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Chapter 1

Monte-Carlo Methods for Options

Monte-Carlo methods are extensively used in financial institutions to compute European op-
tions prices, to evaluate sensitivities of portfolios to various parameters and to compute risk
measurements.

Let us describe the principle of the Monte-Carlo methods on an elementary example. Let∫
[0,1]d

f (x)dx,

where f (·) is a bounded real valued function. Represent I as E( f (U)), where U is a uniformly
distributed random variable on [0,1]d . By the Strong Law of Large Numbers, if (Ui, i≥ 1) is a
family of uniformly distributed independent random variables on [0,1]d , then the average

SN =
1
N

N

∑
i=1

f (Ui) (1.1)

converges to E( f (U)) almost surely when N tends to infinity. This suggests a very simple algo-
rithm to approximate I: call a random number generator N times and compute the average (1.1).
Observe that the method converges for any integrable function on [0,1]d : f is not necessarily a
smooth function.

In order to efficiently use the above Monte-Carlo method, we need to know its rate of con-
vergence and to determine when it is more efficient than deterministic algorithms. The Central
Limit Theorem provides the asymptotic distribution of

√
N(SN− I) when N tends to +∞. Var-

ious refinements of the Central Limit Theorem, such as Berry-Essen and Bikelis theorems,
provide non asymptotic estimates.

The preceding consideration shows that the convergence rate of a Monte Carlo method is
rather slow (1/

√
N). Moreover, the approximation error is random and may take large values

even if N is large (however, the probability of such an event tends to 0 when N tends to infinity).
Nevertheless, the Monte-Carlo methods are useful in practice. For instance, consider an integral
in a hypercube [0,1]d , with d large (d = 40, e.g.). It is clear that the quadrature methods require
too many points (the number of points increases exponentially with the dimension of the space).
Low discrepancy sequences are efficient for moderate value of d but this efficiency decreases
drastically when d becomes large (the discrepancy behaves like C(d) logd(N)

N where the constant
C(d) may be extremely large.). A Monte-Carlo method does not have such disadvantages :
it requires the simulation of independent random vectors (X1, . . . ,Xd), whose coordinates are
independent. Thus, compared to the computation of the one-dimensional situation, the number
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2 CHAPTER 1. MONTE-CARLO METHODS FOR OPTIONS

of trials is multiplied by d only and therefore the method remains tractable even when d is
large. In addition, another advantage of the Monte-Carlo methods is their parallel nature: each
processor of a parallel computer can be assigned the task of making a random trial.

To summarize the preceding discussion : probabilistic algorithms are used in situations
where the deterministic methods are unefficient, especially when the dimension of the state
space is very large. Obviously, the approximation error is random and the rate of convergence
is slow, but in these cases it is still the best method known.

1.1 On the convergence rate of Monte-Carlo methods

In this section we present results which justify the use of Monte-Carlo methods and help to
choose the appropriate number of simulations N of a Monte-Carlo method in terms of the de-
sired accuracy and the confidence interval on the accuracy.

Theorem 1.1.1 (Strong Law of Large Numbers). Let (Xi, i ≥ 1) be a sequence of independent
identically distributed random variables such that E(|X1|)<+∞. The one has :

lim
n→+∞

1
n
(X1 + · · ·+Xn) = E(X1) a.s.

Remark 1.1.1. The random variable X1 needs to be integrable. Therefore the Strong Law
of Large Numbers does not apply when X1 is Cauchy distributed, that is when its density is

1
π(1+x2)

.

Convergence rate We now seek estimates on the error

εn = E(X)− 1
n
(X1 + · · ·+Xn).

The Central Limit Theorem precises the asymptotic distribution of
√

NεN .

Theorem 1.1.2 (Central Limit Theorem). Let (Xi, i ≥ 1) be a sequence of independent identi-
cally distributed random variables such that E(X2

1 ) < +∞.Let σ2 denote the variance of X1,
that is

σ
2 = E(X2

1 )−E(X1)
2 = E

(
(X1−E(X1))

2) .
Then : (√

n
σ

εn

)
converges in distribution to G,

where G is a Gaussian random variable with mean 0 and variance 1.

Remark 1.1.2. From this theorem it follows that for all c1 < c2

lim
n→+∞

P
(

σ√
n

c1 ≤ εn ≤
σ√

n
c2

)
=
∫ c2

c1

e−
x2
2

dx√
2π

.

In practice, one applies the following approximate rule, for n large enough, the law of εn is a
Gaussian random variable with mean 0 and variance σ2/n.
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Note that it is impossible to bound the error, since the support of any (non degenerate) Gaus-
sian random variable is R. Nevertheless the preceding rule allow one to define a confidence
interval : for instance, observe that

P(|G| ≤ 1.96)≈ 0.95.

Therefore, with a probability closed to 0.95, for n is large enough, one has :

|εn| ≤ 1.96
σ√

n
.

How to estimate the variance The previous result shows that it is crucial to estimate the
standard deviation σ of the random variable. Its easy to do this by using the same samples as
for the expectation. Let X be a random variable, and (X1, . . . ,XN) a sample drawn along the law
of X . We will denote by X̄N the Monte-Carlo estimator of E(X) given by

X̄N =
1
N

N

∑
i=1

Xi.

A standard estimator for the variance is given by

σ̄
2
N =

1
N−1

N

∑
i=1

(Xi− X̄N)
2
,

σ̄2
N is often called the empirical variance of the sample. Note that σ̄2

N can be rewritten as

σ̄
2
N =

N
N−1

(
1
N

N

∑
i=1

X2
i − X̄2

N

)
.

On this last formula, it is obvious that X̄N and σ̄2
N can be computed using only ∑

N
i=1 Xi and

∑
N
i=1 X2

i .
Moreover, one can prove, when E(X2)<+∞, that limN→+∞ σ̄2

N = σ2, almost surely, and that
E
(
σ̄2

N
)
= σ2 (the estimator is unbiased). This leads to an (approximate) confidence interval by

replacing σ par σ̄n in the standard confidence interval. With a probability near of 0.95, E(X)
belongs to the (random) interval given by[

X̄N−
1.96σ̄N√

N
, X̄N +

1.96σ̄N√
N

]
.

So, with very little additional computations, (we only have to compute σ̄N on a sample already
drawn) we can give an reasonable estimate of the error done by approximating E(X) with X̄N .
The possibility to give an error estimate with a small numerical cost, is a very useful feature of
Monte-Carlo methods.

1.2 Simulation methods of classical laws

The aim of this section is to give a short introduction to sampling methods used in finance. Our
aim is not to be exhaustive on this broad subject (for this we refer to, e.g., [Devroye(1986)])
but to describe methods needed for the simulation of random variables widely used in finance.
Thus we concentrate on Gaussian random variables and Gaussian vectors.
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1.2.1 Simulation of the uniform law

In this subsection we present basic algorithms producing sequences of “pseudo random num-
bers”, whose statistical properties mimic those of sequences of independent and identically
uniformly distributed random variables. For a recent survey on random generators see, for
instance, [L’Ecuyer(1990)] and for mathematical treatment of these problems, see Niederre-
iter [Niederreiter(1995)] and the references therein. To generate a deterministic sequence which
“looks like” independent random variables uniformly distributed on [0,1], the simplest (and the
most widely used) methods are congruential methods. They are defined through four integers
a, b, m and U0. The integer U0 is the seed of the generator, m is the order of the congruence, a
is the multiplicative term. A pseudo random sequence is obtained from the following inductive
formula:

Un = (aUn−1 +b) (mod. m)

In practice, the seed is set to U0 at the beginning of a program and must never be changed inside
the program.

Observe that a pseudo random number generator consists of a completely deterministic al-
gorithm. Such an algorithm produces sequences which statistically behaves (almost) like se-
quences of independent and identically uniformly distributed random variables. There is no
theoretical criterion which ensures that a pseudo random number generator is statistically ac-
ceptable. Such a property is established on the basis of empirical tests. For example, one builds
a sample from successive calls to the generator, and one then applies the Chi–square test or the
Kolmogorov–Smirnov test in order to test whether one can reasonably accept the hypothesis
that the sample results from independent and uniformly distributed random variables. A gener-
ator is good when no severe test has rejected that hypothesis. Good choice for a, b, m are given
in [L’Ecuyer(1990)] and [Knuth(1998)]. The reader is also refered to the following web site en-
tirely devoted to Monte-Carlo simulation : http://random.mat.sbg.ac.at/links/.

1.2.2 Simulation of some common laws of finance

We now explain the basic methods used to simulate laws in financial models.

Using the distribution function in simulation The simplest method of simulation relies on
the use of the distribution function.

Proposition 1.2.1. Let X be a real random variable with strictly positive and continuous density
pX(x). Let F be its distribution function defined by

F(x) = P(X ≤ x).

Let U be a uniformly distributed in [0,1] random variable. Then X and F−1(U) have the same
distribution function, that is to say X and F−1(U) have the same law.

Démonstration : Clearly, as F−1 is strictly increasing, we have

P
(
F−1(U)≤ x

)
= P(U ≤ F(x)) .

Now, as F(x)≤ 1, we have P
(
F−1(U)≤ x

)
= F(x). So F−1(U) and X have the same distribu-

tion function and, hence, the same law. �
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Remark 1.2.2. Simulation of an exponential law
This result can be extended to a general case (that is to say a law which does not admit a density,
or with density not necessarily strictly positive). In this case we have to define the inverse F−1

of the increasing function F by

F−1(u) = inf{x ∈ R,F(x)≥ u} .

If we note that F−1(u) ≤ x if and only if u ≤ F(x) the end of the previous proof remains the
same.

Remark 1.2.3. Simulation of asset models with jumps uses random variables with exponential
laws. The preceding proposition applies to the simulation of an exponential law of parameter
λ > 0, whose density is given by

λ exp(−λx)1R+(x).

In this case, a simple computation leads to F(x) = 1− e−λx, so the equation F(x) = u can
be solved as x− log(1−u)

λ
. If U follows a uniform distribution on [0,1], − log(1−U)

λ
(or − log(U)

λ

follows an exponential law with parameter λ ).

Remark 1.2.4. This method can also be used to sample Gaussian random variables. Of course
neither the distribution function nor its inverse are exactly known but some rather good poly-
nomial approximations can be found, e.g. , in [Abramovitz and Stegun(1970)]. This method is
numerically more complex than Box-Muller method (see below) but can be used when using
low discrepancy sequences to sample Gaussian random variables.

Conditional simulation using the distribution function In stratification methods, described
later in this chapter, it is necessary to sample real random variable X , given that this random
variable belongs to a given interval ]a,b]. This can be easily done by using the distribution
function. Let U be a random variable uniform on [0,1], F be the distribution function of X ,
F(x) = P(X ≤ x) and F−1 be its inverse. The law of Y defined by

Y = F−1 (F(a)+(F(b)−F(a))U) ,

is equal to the conditional law of X given that X ∈]a,b]. This can be easily proved by checking
that the distribution function of Y is equal to the one of X knowing that X ∈]a,b].

Gaussian Law The Gaussian law with mean 0 and variance 1 on R is the law with the density
given by

1√
2π

exp
(
−x2

2

)
.

Therefore, this distribution function of the Gaussian random variable X is given by

P(X ≤ z) =
1√
2π

∫ z

−∞

exp
(
−x2

2

)
dx, ∀z ∈ R.

The most widely used simulation method of a Gaussian law is the Box-Muller method. This
method is based upon the following result (See exercise 2 for a proof.).
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Proposition 1.2.5. Let U and V be two independent random variables which are uniformly
distributed on [0,1]. Let X and Y be defined by

X =
√
−2logU sin(2πV ),

Y =
√
−2logU cos(2πV ).

Then X and Y are two independent Gaussian random variables with mean 0 and variance 1.

Of course, the method can be used to simulate N independent realizations of the same real
Gaussian law. The simulation of the two first realizations is performed by calling a random
number generator twice and by computing X and Y as above. Then the generator is called two
other times to compute the corresponding two new values of X and Y , which provides two new
realizations which are independent and mutually independent of the two first realizations, and
so on.

Simulation of a Gaussian vector To simulate a Gaussian vector

X = (X1, . . . ,Xd)

with zero mean and with a d× d covariance matrix C = (ci j,1 ≤ i, j ≤ n) with ci j = E(X iX j)
one can proceed as follows.

C is a covariance matrix, so it is positive (since, for each v ∈ Rd , v.Cv = E
(
(v.X)2) ≥ 0).

Standard results of linear algebra prove that there exists a d× d matrix A, called a square root
of C such that

AA∗ =C,

where A∗ is the transposed matrix of A = (ai j,1≤ i, j ≤ n).
Moreover one can compute a square root of a given positive symmetric matrix by specifying

that ai j = 0 for i < j (i.e. A is a lower triangular matrix). Under this hypothesis, its easy to see
that A is uniquely determined by the following algorithm

a11 :=
√

c11

For 2 < i≤ d

ai1 :=
ci1

a11
,

then i increasing from 2 to d,

aii :=

√√√√cii−
i−1

∑
j=1
|ai j|2,

For j < i≤ d

ai j :=
ci j−∑

j−1
k=1 aika jk

a j j
,

For 1 < i < j
ai j := 0.

This way of computing a square root of a positive symmetric matrix is known as the Cholevsky
algorithm.



1.3. VARIANCE REDUCTION 7

Now, if we assume that G = (G1, . . . ,Gd) is a vector of independent Gaussian random vari-
ables with mean 0 and variance 1 (which are easy to sample as we have already seen), one
can check that Y = AG is a Gaussian vector with mean 0 et with covariance matrix given by
AA∗ = C. As X et Y are two Gaussian vectors with the same mean and covariance matrix, the
law of X and Y are the same. This leads to the following simulation algorithm.

Simulate the vector (G1, . . . ,Gd) of independent Gaussian variables as explained
above. Then return the vector X = AG.

Discrete law Consider a random variable X taking values in a finite set {xk,k = 1, . . . ,N}.
The value xk is taken with probability pk. To simulate the law of X , one simulates a random
variable U uniform on [0,1]. If the value u of the trial satisfies

k−1

∑
j=0

p j < u≤
k

∑
j=0

p j,

one decides to return the value xk. Clearly the random variable obtained by using this procedure
follows the same law as X .

Bibliographic remark A very complete discussion on the simulation of non uniform random
variables can be found in [Devroye(1986)], results and discussion on the construction of pseudo-
random sequences in Knuth [Knuth(1998)].

[Ripley(2006)],[Rubinstein(1981)] and [Hammersley and Handscomb(1979)] are reference
books on simulation methods. See also the survey paper by Niederreiter [Niederreiter(1995)]
and the references therein, in particular these which concern nonlinear random number genera-
tors.

1.3 Variance Reduction

We have shown in the preceding section that the ratio σ/
√

N governs the accu-
racy of a Monte-Carlo method with N simulations. An obvious consequence of this
fact is that one always has interest to rewrite the quantity to compute as the ex-
pectation of a random variable which has a smaller variance : this is the ba-
sic idea of variance reduction techniques. For complements, we refer the reader
to [Kalos and Whitlock(2008)],[Hammersley and Handscomb(1979)],[Rubinstein(1981)] or
[Ripley(2006)].

Suppose that we want to evaluate E(X). We try to find an alternative representation for this
expectation as

E(X) = E(Y )+C,

using a random variable Y with lower variance and C a known constant. A lot of techniques are
known in order to implement this idea. This paragraph gives an introduction to some standard
methods.
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1.3.1 Control variates

The basic idea of control variate is to write E( f (X)) as

E( f (X)) = E( f (X)−h(X))+E(h(X)),

where E(h(X)) can be explicitly computed and Var ( f (X)−h(X)) is smaller than Var ( f (X)).
In these circumstances, we use a Monte-Carlo method to estimate E( f (X)−h(X)), and we add
the value of E(h(X)). Let us illustrate this principle by several financial examples.

Using call-put arbitrage formula for variance reduction Let St be the price at time t of a
given asset and denote by C the price of the European call option

C = E
(
e−rT (ST −K)+

)
,

and by P the price of the European put option

P = E
(
e−rT (K−ST )+

)
.

There exists a relation between the price of the put and the call which does not depend on the
models for the price of the asset,namely, the “call-put arbitrage formula” :

C−P = E
(
e−rT (ST −K)

)
= S0−Ke−rT .

This formula (easily proved using linearity of the expectation) can be used to reduce the variance
of a call option since

C = E
(
e−rT (K−ST )+

)
+S0−Ke−rT .

The Monte-Carlo computation of the call is then reduced to the computation of the put option.

Remark 1.3.1. For the Black-Scholes model explicit formulas for the variance of the put and
the call options can be obtained. In most cases, the variance of the put option is smaller than
the variance of the call since the payoff of the put is bounded whereas the payoff of the call is
not. Thus, one should compute put option prices even when one needs a call prices.

Remark 1.3.2. Observe that call-put relations can also be obtained for Asian options or basket
options.

For example, for Asian options, set S̄T = 1
T
∫

0 Ssds. We have :

E
((

S̄T −K
)
+

)
−E

((
K− S̄T

)
+

)
= E

(
S̄T
)
−K,

and, in the Black-Scholes model,

E
(
S̄T
)
=

1
T

∫ T

0
E(Ss)ds =

1
T

∫ T

0
S0ersds = S0

erT −1
rT

.

Basket options. A very similar idea can be used for pricing basket options. Assume that, for
i = 1, . . . ,d

Si
T = xie

(
r− 1

2

p

∑
j=1

σ
2
i j

)
T +

p

∑
j=1

σi jW
j

T
,
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where W 1, . . . ,W p are independent Brownian motions. Let ai, 1≤ i≤ p, be positive real num-
bers such that a1 + · · ·+ad = 1. We want to compute a put option on a basket

E((K−X)+) ,

where X = a1S1
T + · · ·+adSd

T . The idea is to approximate

X
m

=
a1x1

m
erT+∑

p
j=1 σ1 jW

j
T + · · ·+ adxd

m
erT+∑

p
j=1 σd jW

j
T

where m = a1x1 + · · ·+adxd , by Y
m where Y is the log-normal random variable

Y = me∑
d
i=1

aixi
m

(
rT+∑

p
j=1 σi jW

j
T

)
.

As we can compute an explicit formula for

E
[
(K−Y )+

]
,

one can to use the control variate Z = (K−Y )+ and sample (K−X)+− (K−Y )+.

1.3.2 Importance sampling

Importance sampling is another variance reduction procedure. It is obtained by changing the
sampling law.

We start by introducing this method in a very simple context. Suppose we want to compute

E(g(X)),

X being a random variable following the density f (x) on R, then

E(g(X)) =
∫
R

g(x) f (x)dx.

Let f̃ be another density such that f̃ (x)> 0 and
∫
R f̃ (x)dx = 1. Clearly one can write E(g(X))

as

E(g(X)) =
∫
R

g(x) f (x)
f̃ (x)

f̃ (x)dx = E
(

g(Y ) f (Y )
f̃ (Y )

)
,

where Y has density f̃ (x) under P. We thus can approximate E(g(X)) by

1
n

(
g(Y1) f (Y1)

f̃ (Y1)
+ · · ·+ g(Yn) f (Yn)

f̃ (Yn)

)
,

where (Y1, . . . ,Yn) are independant copies of Y . Set Z = g(Y ) f (Y )/ f̃ (Y ). We gave decreased
the variance of the simulation if Var (Z) < Var (g(X)). It is easy to compute the variance of Z
as

Var (Z) =
∫
R

g2(x) f 2(x)
f̃ (x)

dx−E(g(X))2.

From this and an easy computation it follows that if g(x)> 0 and f̃ (x) = g(x) f (x)/E(g(X)) then
Var (Z) = 0! Of course this result cannot be used in practice as it relies on the exact knowledge
of E(g(X)), which is the exactly what we want to compute. Nevertheless, it leads to a heuristic
approach : choose f̃ (x) as a good approximation of |g(x) f (x)| such that f̃ (x)/

∫
R f̃ (x)dx can be

sampled easily.
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An elementary financial example Suppose that G is a Gaussian random variable with mean
zero and unit variance, and that we want to compute

E(φ(G)) ,

for some function φ . We choose to sample the law of G̃ = G+m, m being a real constant to be
determined carefully. We have :

E(φ(G)) = E
(

φ(G̃)
f (G̃)

f̃ (G̃)

)
= E

(
φ(G̃)e−mG̃+m2

2

)
.

This equality can be rewritten as

E(φ(G)) = E
(

φ(G+m)e−mG−m2
2

)
.

Suppose we want to compute a European call option in the Black and Scholes model, we have

φ(G) =
(

λeσG−K
)
+
,

and assume that λ << K. In this case, P(λeσG > K) is very small and unlikely the option will
be exercised. This fact can lead to a very large error in a standard Monte-Carlo method. In
order to increase to exercise probability, we can use the previous equality

E
((

λeσG−K
)
+

)
= E

((
λeσ(G+m)−K

)
+

e−mG−m2
2

)
,

and choose m = m0 with λeσm0 = K, since

P
(

λeσ(G+m0) > K
)
=

1
2
.

This choice of m is certainly not optimal; however it drastically improves the efficiency of the
Monte-Carlo method when λ << K (see exercise 4 for a mathematical hint of this fact).

The multidimensional case Monte-Carlo simulations are really useful for
problems with large dimension, and thus we have to extend the previ-
ous method to multidimensional setting. The ideas of this section come
from [Glasserman et al.(1999)Glasserman, Heidelberger, and Shahabuddin].

Let us start by considering the pricing of index options. Let σ be a n×d matrix and (Wt , t ≥
0) a d-dimensional Brownian motion. Denote by (St , t ≥ 0) the solution of dS1

t = S1
t (rdt +[σdWt ]1)

. . .
dSn

t = Sn
t (rdt +[σdWt ]n)

where [σdWt ]i = ∑
d
j=1 σi jdW j

t .
Moreover, denote by It the value of the index

It =
n

∑
i=1

aiSi
t ,
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where a1, . . . ,an is a given set of positive numbers such that ∑
n
i=1 ai = 1. Suppose that we want

to compute the price of a European call option with payoff at time T given by

h = (IT −K)+ .

As

Si
T = Si

0 exp

((
r− 1

2

d

∑
j=1

σ
2
i j

)
T +

d

∑
j=1

σi jW
j

T

)
,

there exists a function φ such that

h = φ (G1, . . . ,Gd) ,

where G j =W j
T/
√

T . The price of this option can be rewritten as

E(φ(G))

where G = (G1, . . . ,Gd) is a d-dimensional Gaussian vector with unit covariance matrix.
As in the one dimensional case, it is easy (by a change of variable) to prove that, if m =

(m1, . . . ,md),

E(φ(G)) = E
(

φ(G+m)e−m.G− |m|
2

2

)
, (1.2)

where m.G = ∑
d
i=1 miGi and |m|2 = ∑

d
i=1 m2

i . In view of 1.2, the variance V (m) of the random
variable

Xm = φ(G+m)e−m.G− |m|
2

2

is
V (m) = E

(
φ

2(G+m)e−2m.G−|m|2
)
−E(φ(G))2 ,

= E
(

φ
2(G+m)e−m.(G+m)+

|m|2
2 e−m.G− |m|

2
2

)
−E(φ(G))2 ,

= E
(

φ
2(G)e−m.G+

|m|2
2

)
−E(φ(G))2 .

Exercise 5 provides an example of the use of this formula to reduce variance. The reader is
refered to [Glasserman et al.(1999)Glasserman, Heidelberger, and Shahabuddin] for an almost
optimal way to choose the parameter m based on this representation.

1.3.3 Antithetic variables

The use of antithetic variables is widespread in Monte-Carlo simulation. This technique is often
efficient but its gains are less dramatic than other variance reduction techniques.

We begin by considering a simple and instructive example. Let

I =
∫ 1

0
g(x)dx.

If U follows a uniform law on the interval [0,1], then 1−U has the same law as U , and thus

I =
1
2

∫ 1

0
(g(x)+g(1− x))dx = E

(
1
2
(g(U)+g(1−U))

)
.
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Therefore one can draw n independent random variables U1, . . . ,Un following a uniform law on
[0,1], and approximate I by

I2n = 1
n

(1
2(g(U1)+g(1−U1))+ · · ·+ 1

2(g(Un)+g(1−Un))
)

= 1
2n (g(U1)+g(1−U1)+ · · ·+g(Un)+g(1−Un)) .

We need to compare the efficiency of this Monte-Carlo method with the standard one with 2n
drawings

I0
2n = 1

2n (g(U1)+g(U2)+ · · ·+g(U2n−1)+g(U2n))

= 1
n

(1
2(g(U1)+g(U2))+ · · ·+ 1

2(g(U2n−1)+g(U2n))
)
.

We will now compare the variances of I2n and I0
2n. Observe that in doing this we assume that

most of numerical work relies in the evaluation of f and the time devoted to the simulation of
the random variables is negligible. This is often a realistic assumption.

An easy computation shows that the variance of the standard estimator is

Var (I0
2n) =

1
2n

Var (g(U1)) ,

whereas

Var (I2n) =
1
n

Var
(

1
2
(g(U1)+g(1−U1))

)
=

1
4n

(Var (g(U1))+Var (g(1−U1))+2Cov(g(U1),g(1−U1)))

=
1

2n
(Var (g(U1)+Cov(g(U1),g(1−U1))) .

Obviously, Var (I2n) ≤ Var (I0
2n) if and only if Cov(g(U1),g(1−U1)) ≤ 0. One can prove that

if f is a monotonic function this is always true (see 6 for a proof) and thus the Monte-Carlo
method using antithetic variables is better than the standard one.

This ideas can be generalized in dimension greater than 1, in which case we use the transfor-
mation

(U1, . . . ,Ud)→ (1−U1, . . . ,1−Ud).

More generaly, if X is a random variable taking its values in Rd and T is a transformation of
Rd such that the law of T (X) is the same as the law of X , we can construct an antithetic method
using the equality

E(g(X)) =
1
2
E(g(X)+g(T (X))) .

Namely, if (X1, . . . ,Xn) are independent and sampled along the law of X , we can consider the
estimator

I2n =
1

2n
(g(X1)+g(T (X1))+ · · ·+g(Xn)+g(T (Xn)))

and compare it to

I0
2n =

1
2n

(g(X1)+g(X2))+ · · ·+g(X2n−1)+g(X2n)) .

The same computations as before prove that the estimator I2n is better than the crude one if and
only if Cov(g(X),g(T (X)))≤ 0. We now show a few elementary examples in finance.
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A toy financial example. Let G be a standard Gaussian random variable and consider the call
option

E
((

λeσG−K
)
+

)
.

Clearly the law of −G is the same as the law of G, and thus the function T to be considered is
T (x) = −x. As the payoff is increasing as a function of G, the following antithetic estimator
certainly reduces the variance :

I2n =
1

2n
(g(G1)+g(−G1)+ · · ·+g(Gn)+g(−Gn)) ,

where g(x) = (λeσx−K)+.

Antithetic variables for path-dependent options. Consider the path dependent option with
payoff at time T

ψ (Ss,s≤ T ) ,

where (St , t ≥ 0) is the lognormal diffusion

St = xexp
(
(r− 1

2
σ

2)t +σWt

)
.

As the law of (−Wt , t ≥ 0) is the same as the law of (Wt , t ≥ 0) one has

E
(

ψ

(
xexp

(
(r− 1

2
σ

2)s+σWs

)
,s≤ T

))
= E

(
ψ

(
xexp

(
(r− 1

2
σ

2)s−σWs

)
,s≤ T

))
,

and, for appropriate functionals ψ , the antithetic variable method may be efficient.

1.3.4 Stratification methods

These methods are widely used in statistics (see [Cochran(1953)]). Assume that we want to
compute the expectation

I = E(g(X)) =
∫
Rd

g(x) f (x)dx,

where X is a Rd valued random variable with density f (x).
Let (Di,1≤ i≤ m) be a partition of Rd . I can be expressed as

I =
m

∑
i=1

E(1X∈Dig(X)) =
m

∑
i=1

E(g(X)|X ∈ Di)P(X ∈ Di),

where

E(g(X)|X ∈ Di) =
E(1X∈Dig(X))

P(X ∈ Di)
.

Note that E(g(X)|X ∈ Di) can be interpreted as E(g(X i)) where X i is a random variable whose
law is the law of X conditioned by X belongs to Di, whose density is

1∫
Di

f (y)dy
1x∈Di f (x)dx.
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Remark 1.3.3. The random variable X i is easily simulated using an acceptance rejection pro-
cedure. But this method is clearly unefficient when P(X ∈ Di) is small.

When the numbers pi = P(X ∈ Di) can be explicitly computed, one can use a Monte-Carlo
method to approximate each conditional expectation Ii = E(g(X)|X ∈ Di) by

Ĩi =
1
ni

(
g(X i

1)+ · · ·+g(X i
ni
)
)
,

where (X i
1, . . . ,X

i
ni
) are independent copies of X i. An estimator Ĩ of I is then

Ĩ =
m

∑
i=1

piĨi.

Of course the samples used to compute Ĩi are supposed to be independent and so the variance
of Ĩ is

m

∑
i=1

p2
i

σ2
i

ni
,

where σ2
i be the variance of g(X i).

Fix the total number of simulations ∑
m
i=1 ni = n. This minimization the variance above, one

must choose
ni = n

piσi

∑
m
i=1 piσi

.

For this values of ni, the variance of Ĩ is given in this case by

1
n

(
m

∑
i=1

piσi

)2

.

Note that this variance is smaller than the one obtained without stratification. Indeed,

Var (g(X)) = E
(
g(X)2)−E(g(X))2

=
m

∑
i=1

piE
(
g2(X)|X ∈ Di

)
−

(
m

∑
i=1

piE(g(X)|X ∈ Di)

)2

=
m

∑
i=1

piVar (g(X)|X ∈ Di)+
m

∑
i=1

piE(g(X)|X ∈ Di)
2

−

(
m

∑
i=1

piE(g(X)|X ∈ Di)

)2

.

Using the convexity inequality for x2 we obtain (∑m
i=1 piai)

2 ≤∑
m
i=1 pia2

i if ∑
m
i=1 pi = 1, and the

inequality

Var (g(X))≥
m

∑
i=1

piVar (g(X)|X ∈ Di)≥

(
m

∑
i=1

piσi

)2

,

follows.
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Remark 1.3.4. The optimal stratification involves the σi’s which are seldom explicitly known.
So one needs to estimate these σi’s by Monte-Carlo simulations.

Moreover note that arbitrary choices of ni may increase the variance. Common way to
circumvent this difficulty is to choose

ni = npi.

The corresponding variance
1
n

m

∑
i=1

piσ
2
i ,

is always smaller than the original one as ∑
m
i=1 piσ

2
i ≤ Var (g(X)). This choice is often made

when the probabilities pi can be computed. For more considerations on the choice of the ni and
also, for hints on suitable choices of the sets Di, see [Cochran(1953)].

A toy example in finance In the standard Black and Scholes model the price of a call option
is

E
((

λeσG−K
)
+

)
.

It is natural to use the following strata for G : either G≤ d = log(K/λ )
σ

or G > d. Of course the
variance of the stratum G ≤ d is equal to zero, so if you follow the optimal choice of number,
you do not have to simulate points in this stratum : all points have to be sampled in the stratum
G≥ d! This can be easily done by using the (numerical) inverse of the distribution function of
a Gaussian random variable.

Of course, one does not need Monte-Carlo methods to compute call options for the Black
and Scholes models; we now consider a more convincing example.

Basket options Most of what follows comes from [Glasserman et al.(1999)Glasserman, Heidelberger, and Shahabuddin].
The computation of an European basket option in a multidimensional Black-Scholes model can
be expressed as

E(h(G)),

for some function h and for G= (G1, . . . ,Gn) a vector of independent standard Gaussian random
variables. Choose a vector u ∈ Rn such that |u| = 1 (note that < u,G >= u1G1 + · · ·+unGn is
also a standard Gaussian random variable.). Then choose a partition (Bi,1 ≤ i ≤ n) of R such
that

P(< u,G >∈ Bi) = P(G1 ∈ Bi) = 1/n.

This can be done by setting

Bi =]N−1((i−1)/n),N−1(i/n)],

where N is the distribution function of a standard Gaussian random variable and N−1 is its
inverse. We then define the strata by setting

Di = {< u,x >∈ Bi} .

In order to implement our stratification method we need to solve two simulation problems

• sample a Gaussian random variable < u,G > given that < u,G > belongs to Bi,
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• sample a new vector G knowing the value < u,G >.

The first problem is easily solved since the law of

N−1
(

i−1
N

+
U
N

)
, (1.3)

is precisely the law a standard Gaussian random variable conditioned to be in Bi (see page 6).
To solve the second point, observe that

G−< u,G > u

is a Gaussian vector independent of < u,G > with covariance matrix I− u⊗ u′ (where u⊗ u′

denotes the matrix defined by (u⊗ u′)i j = uiu j). Let Y be a copy of the vector G. Obviously
Y−< u,Y > u is independent of G and has the same law as G−< u,G > u. So

G =< u,G > u+G−< u,G > u and < u,G > u+Y−< u,Y > u,

have the same probability law. This leads to the following simulation method of G given <
u,G >= λ :

• sample n independent standard Gaussian random variables Y i,

• set G = λu+Y−< u,Y > u.

To make this method efficient, the choice of the vector u is cru-
cial : an almost optimal way to choose the vector u can be found
in [Glasserman et al.(1999)Glasserman, Heidelberger, and Shahabuddin].

1.3.5 Mean value or conditioning

This method uses the well known fact that conditioning reduces the variance. Indeed, for any
square integrable random variable Z, we have

E(Z) = E(E(Z|Y )),

where Y is any random variable defined on the same probability space as Z. It is well known
that E(Z|Y ) can be written as

E(Z|Y ) = φ(Y ),

for some measurable function φ . Suppose in addition that Z is square integrable. As the condi-
tional expectation is a L2 projection

E
(
φ(Y )2)≤ E(Z2),

and thus Var (φ(Y ))≤ Var (Z).
Of course the practical efficiency of simulating φ(Y ) instead of Z heavily relies on an ex-

plicit formula for the function φ . This can be achieved when Z = f (X ,Y ), where X and Y are
independent random variables. In this case, we have

E( f (X ,Y )|Y ) = φ(Y ),

where φ(y) = E( f (X ,y)).
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A basic example. Suppose that we want to compute P(X ≤ Y ) where X and Y are indepen-
dent random variables. This situation occurs in finance, when one computes the hedge of an
exchange option (or the price of a digital exchange option).

Using the preceding, we have

P(X ≤ Y ) = E(F(Y )) ,

where F is the distribution function of X . The variance reduction can be significant, especially
when the probability P(X ≤ Y ) is small.

1.4 Low discrepancy sequences

Using sequences of points “more regular” than random points may sometimes improve Monte-
Carlo methods. We look for deterministic sequences (xi, i≥ 1) such that∫

[0,1]d
f (x)dx≈ 1

n
( f (x1)+ · · ·+ f (xn)),

for all function f in a large enough set.
When the considered sequence is deterministic, the method is called a quasi Monte-Carlo

method. One can find sequences such that the speed of convergence of the previous approxima-
tion is of the order K log(n)d

n (when the function f is regular enough). Such a sequence is called
a “low discrepancy sequence”.

We give now a mathematical definition of a uniformly distributed sequence. In this definition
the notion of discrepancy is involved. By definition, if x and y are two points in [0,1]d , x≤ y if
and only if xi ≤ yi, for all 1≤ i≤ d.

Definition 1.4.1. A sequence (xn)n≥1 is said to be uniformly distributed on [0,1]d if one of the
following equivalent properties is fulfilled :

1. For all y = (y1, · · · ,yd) ∈ [0,1]d :

lim
n→+∞

1
n

n

∑
k=1

1xk∈[0,y]

d

∏
i=1

yi = Volume([0,y]),

where [0,y] = {z ∈ [0,1]d,0≤ z≤ y}.

2. Let D∗n(x) = sup
y∈[0,1]d

∣∣∣∣∣1n n

∑
k=1

1xk∈[0,y]−Volume([0,y])

∣∣∣∣∣ be the discrepancy of the sequence,

then
lim

n→+∞
D∗n(x) = 0,

3. For every bounded continuous function f on [0,1]d

lim
n→+∞

1
n

n

∑
k=1

f (xk) =
∫
[0,1]d

f (x)dx,



18 CHAPTER 1. MONTE-CARLO METHODS FOR OPTIONS

Remark 1.4.1. • If (Un)n≥1 is a sequence of independent random variables with uniform
law on [0,1], the random sequence

(Un(ω),n≥ 1),

is almost surely uniformly distributed. Moreover, we have an iterated logarithm law for
the discrepancy, namely,

limsup
n

√
2n

log(logn)
D∗n(U) = 1 a.s.

• The discrepancy of any infinite sequence satisfies the following property

D∗n >Cd
(logn)max( d−1

2 ,1)

n
for an infinite number of values of n,

where Cd is a constant which depends on d only. This result is known as the Roth theorem
(see [Roth(1954)]).

• It is possible to construct d-dimensional sequences with discrepancies bounded by
(logn)d/n. We will see later in this section some examples of such sequences. Note
that, using the Roth theorem, these sequences are almost optimal. These sequences are,
in principle, asymptotically better than random numbers.

In practice we use a number of drawing between 103 and 108 and, in this case, the best
known sequences are not clearly better than random numbers in term of discrepancy. This
is especially true in large dimension (greater than 100).

The discrepancy allows one to give an estimation of the approximation error

1
n

n

∑
k=1

f (xk)−
∫
[0,1]d

f (x)dx,

when f has a finite variation in the sense of Hardy and Krause. This estimate is known as the
Koksma-Hlawka inequality.

Proposition 1.4.2 (Koksma-Hlawka inequality). Let g be a finite variation function in the sense
of Hardy and Krause and denote by V (g) its variation. Then for n≥ 1∣∣∣∣∣ 1

N

N

∑
k=1

g(xk)−
∫
[0,1]d

g(u)du

∣∣∣∣∣≤V (g)D∗N(x).

Remark 1.4.3. This result is very different from the central limit theorem used for random
sequences, which leads to a confidence interval for a given probability. Here, this estimation
is deterministic. This can be seen as a useful property of low discrepancy sequences, but this
estimation involves V (g) and D∗N(x) and both of these quantities are extremely hard to estimate
in practice. So, the theorem gives in most cases a large overestimation of the real error (very
often, too large to be useful) .

For a general definition of finite variation function in the sense of Hardy and Krause
see [Niederreiter(1992)]. In dimension 1, this notion coincides with the notion of a function
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with finite variation in the classical sense. In dimension d, when g is d times continuously
differentiable, the variation of V (g) is given by

d

∑
k=1

∑
1≤i1<···<ik≤d

∫{
x ∈ [0,1]d

x j = 1, for j 6= i1, . . . , ik

} ∣∣∣∣ ∂ kg(x)
∂xi1 · · ·∂xik

∣∣∣∣dxi1 . . .dxik .

When the dimension d increases, a function with finite variation has to be smoother. For in-
stance, the set function 1 f (x1,...,xd)>λ has an infinite variation when d ≥ 2. Moreover, most of
the standard option payoffs for basket options such as

(a1x1 + · · ·+adxd−K)+ or (K− (a1x1 + · · ·+adxd))+

do not have finite variation when d ≥ 3 (see [Kasas(2000)] for a proof).

Note that the efficiency of a law discrepancy method depends not only on the representation of
the expectation, but also on the way the random variable is simulated. Moreover, the method
chosen can lead to functions with infinite variation, even when the variance is bounded.

For instance, assume that we want to compute E( f (G)), where G is a real random variable
and f is a function such that Var ( f (G)) < +∞, f is increasing, f (−∞) = 0 and f (+∞) =
+∞. Assume that we simulate along the law of G using the inverse of the distribution function
denoted by N(x). For the sake of simplicity, we will assume that N is differentiable and strictly
increasing. If U is a random variable drawn uniformly on [0,1], we have

E( f (G)) = E
(

f (N−1(U)
)
= E(g(U)) .

In order to use the Koksma-Hlawka inequality we need to compute the variation of g. But

V (g) =
∫ 1

0
|g′|(u)du

=
∫ 1

0
f ′(N−1(u))dN−1(u)

=
∫
R

f ′(x)dx = f (+∞)− f (−∞) = +∞.

An example in finance is given by the call option where

f (G) =
(

λeσG−K
)
+
,

and G is a standard Gaussian random variable. Of course, it is easy in this case to solve this
problem by first computing the price of the put option and then by using the call-put arbitrage
relation to retrieve the call price.

We will now give examples of some of the most widely used low discrepancy sequences
in finance. For other examples and an exhaustive and rigorous presentation of this subject
see [Niederreiter(1992)].

The Van Der Corput sequence Let p be an integer, p≥ 2 and n a positive integer. We denote
by a0,a1, . . . ,ar the p-adic decomposition of n, that is to say the unique set of integers ai such
that 0≤ ai < p for 0≤ i≤ r and ar > 0 with

n = a0 +a1 p+ · · ·+ar pr.
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Using standard notations, n can be writen as

n = arar−1 . . .a1a0 in base p.

The Van Der Corput sequence in base p is given by

φp(n) =
a0

p
+ · · ·+ ar

pr .

The definition of φp(n) can be rewriten as follows

if n = arar−1 . . .a0 then φp(n) = 0,a0a2 . . .ar,

where 0,a0a2 . . .ar denotes the p−adic decomposition of a number.

Halton sequences. Halton sequences are multidimensional generalizations of Van Der Corput
sequence. Let p1, · · · , pd be the first d prime numbers. The Halton sequence is defined by

xd
n = (φp1(n), · · · ,φpd(n)) (1.4)

for an integer n and where φpi(n) is the Van Der Corput sequence in base pi.
One can prove that the discrepancy of a d−dimensional Halton sequence can be estimated

by

D∗n ≤
1
n

d

∏
i=1

pi log(pin)
log(pi)

.

Faure sequence. These sequences are defined in [Faure(1981)] and [Faure(1982)]. The Faure
sequence in dimension d is defined as follows. Let r be an odd integer greater than d. Now
define a function T on the set of numbers x such that

x = ∑
k≥0

ak

rk+1 ,

where the sum is finite and each ak belongs to {0, . . . ,r−1}, by

T (x) = ∑
k≥0

bk

rk+1 ,

where

bk = ∑
i≥k

(
i
k

)
ai mod r,

and
(

i
k

)
denote the binomial coefficients. The Faure sequence is then defined as follows

xn =
(

φr(n−1),T (φr(n−1)), · · · ,T d−1(φr(n−1))
)
, (1.5)

where φr(n) is the Van Der Corput sequence of basis r. The discrepancy of this sequence is
bounded by C log(n)d

n .



1.4. LOW DISCREPANCY SEQUENCES 21

Irrational translation of the torus These sequences are defined by

xn = ({nα1}, . . . ,{nαd}), (1.6)

where {x} is the fractional part of the number x and α = (α1, · · · ,αd) is a vector of real numbers
such that (1,α1, · · · ,αd) is a free family on Q. This is equivalent to say that there is no linear
relation with integer coefficients (λi, i = 0, . . . ,d) such that

λ0 +λ1α1 + · · ·+λdαd = 0.

Note that this condition implies that the αi are irrational numbers.
One convenient way to choose such a family is to define α by

(
√

p1, · · · ,
√

pd) ,

where p1, . . . , pd are the d first prime numbers. See [Pagès and Xiao(1997)] for numerical ex-
periments on this sequence.

Sobol sequence ([Sobol’(1967)]) One of the most used low discrepancy sequences is the
Sobol sequence. This sequence uses the binary decomposition of a number n

n = ∑
k≥1

ak(n)2k−1,

where the ak(n) ∈ {0,1}. Note that ak(n) = 0, for k large enough.
First choose a polynomial of degree q with coefficient in Z/2Z

P = α0 +α1X + · · ·+αqXq,

such that α0 = αq = 1. The polynomial P is supposed to be irreducible and primitive in Z/2Z.
See [Roman(1992)] for definitions and appendix A.4 of this book for an algorithm for comput-
ing such polynomials (a table of (some) irreducible polynomials is also available in this book
and algorithm for testing the primitivity of a polynomial is available in Maple).

Choose an arbitrary vector of (M1, . . . ,Mq)∈Nq, such that Mk is odd and less than 2k. Define
Mn, for n > q by

Mn =⊕q
i=12i

αiMn−i⊕Mk−q,

where ⊕ is defined by
m⊕n = ∑

k≥0
(ak(m) XOR ak(n))2k,

and XOR is the bitwise operator defined by

aXORb = (a+b) mod. 2.

A direction sequence (Vk,k ≥ 0) of real numbers is then defined by

Vk =
Mk

2k ,

and a one dimensional Sobol sequence xn, by

xn =⊕k≥0ak(n)Vk,
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if n=∑k≥1 ak(n)2k−1, A multidimensional sequence can be constructed by using different poly-
nomials for each dimension.

A variant of the Sobol sequence can be defined using a “Gray code”. For a given integer n,
we can define a Gray code of n, (bk(n),k≥ 0), by the binary decomposition of G(n) = n⊕ [n/2]

n⊕ [n/2] = ∑
k≥0

bk(n)2k.

Note that the function G is bijective from
{

0, . . . ,2N−1
}

to itself. The main interest of Gray
codes is that the binary representation of G(n) and G(n+1) differ in exactly one bit. The variant
proposed by Antonov et Salev (see [Antonov and Saleev(1980)]) is defined by

xn = b1(n)V1⊕·· ·⊕br(n)Vr.

For an exhaustive study of the Sobol sequence, see [Sobol’(1967)] and [Sobol’(1976)].
A program allowing to generate some Sobol sequences for small dimensions
can be found in [Press et al.(1992)Press, Teukolsky, Vetterling, and Flannery], see
also [Fox(1988)]. Empirical studies indicate that Sobol sequences are among the most
efficient low discrepancy sequences (see [Fox et al.(1992)Fox, Bratley, and Neiderreiter]
and [Radovic et al.(1996)Radovic, Sobol’, and Tichy] for numerical comparisons of se-
quences).
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1.5 Exercises and problems

1.5.1 Exercises

Exercice 1. Let Z be a Gaussian random variable and K a positive real number.

1. Let d = E(Z)−log(K)√
Var (Z)

, prove that

E
(
1{Z≥log(K)}(e

Z)= eE(Z)+
1
2 Var (Z)N

(
d +

√
Var (Z)

)
.

2. Prove the formula (Black and Scholes formula)

E
((

eZ−K
)
+

)
= eE(Z)+

1
2 Var (Z)N

(
d +

√
Var (Z)

)
−KN(d),

Exercice 2. Let X and Y be two independent Gaussian random variables with mean 0 and
variance 1.

1. Prove that, if R =
√

X2 +Y 2 and θ is the polar angle, then θ/2π and exp(−R2/2) are two
independent random variables following a uniform law on [0,1].

2. Using the previous result, deduce proposition 1.2.5.

Exercice 3. Consider the case of a European call in the Black and Scholes model with a stochas-
tic interest rate. Suppose that the price of the stock is 1, and the option price at time 0 is given
E(Z) with Z defined by

Ze−
∫ T

0 rθ dθ

[
e
∫ T

0 rθ dθ−σ2
2 T+σWT −K

]
+

.

1. Prove that the variance of Z is bounded by Ee−σ2T+2σWT .

2. Prove that Ee−
1
2 γ2T+γWT = 1, and deduce an estimate for the variance of Z

Exercice 4. Let λ and K be two real positive numbers such that λ < K and Xm be the random
variable

Xm =
(

λeσ(G+m)−K
)
+

e−mG−m2
2 .

We denote its variance by σ2
m. Give an expression for the derivative of σ2

m with respect to m as
an expectation, then deduce that σ2

m is a decreasing function of m when m≤m0 = log(K/λ )/σ .

Exercice 5. Let G = (G1, . . . ,Gd) be a d-dimensional Gaussian vector with covariance equal
to the identity matrix. For each m ∈ Rd , let V (m) denote the variance of the random variable

Xm = φ(G+m)e−m.G− |m|
2

2 .

1. Prove that
∂V
∂mi

(m) = E
(

φ
2(G)e−m.G+

|m|2
2 (mi−Gi)

)
.
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2. Assume that φ(G) =
(
∑

d
i=1 λieσiGi−K

)
+

, λi,σi,K being real positive constant. Let
mi(α) = αλiσi. Prove that, if ∑

d
i=1 λi < K then

dV (m(α))

dα
≤ 0,

for 0≤ α ≤ K−∑
d
i=1 λi

∑
d
i=1(λiσi)2 and deduce that if

mi
0 = σiλi

K−∑
d
i=1 λi

∑
d
i=1(λiσi)2

,

then V (m0)≤V (0).

Exercice 6. The aim of this exercise is to prove that the antithetic variable method decreases
the variance for a function which is monotonous with respect to each of its arguments.

1. Let f and g be two increasing functions from R to R. Prove that, if X and Y are two real
random variables then we have

E( f (X)g(X))+E( f (Y )g(Y ))≥ E( f (X)g(Y ))+E( f (Y )g(X)) .

2. Deduce that, if X is a real random variable, then

E( f (X)g(X))≥ E( f (X))E(g(X)) .

3. Prove that if X1, . . . ,Xn are n independent random variables then

E( f (X1, . . . ,Xn)g(X1, . . . ,Xn)|Xn) = φ(Xn),

where φ is a function which can be computed as an expectation.

4. Deduce from this property that if f and g are two increasing (with respect each of its
argument) functions then

E( f (X1, . . . ,Xn)g(X1, . . . ,Xn))

≥ E( f (X1, . . . ,Xn))E(g(X1, . . . ,Xn)) .

5. Let h be a function from [0,1]n in R which is monotonous with respect to each of its
arguments. Let U1, . . . ,Un be n independent random variables following the uniform law
on [0,1]. Prove that

Cov(h(U1, . . . ,Un)h(1−U1, . . . ,1−Un))≤ 0,

and deduce that in this case the antithetic variable method decreases the variance.

Exercice 7. Let X and Y be independent real random variables. Let F and G be the distribution
functions of X and G respectively We want to compute by a Monte-Carlo method the probability

θ = P(X +Y ≤ t) .

1. Propose a variance reduction procedure using a conditioning method.
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2. We assume that F and G are (at least numerically) easily invertible. Explain how to
implement the antithetic variates methods. Why does this method decrease the variance
in this case ?

3. Assume that h is a function such that
∫ 1

0 |h(s)|2ds < +∞. Let (Ui, i ≥ 1) be a se-
quence of independent random variates with a uniform distribution on [0,1]. Prove that
1
N

∑
N
i=1 h((i−1+Ui)/n) has a lower variance than

1
N

∑
N
i=1 h(Ui) .

Exercice 8. Let Z be a random variable given by

Z = λ1eβ1X1 +λ2eβ2X2 ,

where (X1,X2) is a couple of real random variables and λ1, λ2, β1 and β2 are real positive
numbers. This exercise studies various methods to compute the price of an index option given
by p = P(Z > t) .

1. In this question, we assume that (X1,X2) is a Gaussian vector with mean 0 such that
Var (X1) = Var (X2) = 1 and Cov(X1,X2) = ρ , with |ρ| ≤ 1. Explain how to simulate
random samples along the law of Z. Describe a Monte-Carlo method allowing to estimate
p and explain how to estimate the error of the method.

2. Explain how to use low discrepancy sequences to compute p.

3. We assume that X1 and X2 are two independent Gaussian random variables with mean 0
and variance 1. Let m be a real number. Prove that p can be written as

p = E
[
φ(X1,X2)1λ1eβ1(X1+m)+λ2eβ2(X2+m)≥t

]
,

for some function φ . How can we choose m such that

P(λ1eβ1(X1+m)+λ2eβ2(X2+m) ≥ t)≥ 1
4

?

Propose a new Monte-Carlo method which allows to compute p. Explain how to check
on the drawings that the method does reduce the variance.

4. Assuming now that X1 and X2 are two independent random variables with distribution
functions F1(x) and F2(x) respectively. Prove that

p = E
[
1−G2

(
t−λ1eβ1X1

)]
,

where G2(x) is a function such that the variance of

1−G2

(
t−λ1eλ1X1

)
,

is always less than the variance of 1
λ1eβ1X1+λ2eλ2X2>t . Propose a new Monte-Carlo method

to compute p.

5. We assume again that (X1,X2) is a Gaussian vector with mean 0 and such that Var (X1) =
Var (X2) = 1 and Cov(X1,X2) = ρ , with |ρ| ≤ 1. Prove that p = E [1−F2 (φ(X1))] where
F2 is the repartition function of X2 and φ a function to be computed.

Deduce a variance reduction method computing p.
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Exercice 9. On considère X une variable aléatoire gaussienne centrée réduite.

1. Pour f une fonction bornée, on note I = E( f (X)) et I1
n et I2

n les estimateurs :

I1
n =

1
2n

( f (X1)+ f (X2)+ . . .+ f (X2n−1)+ f (X2n)) .

I2
n =

1
2n

( f (X1)+ f (−X1)+ . . .+ f (Xn)+ f (−Xn)) .

où (Xn,n≥ 1) est une suite de variables aléatoires indépendantes tirées selon la loi de X .

Identifier la limite en loi des variables aléatoires
√

n(I1
n − I). Même question pour la

famille de variables aléatoires
√

n(I2
n − I).

On calculera la variance des lois limites.

2. Comment peut on estimer la variance de lois limites précédentes à l’aide de l’échantillon
(Xn,1≤ i≤ 2n) pour I1

n et (Xn,1≤ i≤ n) pour I2
n ?

Comment évaluer l’erreur dans une méthode de Monte-Carlo utilisant I1
n ou I2

n ?

3. Montrer que si f est une fonction croissante Cov( f (X), f (−X)) ≤ 0. Quel est dans ce
cas, l’estimateur qui vous parait préférable I1

n ou I2
n ? Même question si f est décroissante.

Exercice 10. Soit G une variable aléatoire gaussienne centrée réduite.

1. On pose Lm = exp
(
−mG− m2

2

)
, montrer que E(Lm f (G + m)) = E( f (G)) pour toute

fonction f bornée.

Soit Xm une autre variable aléatoire, intégrable telle que E(Xm f (G+m)) =E( f (G)) pour
toute fonction f bornée. Montrer que E(Xm|G) = Lm.

Dans une méthode de simulation quelle représentation de E( f (G)) vaut il mieux utiliser
E(Xm f (G+m)) ou E(Lm f (G+m)) ?

2. Montrer que la variance de Lm f (G+m) se met sous la forme

E
(

e−mG+m2
2 f 2(G)

)
−E( f (G))2,

et que la valeur de m qui minimise cette variance est donnée par m = E(G f 2(G))
E( f 2(G))

. Que vaut
ce m optimum lorsque f (x) = x ? Commentaire.

3. Soit p1 et p2 deux nombres positifs de somme 1 et m1 et m2 2 réels, on pose :

l(g) = p1em1g−m2
1

2 + p2em2g−m2
2

2 .

On pose pour f mesurable bornée µ( f ) = E(l(G) f (G)). Montrer que

µ( f ) =
∫
R

f (x)p(x)dx,

p étant une densité que l’on précisera.

4. Proposer une technique de simulation selon la loi de densité p.
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5. On suppose que G̃ est une variable aléatoire suivant la loi précédente. Montrer que :

E(l−1(G̃) f (G̃)) = E( f (G)),

Var (l−1(G̃) f (G̃)) = E
(
l−1(G) f 2(G)

)
−E( f (G))2.

6. On s’intéresse au cas p1 = p2 = 1/2, m1 =−m2 = m et f (x) = x. Montrer que :

Var (l−1(G̃)G̃) = E

(
em2/2G2

cosh(mG)

)
.

On note v(m) cette variance comme fonction de m. Vérifier que v′(0) = 0 et v′′(0)< 0.

Comment choisir m pour réduire la variance lors d’un calcul de E(G) ?

Exercice 11. Soit X une variable aléatoire réelle et Y une variable de contrôle réelle. On sup-
posera que E(X2)<+∞ et que E(Y 2)<+∞, E(Y ) = 0 pour i = 1, . . . ,n.

1. Soit λ un vecteur de Rn, calculer Var (X−λY ) et la valeur λ ∗ qui minimise cette variance.
As t’on intérêt à supposer X et Y indépendantes ?

2. On suppose que ((Xn,Yn),n≥ 0) est une suite de variables aléatoires indépendantes tirées
selon la loi du couple (X ,Y ). On définit λ ∗n par

λ
∗
n =

∑
n
i=1 XiYi− 1

n ∑
n
i=1 Xi ∑

n
i=1Yi

∑
n
i=1 X2

i −
1
n(∑

n
i=1 Xi)n

.

Montrer que λ ∗n tends presque surement vers λ ∗ lorsque n tend vers +∞.

3. Montrez que
√

n
(
λ ∗n − λ̄n

)
Ȳn, où Ȳn = (Y1 + · · ·+Yn)/n tend vers 0 presque sûrement.

4. En utilisant le théorème de Slutsky (voir question suivante) montrer que :

√
n
(

1
n
(X1−λ

∗
n Y1 + · · ·+Xn−λ

∗
n Yn)−E(X)

)
tends vers un loi gaussienne de variance Var (X−λ ∗n Y ).

Comment interpreter le résultat pour une méthode de Monte-Carlo utilisant λX comme
variable de contrôle ?

5. Montrez le théorème de Slutsky, c’est à dire que si Xn converge en loi vers X et Yn con-
verge en loi vers une constante a alors le couple (Xn,Yn) converge en loi vers (X ,a) (on
pourra considérer la fonction caractéristique du couple (Xn,Yn).





Chapter 2

Introduction to stochastic algorithms

2.1 A reminder on martingale convergence theorems

F = (Fn,n≥ 0) denote an increasing sequence of σ -algebra of a probability space (Ω,A ,P).

Definition 2.1.1. A sequence of real random variable (Mn,n≥ 0) is a F -martingale if and only
if, for all n≥ 0 :

• Mn is Fn-measurable

• Mn is integrable, E(|Mn|)<+∞.

• E(Mn+1|Fn) = Mn.

- When, for all n≥ 0, E(Mn+1|Fn)≤Mn the sequence is called a super-martingale.

- When, for all n≥ 0, E(Mn+1|Fn)≥Mn the sequence is called a sub-martingale.

Definition 2.1.2. An F -stopping time is a random variable τ taking its values in N∪{+∞}
such that, for all n≥ 0, {τ ≤ n} ∈Fn.

Given a stopping time τ and a process (Mn,n≥ 0), we can define a stopped process by Mn∧τ .
It is easy to check that a stopped martingale (resp. sub, super) remains an F -martingale (resp.
sub, super).

Exercice 12. Check it using the fact that :

M(n+1)∧τ −Mn∧τ = 1{τ>n} (Mn+1−Mn) .

Convergence of super-martingale Almost sure convergence of super-martingale can be ob-
tained under weak conditions.

Theorem 2.1.3. Let (Mn,n ≥ 0) be a positive super-martingale with respect to F (i.e. the
conditional expectation is decreasing E(Mn+1|Fn)≤Mn, then Mn converge almost surely to a
random variable M∞ when n goes to +∞.

For a proof see [Williams(1991)].

29
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Remark 2.1.1. The previous result remain true if, for all n, Mn ≥−a, with a≥ 0 (as Mn +a is
a positive super-martingale).

To obtain Lp-convergence we need stronger assumptions.

Theorem 2.1.4. Assume (Mn,n ≥ 0) is a martingale with respect to F , bounded in Lp for a
p > 1 (i.e. supn≥0E(|Mn|p)<+∞), then then Mn converge almost surely and in Lp to a random
variable M∞ when n goes to +∞.

Remark 2.1.2. The case p = 1 is a special case, if (Mn,n ≥ 1) is bounded in L1, Mn converge
to M∞ almost surely but we need to add the uniform integrability of the sequence to obtain
convergence in L1.

For a proof of these theorems see for instance [Williams(1991)] chapter 11 and 12.

2.1.1 Consequence and examples of uses

We first remind a deterministic lemma know as Kronecker Lemma.

Lemma 2.1.3 (Kronecker Lemma). Let (An,n≥ 1) be an increasing sequence of strictly positive
real numbers, such that limn→+∞ An =+∞.

Let (εk,k ≥ 1) be a sequence of real numbers, such that Sn = ∑
n
k=1 εk/Ak converge when n

goes to +∞.
Then :

lim
n→+∞

1
An

n

∑
k=1

εk = 0.

Proof. As Sn converge, we can write Sn = S∞ +ηn, ηn being a sequence converging to 0 when
n goes to +∞. Moreover, using Abel transform :

n

∑
k=1

εk =
n

∑
k=1

Ak
εk

Ak
= AnSn−

n−1

∑
k=1

Sk (Ak+1−Ak) .

So :

1
An

n

∑
k=1

εk = S∞ +ηn−S∞

An−A1

An
− 1

An

n−1

∑
k=1

ηk (Ak+1−Ak)

= ηn +S∞

A1

An
− 1

An

n−1

∑
k=1

ηk (Ak+1−Ak) .

(2.1)

The first two terms converge to 0 (as An converge to +∞ and ηn to 0 when n goes to +∞). The
third one is a (generalized) Cesaro mean of a sequence which converges to 0 so it converges to
0.

A proof of the strong law of large number As an application of martingale convergence
theorem, we will give a short proof of the strong law of large numbers for a square integrable
random variable X . Let (Xn,n ≥ 1) be a sequence of independent random variables following
the law of X . Denote by X ′n = Xn−E(X).
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Let Fn = σ(Xk,k ≤ n) and Mn be :

Mn =
n

∑
k=1

X ′k
k
.

Note that, using independence and E(X ′k) = 0, Mn is an F -martingale. Moreover, using once
again independence, we get :

E(M2
n) = Var (X)

n

∑
k=1

1
k2 < K <+∞.

So the martingale M is bounded in L2, and using theorem 2.1.4 converge almost surely to M∞.
Using Kronecker lemma this implies that :

lim
n→+∞

1
n

n

∑
k=1

X ′k = 0,

or limn→+∞
1
n ∑

n
k=1 Xk = E(X).

We can relax the L2 hypothesis to obtain the full strong law of large numbers under the
traditional L1 condition. See the following exercise (and [Williams(1991)] for a solution if
needed).

Exercice 13. Suppose that (Xn,n ≥ 1) are independent variables following the law of X , with
E(|X |)<+∞. Define Yn by :

Yn = Xn1{|Xn|≤n}.

1. Prove that limn→+∞E(Yn) = E(X).

2. Prove that ∑
+∞

n=1P(|X |> n)≤ E(|X |), and deduce that

P(Exists n0(ω), for all n≥ n0, Xn = Yn) = 1.

3. Check that Var (Yn)≤ E
(
|X |21{|X |≤n}

)
and prove that :

∑
n≥1

Var (Yn)

n2 ≤ E
(
|X |2 f (|X |)

)
,

where
f (z) = ∑

n≥max(1,z)

1
n2 ≤

2
max(1,z)

.

Deduce that ∑n≥1 Var (Yn)/n2 ≤ 2E(|X |)<+∞.

4. Let Wn =Yn−E(Yn), prove that ∑k≥n
Wk
k converge when n goes to +∞, and deduce, using

Kronecker lemma, that

lim
n→+∞

1
n ∑

k≤n
Wk = 0,

then deduce limn→+∞
1
n ∑k≤nYn = E(X).

5. Using the result of question 2, prove that limn→+∞
1
n ∑k≤n Xn = E(X)
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An extension of the super-martingale convergence theorem For the proof of the conver-
gence of stochastic algorithms we will need on extension of the super-martingale convergence
theorem 2.1.3 known as Robbins-Sigmund lemma.

Lemma 2.1.4 (Robbins-Sigmund lemma). Assume Vn, an, bn, cn are sequences of positive ran-
dom variables adapted to (Fn,n≥ 0) and that, moreover, for all n≥ 0 :

E(Vn+1|Fn)≤ (1+an)Vn +bn− cn,

then, on
{

∑n≥1 an <+∞,∑n≥1 bn <+∞
}

, Vn converge to a random variable V∞ and ∑n≥1 cn <
+∞.

Proof. Let :

αn =
1

∏
n
k=1 (1+ak)

.

Then define V ′n = αn−1Vn, b′n = αnbn, c′n = αncn. Clearly the hypothesis can be rewritten as :

E
(
V ′n+1|Fn

)
≤V ′n +b′n− c′n.

This means, if Xn =V ′n−∑
n−1
k=0(b

′
k− c′k), that Xn is a super-martingale.

Now consider the stopping time τa :

τa = inf

{
n≥ 0,

n−1

∑
k=0

(b′k− c′k)≥ a

}
,

(the infimum is +∞ if the set is empty).
τa is a stooping time such that, if n ≤ τa, then Xn ≥ −a. So Xn∧τa is a super-martingale,

bounded from below, so it converges. So we can conclude that limn→+∞ Xn exists on the set
∪a>0 {τa =+∞}. But, as an is positive, αn is a positive, decreasing sequence, so it converges to
ᾱ when n goes to +∞. Moreover :

αn =
1

∏
n
k=1 (1+ak)

= e−∑
n
k=0 log(1+ak) ≥ e−∑

n
k=0 ak .

So on the set
{

∑n≥1 an <+∞,∑n≥1 bn <+∞
}

, ᾱ > 0. It follows that ∑n≥1 b′n < +∞, and as,
c′n > 0 that, for all n≥ 0

n

∑
k=0

b′k−
n

∑
k=0

c′k ≤
n

∑
k=0

b′k <+∞.

So for a > ∑k≥0 b′k, Ta =+∞, and we can conclude that, on the set{
∑
n≥1

an <+∞, ∑
n≥1

bn <+∞

}
,

Xn converge to X∞ when n goes to ∞. Moreover :

0≤
n

∑
k=0

c′k = Xn−V ′n +
n

∑
k=0

b′k,

so, as Vn ≥ 0, and Xn and ∑
n
k=0 b′k converge when n goes to +∞, we get that ∑k≥1 c′k is finite,

then, as αn converge to ᾱ > 0 that ∑k≥1 ck is finite.
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2.2 Almost sure convergence for some stochastic algorithms

2.2.1 Almost sure convergence for the Robbins-Monro algorithm

Theorem 2.2.1. Let f be a function from Rd to Rd . Assume that :

H1 Hypothesis on the function f . f is continuous and there exists x∗ ∈Rd , such that f (x∗)= 0
and 〈 f (x),x− x∗〉> 0 for x 6= x∗.

H2 Hypothesis on the step size γ . (γn,n≥ 1) is a decreasing sequence of positive real numbers
such that ∑n≥1 γn =+∞ and ∑n≥1 γ2

n <+∞.

H3 Hypothesis on the sequence Y . (Fn,n ≥ 0) is a filtration on a probability space and
(Yn,n≥ 1) is sequence of random variables on this probability space such that

H3.1 E(Yn+1|Fn) = f (Xn),

H3.2 E
(
|Yn+1− f (Xn)|2 |Fn

)
≤ σ2(Xn) where

s2(x) = σ
2(x)+ f 2(x)≤ K(1+ |x|2).

Define the sequence (Xn,n≥ 0), by X0 = x0, where x0 is a point in Rd and, for n≥ 0

Xn+1 = Xn− γnYn+1.

Then limn→+∞ Xn = x∗, a.s..

Remark 2.2.1. • The main application of this algorithm arise when f (x) can be written as

f (x) = E(F(x,U)) ,

where U follows a known law and F is a function. In this case Yn is defined as Yn =
F(Xn,Un+1) where (Un,n≥ 1) is a sequence of independent random variables following
the law of U . Clearly, if Fn = σ(U1, . . . ,Un), we have

E(F(Xn,Un+1)|Fn) = f (Xn).

Moreover
E
(
|F(Xn,Un+1)− f (Xn)|2|Fn

)
= σ

2(Xn),

where σ2(x) =E
(
|F(x,U)− f (x)|2

)
. So H3.2 is an hypothesis on behavior of the expec-

tation and the variance of F(x,U) when |x| goes to +∞.

• The hypothesis H1 is fulfilled when f (x) = ∇V (x) where V is a strictly convex function
and there exists x∗ which minimize V (x). This will be the case in most of our examples.

Proof. First note that hypothesis H3 implies that

E
(
Y 2

n+1|Fn
)
= E

(
(Yn+1− f (Xn))

2|Fn
)
+E

(
f (Xn)

2)
≤ s2(Xn)≤ K(1+ |Xn|2)≤ K′(1+ |Xn− x∗|2).

(2.2)
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Let V (x) = |x− x∗|2 and set Vn =V (Xn). Clearly :

Vn+1 =Vn + γ
2
nY 2

n+1−2γn〈Xn− x∗,Yn+1〉.

Taking the conditional expectation we obtain :

E(Vn+1|Fn) =Vn + γ
2
nE
(
Y 2

n+1|Fn
)
−2γn〈Xn− x∗,E(Yn+1|Fn)〉,

and using hypothesis H3 we get

E(Vn+1|Fn)≤Vn + γ
2
n s2(Xn)−2γn〈Xn− x∗, f (Xn)〉.

So, using inequality 2.2, we obtain :

E(Vn+1|Fn)≤Vn +Kγ
2
n (1+Vn)−2γn〈Xn− x∗, f (Xn)〉

=Vn
(
1+Kγ

2
n
)
+Kγ

2
n −2γn〈Xn− x∗, f (Xn)〉.

(2.3)

So, using Robbins-Sigmund lemma, with an = bn = Kγ2
n , and cn = γn〈Xn−x∗, f (Xn)〉 (which is

positive because of hypothesis H1), we get (by hypotheses H2 ∑n≥1 γ2
n <+∞) that, both

• Vn converge to V∞, almost surely,

• ∑n≥1 γn〈Xn− x∗, f (Xn)〉<+∞.

Obviously V∞ is a positive random variable, and we only need to check that this random is equal
to 0.

Assume that P(V∞ > 0)> 0, then on the set {V∞ > 0} we have 0 <V∞/2≤Vn ≤ 3V∞/2 for
n≥ n0(ω), so

∑
n≥1

γn〈Xn− x∗, f (Xn)〉 ≥ inf
V∞/2≤|x−x∗|2≤3V∞

〈x− x∗, f (x)〉 ∑
n≥n0

γn.

But ∑n≥n0 γn = +∞ and infV∞/2≤|x−x∗|2≤3V∞
〈x− x∗, f (x)〉 > 0 (remind that f , and so 〈x−

x∗, f (x)〉, are continuous and V∞/2≤ |x− x∗|2 ≤ 3V∞ is a compact set). So on the set {V∞ > 0}
we should have ∑n≥1 γn〈Xn− x∗, f (Xn)〉 = +∞, but we know that this sum is almost surely fi-
nite. So we have proved that P(V∞ > 0) = 0, which prove the almost sure convergence of the
algorithm.

2.2.2 Almost sure convergence for the Kiefer-Wolfowitz algorithm

The Kiefer-Wolfowitz algorithm is a variant of the Robbins-Monro algorithm. Its convergence
can be proved using the Robbins-Siegmund lemma.

Theorem 2.2.2. Let φ be a function from R to R, such that

φ(x) = E(F(x,U)) ,

where U is a random variable taking its values in Rp and F is a function from R×Rp to R.
We assume that
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• φ is a C2 strictly convex function such that∣∣φ ′′(x)∣∣≤ K(1+ |x|),

and there exist x∗ which minimize φ on R.

• (γn,n≥ 1) and (cn,n≥ 1) are decreasing sequence of real numbers such that

∑
n≥1

γn =+∞, ∑
n≥1

γncn <+∞, ∑
n≥1

γ2
n

c2
n
<+∞,

• s2(x) = E
(
F2(x,U)

)
≤ K(1+ |x|).

• (U1
n ,n ≥ 1) and (U2

n ,n ≥ 1) are 2 independent sequences of independent random vari-
ables following the of U.

We define (Xn,n≥ 0) by X0 = x0 ∈ R and, inductively

Xn+1 = Xn− γn
F(Xn + cn,U1

n+1)−F(Xn− cn,U2
n+1)

2cn
.

Then
lim

n→+∞
Xn = x∗,a.s.

Proof. First note that because of the assumptions on φ , for |c| ≤ 1,∣∣φ(x+ c)−φ(x− c)−2cφ
′(x+ c)

∣∣≤ c2K (1+ |x− x∗|) . (2.4)

Define Vn = |Xn− x∗|2, clearly

Vn+1 =Vn + |Xn+1−Xn|2 +2(Xn− x∗)(Xn+1−Xn) .

Moreover

|Xn+1−Xn|2 ≤
2γ2

n
4c2

n

(∣∣ f (Xn + cn,U1
n+1
∣∣2 + ∣∣ f (Xn− cn,U2

n+1
∣∣2 .)

So :

E
(
|Xn+1−Xn|2 |Fn

)
≤ γ2

n
2c2

n

(
s2(Xn + cn)+ s2(Xn− cn)

)
,

and

E(Vn+1|Fn)≤Vn

A1 +
γ2

n
2c2

n

(
s2(Xn + cn)+ s2(Xn− cn)

)
A2 − γn

cn
(Xn− x∗)

[
φ(Xn + cn)−φ(Xn− cn)−2cnφ

′(Xn)
]

A3 − γn(Xn− x∗)φ ′(Xn).

(2.5)
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Now, assuming that n is large enough to have cn ≤ 1,

A1≤ γ2
n

c2
n

K
(
1+ |Xn + cn|2 + |Xn− cn|2

)
≤ γ2

n
c2

n
K′
(
1+ |Xn|2

)
≤ γ2

n
c2

n
K′′
(
1+ |Xn− x∗|2

)
=

γ2
n

c2
n

K′′(1+Vn),

(2.6)

Note that K < K′ < K′′ but that, as usual in this kind of proof, K′′ is still denoted by K 1.
Moreover using (2.4), we obtain (using also |x| ≤ (1+ x2)/2)

A2≤ 2 |Xn− x∗| γn

2cn
Kc2

n = Kγncn |Xn− x∗| ≤ Kγncn

(
1+ |Xn− x∗|2

)
= Kγncn(1+Vn).

Finally we obtain

E(Vn+1|Fn)≤Vn(1+K
γ2

n
c2

n
+Kγncn)+K

γ2
n

c2
n
+Kγncn− γn(Xn− x∗)φ ′(Xn).

Now we can using the Robbins-Siegmund lemma, setting

• an = bn = K γ2
n

c2
n
+Kγncn

• cn = γn(Xn− x∗)φ ′(Xn), which is positive because of the convexity of φ .

So, using the fact that ∑n≥1 an = ∑n≥1 bn < +∞, we obtain Vn converge to V∞ and ∑n≥1 cn <
+∞. Now using the same argument as in the proof the convergence of the Robbins-Monro
algorithm, we can conclude that P(V∞ = 0) = 1. This ends the proof of the convergence of the
algorithm.

