A two step approach for the bidding process in electricity markets: theorerical and numerical analysis

Didier Aussel

Lab. PROMES, Univ. de Perpignan

Workshop SESO17 - May/June 2017

Co-authors: A. Sultana and V. Vetrivel (IIT Chennai, Madras, India) for the theoretical part Joydeep Dutta and Poonam Kesarwani (IIT Kanpur, India) for the numerical developments

Outline of the talk:

- I- On the modelisation of the bidding process in electricity markets
- II- Non-self quasivariational inequalities: what? and why?
- III- Existence of projected solutions
- IV- Application to Nash games (electicity markets)
- V- Quasi-optimization problems
- VI- Some ongoing results on computational aspects

Perpignan, France

@▶ ∢ ≣▶

э

æ

I- On the modelisation of the bidding process in electricity markets

I- On the modelisation of the bidding process in electricity markets

What is the current difficulty?

Models for bidding process...

A model classically used in the literature is a multi-leader-single-follower game

where the bid function is given by

$$\varphi_i(q_i) := \int_0^{q_i} \psi_i(q) dq + k_i$$

with

- $k_i \in \mathbb{R}$ is the initial payment
- ψ_i is the unit price bid function

< 日 > < 同 > < 三 > < 三 >

э

Models with linear unit bid functions

• Electricity markets without transmission losses:

X. Hu & D. Ralph, Using EPECs to Model Bilevel Games in Restructured Electricity Markets with Locational Prices, *Operations Research (2007)*. *bid-on-a-only*

Models with linear unit bid functions

• Electricity markets without transmission losses:

X. Hu & D. Ralph, Using EPECs to Model Bilevel Games in Restructured Electricity Markets with Locational Prices, *Operations Research (2007)*. *bid-on-a-only*

- Electricity markets with transmission losses:
 - Henrion, R., Outrata, J. & Surowiec, T., Analysis of M-stationary points to an EPEC modeling oligopolistic competition in an electricity spot market, ESAIM: COCV (2012). M-stationary points
 - D. A., R. Correa & M. Marechal Spot electricity market with transmission losses, J. Industrial Manag. Optim (2013). existence of Nash equil., case of a two island model
 - D.A., M. Cervinka & M. Marechal, Deregulated electricity markets with thermal losses and production bounds: models and optimality conditions, RAIRO (2016) production bounds, well-posedness of model

• Best response in electricity markets:

- E. Anderson and A. Philpott, Optimal Offer Construction in Electricity Markets, Mathematics of Operations Research (2002). Linear bid function - necessary optimality cond. for local best response in time dependent case
- D. Aussel, P. Bendotti and M. Pištěk, Nash Equilibrium in Pay-as-bid Electricity Market : Part 2 - Best Response of Producer, Optimization (2017) linear unit bid function, explicit formula for best response

• Best response in electricity markets:

- E. Anderson and A. Philpott, Optimal Offer Construction in Electricity Markets, Mathematics of Operations Research (2002). Linear bid function - necessary optimality cond. for local best response in time dependent case
- D. Aussel, P. Bendotti and M. Pištěk, Nash Equilibrium in Pay-as-bid Electricity Market : Part 2 - Best Response of Producer, Optimization (2017) linear unit bid function, explicit formula for best response

• Explicit formula for equilibria

D. Aussel, P. Bendotti and M. Pištěk, Nash Equilibrium in Pay-as-bid Electricity Market : Part 1 - Existence and Characterisation, Optimization (2017) explicit formula for equilibria

・ 同 ト ・ ヨ ト ・ ヨ ト

• Non a priori structured bid functions

- Escobar, J.F. and Jofré, A., Monopolistic competition in electricity networks with resistance losses, Econom. Theory 44 (2010).
- Escobar, J.F. and Jofré, A., Equilibrium analysis of electricity auctions, preprint (2014).
- E. Anderson, P. Holmberg and A. Philpott, Mixed strategies in discriminatory divisible-good auctions, The RAND Journal of Economics (2013). necessary optimality cond. for local best response

伺 ト イ ヨ ト イ ヨ ト

Classical model

The multi-leader-common-follower game can be formulated as the following general equilibrium problem composed of N producer's optimization problems denoted as (P_i) , i = 1, ..., N, solved simultaneously

$$\begin{array}{ll} (P_i) & \max_{\varphi_i,q_i} \varphi_i(q_i) - Cost_i(q_i) \\ & \\ s.t. \left\{ \begin{array}{l} q \text{ solves } ISO(\varphi) \\ \varphi_i \text{ admissible bid function,} \end{array} \right. \end{array}$$

where the ISO problem is considered in the form

$$\begin{array}{ll} ISO(\varphi) & \min_{q} & \sum_{i} \varphi_{i}(q_{i}) \\ \text{s.t.} & \begin{cases} \text{demand } D \text{ is satisfied: } \sum_{i} q_{i} \geq D \\ 0 \leq q_{i} \leq \bar{Q}_{i}, & \forall i, \end{cases} \end{array}$$

where \bar{Q}_i stands for the production capacity of producer *i* and the vector of bid functions $\varphi = (\varphi_1, \ldots, \varphi_N)$ is composed of the bid functions of all the producers.

