
Weierstrass Institute for
Applied Analysis and Stochastics

SESO 2017 International Thematic Week
``Smart Energy and Stochastic Optimization''

May 30 to June 1, 2017

P. Carpentier1, J.-P. Chancelier, M. De Lara2 and V. Leclère
ENSTA ParisTech and École des Ponts ParisTech

Abstract:

Energy companies witness a rapidly changing landscape: increase of intermittent, variable and spatially distributed power sources (wind,
sun); expansion of markets and actors at all spatial and temporal scales; penetration of telecom technologies (smart grids). These new
factors impact the practice of optimization.

Following SESO 2014, SESO 2015 and SESO 2016, the 4th International Thematic Week Smart Energy and Stochastic Optimization
(SESO 2017) will take place in Paris from May 30 to June 1, 2017. SESO 2017 will be devoted to stochastic optimization, decentralized
optimization and their applications to the management of new energy systems. The Week alternates courses, tutorials, scientific
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Probability functions

We consider probability functions of the type

ϕ(x) := P(g(x, ξ) ≤ 0),

where

� x ∈ X is a decision variable in a separable and reflexive Banach space X

� ξ is an m-dimensional random vector defined on a probability space (Ω,A,P)

� g : X × Rm → R is a mapping defining the random inequality constraint g(x, ξ) ≤ 0

Our basic assumptions:

� g locally Lipschitzian

� g(x, ·) convex for all x ∈ X
� ξ is a Gaussian random vector

Probability functions occur in many optimization problems from engineering, e.g.

max{ϕ(x) | x ∈ X} reliability maximization

min{f(x) | ϕ(x) ≥ p} probabilistic constraints
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Reservoir control problem

Consider a reservoir with random inflow ξ and controlled release x:

a

b

l

x(t)

x(t)

Assume a finitely parameterized inflow process

ξ(t) = 〈ξ, a(t)〉, ξ ∼ N (µ,Σ) (e.g., K-L expansion)

Water level at time t:

l(ξ, x, t) = l0 +

t∫
0

〈ξ, a(τ)〉dτ −
t∫

0

x(τ)dτ

Probability of satisfying a critical lower level profile l∗ given a release profile x:

ϕ(x) := P(l(ξ, x, t) ≥ l∗(t) ∀t ∈ [0, T ]) = P

 max
t∈[0,T ]

{l∗(t)− l(ξ, x, t)}︸ ︷︷ ︸
g(x,ξ)

≤ 0


g locally Lipschitz and convex in ξ =⇒ basic assumptions satisfied.
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Slater point assumption

Let x̄ ∈ X be a point of interest for our probability function ϕ(x) := P(g(x, ξ) ≤ 0).

In addition to our basic assumptions

g locally Lipschitz, g(x, ·) convex, ξ ∼ N (µ,Σ)

suppose that: g(x̄, µ) < 0 (mean is a Slater point).

Slater point assumption

� is satisfied whenever ϕ(x̄) ≥ 0.5 =⇒ no restriction of generality

� implies continuity of ϕ at x̄.

Question: Does the Slater point assumption for the mean along with g ∈ C1 imply that ϕ ∈ C1?

Answer: No in general, Yes for g linear in ξ.
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Possibly Non-Lipschitzian ϕ(x) = P(g(x, ξ) ≤ 0) for g ∈ C1

Let ξ ∼ N (µ,Σ) and

g(x, z) := 〈a(x), z〉 − b(x), a ∈ C1(X,Rm), b ∈ C1(X,R), X - Banach space

Slater point assumption at point of interest: 〈a(x̄), µ〉 < b(x̄). Then, with Φ = CDF ofN (0, 1):

ϕ(x̄) = Φ

(
b(x̄)− 〈a(x̄), µ〉√
〈a(x̄),Σa(x̄)〉

)
∈ C1

Let g(x, z1, z2) := x2 · 1[0,∞)(x) · exp(−1− 4 log(1− Φ(z1))) + z2 − 1 ∈ C1.

Then, g is convex in (z1, z2) for every x ∈ R.

Let ξ = (ξ1, ξ2) ∼ N (0, I2). Then, g(x̄ := 0, µ = 0) < 0

(Slater point assumption) and

ϕ(x) =


1√
2π

∫
e−s

2/2Φ(1)ds x ≤ 0

1√
2π

∫
e−s

2/2Φ(1− x2 exp(−1− 4 log(1− Φ(s))))ds x > 0

ϕ is continuous (by Slater point assumption) but not even locally Lipschitz.
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A quick reminder of subdifferentials

Definition

Let X be a Banach space and f : X → R lsc. Then, the Fréchet subdifferential of f at x̄ ∈ X is defined
as

∂F f(x̄) :=

{
x∗ ∈ X∗ | lim inf

x→x̄

f(x)− f(x̄− 〈x∗, x− x̄〉
‖x− x̄‖

≥ 0

}
.

If X is a reflexive Banach space, then the limiting (Mordukhovich) subdifferential of f at x̄ ∈ X is defined
as

∂Mf(x̄) :=
{
x∗ ∈ X∗ | ∃xn → x̄, x∗n ⇀ x∗ : x∗n ∈ ∂F f(xn)

}
.

If f is locally Lipschitzian, then Clarke’s subdifferential is obtained from the limiting one by

∂Cf(x̄) = co ∂Mf(x̄)

Example: ∂F (−| · |)(0) = ∅, ∂M (−| · |)(0) = {−1, 1}, ∂C(−| · |)(0) = [−1, 1].
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Spheric-radial decomposition of a Gaussian random vector

Let ξ ∼ N (µ,Σ) with Σ = LLT . Then,

P (ξ ∈M) =

∫
v∈Sm−1

µη ({r ≥ 0 : µ+ rLv ∩M 6= ∅})dµζ(v),

where µη , µζ are the laws of η ∼ χ(m) and of the uniform distribution on Sm−1.

For a parameter-dependent set:

ϕ(x) = P(g(x, ξ) ≤ 0) =

∫
v∈Sm−1

µη ({r ≥ 0 : g(x, µ+ rLv) ≤ 0})︸ ︷︷ ︸
e(x,v): radial probability function

dµζ(v),

QMCsampling of the sphere

M 

𝑆𝑚−1 

𝑣 

𝐿𝑣 

Out[77]=
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The cone of nice directions

Definition

According to our basic assumptions, let g : X × Rm → R be locally Lipschitz.
For l > 0, we define the l- cone of nice directions at x̄ ∈ Rn, as

Cl :=
{
h ∈ X | dCg(·, z)(x;h) ≤ l‖z‖−m exp(‖z‖2/(2‖L‖2))‖h‖

∀x ∈ B1/l(x̄) ∀z : ‖z‖ ≥ l
}

Here (Clarke’s directional derivative of partial function),

dCg(·, z)(x;h) := lim sup
y→x, t↓0

g(y + th, z)− g(y, z)
t

If g ∈ C1, then dCg(·, z)(x;h) = 〈∇xg(x, z), h〉 = g′(·, z)(x;h).

Proposition

Let x̄ ∈ X such that g(x̄, µ) < 0. Then, for every l > 0 there exists a neighbourhood U of x̄ such that

∂Fx e(x, v) ⊆ B∗R(0)− C∗l (x̄) ∀x ∈ U∀v ∈ Sm−1.

Subdifferential Characterization of Gaussian probability functions · june 1, 2017 · Page 8 (16)



Subdifferential of Integral Functionals

Theorem (Correa, Hantoute, Perez-Aros (2016))

Let (Ω,A, ν) a σ- finite measure space and f : Ω×X → [0,∞] a normal integrand. Define the
integral functional

If (x) :=

∫
ω∈Ω

f(ω, x)dν.

