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Outline of the talk:

I- On the modelisation of the bidding process in electricity
markets

II- Non-self quasivariational inequalities: what? and why?

III- Existence of projected solutions

IV- Application to Nash games (electicity markets)

V- Quasi-optimization problems

VI- Some ongoing results on computational aspects
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I- On the modelisation of the bidding process
in electricity markets

What is the current difficulty?
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Models for bidding process...

A model classically used in the literature is a multi-leader-single-follower game

where the bid function is given by

ϕi (qi ) :=
∫ qi

0
ψi (q)dq + ki

with

ki ∈ R is the initial payment

ψi is the unit price bid function
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Models with linear unit bid functions

Electricity markets without transmission losses:
X. Hu & D. Ralph, Using EPECs to Model Bilevel Games in Restructured
Electricity Markets with Locational Prices, Operations Research (2007).
bid-on-a-only

Electricity markets with transmission losses:

Henrion, R., Outrata, J. & Surowiec, T., Analysis of
M-stationary points to an EPEC modeling oligopolistic
competition in an electricity spot market, ESAIM: COCV
(2012). M-stationary points
D. A., R. Correa & M. Marechal Spot electricity market with
transmission losses, J. Industrial Manag. Optim (2013).
existence of Nash equil., case of a two island model
D.A., M. Cervinka & M. Marechal, Deregulated electricity
markets with thermal losses and production bounds: models
and optimality conditions, RAIRO (2016) production bounds,
well-posedness of model
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Some references on the topic (cont.)

Best response in electricity markets:

E. Anderson and A. Philpott, Optimal Offer Construction in
Electricity Markets, Mathematics of Operations Research
(2002). Linear bid function - necessary optimality cond. for
local best response in time dependent case
D. Aussel, P. Bendotti and M. Pǐstěk, Nash Equilibrium in
Pay-as-bid Electricity Market : Part 2 - Best Response of
Producer, Optimization (2017) linear unit bid function, explicit
formula for best response

Explicit formula for equilibria
D. Aussel, P. Bendotti and M. Pǐstěk, Nash Equilibrium in Pay-as-bid
Electricity Market : Part 1 - Existence and Characterisation, Optimization
(2017) explicit formula for equilibria
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But also...

Non a priori structured bid functions

Escobar, J.F. and Jofré, A., Monopolistic competition in
electricity networks with resistance losses, Econom. Theory 44
(2010).
Escobar, J.F. and Jofré, A., Equilibrium analysis of electricity
auctions, preprint (2014).
E. Anderson, P. Holmberg and A. Philpott, Mixed strategies in
discriminatory divisible-good auctions, The RAND Journal of
Economics (2013). necessary optimality cond. for local best
response

Didier Aussel A two step approach for the bidding process in electricity markets: theorerical and numerical analysis



Classical model

The multi-leader-common-follower game can be formulated as the following
general equilibrium problem composed of N producer’s optimization problems
denoted as (Pi ), i = 1, . . . ,N, solved simultaneously

(Pi ) maxϕi ,qi ϕi (qi )− Costi (qi )

s.t.

{
q solves ISO(ϕ)
ϕi admissible bid function,

where the ISO problem is considered in the form

ISO(ϕ) minq

∑
i ϕi (qi )

s.t.

{
demand D is satisfied:

∑
i qi ≥ D

0 ≤ qi ≤ Q̄i , ∀ i ,

where Q̄i stands for the production capacity of producer i and the vector of bid
functions ϕ = (ϕ1, . . . , ϕN ) is composed of the bid functions of all the
producers.
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What kind of admissible bids?

i) a cumulative (unit price) bid function ψi (qi ) is generated by a finite set
(k = 1, . . . ,Nk ) of block offers with each block being characterized by a
couple (quantity,unit price)= (qk

i , p
k
i ). This cumulative bid function is an

increasing step function given by

ki := ψi (0) = p1
i and ψi (qi ) := pk

i if qi ∈]qk
i , q

k+1
i ]. (1)

⇒ the revenue bid function ϕi is thus a piecewise linear function.

ii) a piecewise linear (unit price) bid function ψi (qi ) is defined on [0, Q̄i ] by

ki := ψi (0) = p1
i and ψi (qi ) := αk

i qi + βk
i if qi ∈]qk

i , q
k+1
i ], (2)

where Qi = {(qk
i , p

k
i ) : k = 1, . . . ,Nk} is a family of couples

(quantity,unit price) and the coefficients αk
i = [pk+1

i − pk
i ]/[qk+1

i − qk
i ]

and βk
i = pk

i qk+1
i − pk+1

i qk
i .