(本部) (本語) (本語) (語)

What kind of admissible bids?

i) a *cumulative (unit price) bid function* $\psi_i(q_i)$ is generated by a finite set $(k = 1, ..., N_k)$ of *block offers* with each block being characterized by a couple (*quantity,unit price*) = (q_i^k, p_i^k) . This cumulative bid function is an increasing step function given by

$$k_i := \psi_i(0) = p_i^1 \quad \text{and} \quad \psi_i(q_i) := p_i^k \quad \text{if } q_i \in]q_i^k, q_i^{k+1}]. \tag{1}$$

 \Rightarrow the revenue bid function φ_i is thus a piecewise linear function.

ヨト イヨト イヨト

What kind of admissible bids?

i) a *cumulative (unit price) bid function* $\psi_i(q_i)$ is generated by a finite set $(k = 1, ..., N_k)$ of *block offers* with each block being characterized by a couple (*quantity,unit price*) = (q_i^k, p_i^k) . This cumulative bid function is an increasing step function given by

$$k_i := \psi_i(0) = p_i^1 \quad \text{and} \quad \psi_i(q_i) := p_i^k \quad \text{if } q_i \in]q_i^k, q_i^{k+1}]. \tag{1}$$

 \Rightarrow the revenue bid function φ_i is thus a piecewise linear function.

ii) a piecewise linear (unit price) bid function $\psi_i(q_i)$ is defined on $[0, \bar{Q}_i]$ by

$$k_i := \psi_i(\mathbf{0}) = p_i^1 \quad \text{and} \quad \psi_i(q_i) := \alpha_i^k q_i + \beta_i^k \quad \text{if } q_i \in]q_i^k, q_i^{k+1}], \quad (2)$$

where $Q_i = \{(q_i^k, p_i^k) : k = 1, ..., N_k\}$ is a family of couples (quantity, unit price) and the coefficients $\alpha_i^k = [p_i^{k+1} - p_i^k]/[q_i^{k+1} - q_i^k]$ and $\beta_i^k = p_i^k q_i^{k+1} - p_i^{k+1} q_i^k$. \Rightarrow the revenue bid function φ_i is thus a piecewise quadratic function.

э.

Thus the electricity market model consists in:

Finding a piecewise linear $\varphi = (\varphi_1, \ldots, \varphi_n)$ solution of

$$\begin{array}{ll} (P_i) & \max_{\varphi_i,q_i} \varphi_i(q_i) - Cost_i(q_i) \\ s.t. \begin{cases} q \text{ solves } ISO(\varphi) \\ \varphi_i \text{ is admissible piecewise linear,} \end{cases}$$

→ □ → → □ →

Thus the producer's optimization problems becomes (P_i) , i = 1, ..., N,

$$\begin{array}{ll} (P_i) & \max_{\varphi_i,q_i} \varphi_i(q_i) - Cost_i(q_i) \\ s.t. \left\{ \begin{array}{l} q \text{ solves } ISO(\varphi) \\ \varphi_i \in C_i, \end{array} \right. \end{array}$$

where the set of admissible bids C_i is given by

$$C_{i} = \left\{ u_{i} : \mathbb{R} \to \mathbb{R} \text{ such that } u_{i}(q_{i}) = \int_{0}^{q_{i}} \psi_{i}(q) dq + \rho_{i}^{1} \text{ with } \psi_{i} \text{ such that } \left\{ \begin{array}{c} \psi_{i} \text{ cumulative box unit bid} \\ \text{function and (H) is satisfied} \end{array} \right\} \right\}$$

where $\{(q_i^k, p_i^k) : k = 1, ..., N_k\}$ is a given family of of couples (quantity, unit price) satisfying

$$(H) \qquad \qquad \left\{ \begin{array}{l} q_i^1 = 0 \quad \text{and} \ q_i^{N_k} = \bar{Q}_i \\ \forall \ k = 1, \ldots, N_k - 1, \quad q_i^k < q_i^{k+1} \quad \text{and} \ p_i^k < p_i^{k+1}. \end{array} \right.$$

▲ロ → ▲ 翻 → ▲ 画 → ▲ 画 → の Q @

Thus the producer's optimization problems becomes (P_i) , i = 1, ..., N,

$$\begin{array}{ll} (P_i) & \max_{\varphi_i,q_i}\varphi_i(q_i) - Cost_i(q_i) \\ s.t. \left\{ \begin{array}{l} q \text{ solves } ISO(\varphi) \\ \varphi_i \in C_i, \end{array} \right. \end{array}$$

where the set of admissible bids C_i is given by

$$C_{i} = \left\{ u_{i} : \mathbb{R} \to \mathbb{R} \text{ such that } u_{i}(q_{i}) = \int_{0}^{q_{i}} \psi_{i}(q) dq + \rho_{i}^{1} \text{ with } \psi_{i} \text{ such that } \left\{ \begin{array}{c} \psi_{i} \text{ cumulative box unit bid} \\ \text{function and (H) is satisfied} \end{array} \right\} \right\}$$

where $\{(q_i^k, p_i^k) : k = 1, ..., N_k\}$ is a given family of of couples (quantity, unit price) satisfying

