

Weierstrass Institute for Applied Analysis and Stochastics

École des Ponts ParisTech

Subdifferential Characterization of Gaussian probability functions

R. Henrion

Weierstrass Institute Berlin

Joint work with A. Hantoute, P. Perez Aros (CMM, Santiago)

Probability functions

We consider probability functions of the type

$$\varphi(x) := \mathbb{P}(g(x,\xi) \le 0),$$

where

- $\blacksquare \ x \in X$ is a decision variable in a separable and reflexive Banach space X
- **\xi** is an *m*-dimensional random vector defined on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$
- $\blacksquare \ g: X \times \mathbb{R}^m \to \mathbb{R} \text{ is a mapping defining the random inequality constraint } g(x,\xi) \leq 0$

Our basic assumptions:

- g locally Lipschitzian
- $\ \ \, \blacksquare \ \, g(x,\cdot) \text{ convex for all } x\in X$
- \blacksquare ξ is a Gaussian random vector

Probability functions occur in many optimization problems from engineering, e.g.

$$\label{eq:probability} \begin{split} \max\{\varphi(x) \mid x \in X\} \quad \text{reliability maximization} \\ \min\{f(x) \mid \varphi(x) \geq p\} \quad \text{probabilistic constraints} \end{split}$$

Reservoir control problem

Consider a reservoir with random inflow ξ and controlled release x:

Assume a finitely parameterized inflow process

 $\xi(t) = \langle \xi, a(t) \rangle, \quad \xi \sim \mathcal{N}(\mu, \Sigma) \quad \text{(e.g., K-L expansion)}$

Water level at time t:

$$l(\xi, x, t) = l_0 + \int_0^t \langle \xi, a(\tau) \rangle d\tau - \int_0^t x(\tau) d\tau$$

Probability of satisfying a critical lower level profile l_* given a release profile x:

$$\varphi(x) := \mathbb{P}(l(\xi, x, t) \ge l_*(t) \quad \forall t \in [0, T]) = \mathbb{P}\left(\underbrace{\max_{\substack{t \in [0, T]}} \{l_*(t) - l(\xi, x, t)\}}_{g(x, \xi)} \le 0\right)$$

g locally Lipschitz and convex in $\xi \Longrightarrow$ basic assumptions satisfied.

Slater point assumption

Let $\bar{x} \in X$ be a point of interest for our probability function $\varphi(x) := \mathbb{P}(g(x,\xi) \leq 0)$.

In addition to our basic assumptions

g locally Lipschitz, $g(x,\cdot)$ convex, $\xi \sim \mathcal{N}(\mu,\Sigma)$

suppose that: $g(\bar{x}, \mu) < 0$ (mean is a Slater point).

Slater point assumption

- s satisfied whenever $\varphi(\bar{x}) \geq 0.5 \implies$ no restriction of generality
- implies continuity of φ at \bar{x} .

Question: Does the Slater point assumption for the mean along with $g \in C^1$ imply that $\varphi \in C^1$?

Answer: No in general, Yes for g linear in ξ .

Let $\boldsymbol{\xi} \sim \mathcal{N}(\boldsymbol{\mu},\boldsymbol{\Sigma})$ and

 $g(x,z):=\langle a(x),z\rangle-b(x),\quad a\in\mathcal{C}^1(X,\mathbb{R}^m),\ b\in\mathcal{C}^1(X,\mathbb{R}),\ X\text{ - Banach space}$

Slater point assumption at point of interest: $\langle a(\bar{x}), \mu \rangle < b(\bar{x})$. Then, with $\Phi = \text{CDF}$ of $\mathcal{N}(0, 1)$:

$$\varphi(\bar{x}) = \Phi\left(\frac{b(\bar{x}) - \langle a(\bar{x}), \mu \rangle}{\sqrt{\langle a(\bar{x}), \Sigma a(\bar{x}) \rangle}}\right) \in \mathcal{C}^1$$

 φ is continuous (by Slater point assumption) but **not even locally Lipschitz**.