⇒ the revenue bid function ϕi is thus a piecewise quadratic function.
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In the case of cumulative box bid

Thus the electricity market model consists in:

Finding a piecewise linear ϕ = (ϕ1, . . . , ϕn) solution of

(Pi ) maxϕi ,qi ϕi (qi )− Costi (qi )

s.t.

{
q solves ISO(ϕ)
ϕi is admissible piecewise linear,
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More precisely...

Thus the producer’s optimization problems becomes (Pi ), i = 1, . . . ,N,

(Pi ) maxϕi ,qi ϕi (qi )− Costi (qi )

s.t.

{
q solves ISO(ϕ)
ϕi ∈ Ci ,

where the set of admissible bids Ci is given by

Ci =

{
ui : R→ R such that ui (qi ) =

∫ qi

0
ψi (q)dq + p1

i with ψi such that

{
ψi cumulative box unit bid
function and (H) is satisfied

}

where {(qk
i , pk

i ) : k = 1, . . . ,Nk} is a given family of of couples (quantity,unit price) satisfying

(H)

{
q1

i = 0 and q
Nk
i = Q̄i

∀ k = 1, . . . ,Nk − 1, qk
i < qk+1

i and pk
i < pk+1

i .

But the main problem is...non-smoothness
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Solution?

approx. by quadratic bids

Thus the producer’s optimization problems become (Pi ), i = 1, . . . ,N,: Find a
quadratic function y = (y1, . . . , yn) solution of

(Pi ) maxyi ,qi yi (qi )− Costi (qi )

s.t.

{
q solves ISO(y)
yi ∈ Ki (is a positive quadratic bid function),

Ki :=
{

yi : qi 7→ ai q
2
i + bi qi + ci with ai > 0

}
But then there is....no longer connexion with real life bids
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summarizing...

real bids bids in model producer’s problems

ϕi p. lin. ϕi p. lin.

maxϕi ,qi
ϕi (qi )− Costi (qi )

s.t.

{
q solves ISO(ϕ)
ϕi is admissible piecewise linear

⇒ nonsmoothness

ϕi p. lin. yi ∈ Ki (pos. quad. bid)

maxyi ,qi
yi (qi )− Costi (qi )

s.t.

{
q solves ISO(y)
yi ∈ Ki

⇒ not a real life model
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II- Non-self Quasivariational Inequalities

What it is?

Why to consider that?
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Let C be a non-empty subset of Rn. Given two set-valued maps T : Rn ⇒ Rn

and K : C ⇒ C , the quasi-variational inequality problem QVI(T ,K) consists in
finding x ∈ C such that

x ∈ K(x) and ∃ x∗ ∈ T (x) with 〈x∗, y − x〉 ≥ 0, ∀y ∈ K(x).

Now what happens if the constraint map K is with values possibly not included
in C?

K : C ⇒ Rn

if K(C)  C then, asking the solution to be a fixed point of K can be
too demanding

extreme situation: no solution if K(C) ∩ C = ∅
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A new concept of solution

Definition

Let C be a non-empty subset of Rn, and T : Rn ⇒ Rn and K : C ⇒ Rn

be two set-valued maps. A point x̄ of C is said to be a projected solution
of the quasi-variational inequality QVI(T ,K ) iff there exists ȳ ∈ Rn such
that:

a) x̄ is a projection of ȳ on C ;

b) ȳ is a solution of the Stampacchia variational inequality
S(T ,K (x̄)), that is, ȳ ∈ K (x̄), and

there exists ȳ∗ ∈ T (ȳ) such that 〈ȳ∗, z − ȳ〉 ≥ 0, ∀ z ∈ K (x̄).

The set of projected solutions will be denoted by PQVI (T ,K )

Any (classical) solution is a projected solution:

QVI (T ,K ) ⊂ PQVI (T ,K ).
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A new concept of solution

Definition

Let C be a non-empty subset of Rn, and T : Rn ⇒ Rn and K : C ⇒ Rn

be two set-valued maps. A point x̄ of C is said to be a projected solution
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that:

a) x̄ is a projection of ȳ on C ;
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there exists ȳ∗ ∈ T (ȳ) such that 〈ȳ∗, z − ȳ〉 ≥ 0, ∀ z ∈ K (x̄).