(H)
$$\begin{cases} q_i^1 = 0 \quad \text{and} \quad q_i^{N_k} = \bar{Q}_i \\ \forall k = 1, \dots, N_k - 1, \quad q_i^k < q_i^{k+1} \quad \text{and} \quad p_i^k < p_i^{k+1}. \end{cases}$$

But the main problem is...non-smoothness

- 4 同 2 4 日 2 4 日 2 - 日

Solution?

approx. by quadratic bids

 э

approx. by quadratic bids

Thus the producer's optimization problems become (P_i) , i = 1, ..., N,: Find a quadratic function $y = (y_1, ..., y_n)$ solution of

$$(P_i) \qquad \max_{y_i,q_i} y_i(q_i) - Cost_i(q_i)$$

s.t.
$$\begin{cases} q \text{ solves } ISO(y) \\ y_i \in K_i \quad (is \text{ a positive quadratic bid function}), \end{cases}$$

$$\mathcal{K}_i := \left\{ y_i: oldsymbol{q}_i \mapsto oldsymbol{a}_i oldsymbol{q}_i^2 + b_i oldsymbol{q}_i + oldsymbol{c}_i ext{ with } oldsymbol{a}_i > 0
ight\}$$

.⊒ . ►

approx. by quadratic bids

Thus the producer's optimization problems become (P_i) , $i = 1, ..., N_i$. Find a quadratic function $y = (y_1, ..., y_n)$ solution of

$$(P_i) \qquad \max_{y_i,q_i} y_i(q_i) - Cost_i(q_i)$$

s.t.
$$\begin{cases} q \text{ solves } ISO(y) \\ y_i \in K_i \quad (is \text{ a positive quadratic bid function}), \end{cases}$$

$$\mathcal{K}_i := \left\{ y_i : q_i \mapsto a_i q_i^2 + b_i q_i + c_i \text{ with } a_i > 0
ight\}$$

But then there is...no longer connexion with real life bids

real bids	bids in model	producer's problems	
φ_i p. lin.	$arphi_i$ p. lin.	$\begin{array}{l} \max_{\varphi_{i},q_{i}} \varphi_{i}(q_{i}) - Cost_{i}(q_{i}) \\ \text{s.t.} \begin{cases} q \text{ solves } ISO(\varphi) \\ \varphi_{i} \text{ is admissible piecewise linear} \end{cases}$	\Rightarrow nonsmoothness
$arphi_i$ p. lin.	$y_i \in \mathcal{K}_i$ (pos. quad. bid)	$\begin{array}{l} \max_{y_i,q_i} y_i(q_i) - Cost_i(q_i) \\ \text{s.t.} \begin{cases} q \text{ solves } ISO(y) \\ y_i \in K_i \end{cases} \end{array}$	\Rightarrow not a real life model

- 4 回 2 - 4 □ 2 - 4 □

æ

II- Non-self Quasivariational Inequalities

II- Non-self Quasivariational Inequalities What it is? Why to consider that?

 $x \in K(x)$ and $\exists x^* \in T(x)$ with $\langle x^*, y - x \rangle \ge 0, \forall y \in K(x)$.

「同 ト イ ヨ ト イ ヨ ト ― ヨ

 $x \in K(x)$ and $\exists x^* \in T(x)$ with $\langle x^*, y - x \rangle \ge 0, \forall y \in K(x)$.

Now what happens if the constraint map K is with values possibly not included in C?

 $K: C \rightrightarrows \mathbb{R}^n$

高 と く ヨ と く ヨ と

 $x \in K(x)$ and $\exists x^* \in T(x)$ with $\langle x^*, y - x \rangle \ge 0, \forall y \in K(x)$.

Now what happens if the constraint map K is with values possibly not included in C?

 $K: C \rightrightarrows \mathbb{R}^n$

 if K(C) ⊊ C then, asking the solution to be a fixed point of K can be too demanding

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

 $x \in K(x)$ and $\exists x^* \in T(x)$ with $\langle x^*, y - x \rangle \ge 0, \ \forall y \in K(x).$

Now what happens if the constraint map K is with values possibly not included in C?

 $K: C \rightrightarrows \mathbb{R}^n$

- if K(C) ⊊ C then, asking the solution to be a fixed point of K can be too demanding
- extreme situation: no solution if $K(C) \cap C = \emptyset$

Let *C* be a non-empty subset of \mathbb{R}^n , and $T : \mathbb{R}^n \Rightarrow \mathbb{R}^n$ and $K : C \Rightarrow \mathbb{R}^n$ be two set-valued maps. A point \bar{x} of *C* is said to be a *projected solution* of the quasi-variational inequality $\mathsf{QVI}(T, K)$ iff there exists $\bar{y} \in \mathbb{R}^n$ such that:

- a) \bar{x} is a projection of \bar{y} on C;
- b) \bar{y} is a solution of the Stampacchia variational inequality $S(T, K(\bar{x}))$, that is, $\bar{y} \in K(\bar{x})$, and

there exists $\bar{y}^* \in T(\bar{y})$ such that $\langle \bar{y}^*, z - \bar{y} \rangle \ge 0$, $\forall z \in K(\bar{x})$.

The set of projected solutions will be denoted by PQVI(T, K)

伺 ト イ ヨ ト イ ヨ ト

Let *C* be a non-empty subset of \mathbb{R}^n , and $T : \mathbb{R}^n \Rightarrow \mathbb{R}^n$ and $K : C \Rightarrow \mathbb{R}^n$ be two set-valued maps. A point \bar{x} of *C* is said to be a *projected solution* of the quasi-variational inequality $\mathsf{QVI}(T, K)$ iff there exists $\bar{y} \in \mathbb{R}^n$ such that:

- a) \bar{x} is a projection of \bar{y} on C;
- b) \bar{y} is a solution of the Stampacchia variational inequality $S(\mathcal{T}, \mathcal{K}(\bar{x}))$, that is, $\bar{y} \in \mathcal{K}(\bar{x})$, and

there exists $\bar{y}^* \in T(\bar{y})$ such that $\langle \bar{y}^*, z - \bar{y} \rangle \ge 0$, $\forall z \in \mathcal{K}(\bar{x})$.

The set of projected solutions will be denoted by PQVI(T, K)Any (classical) solution is a projected solution:

 $QVI(T,K) \subset PQVI(T,K).$

-

Let *C* be a non-empty subset of \mathbb{R}^n , and $T : \mathbb{R}^n \Rightarrow \mathbb{R}^n$ and $K : C \Rightarrow \mathbb{R}^n$ be two set-valued maps. A point \bar{x} of *C* is said to be a *projected solution* of the quasi-variational inequality $\mathsf{QVI}(T, K)$ iff there exists $\bar{y} \in \mathbb{R}^n$ such that:

- a) \bar{x} is a projection of \bar{y} on C;
- b) \bar{y} is a solution of the Stampacchia variational inequality $S(T, K(\bar{x}))$, that is, $\bar{y} \in K(\bar{x})$, and

there exists $\bar{y}^* \in T(\bar{y})$ such that $\langle \bar{y}^*, z - \bar{y} \rangle \ge 0$, $\forall z \in \mathcal{K}(\bar{x})$.

Note the variational inequality depends on the expected "projected solution"

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

A simple example

Let us consider the subset $C = \{(x, y) \in \mathbb{R}^2 : 0 \le x, y \le 1 \text{ and } x + y \ge 1\}$ of \mathbb{R}^2 and the constraint map $K : C \rightrightarrows \mathbb{R}^2$, defined by

$$\mathcal{K}(x,y) := \left\{ rac{2}{\|(x,y)\|}(x,y) + (u,v) \; : \; 0 \leq u \leq 1, \; 0 \leq v \leq 1
ight\}.$$

• This set-valued map K is clearly non-self since $C \cap K(C) = \emptyset$;

伺 ト イ ヨ ト イ ヨ ト

A simple example

Let us consider the subset $C = \{(x, y) \in \mathbb{R}^2 : 0 \le x, y \le 1 \text{ and } x + y \ge 1\}$ of \mathbb{R}^2 and the constraint map $K : C \Rightarrow \mathbb{R}^2$, defined by

$$\mathcal{K}(x,y) := \left\{ rac{2}{\|(x,y)\|}(x,y) + (u,v) \; : \; 0 \le u \le 1, \; 0 \le v \le 1
ight\}.$$

- This set-valued map K is clearly non-self since $C \cap K(C) = \emptyset$;
- Thus if one consider, for example the map T = Id_{R²}, that is, T(x,y) = {(x,y)} then the quasi-variational inequality QVI(T, K) does not admit any (classical) solution;

・ 同 ト ・ ヨ ト ・ ヨ ト

A simple example

Let us consider the subset $C = \{(x, y) \in \mathbb{R}^2 : 0 \le x, y \le 1 \text{ and } x + y \ge 1\}$ of \mathbb{R}^2 and the constraint map $K : C \Rightarrow \mathbb{R}^2$, defined by

$$\mathcal{K}(x,y) := \left\{ rac{2}{\|(x,y)\|}(x,y) + (u,v) \; : \; 0 \le u \le 1, \; 0 \le v \le 1
ight\}.$$

- This set-valued map K is clearly non-self since $C \cap K(C) = \emptyset$;
- Thus if one consider, for example the map T = Id_{R²}, that is, T(x,y) = {(x,y)} then the quasi-variational inequality QVI(T, K) does not admit any (classical) solution;
- but it has the following set of projected solutions:

$$\mathcal{P} = \{(1,0), (1,1), (0,1)\};$$

・ 同 ト ・ ヨ ト ・ ヨ ト

A simple (modified) example

Let us consider the subset $C = \{(x, y) \in \mathbb{R}^2 : 0 \le x, y \le 1 \text{ and } x + y \ge 1\}$ of \mathbb{R}^2 and the constraint map $K : C \Rightarrow \mathbb{R}^2$, defined by

$$\mathcal{K}(x,y) := \left\{ rac{\sqrt{2}}{\|(x,y)\|}(x,y) + (u,v) \; : \; 0 \leq u \leq 1, \; 0 \leq v \leq 1
ight\}.$$

• it has the same set of projected solutions:

$$\mathcal{P} = \{(1,0), (1,1), (0,1)\};$$

• and the unique (classical) solution $(\bar{x}, \bar{y}) = (1, 1)$.

- 4 E 6 4 E 6

III- Existence of projected solutions

Theorem

Let C be a non-empty, closed and convex subset of \mathbb{R}^n . Let $T : \mathbb{R}^n \Rightarrow \mathbb{R}^n$ and $K : C \Rightarrow \mathbb{R}^n$ be two set-valued maps where K(C) is relatively compact. Then, QVI(T, K) admits at least a projected solution if the following properties hold:

- (i) K is closed, lower semicontinuous and convex valued map with intK(x) ≠ Ø for all x ∈ C;
- (ii) T is locally upper sign-continuous or lower sign-continuous on convK(C);
- (iii) T is pseudomonotone on convK(C).

伺 ト く ヨ ト く ヨ ト

Theorem

Let C be a non-empty, closed and convex subset of \mathbb{R}^n . Let $T : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ and $K : C \rightrightarrows \mathbb{R}^n$ be two set-valued maps where K(C) is relatively compact. Then, QVI(T, K) admits at least a projected solution if the following properties hold:

- (i) K is closed, lower semicontinuous and convex valued map with intK(x) ≠ Ø for all x ∈ C;
- (ii) T is locally upper sign-continuous or lower sign-continuous on convK(C);
- (iii) T is pseudomonotone on convK(C).

Recall that a set-valued operator $T : \mathbb{R}^n \Rightarrow \mathbb{R}^n$ is called a *lower sign-continuous* on a convex subset $K \subseteq \mathbb{R}^n$ iff for any $x, y \in K$,

$$\forall t \in]0,1[, \quad \inf_{x_t^* \in T(x_t)} \langle x_t^*, y - x \rangle \ge 0 \Rightarrow \quad \inf_{x^* \in T(x)} \langle x^*, y - x \rangle \ge 0,$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof is based on

Theorem (Lassonde (90))

Let K be a non-empty and convex subset of a locally convex topological vector space X. Suppose that $\Gamma : K \rightrightarrows K$ is a Kakutani factorizable set-valued map such that $\Gamma(K)$ is relatively compact. Then, Γ has a fixed point.

A set-valued map $\Gamma : K \rightrightarrows K$ is Kakutani factorizable if $\Gamma = \Gamma_N \circ \Gamma_{N-1} \circ \cdots \circ \Gamma_0$, that is, if there is a diagram $\Gamma : K = K_0 \stackrel{\Gamma_0}{\rightrightarrows} K_1 \stackrel{\Gamma_1}{\rightrightarrows} K_2 \rightrightarrows \cdots \stackrel{\Gamma_N}{\rightrightarrows} K_{N+1} = K$, where for $i = 0, 1, \dots N$, each Γ_i is a non-empty, compact and convex valued upper semi-continuous set-valued map and K_i is a convex subset of X.

伺 ト イ ヨ ト イ ヨ ト

Proof is based on

Theorem (Lassonde (90))

Let K be a non-empty and convex subset of a locally convex topological vector space X. Suppose that $\Gamma : K \rightrightarrows K$ is a Kakutani factorizable set-valued map such that $\Gamma(K)$ is relatively compact. Then, Γ has a fixed point.

Instead of using this theorem in the proof, one can apply a Kakutani fixed point theorem to the map $G : C \times K(C) \rightarrow C \times K(C)$ defined by $G(x, y) := (P_C(y), S(T, K(x)))$, where $P_C(y)$ is the projection set of y on C. However, then convexity of the set K(C) would be required in addition to the assumptions of the theorem.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

Theorem

Let C be a non-empty, closed and convex subset of \mathbb{R}^n . Let $T : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ and $K : C \rightrightarrows \mathbb{R}^n$ be two set-valued maps, where K(C) is relatively compact. Then, $QVI^*(T, K)$ admits at least a projected solution if the following properties hold:

- (i) K is a closed, lower semi-continuous and convex valued map with intK(x) ≠ Ø, for all x ∈ C;
- (ii) T is quasimonotone, locally upper sign-continuous and dually lower semi-continuous on convK(C).