2.3 Speed of convergence of stochastic algorithms

2.3.1 Introduction in a simplified context

Robbins-Monro type algorithms are well known to cause problems of speed of convergence.
We will see that these algorithms can lead to central limit theorem (convergence in C/

√
n) but

not for an arbitrary choice of γn, in some sense, γn has to be large enough to have an optimal
rate of convergence.

It is easy to show this in a simplified framework. We assume that

F(x,u) = cx+u,

where c > 0 and that U follows a Gaussian law with mean 0 and variance 1. The standard
Robbins-Monro algorithm can be written as

Xn+1 = Xn− γn (cXn +Un+1) .

with γn = α/(n+ 1). In this case f (x) = cx and, using theorem 2.2.1, we can prove that Xn
converge, almost surely, to 0 when n goes to +∞.

1K denote a “constant” which can change from line to line (and even in the same line)!
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To obtain more explicit computations we replace the discrete dynamic by a continuous one

dXt =−γt (cXtdt +σdWt) ,X0 = x.

where γt =
α

t+1 . Using a standard way to solve this equation, we compute

d
(

ec
∫ t

0 γsdsXt

)
= ec

∫ t
0 γsds [cγtXtdt− cγtXt− γtσdWt ] =−ec

∫ t
0 γsds

γtσdWt .

But
ec
∫ t

0 γsds = ecα
∫ t

0
1

s+1 ds = (t +1)cα .

So, solving the previous equation, we get

Xt =
X0

(t +1)cα
− σα

(t +1)cα

∫ t

0

1
(s+1)1−cα

dWs.

An easy computation leads to

E(X2
t ) =

|X0|2

(t +1)2cα
+

σ2α2

2cα−1

[
1

t +1
− 1

(t +1)2cα

]
.

We can now guess the asymptotic behavior of Xt

• if 2αx > 1, E(X2
t ) behave as C/(t + 1), so we can hope a central limit behavior for the

algorithm,

• if 2αx < 1, E(X2
t ) behave as C/(t + 1)2cα which is worse than the awaited central limit

behavior.

We can check on this example (exercise), that, when 2αx > 1
√

tXt converge in distribution to
a Gaussian random variable, but that, when 2αx < 1, tcαXt converge almost surely to a random
variable.

We will see in what follows, that we can fully justify on the discrete algorithm : when α is
large enough, a central limit theorem is true and when α is too small an asymptotic convergence
worse that a central limit theorem occurs.

The result on which relies the proof is the central limit theorem for sequence of martingales
(see below).

Practical considerations When using a Robbins-Monro style algorithm, in order to have a
good behavior, γn has to be chosen large enough in order to have a central limit theorem, but
not too large in order to minimize the variance of the algorithm. One way to do this is to choose
γn = α/n with α large enough, another way is to choose γn = α/nβ , with 1/2 < β < 1. But
this last choice increase the variance of the algorithm.

2.3.2 L2 and locally L2 martingales

Definition 2.3.1. Let (Fn,n ≥ 0) be a filtration on a probability space. An F -martingale
(Mn,n≥ 0) is called a F -square integrable martingale if, for all n≥ 0, E(M2

n)<+∞.
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in this case, we are able to define a very useful object, the bracket of the martingale. We will
see that the bracket of a martingale give a good indication of the asymptotic behavior of the
martingale. This object will be useful to write the central limit theorem for martingales.

Definition 2.3.2. Assume (Mn,n≥ 0) is a square integrable martingale. There exists a unique,
previsible, increasing process (〈M〉n,n≥ 0), equal at 0 at time 0 such that

M2
n −〈M〉n

is a martingale. Moreover 〈M〉n can be defined by 〈M〉0 = 0 and

〈M〉n+1−〈M〉n = E
(
(Mn+1−Mn)

2|Fn
)
= E

(
M2

n+1|Fn
)
−M2

n .

Proof. Previsible means here that 〈M〉n is Fn−1-measurable. So, it is easy to check that if 〈M〉n
is previsible and M2

n −〈M〉n is a martingale

〈M〉n+1−〈M〉n = E
(
M2

n+1|Fn
)
−M2

n ,

which proves the unicity of 〈M〉 adding 〈M〉0 = 0. Moreover, using the martingale property of
M, on can check that

E
(
M2

n+1|Fn
)
−M2

n = E
(
(Mn+1−Mn)

2|Fn
)
≥ 0,

which proves that 〈M〉n is increasing.

The following theorem relate the almost sure asymptotic behavior of a square integrable
martingale Mn to its bracket.

Theorem 2.3.3 (Strong law of large number for martingales). Let (Mn,n ≥ 0) be a square
integrable martingale and denote by (〈M〉n,n≥ 0) its bracket, then

• on {〈M〉∞ := limn→+∞〈M〉n <+∞}, Mn converge almost surely to a random variable
denoted as M∞.

• on {〈M〉∞ =+∞},
lim

n→+∞

Mn

〈M〉n
= 0,a.s..

Moreover, as soon as a(t) is a positive, increasing function such that
∫+∞

0
dt

1+a(t) <+∞

lim
n→+∞

Mn√
a(〈M〉n)

= 0,a.s..

Proof. Define τp as
τp = inf{n≥ 0,〈M〉n+1 ≥ p} .

τp is a stopping time as 〈M〉 is previsible. Note that, by definition, 〈M〉τp∧n ≤ 〈M〉τp ≤ p.

So M(p)
n = Mn∧τp is also a martingale and 〈M(p)〉n = 〈M〉n∧τp (since M2

n∧τp
−〈M〉n∧τp is a

martingale).
Now remark that, for all n≥ 0

E
(
(M(p)

n )2
)
= E(M2

0)+E
(
〈M(p)〉n

)
≤ E(M2

0)+ p.
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So (Mn∧τp ,n≥ 0) is a martingale bounded in L2 so it converges when n goes to +∞. So on the set{
τp =+∞

}
, Mn itself converges to a random variable M∞. As this is true for every p, we have

proved that Mn converge to M∞ on the set ∪p≥0
{

τp =+∞
}

. But {〈M〉∞ < p} ⊂
{

τp =+∞
}

,
so

{〈M〉∞ <+∞}= ∪p≥0 {〈M〉∞ < p} ⊂ ∪p≥0
{

τp =+∞
}
.

So, on the set {〈M〉∞ <+∞}, Mn converge to M∞, which proves the first point.
For the second one, we will consider new martingale defined by

Nn =
n

∑
k=1

Mk−Mk−1√
1+a(〈M〉k)

.

(Nn,n ≥ 0) is a martingale as it is defined as martingale transform of the martingale M (recall
that 〈M〉k is Fk−1-measurable, which is exactly what is needed to prove that N is a martingale
transform).

Moreover it is easy to check that this martingale is still a square integrable martingale and
that we can compute its bracket because

〈N〉n+1−〈N〉n := E
(

(Mn+1−Mn)
2

1+a(〈M〉n+1)

∣∣∣∣Fn

)
=
〈M〉n+1−〈M〉n
1+a(〈M〉n+1)

.

But :

〈N〉n =
n

∑
k=1

〈M〉k−〈M〉k−1

1+a(〈M〉k)
≤

n

∑
k=1

∫ 〈M〉k
〈M〉k−1

dt
1+a(t)

≤
∫ +∞

0

dt
1+a(t)

<+∞.

So 〈N〉∞ < +∞, a.s., and, using first part of this theorem, Nn converge a.s. to N∞. But using
Kronecker lemma, as we know that

N∞ =
∞

∑
k=1

Mk−Mk−1√
1+a(〈M〉k)

we conclude that limn→+∞
Mn√

1+a(〈M〉n)
= 0, and so that limn→+∞

Mn√
a(〈M〉n)

= 0. The first case is

obtained for a(t) = t2.

Application to the strong law of large numbers Assume that (Xn,n ≥ 1) is a sequence
of independent random variables following the law of X , such that E(|X |2) < +∞. Define
X ′n = Xn−E(X), then

Sn = X1 + · · ·+Xn−nE(X) = X ′1 + · · ·+X ′n,

is a martingale with respect to σ(X1, . . . ,Xn). As, using independence, E
(
(Sn+1−Sn)

2|Fn
)
=

E((X ′n+1)
2|Fn) = Var (X), 〈S〉n = nVar (X). So 〈S〉∞ = ∞ and using the previous theorem we

get limn→+∞ Sn/n = 0, which give the strong law of large numbers.
Moreover using a(t) = t1+ε , with ε > 0, we get

lim
n→+∞

1
nε/2

√
n
{

X1 + · · ·+Xn

n
−E(X)

}
= 0,a.s..

So we obtain a useful information on the speed of convergence of X1+···+Xn
n to E(X).

Nevertheless, to obtain the central limit theorem a different tool is needed.
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Extension to martingales locally in L2 We can extend the definition of the bracket for a
larger class of martingale : the martingale locally in L2. We now give some definitions.

Definition 2.3.4. A process (Mn,n ≥ 0) is a local martingale, if there exists a sequence of
stopping times (τp, p≥ 0) such that

• τp increase in p and, a.s., goes to ∞ when p goes to ∞.

• (Mn∧τp,n≥ 0) is a martingale.

Definition 2.3.5. A process (Mn,n ≥ 0) is a locally square integrable martingale, if it exists
sequence of stopping times (τp, p≥ 0) such that

• τp increase in p and, a.s., goes to ∞ when p goes to ∞.

• (Mn∧τp,n≥ 0) is a martingale bounded in L2.

Proposition 2.3.1. If (Mn,n≥ 0) is a locally square integrable martingale, there exist a unique
Fn−1-adapted increasing process (〈M〉n,n≥ 0), equal at 0 at time 0, such that (M2

n−〈M〉n,n≥
0) is a local martingale.

If τp, increasing with p and, a.s., going to ∞ when p goes to ∞, is such that Mτp
n = Mτp∧n is

a square integrable martingale then 〈Mτp〉n = 〈M〉τp∧n.

Proof. The proof of this proposition is left as an exercise.

The strong law of large number remains true and unchange for martingale locally in L2.

Theorem 2.3.6. Let (Mn,n ≥ 0) be a locally square integrable martingale and denote by
(〈M〉n,n≥ 0) its bracket, then

• on {〈M〉∞ := limn→+∞〈M〉n <+∞}, Mn converge almost surely to a random variable
denoted as M∞.

• on {〈M〉∞ =+∞}, as soon as a(t) is a positive, increasing function such that
∫+∞

0
dt

1+a(t) <
+∞

lim
n→+∞

Mn√
a(〈M〉n)

= 0,a.s..

Proof. The proof is almost identical to the square integrable case. it is left as an exercise.

Exercice 14. Let (Xn,n ≥ 1) be a sequence of independent real random variables following
the law of X , such that P(X = ±1) = 1/2 and by (λn,n ≥ 1) a sequence of random variables
independant of the sequence (Xn,n ≥ 1). Denote by Fn = σ(X1, . . . ,Xn,λ0, . . . ,λn−1). Define
Mn by

Mn =
n−1

∑
k=0

λkXk+1.

1. Prove that M is an Fn-martingale if and only if E(|λk|)<+∞, for all k ≥ 0.

2. Prove that M is a L2-martingale if and only if, for all k ≥ 0 E
(
λ 2

k

)
<+∞.

3. Prove that M is bounded in L2 if and only if ∑
+∞

k=0E
(
λ 2

k

)
<+∞.

4. Prove that M is a locally L2 martingale if and only if, for all k ≥ 0 |λk|<+∞.

5. Give an example of a martingales locally in L2 which is not a martingale.



2.3. SPEED OF CONVERGENCE OF STOCHASTIC ALGORITHMS 41

2.3.3 Central limit theorem for martingales

We begin by stating the central limit theorem for martingales.

Theorem 2.3.7. Let (Mn,n≥ 0) be a locally in L2 martingale and a(n) be a sequence of strictly
positive real numbers increasing to +∞. Assume that

Bracket condition : lim
n→+∞

1
a(n)
〈M〉n = σ

2 in probability. (2.7)

Lindeberg condition : for all ε > 0,

lim
n→+∞

1
a(n)

n

∑
k=1

E
(
(∆Mk+1)

21{
|∆Mk+1|≥ε

√
a(n)

}∣∣∣∣Fk

)
= 0, in probability. (2.8)

Then :
Mn√
a(n)

converge in distribution to σG,

where G is a Gaussian random variable with mean 0 and variance 1.

Remark 2.3.2. Roughly speaking in order to obtain a Central limit theorem for a martingale, we
need to get, first, an asymptotic deterministic estimate for 〈M〉n ≈ a(n) when n goes to infinity
and then, to check the Lindeberg condition.

Exercise 16 gives a proof in a simple case in which the role of the martingale hypothese
is clearer than in the detailled proof which is given page 51. For a complete discussion on
martingale convergence theorem, we refer to [Hall and Heyde(1980)].

Application to the standard case It is easy to recover the traditional central limit theorem
using the previous corollary. For this, consider a sequence of independent random variables
following the law of X such that E(|X |2)<+∞. Let a(n) = n and Mn = X1 + · · ·+Xn−nE(X).
M is a martingale and its bracket 〈M〉n = nVar (X) (so obviously 〈M〉n/n converge to Var (X) =
σ2!). It remains to check the Lindeberg condition. But

1
n

n

∑
k=1

E
(

X2
k+11{|Xk+1|≥ε

√
n}

∣∣∣Fk

)
= E

(
X21{|X |≥ε

√
n}

)
.

But integrability of X2 and Lebesgue theorem proves that E
(

X21{|X |≥ε
√

n}

)
converge to 0 when

n goes to ∞.

2.3.4 A central limit theorem for the Robbins-Monro algorithm

We can now derive a central limit theorem for the Robbins-Monro algorithm. We will only
deal with the uni-dimensional case. This part follows closely [Duflo(1997)] (or [Duflo(1990)]
in french).

Theorem 2.3.8. Let F(x,u) be a function from R×Rp to R and U is a random variable taking
its values in Rd . We assume that

• f (x) = E(F(x,U)) is C2.

• f (x∗) = 0 and 〈 f (x),x− x∗〉> 0, for x 6= x∗.
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• f ′(x∗) = c, where c > 0.

• If σ2(x) = Var
(
F(x,U)2), s2(x) = σ2(x)+ f 2(x)≤ K

(
1+ |x|2

)
.

• It exists η > 0 such that, for all x ∈ R

v2+η(x) := E
(
|F(x,U)|2+η

)
<+∞,

and supn≥0 v2+η(Xn)<+∞.

We consider a sequence (Un,n ≥ 1) of independent random variables following the law of U
and γ = α

n . We define Xn by

Xn+1 = Xn− γnF(Xn,Un+1),Xo = x ∈ R.

Then Xn converge almost surely to x∗ and

• if cα > 1/2,
√

n(Xn−x∗) converge in distribution to a zero mean Gaussian random vari-
able with variance σ2 = α2σ2(x∗)/(2cα−1)

• if cα < 1/2, ncα(Xn− x∗) converge almost surely to a random variable.