Definition

Let X be a Banach space and $f: X \to \mathbb{R}$ lsc. Then, the Fréchet subdifferential of f at $\bar{x} \in X$ is defined as

$$\partial^F f(\bar{x}) := \left\{ x^* \in X^* \mid \liminf_{x \to \bar{x}} \frac{f(x) - f(\bar{x} - \langle x^*, x - \bar{x} \rangle}{\|x - \bar{x}\|} \ge 0 \right\}.$$

If X is a reflexive Banach space, then the limiting (Mordukhovich) subdifferential of f at $\bar{x} \in X$ is defined as

$$\partial^M f(\bar{x}) := \left\{ x^* \in X^* \mid \exists x_n \to \bar{x}, x_n^* \rightharpoonup x^* : x_n^* \in \partial^F f(x_n) \right\}.$$

If f is locally Lipschitzian, then Clarke's subdifferential is obtained from the limiting one by

$$\partial^C f(\bar{x}) = \overline{\operatorname{co}} \,\partial^M f(\bar{x})$$

 $\text{Example:} \ \partial^F(-|\cdot|)(0) = \emptyset, \ \partial^M(-|\cdot|)(0) = \{-1,1\}, \ \partial^C(-|\cdot|)(0) = [-1,1].$

Spheric-radial decomposition of a Gaussian random vector

Let
$$\xi \sim \mathcal{N}(\mu, \Sigma)$$
 with $\Sigma = LL^T$. Then,

$$\mathbb{P}\left(\xi \in M\right) = \int_{v \in \mathbb{S}^{m-1}} \mu_{\eta}\left(\{r \ge 0 : \mu + rLv \cap M \neq \emptyset\}\right) d\mu_{\zeta}(v),$$

where μ_{η}, μ_{ζ} are the laws of $\eta \sim \chi(m)$ and of the uniform distribution on \mathbb{S}^{m-1} .

For a parameter-dependent set:

$$\varphi(x) = \mathbb{P}(g(x,\xi) \le 0) = \int_{v \in \mathbb{S}^{m-1}} \underbrace{\mu_{\eta}\left(\{r \ge 0 : g(x,\mu + rLv) \le 0\}\right)}_{e(x,v): \text{ radial probability function}} d\mu_{\zeta}(v),$$

QMCsampling of the sphere

The cone of nice directions

Definition

According to our basic assumptions, let $g: X \times \mathbb{R}^m \to \mathbb{R}$ be locally Lipschitz. For l > 0, we define the l- cone of nice directions at $\bar{x} \in \mathbb{R}^n$, as

$$C_l := \begin{cases} h \in X \mid d^C g(\cdot, z)(x; h) \le l \|z\|^{-m} \exp(\|z\|^2 / (2\|L\|^2)) \|h\| \\ \forall x \in \mathbb{B}_{1/l}(\bar{x}) \; \forall z : \|z\| \ge l \end{cases}$$

Here (Clarke's directional derivative of partial function),

$$d^C g(\cdot, z)(x; h) := \limsup_{y o x, \ t \downarrow 0} \frac{g(y + th, z) - g(y, z)}{t}$$

If
$$g \in \mathcal{C}^1$$
, then $d^C g(\cdot, z)(x; h) = \langle \nabla_x g(x, z), h \rangle = g'(\cdot, z)(x; h).$

Proposition

Let $\bar{x} \in X$ such that $g(\bar{x}, \mu) < 0$. Then, for every l > 0 there exists a neighbourhood U of \bar{x} such that

$$\partial_x^F e(x,v) \subseteq \mathbb{B}_R^*(0) - C_l^*(\bar{x}) \quad \forall x \in U \forall v \in \mathbb{S}^{m-1}.$$

Theorem (Correa, Hantoute, Perez-Aros (2016))

Let (Ω, A, ν) a σ - finite measure space and $f : \Omega \times X \to [0, \infty]$ a normal integrand. Define the integral functional

$$I_f(x) := \int_{\omega \in \Omega} f(\omega, x) d\nu.$$

Assume that for some $\delta > 0$, $K \in L^1(\Omega, \mathbb{R})$ and some closed cone $C \subseteq X$ having nonempty interior:

$$\partial_x^F f(\omega, x) \subseteq K(\omega) \mathbb{B}_1^*(0) + C^* \quad \forall x \in \mathbb{B}_\delta(x_0) \ \forall \omega \in \Omega.$$

Then,

$$\partial^M I_f(x_0) \subseteq \operatorname{cl}^* \left\{ \int\limits_{\omega \in \Omega} \partial^M f(\omega, x^0) d\nu(\omega) + C^* \right\}$$