Note the variational inequality depends on the expected “projected
solution”
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A simple example

Let us consider the subset C = {(x , y) ∈ R2 : 0 ≤ x , y ≤ 1 and x + y ≥ 1} of
R2 and the constraint map K : C ⇒ R2, defined by

K(x , y) :=

{
2

‖(x , y)‖ (x , y) + (u, v) : 0 ≤ u ≤ 1, 0 ≤ v ≤ 1

}
.

This set-valued map K is clearly non-self since C ∩ K(C) = ∅;

Thus if one consider, for example the map T = IdIR2 , that is,
T (x , y) = {(x , y)} then the quasi-variational inequality QVI(T ,K) does
not admit any (classical) solution;

but it has the following set of projected solutions:

P = {(1, 0), (1, 1), (0, 1)};
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A simple (modified) example

Let us consider the subset C = {(x , y) ∈ R2 : 0 ≤ x , y ≤ 1 and x + y ≥ 1} of
R2 and the constraint map K : C ⇒ R2, defined by

K(x , y) :=

{ √
2

‖(x , y)‖ (x , y) + (u, v) : 0 ≤ u ≤ 1, 0 ≤ v ≤ 1

}
.

it has the same set of projected solutions:

P = {(1, 0), (1, 1), (0, 1)};

and the unique (classical) solution (x̄ , ȳ) = (1, 1).
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III- Existence of projected solutions
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A first existence result

Theorem

Let C be a non-empty, closed and convex subset of Rn. Let T : Rn ⇒ Rn and
K : C ⇒ Rn be two set-valued maps where K(C) is relatively compact. Then,
QVI(T ,K) admits at least a projected solution if the following properties hold:

(i) K is closed, lower semicontinuous and convex valued map with
intK(x) 6= ∅ for all x ∈ C;

(ii) T is locally upper sign-continuous or lower sign-continuous on convK(C);

(iii) T is pseudomonotone on convK(C).

Recall that a set-valued operator T : Rn ⇒ Rn is called a lower sign-continuous on a convex subset K ⊆ Rn iff for
any x, y ∈ K ,

∀t ∈]0, 1[, inf
x∗t ∈T (xt )

〈x∗t , y − x〉 ≥ 0⇒ inf
x∗∈T (x)

〈x∗, y − x〉 ≥ 0,
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Proof is based on

Theorem (Lassonde (90))

Let K be a non-empty and convex subset of a locally convex topological vector
space X . Suppose that Γ : K ⇒ K is a Kakutani factorizable set-valued map
such that Γ(K) is relatively compact. Then, Γ has a fixed point.

A set-valued map Γ : K ⇒ K is Kakutani factorizable if Γ = ΓN ◦ΓN−1 ◦ · · · ◦Γ0,

that is, if there is a diagram Γ : K = K0

Γ0

⇒ K1

Γ1

⇒ K2 ⇒ · · ·
ΓN

⇒ KN+1 = K ,
where for i = 0, 1, · · ·N, each Γi is a non-empty, compact and convex valued
upper semi-continuous set-valued map and Ki is a convex subset of X .
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Proof is based on

Theorem (Lassonde (90))

Let K be a non-empty and convex subset of a locally convex topological vector
space X . Suppose that Γ : K ⇒ K is a Kakutani factorizable set-valued map
such that Γ(K) is relatively compact. Then, Γ has a fixed point.

Instead of using this theorem in the proof, one can apply a Kakutani fixed
point theorem to the map G : C × K(C)→ C × K(C) defined by
G(x , y) := (PC (y),S(T ,K(x))), where PC (y) is the projection set of y on C .
However, then convexity of the set K(C) would be required in addition to the
assumptions of the theorem.
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Another existence result

Theorem

Let C be a non-empty, closed and convex subset of Rn. Let T : Rn ⇒ Rn and
K : C ⇒ Rn be two set-valued maps, where K(C) is relatively compact. Then,
QVI ∗(T ,K) admits at least a projected solution if the following properties
hold:

(i) K is a closed, lower semi-continuous and convex valued map with
intK(x) 6= ∅, for all x ∈ C;

(ii) T is quasimonotone, locally upper sign-continuous and dually lower
semi-continuous on convK(C).