Remark 2.3.3. It is easy to optimize in α the asymptotic variance α2σ2(x∗)/(2cα−1) and to
prove that the optimal choice is given by α = 1/c.

The same type of TCL can be obtained when γn = α/nβ , with 1/2 < β < 1. In this case it
can be proved that, for every α , (Xn− x∗)/

√
γn converge in distribution to a gaussian random

variable, wathever the value of α .

Proof. We begin the proof with a simple deterministic lemma.

Lemma 2.3.4. Let c,α be strictly positive numbers. Assume that γn = α/n.
Define αn = 1− cγn, βn = α1 . . .αn, then there exists a strictly positive number C such that

lim
n→+∞

βnncα =C and lim
n→+∞

(γn/βn)n1−cα =
α

C
.

Proof. Using Taylor formula, we get, for 0 < x < 1

0≤ log(1− x)+ x≤ x2

2
1

(1− x)2 .

So if n≥ n0, such that cγn < 1/2, we have

0≤ log(1− cγn)+ cγn ≤ 2c2
γ

2
n .

From this we deduce that, if sn = ∑
n
k=1 γk,

lim
n→+∞

βnecsn =C1 > 0.

But limn→+∞ ∑
n
k=1 1/k− log(n) =C2 where C2 is the Euler constant. So we have

lim
n→+∞

βnnαc =C3 =C1eαC2 .

and from this we deduce that limn→+∞(γn/βn)n1−cα = α

C3
.
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In what follows we will assume that x∗ = 0. Our algorithm writes as

Xn+1 = Xn− γnF(Xn,Un+1)

= Xn(1− cγn)− γn [F(Xn,Un+1)− f (Xn)]− γn [ f (Xn)− cXn] .

Now, denote

• ∆Mn+1 = F(Xn,Un+1)− f (Xn) (∆Mn+1 is a martingale increment),

• Rn = f (Xn)− cXn (Rn will be “small”),

• αn = 1− cγn and βn = α1 . . .αn.

With these notations
Xn+1

βn
=

Xn

βn−1
− γn

βn
∆Mn+1−

γn

βn
Rn,

so

Xn = X0βn−1−βn−1

n−1

∑
k=0

γk

βk
∆Mk+1−βn−1

n−1

∑
k=0

γk

βk
Rk.

The main point is now to estimate the bracket of Nn the martingale defined by

Nn =
n−1

∑
k=0

γk

βk
∆Mk+1.

From this we will deduce the asymptotic behavior of Xn, by computing its bracket. Clearly

〈N〉n =
n−1

∑
k=0

γ2
k

β 2
k

σ
2(Xn),

and we already know that Xn converge to x∗ = 0, so, by continuity of σ , limn→+∞ σ2(Xn) =
σ2(x∗)> 0.

The case where 2cα > 1 In this case we are interested in the convergence in distribution of√
n(Xn− x∗) to a gaussian random variable. The main step will be to apply the central limit

theorem for the martingale N. So we have to get an asymptotic estimate to its bracket 〈N〉n.
For this, taking into account that (see previous lemma) γk

βk
≈ 1

C kcα−1, we can prove that, for
2cα > 1, limn→+∞〈N〉n =+∞, and it is easy to check that

lim
n→+∞

∑
n−1
k=0

γ2
k

β 2
k

σ2(Xn)

∑
n−1
k=0

γ2
k

β 2
k

σ2(x∗)
= 1,a.s..

A more precise analysis (left as an exercise) shows that

n1−2cα
n−1

∑
k=0

γ2
k

β 2
k
= (1+ εn)

α2

C2(2cα−1)
,

and leads to

lim
n→+∞

〈N〉n
n2cα−1 =

α2σ2(x∗)
C2(2cα−1)

,a.s..
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So we have the bracket condition needed to apply the central limit theorem for martingale N
with a(n) = n2cα−1. It remains to check the Lindeberg condition. For this note that

E
(
|X |21{|X |≥δ}

∣∣B)≤ E
(
|X |2+η

∣∣B)
δ 2 .

So we have

1
a(n)

n−1

∑
k=1

E
(
|∆Nk+1|21{

|∆Nk+1|≥ε
√

a(n)
}∣∣∣∣Fk

)
≤ 1

a(n)

n−1

∑
k=1

1
(ε
√

a(n))η
E
(
|∆Nk+1|2+η

∣∣Fk
)

=
1

a(n)1+η/2
1

εη

n−1

∑
k=1

(
γk

βk

)2

E
(
|F(Xk,Uk+1)− f (Xk)|2+η

∣∣∣Fk

)
≤ L(ω)

εη

1
a(n)1+η/2

n−1

∑
k=1

(
γk

βk

)2

,

where L(ω) = supn≥0 v2+η(Xn) (which is supposed to be a.s. finite by hypothesis). So we get

1
a(n)

n−1

∑
k=1

E
(
|∆Nk+1|21{

|∆Nk+1|≥ε
√

a(n)
}∣∣∣∣Fk

)
≤ L(ω)

εη

1
a(n)1+η/2

n−1

∑
k=1

(
γk

βk

)2

≈ Kn−(2cα−1)(1+η/2)n(cα−1)(2+η)+1
= Kn−η/2.

And this ends the proof that Lindeberg condition is fulfilled. So Nn/
√

a(n) converge in dis-

tribution to a gaussian random variable with variance α2σ2(x∗)
C2(2cα−1) , and so

√
nβnNn converge to a

gaussian random variable with variance α2σ2(x∗)
(2cα−1) .

To conclude (using Slutzky lemma) that
√

nXn converge in distribution to the same random
variable we need to prove that

√
nβn−1X0 converge to 0 in probability (this is immediate) and

that εn =
√

nβn−1 ∑
n−1
k=0

γk
βk

Rk also converge to 0 in probability. This part is heavily technical and
will not be proved here2.

The case where 2cα < 1 In this case, we will prove that Xn−x∗
βn

converge almost surely to a
random variable.

For this, we first check that

〈N〉n ≈ σ
2(x∗)

n−1

∑
k=0

γ2
k

β 2
k
≈ σ

2(x∗)α2K
n−1

∑
k=0

k2cα−2 <+∞.

2Note, though, that, |Rn| ≤C|Xn|2, so if we can prove that E(|Xn|2)≤ K/n, we have

√
nβn−1

n−1

∑
k=0

E
(∣∣∣∣ γk

βk
Rk

∣∣∣∣)≤√nβn−1

n−1

∑
k=0

γk

kβk
≤ K/

√
n.

So, εn converge in L1 (and so in probability) to 0. See [Duflo(1997)] for details on the end of this proof
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So, using the strong law for martingale, Nn converge a.s. to N∞. If remains to check that
∑

n−1
k=0

γk
βk

Rk converge a.s. to obtain the result of the theorem.

But, as |Rk| ≤C|Xk|2, we have

E

(∣∣∣∣∣n−1

∑
k=0

γk

βk
Rk

∣∣∣∣∣
)
≤CE

(
n−1

∑
k=0

γk

βk
|Xk|2

)
≤C

n−1

∑
k=0

γk

βk
E(|Xk|2)≈C

n−1

∑
k=0

E(|Xk|2)
k1−cα

.

So if we can prove there exist β > cα such that E(|Xn|2) ≤ C
nβ

, we will be able to deduce the
absolute convergence of ∑

n−1
k=0

γk
βk

Rk. For a proof of this point we refer to [Duflo(1997)].
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2.4 Exercises and problems

Exercice 15. We are interested in at the solution of

dXt =−γt (cXtdt +σdWt) ,X0 = x. (2.9)

where c, σ are positive real numbers, (Wt , t ≥ 0) is a brownian motion and

γt =
α

t +1
.

1. When σ = 0 prove that the unique solution of (2.9) is given by

Xt = xe−c
∫ t

0 γsds =
x

(t +1)cα

2. When σ is not zero, prove that

Xt =
x

(t +1)cα
− σα

(t +1)cα

∫ t

0

1
(s+1)1−cα

dWs.

3. When 2αx > 1, prove that Xt is a gaussian random variable and that
√

(t +1)Xt converge
in distribution to a gaussian random variable with mean 0 and variance σ2α2

(2cα−1)G.

4. When 2αx > 1, prove that
√

(t +1)cαXt converge almost surely to a finite random vari-
able Z∞

Z∞ = x−σα

∫ +∞

0

1
(s+1)1−cα

dWs.

Prove that Z∞ is a gaussian random variable. Compute its mean and its variance.

Exercice 16. In this exercise, we prove the central limit theorem for martingale in a special
case.

Let (Mn,n≥ 0) be a martingale such that supn≥0 |∆Mn| ≤K <+∞, where ∆Mn = Mn−Mn−1
and K is a constant. M is a square integrable martingale (why?) and, so, we can denote by 〈M〉
its bracket. Assume moreover that

lim
n→+∞

〈M〉n
n

= σ
2,a.s. (2.10)

where σ is a positive real number.

1. For λ real, let φ j(λ ) = logE
(

eλ∆M j

∣∣∣F j−1

)
, prove that

Xn = exp

(
λMn−

n

∑
j=1

φ j(λ )

)
,

is a martingale.
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2. We want to extend φ j(z) to z a complex numbers. For this, we define the complex loga-
rithm around 1 as, for |z| ≤ 1/2

log(1+ z) = ∑
k≥1

(−1)k+1 zk

k
. (2.11)

We this definition, one can prove that elog(1+z) = 1+ z for |z| ≤ 1/2, e denoting the com-
plex exponential defined by ez = ∑k≥0

zk

k! .

Prove that, for u real,
∣∣eiu∆M j −1

∣∣≤ e|u|K−1, then that∣∣∣E(eiu∆M j
∣∣∣F j−1

)
−1
∣∣∣≤ e|u|K−1,

For |u| ≤CK = 1
K log(3/2), prove that we can define, using the definition (2.11)

φ j(iu) = logE
(

eiu∆M j
∣∣∣F j−1

)
,

and that we have eφ j(iu) = E
(

eiu∆M j
∣∣F j−1

)
.

3. Prove that, for |u| ≤CK , (
exp

{
iuMn−

n

∑
j=1

φ j(iu)

}
,n≥ 0

)

is a (complex) martingale.

4. Le u be a given real number, show that for a n large enough

E

[
exp

(
iu

Mn√
n
−

n

∑
j=1

φ j(iu/
√

n)

)]
= 1.

5. Prove that, for x a complex number such that |x| ≤ 1/2

|ex−1− x− x2/2| ≤ |x|3 and | log(1+ x)− x| ≤ |x|2.

6. Show that, for n large enough∣∣∣∣E(ei u√
n ∆M j

∣∣∣F j−1

)
−1+

u2

2n
E
(
(∆M j)

2∣∣F j−1
)∣∣∣∣≤ u3

n3/2 K3,

and that, for a c > 0 (depending on u), for n large enough, for all j ≤ n∣∣∣∣φ j

(
iu√

n

)
+

u2

2n
E
(
(∆M j)

2∣∣F j−1
)∣∣∣∣≤ c

n3/2 ,

and deduce, using (2.10), that, for a given u

lim
n→+∞

n

∑
j=1

φ j

(
iu√

n

)
=−σ2u2

2
,a.s.
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7. Proves that

lim
n→+∞

E

[
exp

(
iu

Mn√
n
−

n

∑
j=1

φ j(iu/
√

n)

)]
−E

[
exp
(

iu
Mn√

n
+

σ2u2

2

)]
= 0,

and deduce that limn→+∞E
[
exp
(

iu Mn√
n

)]
= exp

(
σ2u2

2

)
. Conclude that Mn√

n converge in
distribution to a gaussian random variable.

8. Generalize the result when

lim
n→+∞

〈M〉n
a(n)

= σ
2,a.s.

where a(n) is a sequence of positive real numbers increasing to +∞ with n.

Exercice 17. Assume that (un,n≥ 0) and (bn,n≥ 0) are two sequence of positive real numbers,
c > 0 such that, for all n≥ 0

un+1 ≤ un

(
1− c

n

)
+bn.

1. Let βn = 1/
(
∏

n−1
k=1(1−

c
k)
)
. Prove that

un ≤
K
βn

+
1
βn

n−1

∑
k=1

βk+1bk ≤
K
βn

+
n−1

∑
k=1

bk

2. Assume that bk =
C
kα , with α > 1, prove that

un ≤
K
nc +

K
nα−1 ≤

K
ninf(c,α−1)

.

Exercice 18. We assume that Xn converge in probability to X and that |Xn| ≤ X̂ with E
(
X̂
)
<

+∞. We want to prove that limn→+∞E(Xn) = E(X).

1. Let K be a positive real number and define φK(x) by φK(x) = (−K)1{x<−K}+x1{|x|≤K}+
K1{K<x}. Prove that |φK(x)−φK(y)| ≤ |x− y|.

2. Prove that
E(|Xn−X |)≤ E(|φK(Xn)−φK(X)|)+2E(X̂1{X̂≥K}).

3. Prove that limK→∞E(X̂1{X̂≥K}) = 0.

4. Prove, for a given K, that

E(|φK(Xn)−φK(X)|)≤ 2KP(|Xn−X | ≥ ε)+ ε,

and deduce the extended Lebesgue theorem.

Exercice 19. We assume that Xn converge in distribution to X and that f is a continuous function
such that E(| f (Xn)|)<+∞, for all n≥ 1 and satisfies a property of equi-integrability

lim
A→+∞

E
(
| f (Xn)|1{| f (Xn)|>A}

)
= 0

We want to prove that limn→+∞E( f (Xn)) = E( f (X)).
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1. Prove that supn≥1E(| f (Xn)|) < +∞ and, considering the continuous function f (x)∧K,
that E(| f (X)|)≤ supn≥1E(| f (Xn)|).

2. Prove that there exists a family of continuous functions φ A
δ
(x), x ∈ R such that, φ A

δ
(x) ≤

1{x>A} and for every x ∈ R, φ A
δ
(x) converge to 1{x>A}.

3. Prove that

|E( f (Xn)−E( f (X))| ≤∣∣∣E( f (Xn)
[
1−φ

A
δ
(Xn)

])
−E

(
f (X)

[
1−φ

A
δ
(X)
])∣∣∣

+E
(
| f (Xn)|1{| f (Xn)|>A}

)
+E

(
| f (X)|1{| f (X)|>A}

)
,

and conclude.

4. Find an alternative way to recover the result of the exercise 18.

PROBLEM 1. Une méthode de Monte-Carlo adaptative
On considère une fonction f , mesurable et bornée, de Rp dans R et X une variable aléatoire

à valeur dans Rp.
On s’intéresse à un cas où l’on sait représenter E( f (X)) sous la forme

E( f (X)) = E(H( f ;λ ,U)) , (2.12)

où λ ∈ Rn, U est une variable aléatoire à valeur dans [0,1]d suivant une loi uniforme et où,
pour tout λ ∈Rn, H( f ;λ ,U) est une variable aléatoire de carré intégrable qui prend des valeurs
réelles. La question 2 montrer que cela est généralement possible.

Le but de ce problème est de montrer que l’on peut, dans ce cas, faire varier λ au cours des
tirages tout en conservant les propriétés de convergence d’un algorithme de type Monte-Carlo.

