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Information plays a crucial role in competition

I Information — who knows what and when —
plays a crucial role in competitive contexts

I Concealing, cheating, lying, deceiving
are effective strategies

Our goals are to
1. introduce the notion of game in intrinsic form
2. contribute to the analysis of decentralized,

non-cooperative decision settings
3. provide a (very) general mathematical language

for game theory and mechanism design
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H. S. Witsenhausen. On information structures, feedback and causality.
SIAM J. Control, 9(2):149–160, May 1971.



Sequentiality and perfect memory are tacit assumptions
in control-oriented works on dynamic games

In control-oriented works on dynamic games (in particular,
stochastic control problems) one usually finds a “dynamic
equation” describing the evolution of a “state” in response to
decision (control) variables of the players and to random
variables. One also finds “output equations” which define
output variables for a player as functions of the state, decision
and random variables. Then the information structure is defined
by allowing each decision variable to be any desired
(measurable) function of the output variables generated for that
player up to that time. Such a setup assumes that the time
order in which the various decisions variables are selected is
fixed in advance. It assumes that each player acts as if he had
responsability only for one station. It assumes that this station
has perfect memory.



Going beyond sequentiality and perfect memory

For large complex systems these tacit assumptions are unlikely
to hold. (. . . ) The order in which the various agents of the
various organizations will have to act cannot always be
predicted, and the information available to different agents,
even of the same organization, may be noncomparable in the
sense that, of two agents, neither one knows everything his
colleague knows.



Kuhn’s answer: games in extensive form

These difficulties in specifying the information structure of a
game were faced and overcome in the early days of game theory

I Von Neumann and Morgenstern (1944)
I fixed sequencing of decisions
I variables range over finite sets

I Kuhn (1953)
I removes the restriction of fixed sequencing of decisions
I variables range over finite sets

I Aumann (1964)
I fixed sequencing of decisions
I variables range over measurable sets



Witsenhausen’s answer: games as multiple feedback loops

The decision process is considered as a feedback loop and the
game is characterized by its interaction with the policies of the
agents, without prejudging questions of chronological order.

In the Kuhn formulation,
the tree describing the game is an expression of the general
solution of the closed loop relations. (These relations map
information into decisions by the policies, and decisions into
information by the rules of the game). For any combination of
policies one can find the corresponding outcome by following
the tree along selected branches, and this is an explicit
procedure. Thus the difficulties that might arise in solving the
loop have been eliminated by defining the game in terms of a
general unique solution which must be found before the model
can be set up.
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What is a game in intrinsic form?

I Nature, the source of all randomness, or states of Nature
I Agents, who

I hold information
I make decisions, by means of admissible strategies,

those fueled by information
I Players, who

I hold beliefs about states of Nature
I hold a subset of agents under their exclusive control

(team of executives)
I hold objectives, that they achieve by selecting

proper admissible strategies for the agents under their control

In Witsenhausen’s intrinsic form of a game, there is no tree structure
(whereas Kuhn’s extensive form of a game relies on a tree)



Research questions

I How should we talk about games using WIM?
I Can we extend the Bayesian Nash Equilibrium concept

to general risk measures?
I Can we re-organize the games bestiary using WIM?
I How does the notion of subgame perfect Nash equilibrium

translate within this framework?
I WIM: game theoretical results

I What would a Nash theorem be in the WIM setting?
I When do we have a generalized ”backward induction” mechanism?
I Under proper sufficient conditions on the information structure

(extension of perfect recall), can we restrict the search among
behavioral strategies instead of mixed strategies?

I Applications of WIM
I What kind of applications do we target?
I Can we use the WIM framework for mechanism design?
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We will distinguish an individual from an agent

I An individual who makes a first, followed by a second decision,
is represented by two agents (two decision makers)

I An individual who makes a sequence of decisions
— one for each period t = 0, 1, 2, . . . ,T − 1 —
is represented by T agents, labelled t = 0, 1, 2, . . . ,T − 1

I N individuals — each i of whom makes a sequence of decisions,
one for each period t = 0, 1, 2, . . . ,Ti − 1 —
is represented by

∏N
i=1 Ti agents, labelled by

(i , t) ∈
N⋃
j=1

{j} × {0, 1, 2, . . . ,Tj − 1}



Agents, decisions and decision space
I Let A be a finite set, whose elements are called agents

(or decision-makers)
I Each agent a ∈ A is supposed to make one decision ua ∈ Ua where

I the set Ua is the set of decisions for agent a
I and is equipped with a σ-field Ua