Theorem (Hantoute, H., Pérez-Aros 2017)

Assume that $g: X \times \mathbb{R}^m \to \mathbb{R}$ is locally Lipschitz and convex in the second argument. Moreover, let $\xi \sim \mathcal{N}(\mu, \Sigma)$ and fix a point \bar{x} satisfying $g(\bar{x}, \mu) < 0$. Finally, suppose that for some l > 0 the l-cone C_l of nice directions at \bar{x} has nonempty interior. Then,

$$\partial^M \varphi(\bar{x}) \subseteq \mathrm{cl}^* \left\{ \int_{v \in \mathbb{S}^{m-1}} \partial_x^M e(\bar{x}, v) d\mu_{\zeta}(v) - C_l^* \right\}$$

Here, ∂^M refer to the Mordukhovich subdifferential, μ_ζ is the uniform distribution on \mathbb{S}^{m-1} and

$$e(x,v) := \mu_{\eta} \{ r \ge 0 \mid g(x, \mu + rLv) \le 0 \}, \quad (x,v) \in X \times \mathbb{S}^{m-1}; \quad (LL^{T} = \Sigma),$$

where μ_{η} is the χ -distribution with m degrees of freedom.

Example

In the non-differentiable example before, we have (for l > 0 large enough) that

$$\partial^{M} \varphi(\bar{x}) = \{0\}, \ C_{l} = (-\infty, 0], \ \partial^{M}_{x} e(\bar{x}, v) = \{0\} \ \text{for} \ \mu_{\zeta} - a.e. \ v,$$

whence the inclusion in the Theorem reads here as: $\{0\} \subseteq (-\infty, 0]$.

Theorem (Hantoute, H., Pérez-Aros 2017)

Assume that $g: X \times \mathbb{R}^m \to \mathbb{R}$ is locally Lipschitz and convex in the second argument. Moreover, let $\xi \sim \mathcal{N}(\mu, \Sigma)$ and fix a point \bar{x} satisfying $g(\bar{x}, \mu) < 0$. Finally, suppose that $C_l = X$ for some l > 0 or that the set $\{z \mid g(\bar{x}, z) \leq 0\}$ is bounded. Then, φ is locally Lipschitzian around \bar{x} and

$$\partial^{C}\varphi(\bar{x}) \subseteq \int_{v \in \mathbb{S}^{m-1}} \partial_{x}^{C} e(\bar{x}, v) d\mu_{\zeta}(v); \quad (\partial^{C} = \textit{Clarke subdifferential}).$$

For locally Lipschitzian functions f one always has that $\emptyset \neq \partial^C f(\bar{x})$ and

 $\#\partial^C f(\bar{x}) = 1 \Longleftrightarrow f$ strictly differentiable at \bar{x}

Corollary

In addition to the assumptions above, assume that $\#\partial_x^C e(\bar{x}, v) = 1$ for μ_{ζ} -a.e. v. Then, φ is strictly differentiable at \bar{x} and

$$\nabla \varphi(\bar{x}) = \int_{v \in \mathbb{S}^{m-1}} \nabla_x e(\bar{x}, v) d\mu_{\zeta}(v)$$

Theorem (v. Ackooij / H. 2015)

For
$$g(x, z) := \max_{i=1,...,p} g_i(x, z)$$
 and $\xi \sim \mathcal{N}(\mu, \Sigma)$ suppose that

$$g_i \in \mathcal{C}^1(\mathbb{R}^n \times \mathbb{R}^m) \text{ and convex in the second argument}$$

$$C = \mathbb{R}^n \text{ (all directions nice)}; \quad g_i(\bar{x}, \mu) < 0 \text{ for } i = 1, ..., n \text{ (Slater point)}$$
Then, $\partial_x^C e(\bar{x}, v) = \text{Co} \left\{ -\frac{\chi(\rho(\bar{x}, v))}{\langle \nabla_z g_i(\bar{x}, \rho(\bar{x}, v) Lv), Lv \rangle} \nabla_x g_i(\bar{x}, \rho(\bar{x}, v) Lv) : i \in I(v) \right\}$
Here, $I(v) := \{i \mid \rho(\bar{x}, v) = \rho_i(\bar{x}, v)\}$ and χ is the density of the Chi-distribution with m d.f.