Recall that T is called *dually lower semi-continuous* on a set K iff, for any $x \in K$ and any sequence $(y_k)_k$ of K with $y_k \to y$, the following implication holds:

$$\liminf_{\substack{k \\ y_k^* \in \mathcal{T}(y_k)}} \sup_{\langle y_k^*, x - y_k \rangle} \leq 0 \Rightarrow \sup_{y^* \in \mathcal{T}(y)} \langle y^*, x - y \rangle \leq 0.$$

イロト イポト イヨト イヨト 三日

IV- Back to GNEP and electricity market

For any $\nu = 1, ..., p$, let C_{ν} be a non-empty subset of $\mathbb{R}^{n_{\nu}}$, $\theta_{\nu} : \mathbb{R}^{n} \to \mathbb{R}$ and $K_{\nu} : C \rightrightarrows \mathbb{R}^{n_{\nu}}$, where $C = \prod_{\nu=1}^{p} C_{\nu}$. A point $\bar{x} := (\bar{x}^{1} \dots, \bar{x}^{p})$ of $C = \prod_{\nu} C_{\nu}$ is said to be a *projected solution* of the generalized Nash equilibrium problem $GNEP(\theta_{\nu}, K_{\nu})$ iff there exists $\bar{y} := (\bar{y}^{1} \dots, \bar{y}^{p}) \in \mathbb{R}^{n}$ such that:

- a) \bar{x} is a projection of \bar{y} on C;
- b) \bar{y} is a solution of the Nash equilibrium problem defined by the functions $(\theta_{\nu})_{\nu}$ and the constraint sets $(K_{\nu}(\bar{x}))_{\nu}$, that is, for any ν , $\bar{y}^{\nu} \in K_{\nu}(\bar{x})$ is a solution of the following optimization problem

Theorem

For any $\nu = 1, ..., p$, let C_{ν} be a non-empty, closed and convex subset of $\mathbb{R}^{n_{\nu}}$, $\theta_{\nu} : \mathbb{R}^n \to \mathbb{R}$ and $K_{\nu} : C = \prod_{\nu=1}^{p} C_{\nu} \rightrightarrows \mathbb{R}^{n_{\nu}}$. Then, the $GNEP(\theta_{\nu}, K_{\nu})$ admits a projected Nash Equilibrium $\bar{\mathbf{x}} \in C$ if

- a) the functions θ_{ν} are continuously differentiable and convex with respect to the x^{ν} variable;
- b) for each ν , the maps K_{ν} are closed and lower semi-continuous with $K_{\nu}(C)$ being relatively compact;
- c) for each ν , the maps K_{ν} are either single-valued or convex valued map with int $K_{\nu}(x) \neq \emptyset$, $\forall x \in C$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

In the case of electricity market model...

real bids	bids in model	producer's problems	
φ_i p. lin.	$arphi_i$ p. lin.	$\begin{array}{l} \max_{\varphi_i,q_i} \varphi_i(q_i) - Cost_i(q_i) \\ \text{s.t.} \left\{ \begin{array}{l} q \text{ solves } ISO(\varphi) \\ \varphi_i \text{ is admissible piecewise linear} \end{array} \right. \end{array}$	\Rightarrow nonsmoothness
$arphi_i$ p. lin.	$y_i \in K_i$ (pos. quad. bid)	$\begin{array}{l} \max_{y_i,q_i} y_i(q_i) - Cost_i(q_i) \\ \text{s.t.} \begin{cases} q \text{ solves } ISO(y) \\ y_i \in K_i \end{cases} \end{array}$	\Rightarrow not a real life model
$arphi_i$ p. lin.	$y_i \in K_i(arphi)$	$\begin{array}{l} \max_{\mathbf{y}_{i},q_{i}} y_{i}(q_{i}) - \textit{Cost}_{i}(q_{i}) \\ \text{s.t.} \left\{ \begin{array}{l} q \text{ solves } \textit{ISO}(\varphi) \\ y_{i} \in \textit{K}_{i}(\varphi) \end{array} \right. \end{array}$	\Rightarrow non self constraint map

where
$$\mathcal{K}_i(\varphi) := \left\{ y_i : q_i \mapsto a_i q_i^2 + b_i q_i + c_i \text{ with } a_i > 0 \text{ and } c_i \geq \mathbf{p}_i^1 \right\}.$$

-

Projected solution for the bid process

It consists in finding a vector of bid functions $\bar{\varphi} = (\bar{\varphi}_1, \ldots, \bar{\varphi}_N)$, for which there exists a vector of quadratic bid functions $\bar{y} = (\bar{y}_i)_i$, characterized by the matrix $((\bar{a}_i, \bar{b}_i, \bar{c}_i))_i$, such that:

a) the vector of bid functions $\bar{\varphi}$ is, between all possible vectors of bid functions of $C = \prod_{i=1}^{N} C_i$, the best approximation in the sense of L^2 -norm of the vector of quadratic bid functions \bar{y} ;

$$\inf_{\varphi \in C} \sum_{i=1}^{N} \int_{0}^{\bar{Q}_{i}} \left| \bar{y}_{i}(q_{i}) - \varphi(q_{i}) \right|^{2} dq_{i},$$

or in other words, $\bar{\varphi}$ is a projection of \bar{y} on C.

b) for each producer *i*, looking for its maximum benefit, $\bar{y}_i : q_i \mapsto a_i q_i^2 + b_i q_i + c_i$ solves the following optimization problem

$$P_{i}(\bar{y}_{-i},\bar{\varphi}) \qquad \max_{\substack{y_{i},q_{i}\\s.t.}} y_{i}(q_{i}) - (A_{i}q_{i}^{2} + B_{i}q_{i})$$

s.t. $y_{i} \in K_{i}(\bar{\varphi}) \text{ and } q = (q_{j})_{j \in \mathcal{N}} \text{ solves } ISO(y_{i},\bar{y}_{-i}).$
(3)

Actually, under some suitable additional conditions, such a vector of bid functions $\bar{\varphi}$ will also be a projected solution of the quasi-variational inequality QVI(T, K) for the maps K and T defined as follows:

$$K: C \rightrightarrows L^2([0, \overline{Q}], \mathbb{R})$$
 is defined by $K(\varphi) := \prod_{i=1}^N K_i(\varphi)$

(where $C = \prod_{i=1}^{N} C_i$ and $Q = \max_i Q_i$) and the map is defined as

$$T: L^2([0, \overline{Q}], \mathbb{R}) \rightrightarrows L^2([0, \overline{Q}], \mathbb{R})$$
 is given by $T(y) := \prod_{i=1}^N \nabla_i \theta_i(\cdot, y_{-i})(y_i)$

where $\theta_i(\cdot, y_{-i})(y_i) := (a_i q_i^2(y) + b_i q_i(y) + c_i) - (A_i q_i^2(y) + B_i q_i(y)).$

伺 と く ヨ と く ヨ と

An example of electricity market model

We assume that, for any i:

- 1) the approximated bid function $y_i = a_i q_i^2 + b_i q_i + c_i$ of the producer i is such that
 - a) $a_i = A_i$, which means that the bid curve y_i is forced to be "relatively close" to the curve of real cost of production $A_i q_i^2 + B_i q_i$;
 - b) b_i is bounded, $b_i \in [\underline{b}_i, \overline{b}_i]$, where $0 \leq \underline{b}_i \leq \overline{b}_i$;
 - c) $c_i = p_i^1$, that is, the minimal value of the bid curve y_i is equal to the minimal value p_i^1 at which producer *i* is willing to produce electricity;
- 2) $0 < q_i < \bar{Q}_i$, which means that each producer of the market is active (produces electricity) at equilibrium but none of them reaches his maximum capacity of production.

Then there exist a vector $\bar{\varphi}$ of revenue bid functions and a vector \bar{y} of quadratic bids such that, at the same time, \bar{y} is a Nash equilibrium associated to the family of problem (3) and $\bar{\varphi}$ is the "real bid" which is the closest to \bar{y} .

(4月) (日) (日)

V- Quasi-optimization problems

It corresponds actually to a constraint optimization problem, in which the constraint set depends on the solution.

This concept has been introduced in [Facchinei-Kanzow (2007)].

伺 ト イヨト イヨト

It corresponds actually to a constraint optimization problem, in which the constraint set depends on the solution.

This concept has been introduced in [Facchinei-Kanzow (2007)].

Let *C* be a non-empty subset of \mathbb{R}^n . Now, for a given real-valued function $f : \mathbb{R}^n \to \mathbb{R}$ and a set-valued operator $K : C \rightrightarrows C$, the quasi-optimization problem $\operatorname{QOpt}(f, K)$ consists in finding $x_0 \in C$ such that

$$x_0 \in K(x_0)$$
 and $f(x_0) = \min_{z \in K(x_0)} f(z)$.

伺 ト く ヨ ト く ヨ ト

Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a continuous quasiconvex function such that $intS_a \neq \emptyset$ for all $a > \inf f$. Suppose that :

- C is a non-empty, closed and convex subset of \mathbb{R}^n
- K: C ⇒ ℝⁿ is a set-valued map such that K(C) is relatively compact and convK(C) ⊆ ℝⁿ \ arg min_{ℝⁿ} f.

Then, there exists at least a projected solution to QOpt(f, K) if the following conditions hold:

- (a) K is closed, lower semi-continuous and convex valued map with intK(x) ≠ Ø for all x ∈ C;
- (b) The normal operator N_f^a is dually lower semi-continuous on convK(C).

・ 同 ト ・ ヨ ト ・ ヨ ト

VI- Ongoing results on computational aspects

To compute some projected solutions of set-valued quasi-variational inequalities.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ...

3

To compute some projected solutions of set-valued quasi-variational inequalities.