I We define the decision space as the product set

UA =
∏
b∈A

Ub

equipped with the product decision field

UA =
⊗
b∈A

Ub

Examples
I A = {0, 1, 2, . . . ,T − 1} (T sequential decisions)
I A = {Pr, Ag} (principal-agent models)



States of Nature and history space

I A state of Nature (or uncertainty, or scenario) is ω ∈ Ω where
I the set Ω is a measurable set, the sample space,
I equipped with a σ-field F

(at this stage of the presentation, we do not need probability
distribution, as we focus only on information)

I The history space (or configuration space) is the product space

H = UA × Ω =
∏
a∈A

Ub × Ω

equipped with the product history field

H = UA ⊗ F =
⊗
a∈A

Ub ⊗ F

Examples
States of Nature Ω can include
types of players, randomness, stochastic processes



One agent, two possible decisions, two states of Nature

I Agents
A = {a}

I Decision set and field

Ua = {u1
a , u

2
a} , Ua = {∅, {u1

a , u
2
a}, {u1

a}, {u2
a}}

I Sample space and field

Ω = {ω1, ω2} , F = {∅, {ω1, ω2}, {ω1}, {ω2}}

I History space and field

H = Ua × Ω = {u1
a , u

2
a} × {ω1, ω2} , H = 2H



Two agents, two possible decisions, two states of Nature

I Agents
A = {a, b}

I Decision sets and fields

Ua = {u1
a , u

2
a} , Ua = {∅, {u1

a , u
2
a}, {u1

a}, {u2
a}}

and
Ub = {u1

b , u
2
b} , Ub = {∅, {u1

b , u
2
b}, {u1

b}, {u2
b}}

I Sample space and field

Ω = {ω1, ω2} , F = {∅, {ω1, ω2}, {ω1}, {ω2}}

I History space and field

H = Ua × Ub × Ω = {u1
a , u

2
a} × {u1

b , u
2
b} × {ω1, ω2} , H = 2H



Two players, T stages

I Agents
A = {p, q} × {0, 1, . . . ,T − 1}

I Decision sets and fields

U(p,t) = Rnp , U(p,t) = Bo
Rnp , ∀t = 0, 1, . . . ,T − 1

and

U(q,t) = Rnq , U(q,t) = Bo
Rnq , ∀t = 0, 1, . . . ,T − 1

I Sample space and field (Ω,F)

I History space and field

H =
T−1∏
t=0

U(p,t) ×
T−1∏
t=0

U(q,t) × Ω , H =
T−1⊗
t=0

U(p,t) ⊗
T−1⊗
t=0

U(q,t) ⊗ F
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Information fields

I The information field of agent a ∈ A is a σ-field

Ia ⊂ H

I In this representation, Ia is a subfield of the history field H

which represents the information available to agent a
when he makes a decision

I Therefore, the information of agent a may depend
I on the states of Nature
I and on other agents’ decisions



One agent, two possible decisions, two states of Nature

I History space and field

H = Ua × Ω = {u1
a , u

2
a} × {ω1, ω2} , F = 2Ω , H = 2H

I Case where agent a knows nothing

Ia = {∅,Ua} ⊗ {∅,Ω} = {∅, {u1
a , u

2
a}} ⊗ {∅, {ω1, ω2}}

I Case where agent a knows the state of Nature

Ia ={∅,Ua} ⊗ F

={∅,Ua} ⊗ {∅, {ω1, ω2}, {ω1}, {ω2}}
= {∅, {u1

a , u
2
a}}︸ ︷︷ ︸

undistinguishable

⊗{∅, {ω1, ω2}, {ω1}, {ω2}}︸ ︷︷ ︸
distinguishable



Two agents, two possible decisions, two states of Nature
Nested information fields

I History space and field

H = Ua × Ub × Ω = {u1
a , u

2
a} × {u1

b , u
2
b} × {ω1, ω2} , H = 2H

I Agent a knows the state of Nature

Ia = {∅,Ua} ⊗ {∅,Ub} ⊗ {∅, {ω1, ω2}, {ω1}, {ω2}}

and agent b knows the state of Nature and what agent a does

Ib = {∅, {u1
a , u

2
a}, {u1

a}, {u2
a}} ⊗ {∅,Ub} ⊗ {∅, {ω1, ω2}, {ω1}, {ω2}}

I In this example, information fields are nested

Ia ⊂ Ib

meaning that agent b knows what agent a knows



Two agents, two decisions, two states of Nature
Non nested information fields

I History space and field

H = Ua × Ub × Ω = {u1
a , u

2
a} × {u1

b , u
2
b} × {ω1, ω2} , H = 2H

I Agent a only knows the state of Nature

Ia = {∅,Ua} ⊗ {∅,Ub} ⊗ {∅, {ω1, ω2}, {ω1}, {ω2}}

and agent b only knows what agent a does

Ib = {∅, {u1
a , u

2
a}, {u1

a}, {u2
a}} ⊗ {∅,Ub} ⊗ {∅, {ω1, ω2}}

I Information fields are not nested, Ia 6⊂ Ib,
as they cannot be compared by inclusion