If $\mu_{\zeta}(\{v \in \mathbb{S}^{n-1} \mid \#I(v) \ge 2\}) = 0$ then

 φ is strictly differentiable at \bar{x} .

Corollary

In addition to the assumptions of the previous theorem assume the following constraint qualification:

$$\operatorname{rank} \left\{ \nabla_z g_i(\bar{x}, z), \nabla_z g_j(\bar{x}, z) \right\} = 2 \quad \forall i \neq j \in \mathcal{I}(z) \ \forall z : g(\bar{x}, z) \le 0,$$

where, $I(z) := \{i \mid g_i(\bar{x}, z) = 0\}.$

Then, φ is strictly differentiable at \bar{x} . If this condition holds locally around \bar{x} , then φ is continuously differentiable. Moreover the gradient formula

$$\nabla\varphi\left(\bar{x}\right) = -\int_{v\in\mathbb{S}^{m-1}} \frac{\chi\left(\rho\left(\bar{x},v\right)\right)}{\left\langle\nabla_{z}g_{i^{*}\left(v\right)}\left(\bar{x},\rho\left(\bar{x},v\right)Lv\right),Lv\right\rangle} \nabla_{x}g_{i^{*}\left(v\right)}\left(\bar{x},\rho\left(\bar{x},v\right)Lv\right)d\mu_{\zeta}(v)$$

holds true. Here, $i^*(v) := \{i | \rho(\bar{x}, v) = \rho_i(\bar{x}, v)\}.$

Feasibility of random demands in a gas network

Consider a simple algebraic model of a gas network (V, E):

Explicit inequality system for a tree: demand vector ξ feasible \iff ¹

$$(p_k^{\max})^2 + g_k(\xi, \Phi) \ge (p_l^{\min})^2 + g_l(\xi, \Phi) \quad (k, l = 0, \dots, |V|)$$
$$g_k(\xi, \Phi) = \sum_{e \in \Pi(k)} \Phi_e \left(\sum_{t \in V: t \ge h(e)} \xi_t\right)^2$$

¹see: Gotzes, Heitsch, H. Schultz 2016

The network owner is interested in guaranteeing the feasibility of a random demand with given probability:

$$\mathbb{P}\left((p_k^{\max})^2 + g_k(\boldsymbol{\xi}, \boldsymbol{\Phi}) \ge (p_l^{\min})^2 + g_l(\boldsymbol{\xi}, \boldsymbol{\Phi}) \quad (k, l = 0, \dots, |V|)\right) \ge p$$

Roughness coefficient Φ uncertain too. In contrast with ξ one does not have access to statistical information in general. Worst-case model with respect to a rectangular or ellipsoidal uncertainty set:

$$\mathbb{P}\left((p_k^{\max})^2 + g_k(\boldsymbol{\xi}, \boldsymbol{\Phi}) \ge (p_l^{\min})^2 + g_l(\boldsymbol{\xi}, \boldsymbol{\Phi}) \quad (k, l = 0, \dots, |V|) \\
\forall \boldsymbol{\Phi} \in [\bar{\boldsymbol{\Phi}} - \delta, \bar{\boldsymbol{\Phi}} + \delta] \quad \text{or:} \quad \forall \boldsymbol{\Phi} : (\boldsymbol{\Phi} - \bar{\boldsymbol{\Phi}})^T \boldsymbol{\Sigma}_{\delta}(\boldsymbol{\Phi} - \bar{\boldsymbol{\Phi}}) \le 1) \ge p$$
(1)

Here, $\bar{\Phi}$ is a nominal vector of roughness coefficients.

Infinite system of random inequalities. Mixed model of probabilistic and robust constraints.

Choice of δ often not evident. In order to to gain information about local sensibility w.r.t. uncertainty in Φ , we define the following optimisation problem: locale de l'incertitude en Φ :

'Maximize' uncertainty set while keeping feasibility of demands with given probability:

$$\begin{array}{ll} \mbox{maximize} & \sum_{e \in E} \delta_e^{0.9} & \mbox{under probabilistic constraint (1)} \end{array} \\ \end{array} \label{eq:element}$$

Numerical solution for an example

Illustration of the optimal solution for a tree with 27 nodes, $p=0.9/0.8, \xi$ Gaussian:

Numerical solution for an example

Illustration of the optimal solution for a tree with 27 nodes, $p=0.9/0.8, \xi$ Gaussian:

