
ceptable. Such a property is established on the basis of empirical tests. For example, one builds
a sample from successive calls to the generator, and one thenapplies the Chi–square test or the
Kolmogorov–Smirnov test in order to test whether one can reasonably accept the hypothesis
that the sample results from independent and uniformly distributed random variables. A gen-
erator is good when no severe test has rejected that hypothesis. Good choice fora, b, m are
given in [?] and [?]. The reader is also refered to the following web site entirely devoted to
Monte-Carlo simulation :http://random.mat.sbg.ac.at/links/.

4 Simulation of some common laws of finance

We now explain the basic methods used to simulate laws in financial models.

Using the distribution function in simulation The simplest method of simulation relies on
the use of the distribution function.

Proposition 4.1 LetX be a real random variable with strictly positive and continuous density
pX(x). LetF be its distribution function defined by

F (x) = P (X ≤ x).

LetU be a uniformly distributed in[0, 1] random variable. ThenX andF−1(U) have the same
distribution function, that is to sayX andF−1(U) have the same law.

Proof : Clearly, asF−1 is strictly increasing, we have

P
(

F−1(U) ≤ x
)

= P (U ≤ F (x)) .
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Now, asF (x) ≤ 1, we haveP (F−1(U) ≤ x) = F (x). So F−1(U) andX have the same
distribution function and, hence, the same law.

Remark 4.2 Simulation of an exponential law
This result can be extended to a general case (that is to say a law which does not admit a density,
or with density not necessarily strictly positive). In thiscase we have to define the inverseF−1

of the increasing functionF by

F−1(u) = inf {x ∈ R, F (x) ≥ u} .

If we note thatF−1(u) ≤ x if and only if u ≤ F (x) the end of the previous proof remains the
same.

Remark 4.3 Simulation of asset models with jumps uses random variableswith exponential
laws. The preceding proposition applies to the simulation of an exponential law of parameter
λ > 0, whose density is given by

λ exp(−λx)1R+(x).

In this case, a simple computation leads toF (x) = 1 − e−λx, so the equationF (x) = u can
be solved asx − log(1−u)

λ
. If U follows a uniform distribution on[0, 1], − log(1−U)

λ
(or − log(U)

λ

follows an exponential law with parameterλ).

Remark 4.4 This method can also be used to sample Gaussian random variables. Of course
neither the distribution function nor its inverse are exactly known but some rather good poly-
nomial approximations can be found, for instance, in [?]. This method is numerically more
complex than Box-Muller method (see below) but can be used when using low discrepancy
sequences to sample Gaussian random variables.

Conditional simulation using the distribution function In stratification methods, described
later in this chapter, it is necessary to sample real random variableX, given that this random
variable belongs to a given interval]a, b]. This can be easily done by using the distribution
function. LetU be a random variable uniform on[0, 1], F be the distribution function ofX,
F (x) = P(X ≤ x) andF−1 be its inverse. The law ofY defined by

Y = F−1 (F (a) + (F (b) − F (a))U) ,

is equal to the conditional law ofX given thatX ∈]a, b]. This can be easily proved by checking
that the distribution function ofY is equal to the one ofX knowing thatX ∈]a, b].

Gaussian Law The Gaussian law with mean0 and variance1 onR is the law with the density
given by

1√
2π

exp

(

−x2

2

)

.
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Therefore, this distribution function of the Gaussian random variableX is given by

P(X ≤ z) =
1√
2π

∫ z

−∞

exp

(

−x2

2

)

dx, ∀z ∈ R.

The most widely used simulation method of a Gaussian law is the Box-Muller method. This
method is based upon the following result (See exercise?? for a proof.).

Proposition 4.5 Let U andV be two independent random variables which are uniformly dis-
tributed on[0, 1]. LetX andY be defined by

X =
√

−2 log U sin(2πV ),

Y =
√

−2 log U cos(2πV ).

ThenX andY are two independent Gaussian random variables with mean0 and variance1.

Of course, the method can be used to simulateN independent realizations of the same real
Gaussian law. The simulation of the two first realizations isperformed by calling a random
number generator twice and by computingX andY as above. Then the generator is called two
other times to compute the corresponding two new values ofX andY , which provides two new
realizations which are independent and mutually independent of the two first realizations, and
so on.

Simulation of a Gaussian vector To simulate a Gaussian vector

X = (X1, . . . , Xd)

with zero mean and with ad×d covariance matrixC = (cij , 1 ≤ i, j ≤ n) with cij = E(X iXj)
one can proceed as follows.

C is a covariance matrix, so it is positive (since, for eachv ∈ R
d, v.Cv = E ((v.X)2) ≥ 0).