Assume that for some δ > 0, K ∈ L1(Ω,R) and some closed cone C ⊆ X having nonempty interior:

∂Fx f(ω, x) ⊆ K(ω)B∗1(0) + C∗ ∀x ∈ Bδ(x0) ∀ω ∈ Ω.

Then,

∂M If (x0) ⊆ cl∗


∫

ω∈Ω

∂Mf(ω, x0)dν(ω) + C∗
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Main Result: Limiting subdifferential of ϕ(x) = P(g(x, ξ) ≤ 0)

Theorem (Hantoute, H., Pérez-Aros 2017)

Assume that g : X × Rm → R is locally Lipschitz and convex in the second argument. Moreover, let
ξ ∼ N (µ,Σ) and fix a point x̄ satisfying g(x̄, µ) < 0. Finally, suppose that for some l > 0 the l-cone
Cl of nice directions at x̄ has nonempty interior. Then,

∂Mϕ(x̄) ⊆ cl∗


∫

v∈Sm−1

∂Mx e(x̄, v)dµζ(v)− C∗l


Here, ∂M refer to the Mordukhovich subdifferential, µζ is the uniform distribution on Sm−1 and

e(x, v) := µη{r ≥ 0 | g(x, µ+ rLv) ≤ 0}, (x, v) ∈ X × Sm−1; (LLT = Σ),

where µη is the χ-distribution with m degrees of freedom.

Example

In the non-differentiable example before, we have (for l > 0 large enough) that

∂Mϕ(x̄) = {0}, Cl = (−∞, 0], ∂Mx e(x̄, v) = {0} for µζ − a.e. v,

whence the inclusion in the Theorem reads here as: {0} ⊆ (−∞, 0].
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Local Lipschitz continuity and differentiability of ϕ(x) = P(g(x, ξ) ≤ 0)

Theorem (Hantoute, H., Pérez-Aros 2017)

Assume that g : X × Rm → R is locally Lipschitz and convex in the second argument. Moreover, let
ξ ∼ N (µ,Σ) and fix a point x̄ satisfying g(x̄, µ) < 0. Finally, suppose that Cl = X for some l > 0 or
that the set {z | g(x̄, z) ≤ 0} is bounded. Then, ϕ is locally Lipschitzian around x̄ and

∂Cϕ(x̄) ⊆
∫

v∈Sm−1

∂Cx e(x̄, v)dµζ(v); (∂C = Clarke subdifferential).

For locally Lipschitzian functions f one always has that ∅ 6= ∂Cf(x̄) and

#∂Cf(x̄) = 1⇐⇒ f strictly differentiable at x̄

Corollary

In addition to the assumptions above, assume that #∂Cx e(x̄, v) = 1 for µζ -a.e. v. Then, ϕ is strictly
differentiable at x̄ and

∇ϕ(x̄) =

∫
v∈Sm−1

∇xe(x̄, v)dµζ(v)
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Partial (Clarke-) subdifferential of e(x, v)

Theorem (v. Ackooij / H. 2015)

For g(x, z) := max
i=1,...,p

gi(x, z) and ξ ∼ N (µ,Σ) suppose that

� gi ∈ C1(Rn × Rm) and convex in the second argument

� C = Rn (all directions nice); gi(x̄, µ) < 0 for i = 1, . . . , n (Slater point)

Then, ∂Cx e(x̄, v) = Co

{
−

χ (ρ (x̄, v))

〈∇zgi (x̄, ρ (x̄, v)Lv) , Lv〉
∇xgi (x̄, ρ (x̄, v)Lv) : i ∈ I(v)

}
Here, I(v) := {i | ρ(x̄, v) = ρi(x̄, v)} and χ is the density of the Chi-distribution with m d.f.

μ 

𝜌(𝑥, 𝑣) 

𝜌1 (𝑥, 𝑣1) 

𝜌2 (𝑥, 𝑣2) 

𝐿𝑣 

𝑔2 (𝑥, 𝑧) ≤ 0 

𝑔1 (𝑥, 𝑧) ≤ 0 

If µζ({v ∈ Sn−1 | #I(v) ≥ 2}) = 0 then

ϕ is strictly differentiable at x̄.
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Differentiability of ϕ(x)=P(gi(x, ξ) ≤ 0 (i=1, . . . , p)) for ξ ∼ N (0, R)

Corollary

In addition to the assumptions of the previous theorem assume the following constraint qualification:

rank {∇zgi(x̄, z),∇zgj(x̄, z)} = 2 ∀i 6= j ∈ I(z) ∀z : g(x̄, z) ≤ 0,

where, I(z) := {i | gi(x̄, z) = 0}.
Then, ϕ is strictly differentiable at x̄. If this condition holds locally around x̄, then ϕ is continuously
differentiable. Moreover the gradient formula

∇ϕ (x̄) = −
∫

v∈Sm−1

χ (ρ (x̄, v))〈
∇zgi∗(v) (x̄, ρ (x̄, v)Lv) , Lv

〉∇xgi∗(v) (x̄, ρ (x̄, v)Lv) dµζ(v)

holds true. Here, i∗(v) := {i|ρ(x̄, v) = ρi(x̄, v)}.
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Feasibility of random demands in a gas network

Consider a simple algebraic model of a gas network (V,E):

entry 

exit 

demand 𝜉 

flow q 

nodal balance: 
∑𝑗:(𝑖,𝑗)∈𝐸𝑞𝑖𝑗 = 𝜉𝑖  

pressure drop: 

𝑝𝑖
2 − 𝑝𝑗

2
= Φ𝑖𝑗𝑞𝑖𝑗 𝑞𝑖𝑗  

roughness 
coefficient Φ 

pressure bounds:  
𝑝𝑚𝑖𝑛 ≤ 𝑝 ≤ 𝑝𝑚𝑎𝑥 

demand vector ξ feasible
⇐⇒
∃p, q :

Aq = ξ, AT p2 = −Φ|q|q,

pmin ≤ p ≤ pmax

(A = incidence matrix)

Explicit inequality system for a tree: demand vector ξ feasible⇐⇒ 1

(pmax
k )2 + gk(ξ,Φ) ≥ (pmin

l )2 + gl(ξ,Φ) (k, l = 0, . . . , |V |)

gk(ξ,Φ) =
∑

e∈Π(k)

Φe

 ∑
t∈V :t≥h(e)

ξt

2

1see: Gotzes, Heitsch, H. Schultz 2016
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Mixed probabilistic and robust constraint

The network owner is interested in guaranteeing the feasibility of a random demand with given probability:

P
(

(pmax
k )2 + gk(ξ,Φ) ≥ (pmin

l )2 + gl(ξ,Φ) (k, l = 0, . . . , |V |)
)
≥ p

Roughness coefficient Φ uncertain too. In contrast with ξ one does not have access to statistical
information in general. Worst-case model with respect to a rectangular or ellipsoidal uncertainty set:

P
(
(pmax
k )2 + gk(ξ,Φ) ≥ (pmin

l )2 + gl(ξ,Φ) (k, l = 0, . . . , |V |) (1)

∀Φ ∈ [Φ̄− δ, Φ̄ + δ] or: ∀Φ : (Φ− Φ̄)TΣδ(Φ− Φ̄) ≤ 1
)
≥ p

Here, Φ̄ is a nominal vector of roughness coefficients.

Infinite system of random inequalities. Mixed model of probabilistic and robust constraints.

Choice of δ often not evident. In order to to gain information about local sensibility w.r.t. uncertainty in Φ,
we define the following optimisation problem: locale de l’incertitude en Φ:

’Maximize’ uncertainty set while keeping feasibility of demands with given probability:

maximize
∑
e∈E

δ0.9
e under probabilistic constraint (1)
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Numerical solution for an example

Illustration of the optimal solution for a tree with 27 nodes, p = 0.9/0.8, ξ Gaussian:

�

�

sensitive

nonsensitive

�
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