Recall that T is called dually lower semi-continuous on a set K iff, for any x ∈ K and any sequence (yk )k of K
with yk → y , the following implication holds:

lim inf
k

sup
y∗
k
∈T (yk )

〈y∗k , x − yk〉 ≤ 0⇒ sup
y∗∈T (y)

〈y∗, x − y〉 ≤ 0.
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IV- Back to GNEP and electricity market
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General GNEP context

Definition

For any ν = 1, . . . , p, let Cν be a non-empty subset of Rnν , θν : Rn → R and
Kν : C ⇒ Rnν , where C =

∏p
ν=1 Cν . A point x̄ := (x̄1 . . . , x̄p) of C =

∏
ν Cν is

said to be a projected solution of the generalized Nash equilibrium problem
GNEP(θν ,Kν) iff there exists ȳ := (ȳ 1 · · · , ȳ p) ∈ Rn such that:

a) x̄ is a projection of ȳ on C ;

b) ȳ is a solution of the Nash equilibrium problem defined by the functions
(θν)ν and the constraint sets (Kν(x̄))ν , that is, for any ν, ȳν ∈ Kν(x̄) is
a solution of the following optimization problem

Pν(ȳ−ν , x̄) minyν θν(yν , ȳ−ν), subject to yν ∈ Kν(x̄).
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Existence of projected Nash equilibria

Theorem

For any ν = 1, . . . , p, let Cν be a non-empty, closed and convex subset of Rnν ,
θν : Rn → R and Kν : C = Πp

ν=1Cν ⇒ Rnν . Then, the GNEP(θν ,Kν) admits a
projected Nash Equilibrium x̄ ∈ C if

a) the functions θν are continuously differentiable and convex with respect
to the xν variable;

b) for each ν, the maps Kν are closed and lower semi-continuous with
Kν(C) being relatively compact;

c) for each ν, the maps Kν are either single-valued or convex valued map
with intKν(x) 6= ∅, ∀x ∈ C.
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In the case of electricity market model...

real bids bids in model producer’s problems

ϕi p. lin. ϕi p. lin.

maxϕi ,qi
ϕi (qi )− Costi (qi )

s.t.

{
q solves ISO(ϕ)
ϕi is admissible piecewise linear

⇒ nonsmoothness

ϕi p. lin. yi ∈ Ki (pos. quad. bid)

maxyi ,qi
yi (qi )− Costi (qi )

s.t.

{
q solves ISO(y)
yi ∈ Ki

⇒ not a real life model

ϕi p. lin. yi ∈ Ki (ϕ)

maxyi,qi
yi (qi )− Costi (qi )

s.t.

{
q solves ISO(ϕ)
yi ∈ Ki (ϕ)

⇒ non self constraint map

where Ki (ϕ) :=
{

yi : qi 7→ ai q2
i + bi qi + ci with ai > 0 and ci ≥ p1

i

}
.
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Projected solution for the bid process

It consists in finding a vector of bid functions ϕ̄ = (ϕ̄1, . . . , ϕ̄N ), for which
there exists a vector of quadratic bid functions ȳ = (ȳi )i , characterized by the
matrix ((āi , b̄i , c̄i ))i , such that:

a) the vector of bid functions ϕ̄ is, between all possible vectors of bid
functions of C = ΠN

i=1Ci , the best approximation in the sense of L2-norm
of the vector of quadratic bid functions ȳ ;

inf
ϕ∈C

N∑
i=1

∫ Q̄i

0

|ȳi (qi )− ϕ(qi )|2 dqi ,

or in other words, ϕ̄ is a projection of ȳ on C .

b) for each producer i , looking for its maximum benefit,
ȳi : qi 7→ ai q

2
i + bi qi + ci solves the following optimization problem

Pi (ȳ−i , ϕ̄) max
yi ,qi

yi (qi )− (Ai q
2
i + Bi qi )

s.t. yi ∈ Ki (ϕ̄) and q = (qj )j∈N solves ISO(yi , ȳ−i ).
(3)
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QVI reformulation

Actually, under some suitable additional conditions, such a vector of bid
functions ϕ̄ will also be a projected solution of the quasi-variational inequality
QVI(T ,K) for the maps K and T defined as follows:

K : C ⇒ L2([0, Q̄],R) is defined by K(ϕ) := ΠN
i=1Ki (ϕ)

(where C = ΠN
i=1Ci and Q = maxi Qi ) and the map is defined as

T : L2([0, Q̄],R) ⇒ L2([0, Q̄],R) is given by T (y) :=
∏N

i=1∇iθi (·, y−i )(yi )

where θi (·, y−i )(yi ) := (ai q
2
i (y) + bi qi (y) + ci )− (Ai q

2
i (y) + Bi qi (y)).
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An example of electricity market model

We assume that, for any i :

1) the approximated bid function yi = ai q
2
i + bi qi + ci of the producer i is

such that

a) ai = Ai , which means that the bid curve yi is forced to be
“relatively close” to the curve of real cost of production
Ai q

2
i + Bi qi ;

b) bi is bounded, bi ∈ [bi , bi ], where 0 ≤ bi ≤ bi ;
c) ci = p1

i , that is, the minimal value of the bid curve yi is equal
to the minimal value p1

i at which producer i is willing to
produce electricity;

2) 0 < qi < Q̄i , which means that each producer of the market is active
(produces electricity) at equilibrium but none of them reaches his
maximum capacity of production.

Then there exist a vector ϕ̄ of revenue bid functions and a vector ȳ of
quadratic bids such that, at the same time, ȳ is a Nash equilibrium associated
to the family of problem (3) and ϕ̄ is the “real bid” which is the closest to ȳ .
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V- Quasi-optimization problems
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Definition

It corresponds actually to a constraint optimization problem, in which the
constraint set depends on the solution.

This concept has been introduced in [Facchinei-Kanzow (2007)].

Let C be a non-empty subset of Rn. Now, for a given real-valued function
f : Rn → R and a set-valued operator K : C ⇒ C , the quasi-optimization
problem QOpt(f ,K) consists in finding x0 ∈ C such that

x0 ∈ K(x0) and f (x0) = min
z∈K(x0)

f (z).
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Existence of projected solutions

Theorem

Let f : Rn → R be a continuous quasiconvex function such that intSa 6= ∅ for
all a > inf f . Suppose that :

C is a non-empty, closed and convex subset of Rn

K : C ⇒ Rn is a set-valued map such that K(C) is relatively compact
and convK(C) ⊆ Rn \ arg minRn f .

Then, there exists at least a projected solution to QOpt(f ,K) if the following
conditions hold:

(a) K is closed, lower semi-continuous and convex valued map with
intK(x) 6= ∅ for all x ∈ C;

(b) The normal operator Na
f is dually lower semi-continuous on convK(C).
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VI- Ongoing results on computational aspects
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Aim...

To compute some projected solutions of set-valued quasi-variational
inequalities.

Formally, the naive algorithm for finding a Projected solution is the following:

Algorithm for Projected solution

(Initialization) Choose x0 ∈ C̄ , set k := 1 and choose ε ;

Find y1 ∈ S(T ,K(x0)) (using PATH solver);
Compute x1 = PC̄ (y1);
while ‖xk−1 − xk‖ ≤ ε do

Find yk ∈ S(T ,K(xk−1)) (using PATH solver);
Compute xk = PC̄ (yk );
k → k + 1

end
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Assumption (H) on the constraint map

C ⊂ Rn is a nonempty subset and K : C ⇒ Rn is a set-valued map with
nonempty closed convex values with a special structure as

K(λ) = P ∩ {x : 〈a, x〉 ≤ h(λ)}

where P ⊂ Rn is a polyhedral set given as

P =

p⋂
i=1

{x ∈ Rn : 〈ai , x〉 ≤ bi}

where a ∈ Rn and h is a function from C to R.
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A convergence result

Theorem

Let C be a nonempty compact convex subset of Rn and x0 ∈ C. Assume that

(i) The map K : C ⇒ Rn is nonempty closed and compact valued with

structure (H). Consider I = {i : (̂ai , a) ∈ [−π/2, π/2]}, where (̂ai , a) is
angle between ai and a. Assume that for all i ∈ {1, 2, .., p}/I ,

(̂ai , a) ≥ π/6. Let h to be kλ0 -locally lipschitz at λ0 ∈ C with
kλ0 ∈]0, 1/2[.

(ii) The map T : Rn → Rn be a α-strongly monotone on Rn and L-lipschitz
function on X with α = 1 and L = 1, where X is closed convex
neighborhood of x0 ∈ K(x0). Fixing γ ∈]0, α/L2], then
(a) there exist a neighborhood U of λ0 and k̄ ∈]0, 1[ such that,

‖S(T ,K(x))− S(T ,K(x
′
))‖ ≤ k̄‖x − x

′
‖, ∀ x , x

′
∈ U ∩ C . (4)

(b) Consider a closed set C̄ ⊂ C ∩ U and xn+1 = G(xn), where
G = G1 ◦ G0 with G0(x) = S(T ,K(x)) and G1(x) = PC̄ (x). Then the
sequence {xn} converges to a point in PQVI (T ,K).
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