Standard results of linear algebra prove that there exists ad × d matrixA, called a square root
of C such that

AA∗ = C,

whereA∗ is the transposed matrix ofA = (aij , 1 ≤ i, j ≤ n).
Moreover one can compute a square root of a given positive symmetric matrix by specifying

thataij = 0 for i < j (i.e. A is a lower triangular matrix). Under this hypothesis, its easy to see
thatA is uniquely determined by the following algorithm

a11 :=
√

c11

For2 < i ≤ d

ai1 :=
ci1

a11
,
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theni increasing from2 to d,

aii :=

√

√

√

√cii −
i−1
∑

j=1

|aij |2,

For j < i ≤ d

aij :=
cij −

∑j−1
k=1 aikajk

ajj
,

For1 < i < j

aij := 0.

This way of computing a square root of a positive symmetric matrix is known as the Cholevsky
algorithm.

Now, if we assume thatG = (G1, . . . , Gd) is a vector of independent Gaussian random
variables with mean0 and variance1 (which are easy to sample as we have already seen), one
can check thatY = AG is a Gaussian vector with mean0 et with covariance matrix given by
AA∗ = C. As X etY are two Gaussian vectors with the same mean and covariance matrix, the
law of X andY are the same. This leads to the following simulation algorithm.

Simulate the vector(G1, . . . , Gd) of independentGaussian variables as explained
above. Then return the vectorX = AG.

Discrete law Consider a random variableX taking values in a finite set{xk, k = 1, . . . , N}.
The valuexk is taken with probabilitypk. To simulate the law ofX, one simulates a random
variableU uniform on[0, 1]. If the valueu of the trial satisfies

k−1
∑

j=0

pj < u ≤
k
∑

j=0

pj,

one decides to return the valuexk. Clearly the random variable obtained by using this procedure
follows the same law asX.

Bibliographic remark A very complete discussion on the simulation of non uniform random
variables can be found in [?], results and discussion on the construction of pseudo-random
sequences in Knuth [?]. [?],[?] and [?] are reference books on simulation methods. See also the
survey paper by Niederreiter [?] and the references therein, in particular these which concern
nonlinear random number generators.

5 Exercises and problems

Exercise 5.1Let X andY be two independent Gaussian random variables with mean0 and
variance1.

1. Prove that, ifR =
√

X2 + Y 2 andθ is the polar angle, thenθ/2π andexp(−R2/2) are
two independent random variables following a uniform law on[0, 1].
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2. Using the previous result, deduce proposition??.

Exercise 5.2Let λ andK be two real positive numbers such thatλ < K andXm be the random
variable

Xm =
(

λeσ(G+m) − K
)

+
e−mG−m2

2 .

We denote its variance byσ2
m. Give an expression for the derivative ofσ2

m with respect to
m as an expectation, then deduce thatσ2

m is a decreasing function ofm whenm ≤ m0 =
log(K/λ)/σ.

Problem 5.3 Let Z be a random variable given by

Z = λ1e
β1X1 + λ2e

β2X2,

where(X1, X2) is a couple of real random variables andλ1, λ2, β1 andβ2 are real positive
numbers. This problem studies various methods to compute the price of an index option given
by p = P (Z > t) .

1. In this question, we assume that(X1, X2) is a Gaussian vector with mean0 such that
Var(X1) = Var(X2) = 1 and Cov(X1, X2) = ρ, with |ρ| ≤ 1. Explain how to simulate
random samples along the law ofZ. Describe a Monte-Carlo method allowing to estimate
p and explain how to estimate the error of the method.

2. Explain how to use low discrepancy sequences to computep.

3. We assume thatX1 andX2 are two independent Gaussian random variables with mean0
and variance1. Let m be a real number. Prove thatp can be written as

p = E

[

φ(X1, X2)1{λ1eβ1(X1+m)+λ2eβ2(X2+m)≥t}
]

,

for some functionφ. How can we choosem such that

P(λ1e
β1(X1+m) + λ2e

β2(X2+m) ≥ t) ≥ 1

4
?

Propose a new Monte-Carlo method which allows to computep. Explain how to check
on the drawings that the method does reduce the variance.

4. Assuming now thatX1 andX2 are two independent random variables with distribution
functionsF1(x) andF2(x) respectively. Prove that

p = E
[

1 − G2

(

t − λ1e
β1X1

)]

,

whereG2(x) is a function such that the variance of

1 − G2

(

t − λ1e
λ1X1

)

,

is always less than the variance of1{λ1eβ1X1+λ2eλ2X2>t}. Propose a new Monte-Carlo

method to computep.

5. We assume again that(X1, X2) is a Gaussian vector with mean0 and such that Var(X1) =
Var(X2) = 1 and Cov(X1, X2) = ρ, with |ρ| ≤ 1. Prove thatp = E [1 − F2 (φ(X1))]
whereF2 is the repartition function ofX2 andφ a function to be computed.

Deduce a variance reduction method computingp.
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