1. On note φ la fonction de répartition d’une gaussienne centrée réduite et φ−1 son inverse.
On suppose que X est une variable aléatoire réelle de loi gaussienne centrée réduite.

Montrer que, si λ ∈ R, H définie par :

H( f ;λ ,U) = e−λG− λ2
2 f (G+λ ) , où G = φ−1(U)

permet de satisfaire la condition (2.12).

2. Soit X une variable aléatoire à valeur dans Rp, de loi arbitraire, que l’on peut obtenir par
une méthode de simulation: cela signifie qu’il existe une fonction ψ de [0,1]d dans Rp

telle que, si U = (U1, . . . ,Ud) suit une loi uniforme sur [0,1]d , la loi de ψ(U) est identique
à celle de X .

On pose, pour i = 1, . . . ,d, Gi = φ−1(Ui) et l’on considère λ = (λ1, . . . ,λd) ∈ Rd . Pro-
poser à partir de (G1 + λ1, . . . ,Gd + λd) un choix de variable aléatoire H( f ;λ ,U) qui
permet de satisfaire l’égalité (2.12).

3. On considère une suite (Un,n ≥ 1) de variables aléatoires indépendantes uniformément
distribuées sur [0,1]d . On note Fn = σ

(
Uk,1≤ k ≤ n

)
.

Soit λ un vecteur fixé, comment peut on utiliser H( f ;λ ,U) pour estimer E( f (X)) ?
Comment peut-on estimer l’erreur commise sur cette estimation ?

Quel est le critère pertinent pour choisir λ ?
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On suppose que λ n’est plus constant mais évolue au fils du temps et est donné par une suite
(λn,n≥ 0) de variables aléatoires Fn-mesurable (λ0 est supposée constante). On suppose que

pour tout λ ∈ Rp,s2(λ ) = Var (H( f ;λ ,U))<+∞,
et s2(λ ) est une fonction continue de Rd dans R.

(2.13)

4. On pose

Mn =
n−1

∑
i=0

[H( f ;λi,Ui+1)−E( f (X))] .

Montrer que, si H est uniformément bornée3, (Mn,n ≥ 0) est une Fn-martingale dont le
crochet 〈M〉n s’exprime sous la forme 〈M〉n = ∑

n−1
i=0 s2(λi).

5. Plus généralement montrer que, sous l’hypothèse (2.13), (Mn,n ≥ 0) est une martingale
localement dans L2 de crochet toujours donné par 〈M〉n = ∑

n−1
i=0 s2(λi) (on pourra utiliser

la famille de temps d’arrêt τA = inf{n≥ 0, |λn|> A} et vérifier que (Mt∧τA,n≥ 0) est une
martingale bornée dans L2).

6. En utilisant la loi forte de grand nombre pour les martingales localement dans L2, montrer
que si

lim
n→+∞

∑
n−1
i=0 s2(λi)

n
= c, (2.14)

où c est une constante strictement positive, alors

lim
n→+∞

1
n

n−1

∑
i=0

H( f ;λi,Ui+1) = E( f (X)).

Interpréter ce résultat en terme de méthode de Monte-Carlo. Vérifier que, si λn converge
presque sûrement vers λ ∗ tel que s2(λ ∗)> 0, le résultat de cette question est vrai.

7. Quelle hypothèse faudrait-t’il ajouter à (2.14) pour obtenir un théorème central limite
dans la méthode précédente (ne pas chercher à la vérifier) ? Enoncer le résultat que l’on
obtiendrait alors.

3i.e., il existe K réel positif tel que pour tout λ et u, |H( f ;λ ,u)| ≤ K <+∞



Appendix A

A proof of the central limit theorem for
martingales

The proof given here is a slightly adapted version of [Major(2013)].

Proof. We will need an extension of Lebesgue theorem (also known as Lebesgue theorem) which say
that if Xn converge in probability1 to X and |Xn| ≤ X̂ with E(X̂)<+∞, then limn→+∞E(Xn) = E(X) (see
exercise 18 for a proof).

We denote by M(k) the locally in L2 martingale M(k)
j = M j/

√
a(k) and by 〈M(k)〉 its bracket. Then

we introduce for each k ≥ 0 the stopping time

τk = inf
{

j ≥ 0,〈M(k)〉 j+1 > 2σ
2
}
, (A.1)

The random variable τk is a stopping time with respect to the σ -algebras F j, j≥ 0, since the random vari-
able 〈M(k)〉 j+1 is F j measurable. Moreover P(limk→+∞ τk =+∞) = 1, because P(τk > j) = P(〈M〉 j+1 ≤
2σ2a(k)) and a(k) tends to +∞ when k goes to +∞. Now introduce, the stopped process M[k] defined by

M[k]
j = M(k)

j∧τk
.

We can check that M[k] is a martingale bounded in L2 as

〈M[k]〉 j = 〈M(k)〉 j∧τk ≤ 2σ
2, (A.2)

so E
(
〈M[k]〉 j

)
≤ 2σ2 < +∞ and E

(
(M[k]

j )2
)
≤ E

(
(M(k)

0 )2
)
+ 2σ2 < +∞. So M[k] is an L2 martingale

whose braket can be computed as

∆〈M[k]〉 j := 〈M[k]〉 j−〈M[k]〉 j−1 = E
(
(∆M[k]

j )2
∣∣∣F j−1

)
, where ∆M[k]

j := M[k]
j −M[k]

j−1.

Note that we can rewrite the Lindeberg condition (2.8) as

lim
n→+∞

k

∑
j=1

E
(
(∆M(k)

j )21{|∆M(k)
j |≥ε

}∣∣∣∣F j−1

)
= 0, in probability.

Moreover |∆M[k]
j |= 1{ j<τk}|∆M(k)

j | ≤ |∆M(k)
j |, so

lim
n→+∞

k

∑
j=1

E
(
(∆M[k]

j )21{|∆M[k]
j |≥ε

}∣∣∣∣F j−1

)
= 0, in probability.

1which is a weaker asumption than the almost surely convergence usually assumed.
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Now, as E
(
(∆M[k]

j )21{|∆M[k]
j |≥ε

}∣∣∣∣F j−1

)
≤ E

(
(∆M[k]

j )2
∣∣∣F j−1

)
= ∆〈M[k]〉 j, taking expectation in the

previous convergence and justifying it by the (extended) Lebesgue theorem (as 〈M[k]〉k ≤ 2σ2) we obtain
a stronger Lindeberg condition for M[k]

lim
n→+∞

k

∑
j=1

E
(
(∆M[k]

j )21{|∆M[k]
j |≥ε

})= 0. (A.3)

Now note that 〈M[k]〉k = 1
a(k)〈M〉k∧τk and, using hyphothesis (2.7), that

lim
k→+∞

P(τk > k) = lim
k→+∞

P
(
〈M〉k ≤ 2σ

2a(k)
)
= 1.

So we have limk→+∞〈M[k]〉k = σ2, in probability. Now taking expectation and using again Lebesgue
theorem we get a stronger bracket condition for M[k]

lim
k→+∞

E
(
〈M[k]〉k

)
= σ

2. (A.4)

Now let Sk = M(k)
k and S̄k = M[k]

k = M(k)
k∧τk

for k ≥ 1. With these notation, we want to prove that Sk

converge in law to to a gaussian random variable. But S̄k−Sk converges in probability to 0 when k→ ∞

(since S̄k = Sk if τk > k and we have already seen that limk→+∞P(τk > k) = 1.). So, using Slutzky lemma,
it remains to prove the convergence in probability of S̄k to a gaussian random variable, i.e.

lim
k→∞

E(eitS̄k) = e−σ2t2/2 for all real numbers t. (A.5)

And we will show that relation (A.5) follows from

lim
k→∞

E(eitSk+t2Uk/2) = 1 for all real numbers t, (A.6)

where Uk = 〈M[k]〉k. Indeed, Uk converge in probability to σ2 if k→ ∞, and 0 ≤Uk ≤ 2σ2 for all k ≥ 1
because of (A.2). Hence eitSk+t2Uk/2− eitSk+σ2t2/2 converge in probability to 0 for all real numbers t if
k→ ∞, and ∣∣∣eitSk+t2Uk/2− eitSk+σ2t2/2

∣∣∣≤ ∣∣∣et2Uk/2− eσ2t2/2
∣∣∣≤ et2σ2

Hence by (extended) Lebesgue’s theorem limk→∞E(eitSk+t2Uk/2−eitSk+σ2t2/2)= 0. Formula (A.5) follows
from this statement if we can prove (A.6).

For this we first show that∣∣∣E(eitSk+t2Uk/2
)
−1
∣∣∣≤ eσ2t

k

∑
j=1

E
∣∣∣et2∆〈M[k]〉 j/2E( eit∆M[k]

j
∣∣F j−1)−1

∣∣∣ . (A.7)

Indeed, let us introduce the random variables Sk, j = M[k]
j , Uk, j = 〈M[k]〉 j, for j ≥ 1 and Sk,0 = 0, Uk,0 = 0

for all indices k ≥ 1. Then we have Sk,k = Sk, Uk,k =Uk, and

E
(

eitSk+t2Uk/2−1
)
=

k

∑
j=1

E
(

eitSk, j+t2Uk, j/2− eitSk, j−1+t2Uk, j−1/2
)

=
k

∑
j=1

EeitSk, j−1+t2Uk, j−1/2E
[(

eit∆M[k]
j +t2∆〈M[k]〉 j/2−1

∣∣∣F j−1

)]
.

Since eitSk, j−1+t2Uk, j−1/2 is bounded by eσ2t2
, it follows from the above identity that∣∣∣E(eitSk+t2Uk/2−1

)∣∣∣≤ eσ2t
k

∑
j=1

E
∣∣∣E(eit∆M[k]

j +t2∆〈M[k]〉 j/2−1
∣∣∣F j−1

)∣∣∣ ,
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and as E
(

eit∆M[k]
j +t2∆〈M[k]〉 j/2−1

∣∣∣F j−1

)
= et2∆〈M[k]〉 j/2E

(
eit∆M[k]

j

∣∣∣F j−1

)
− 1, this implies the esti-

mate (A.7).
To prove formula (A.6) with the help of inequality (A.7) we have to give an estimate for

E
∣∣∣et2∆〈M[k]〉 j/2E

(
eit∆M[k]

j

∣∣∣F j−1

)
−1
∣∣∣.

The expression et2∆〈M[k]〉 j/2 can be written in the form et2∆〈M[k]〉 j/2 = 1+ t2∆〈M[k]〉 j
2 +η

(1)
k, j with an ap-

propriate random variable η
(1)
k, j which satisfies the inequality |η(1)

k, j | ≤ K1(t)∆〈M[k]〉2j with some number
K1(t) depending only on the parameter t, because 〈M[k]〉 j ≤ 2σ2 by formula (A.2). We can estimate the
expression

η
(2)
k, j = E

(
eit∆M[k]

j −1+
t2(∆M[k]

j )2

2

∣∣∣∣∣F j−1

)

in a similar way. To do this let us fix a small number ε > 0, and show that the inequality∣∣∣∣∣eit∆M[k]
j −1− it∆M[k]

j +
t2(∆M[k]

j )2

2

∣∣∣∣∣≤ α(∆M[k]
j ),

holds with α(x) = t2x21{|x|>ε}+
ε

6 |t|
3x21{|x|≤ε}. Indeed, we get this estimate by bounding the expression∣∣∣eitx−1− itx+ t2x2

2

∣∣∣ by t2x2 if |x| > ε and by |t|
3|x|3
6 ≤ ε

|t|3x2

6 if |x| ≤ ε . Using that E(∆M[k]
j |F j−1) = 0

and taking the conditional expectation in the last inequality with respect to F j−1 we get

|η(2)
k, j | ≤ E

(∣∣∣∣∣eit∆M[k]
j −1− it∆M[k]

j +
t2(∆M[k]

j )2

2

∣∣∣∣∣
∣∣∣∣∣F j−1

)

≤ E
(

α(∆M[k]
j )
∣∣∣Fk, j

)
≤ t2E

(
(∆M[k]

j )21{|∆M[k]
j |>ε

}∣∣∣∣F j−1

)
+

ε

6
|t|3∆〈M[k]〉 j.

Since 〈M[k]〉 j ≤ 2σ2, both η
(1)
k, j and η

(2)
k, j are bounded random variables (with a bound depending only on

the parameter t), and the above estimates imply that∣∣∣et2∆〈M[k]〉 j/2E
(

eit∆M[k]
j

∣∣∣F j−1

)
−1
∣∣∣

=

∣∣∣∣∣
(

1+
t2∆〈M[k]〉 j

2
+η

(1)
k, j

)(
1−

t2∆〈M[k]〉 j

2
+η

(2)
k, j

)
−1

∣∣∣∣∣
≤ t4(∆〈M[k]〉 j)

2 +K3(t)
(
|η(1)

k, j |+ |η
(2)
k, j |
)

≤ K4(t)
(
(∆〈M[k]〉 j)

2 +E
(
(∆M[k]

j )21{|∆M[k]
j |>ε

}∣∣∣∣F j−1

)
+ ε∆〈M[k]〉 j

)
.

Let us take the expectation of the left-hand side and right-hand side expression in the last inequality and
sum up for all indices j ≥ 1. The inequality obtained in such a way together with formula (A.7) imply
that

|EeitSk+t2Uk/2−1| ≤ K5(t)

(
k

∑
j=1

E
(
(∆〈M[k]〉 j)

2
)

(A.8)

+
k

∑
j=1

E
(
(∆M[k]

j )21{|∆M[k]
j |>ε

})+ ε

k

∑
j=1

E{∆〈M[k]〉 j}

)
.
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To estimate the first sum at the right-hand side of (A.8) let us make the following estimate:

E
{
(∆〈M[k]〉 j)

2
}
= E

{[
E
(
(∆M[k]

j )21{|∆M[k]
j |>ε

}∣∣∣∣F j−1

)
+E

(
(∆M[k]

j )21{|∆M[k]
j |≤ε

}∣∣∣∣F j−1

)]2
}

≤ 2E

{
E
(
(∆M[k]

j )21{|∆M[k]
j |>ε

}∣∣∣∣F j−1

)2
}
+2E

{
E
(
(∆M[k]

j )21{|∆M[k]
j |≤ε

}∣∣∣∣F j−1

)2
}

≤ 2E
{

∆〈M[k]〉 jE
(

∆M[k]
j )21{|∆M[k]

j |>ε

}∣∣∣∣F j−1

)}
+2ε

2E
{
E
(
(∆M[k]

j )21{|∆M[k]
j |≤ε

}∣∣∣∣F j−1

)}
≤ 4σ

2E
(
(∆M[k]

j )21{|∆M[k]
j |>ε

})+2ε
2E
(

∆〈M[k]〉 j

)
.

Using this estimate and (A.8), we obtain

∣∣∣EeitSk+t2Uk/2−1
∣∣∣≤ K6(t)

(
k

∑
j=1

E
(
(∆M[k]

j )21{|∆M[k]
j |>ε

})+ ε

k

∑
j=1

E
(

∆〈M[k]〉 j

))
,

and relations (A.3), (A.4) imply formula (A.6). Thus we have proved the central limit theorem.
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