Formally, the naive algorithm for finding a Projected solution is the following:

Algorithm for Projected solution

 $\begin{array}{ll} (\textit{Initialization}) \ \textit{Choose} \ x_0 \in \bar{\mathcal{C}}, \ \textit{set} \ k := 1 \ \textit{and} \ \textit{choose} \ \varepsilon \ ; \\ \textit{Find} \ y_1 \in S(T, K(x_0)) \ (\textit{using} \ \textit{PATH} \ \textit{solver}); \\ \textit{Compute} \ x_1 = P_{\bar{\mathcal{C}}}(y_1); \\ \textit{while} \quad \|x_{k-1} - x_k\| \leq \varepsilon \quad \textit{do} \\ & \quad \| \ \textit{Find} \ y_k \in S(T, K(x_{k-1})) \ (\textit{using} \ \textit{PATH} \ \textit{solver}); \\ \textit{Compute} \ x_k = P_{\bar{\mathcal{C}}}(y_k); \\ & \quad k \to k+1 \\ \textit{end} \end{array}$

伺 と く ヨ と く ヨ と …

-

 $C \subset \mathbb{R}^n$ is a nonempty subset and $K : C \rightrightarrows \mathbb{R}^n$ is a set-valued map with nonempty closed convex values with a special structure as

 $K(\lambda) = P \cap \{x : \langle a, x \rangle \leq h(\lambda)\}$

where $P \subset \mathbb{R}^n$ is a polyhedral set given as

$$P = \bigcap_{i=1}^{p} \{x \in \mathbb{R}^{n} : \langle a_{i}, x \rangle \leq b_{i}\}$$

where $a \in \mathbb{R}^n$ and *h* is a function from C to \mathbb{R} .

Theorem

Let C be a nonempty compact convex subset of \mathbb{R}^n and $x_0 \in C$. Assume that

- (i) The map K : C ⇒ ℝⁿ is nonempty closed and compact valued with structure (H). Consider I = {i : (a_i, a) ∈ [-π/2, π/2]}, where (a_i, a) is angle between a_i and a. Assume that for all i ∈ {1, 2, .., p}/I, (a_i, a) ≥ π/6. Let h to be k_{λ0}-locally lipschitz at λ₀ ∈ C with k_{λ0} ∈]0, 1/2[.
- (ii) The map T : ℝⁿ → ℝⁿ be a α-strongly monotone on ℝⁿ and L-lipschitz function on X with α = 1 and L = 1, where X is closed convex neighborhood of x₀ ∈ K(x₀). Fixing γ ∈]0, α/L²], then
 (a) there exist a neighborhood U of λ₀ and k ∈]0, 1[such that,

$$\|\mathcal{S}(\mathcal{T},\mathcal{K}(x))-\mathcal{S}(\mathcal{T},\mathcal{K}(x'))\|\leq \bar{k}\|x-x'\|,\quad\forall\quad x,x'\in U\cap \mathcal{C}. \tag{4}$$

(b) Consider a closed set $\overline{C} \subset C \cap U$ and $x_{n+1} = G(x_n)$, where $G = G_1 \circ G_0$ with $G_0(x) = S(T, K(x))$ and $G_1(x) = P_{\overline{C}}(x)$. Then the sequence $\{x_n\}$ converges to a point in PQVI(T, K).

・ 同 ト ・ ヨ ト ・ ヨ ト

-

References

- D. Aussel, A. Sultana & V. Vetrivel, On the existence of projected solutions of quasi-variational inequalities and generalized Nash equilibrium problem, J. Optim. Th. Appl. 170 (2016), 818-837.
- Lassonde, M., Fixed points for Kakutani factorizable multifunctions, J. Math. Anal. Appl. 152, 46-60 (1990)
- Ait Mansour, M., Aussel, D., Quasimonotone variational inequalities and quasiconvex programming: qualitative stability, J. Convex Anal. 15, 459-472 (2008)
- E. Anderson and A. Philpott, Optimal Offer Construction in Electricity Markets, Mathematics of Operations Research (2002).
- E. Anderson, P. Holmberg and A. Philpott, Mixed strategies in discriminatory divisible-good auctions, The RAND Journal of Economics (2013).
- A. D., Correa R. and Marechal M., Spot electricity market with transmission losses, J. Industrial Manag. Optim. 9 (2013), 275-290.
- A. D., Cervinka M. and Marechal M., Deregulated electricity markets with thermal losses and production bounds: models and optimality conditions, RAIRO-Oper. Res. 50 (2016) 19-38.
- Escobar, J.F. and Jofré, A., Monopolistic competition in electricity networks with resistance losses, Econom. Theory 44 (2010), no. 1, 101–121.
- Escobar, J.F. and Jofré, A., Equilibrium analysis of electricity auctions, preprint (2014).
- Henrion, R., Outrata, J.V. and Surowiec, T., Analysis of M-stationary points to an EPEC modeling oligopolistic competition in an electricity spot market, ESAIM: Control, Optim. and Calculus of Variations 18 (2012), 296–317.
- Hu, X. and Ralph, D., Using EPECs to model bilevel games in restructured electricity markets with locational prices, Operations Research 55 (2007), no. 5, 809–827.

< ロ > < 同 > < 回 > < 回 > < □ > <

3