Classical information patterns in game theory

Two agents: the principal Pr (leader) and the agent Ag (follower)
I Moral hazard (the insurance company cannot observe

if the insured plays with matches at home)

IPr ⊂ {∅,UAg} ⊗ {∅,UPr} ⊗ F

I Stackelberg leadership model

IAg ⊂ {∅,UAg} ⊗ UPr ⊗ F , IPr ⊂ {∅,UAg} ⊗ {∅,UPr} ⊗ F

I Adverse selection (the insurance company cannot observe
if the insured has good health)

{∅,UAg} ⊗ {∅,UPr} ⊗ F ⊂ IAg , IPr ⊂ UAg ⊗ {∅,UPr} ⊗ {∅,Ω}

I Signaling (the peacock’s tail signals his good genes)

{∅,UAg} ⊗ {∅,UPr} ⊗ F ⊂ IAg , IPr = UAg ⊗ {∅,UPr} ⊗ {∅,Ω}



Two players, T stages

I Agents
A = {p, q} × {0, 1, . . . ,T}

I Information fields (at most, past decisions and state of Nature)

I(p,t) ⊂
t−1⊗
s=0

U(p,s) ⊗
T⊗
s=t

{∅,U(p,s)} ⊗
t−1⊗
s=0

U(q,s) ⊗
T⊗
s=t

{∅,U(q,s)} ⊗ F

I(q,t) ⊂
t−1⊗
s=0

U(p,s) ⊗
T⊗
s=t

{∅,U(p,s)} ⊗
t−1⊗
s=0

U(q,s) ⊗
T⊗
s=t

{∅,U(q,s)} ⊗ F



Stochastic system

Stochastic system
A stochastic system is a collection consisting of

I a finite set A of agents
I states of Nature (Ω,F)

I decision sets, fields and information fields {Ua,Ua, Ia}a∈A



We will consider stochastic systems that display
absence of self-information

Absence of self-information
A stochastic system displays absence of self-information when

Ia ⊂ UA\{a} ⊗ F

for any agent a ∈ A

I Absence of self-information means that the information of agent a
may depend on the states of Nature and on all the other agents’
decisions but not on his own decision

I Absence of self-information makes sense
once we have distinguished an individual from an agent
(else, it would lead to paradoxes)



Outline of the presentation
Why the Witsenhausen intrinsic model?

Ingredients of the Witsenhausen intrinsic model
Agents and decisions, Nature, history
Information fields and stochastic systems
Principal-agent models
Strategies and admissible strategies
Solvability and solution map

Players and Nash equilibrium in the Witsenhausen intrinsic model
Players in Witsenhausen intrinsic model
Nash equilibrium in Witsenhausen intrinsic model

Open questions (and research agenda)
Nash Equilibrium with general risk measures
Subgames and subsystems
Backward induction mechanism in the WIM setting
Nash theorem in the WIM setting
Causality and solvability

Conclusion



Principal-agent models with two players

I A branch of Economics studies so-called principal-agent models
I Principal-agent models display a general information structure,

which can be transparently expressed
thanks to Witsenhausen intrinsic model

I The model exhibits two players
I the principal Pr (leader), makes decisions uPr ∈ UPr,

where the set of decisions is equipped with a σ-field UPr
I the agent Ag (follower) makes decisions uAg ∈ UAg,

where the set of decisions is equipped with a σ-field UAg

I and Nature, corresponding to private information (or type)
of the agent Ag

I Nature selects ω ∈ Ω,
where Ω is equipped with a σ-field F



Here is the most general information structure
of principal-agent models

IPr ⊂ UAg ⊗ {∅,UPr} ⊗ F

IAg ⊂ {∅,UAg} ⊗ UPr ⊗ F

I By these expressions of the information fields
I IPr of the principal Pr (leader)
I IAg of the agent Ag (follower)

I we have excluded self-information, that is, we suppose that
the information of a player cannot be influenced by his actions



Classical information patterns in game theory

Now, we will make the information structure more specific
I Stackelberg leadership model
I Moral hazard
I Adverse selection
I Signaling



Stackelberg leadership model

I In the Stackelberg leadership model of game theory,
I the follower Ag may partly observe the action of the leader Pr

IAg ⊂ {∅,UAg} ⊗ UPr ⊗ F

I whereas the leader Pr observes at most the state of Nature

IPr ⊂ {∅,UAg} ⊗ {∅,UPr} ⊗ F

I As a consequence, the system is sequential
I with the principal Pr as first player (leader)
I and the agent Ag as second player (follower)

I Stackelberg games can be solved by bi-level optimization,
for some information structures, like when

IPr ∨ {∅,UAg} ⊗ UPr ⊗ {∅,Ω} ⊂ IAg



Moral hazard

I An insurance company (the principal Pr) cannot observe
the efforts of the insured (the agent Ag) to avoid risky behavior

I The firm faces the hazard that insured persons behave “immorally”
(playing with matches at home)

I Moral hazard (hidden action) occurs when
the decisions of the agent Ag are hidden to the principal Pr

IPr ⊂ {∅,UAg} ⊗ {∅,UPr} ⊗ F

I In case of moral hazard, the system is sequential
with the principal as first player,
(which does not preclude to choose the agent as first player
in some special cases, as in a static team situation)

I Moral hazard games can be solved by bi-level optimization,
for some information structures



Adverse selection

I In the absence of observable information on potential customers
(the agent Ag), an insurance company (the principal Pr)
offers a unique price for a contract
hence screens and selects the “bad” ones

I Adverse selection occurs when
I the agent Ag knows the state of nature

(his type, or private information)

{∅,UAg} ⊗ {∅,UPr} ⊗ F ⊂ IAg

(the agent Ag can possibly observe the principal Pr action)
I but the principal Pr does not know the state of nature

IPr ⊂ UAg ⊗ {∅,UPr} ⊗ {∅,Ω}

(the principal Pr can possibly observe the agent Ag action)
I In case of adverse selection, the system may or may not be sequential



Signaling

I In biology, a peacock signals its “good genes” (genotype)
by its lavish tail (phenotype)

I In economics, a worker signals his working ability (productivity)
by his educational level (diplomas)

I There is room for signaling
I when the agent Ag knows the state of nature (his type)

{∅,UAg} ⊗ {∅,UPr} ⊗ F ⊂ IAg

(the agent Ag can possibly observe the principal Pr action)
I whereas the principal Pr does not know the state of nature,

but the principal Pr observes the agent Ag action

IPr = UAg ⊗ {∅,UPr} ⊗ {∅,Ω}

as the agent Ag may reveal his type
by his decision which is observable by the principal Pr



Signaling

I The system is sequential (with the agent as first player) when

IAg = {∅,UAg} ⊗ {∅,UPr} ⊗ F

I The system is non causal when

{∅,UAg} ⊗ {∅,UPr} ⊗ F ( IAg ⊂ {∅,UAg} ⊗ UPr ⊗ F



What land have we covered?
What comes next?

I The stage is in place; so are the actors
I Nature
I agents
I information

I How can actors play?
I admissible strategies
I solvability
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Information fuels admissible strategies

A strategy (or policy, control law, control design) for agent a
is a measurable mapping

λa : (H,H)→ (Ua,Ua)

Admissible strategy
An admissible strategy for agent a is a mapping

λa : (H,H)→ (Ua,Ua)

which is measurable w.r.t. the information field Ia of agent a, that is,

λ−1
a (Ua) ⊂ Ia

This condition expresses the property that
an admissible strategy for agent a
may only depend upon the information Ia available to him



Set of admissible strategies

We denote the set of admissible strategies of agent a by

Λad
a =

{
λa : (H,H)→ (Ua,Ua)

∣∣ λ−1
a (Ua) ⊂ Ia

}
and the set of admissible strategies of all agents is

Λad
A =

∏
a∈A

Λad
a



Examples of admissible strategies
Consider a stochastic system with two agents a and b,
and suppose that σ-fields Ua, Ub and F contain singletons

I Absence of self-information

Ia ⊂ {∅,Ua} ⊗ Ub ⊗ F , Ib ⊂ Ua ⊗ {∅,Ub} ⊗ F

Then, admissible strategies λa and λb have the form

λa(��ua , ub, ω) = λ̃a(ub, ω) , λb(ua,��ub , ω) = λ̃b(ua, ω)

I Sequential

Ia = {∅,Ua} ⊗ {∅,Ub} ⊗ F , Ib = Ua ⊗ {∅,Ub} ⊗ F

Then, admissible strategies λa and λb have the form

λa(��ua ,��ub , ω) = λ̃a(ω) , λb(ua,��ub , ω) = λ̃b(ua, ω)
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Solvability (I)

I In the Witsenhausen’s intrinsic model,
agents make decisions in an order which is not fixed in advance

I Briefly speaking, solvability is the property that,
for each state of Nature, the agents’ decisions
are uniquely determined by their admissible strategies

I The solvability property is crucial to develop Witsenhausen’s theory:
without the solvability property,
we would not be able to determine the agents decisions

I The solvability property is a playability property



Solvability (II)

The solvability problem consists in finding
I for any collection λ = {λa}a∈A ∈ Λad

A of admissible policies
I for any state of Nature ω ∈ Ω

I decisions u ∈ UA satisfying the implicit (“closed loop”) equation

u = λ(u, ω)

or, equivalently,

ua = λa({ub}b∈A , ω) , ∀a ∈ A

Solvability property
A stochastic system displays the solvability property when

∀λ ∈ Λad
A , ∀ω ∈ Ω , ∃!u ∈ UA , u = λ(u, ω)



Solvability and information patterns

I Sequential

Ia = {∅,Ua} ⊗ {∅,Ub} ⊗ F , Ib = Ua ⊗ {∅,Ub} ⊗ F

in which case

ua = λa(��ua ,��ub , ω) = λ̃a(ω) , ub = λb(ua,��ub , ω) = λ̃b(ua, ω)

always displays a unique solution (ua, ub),
whatever ω ∈ Ω and λ̃a and λ̃b

I Deadlock

Ia = {∅,Ua} ⊗ Ub ⊗ {∅,Ω} , Ib = Ua ⊗ {∅,Ub} ⊗ {∅,Ω}

in which case
ua = λ̃a(ub) , ub = λ̃b(ua)

may display zero solutions, one solution or multiple solutions,
depending on the functional properties of λ̃a and λ̃b



Solvability makes it possible to define a solution map

Solution map
Suppose that the solvability property holds true.
We define the solution map

Sλ : Ω→ H ,

that maps states of Nature towards histories, by

(u, ω) = Sλ(ω) ⇐⇒ u = λ(u, ω) , ∀(u, ω) ∈ UA × Ω

We include the state of Nature ω in the image of Sλ(ω), so that we map
the set Ω towards the history space H, making it possible to interpret
Sλ(ω) as a history driven by the admissible strategy λ
(in classical control theory, a state trajectory is produced by a policy)



In the sequential case, the solution map
is given by iterated composition

I In the sequential case

Ia = {∅,Ua} ⊗ {∅,Ub} ⊗ F , Ib = Ua ⊗ {∅,Ub} ⊗ F

I admissible strategies λa and λb have the form

λa(��ua ,��ub , ω) = λ̃a(ω) , λb(ua,��ub , ω) = λ̃b(ua, ω)

I so that the solution map is

Sλ(ω) = (λ̃a(ω), λ̃b(λ̃a(ω), ω), ω)

I because the system of equations u = λ(u, ω) here writes

ua = λa(��ua ,��ub , ω) = λ̃a(ω) , ub = λb(ua,��ub , ω) = λ̃b(ua, ω)



What land have we covered?
What comes next?

I The stage is in place; so are the actors
I Nature
I agents
I information

I Actors know how they can play
I admissible strategies
I solvability

I In a non-cooperative context, we need
I objectives
I beliefs
I a notion of equilibrium
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Players hold teams of executive agents,
objective functions and beliefs

I The set of players is denoted by P

I Every player p ∈ P has
I a team of executive agents (or avatars)

Ap ⊂ A

where (Ap)p∈P forms a partition of the set A of agents
I a criterion (objective function)

jp : H→ R

a measurable function over the history space H
I a belief

Pp : F → [0, 1]

a probability distribution over the states of Nature (Ω,F)



Example: two players, one agent per player

I Agents
A = {a, b}

I Players
p = {a} , Ap = {a} , q = {b} , Aq = {b}

I Criteria
j{a}(ua, ub, ω) , j{b}(ua, ub, ω)

I Beliefs P{a} and P{b} over (Ω,F)



Example: two players, T stages

I Agents
A = {p, q} × {0, 1, . . . ,T − 1}

I Players
P = {p, q}

Ap = {p} × {0, 1, . . . ,T − 1} , Aq = {q} × {0, 1, . . . ,T − 1}
I Criteria

jp(u(p,0), . . . , u(p,T−1), u(q,0), . . . , u(q,T−1), ω) =
T−1∑
t=0

Lp,t(u(p,t), u(q,t), ω)

jq(u(p,0), . . . , u(p,T−1), u(q,0), . . . , u(q,T−1), ω) =
T−1∑
t=0

Lq,t(u(p,t), u(q,t), ω)

I Beliefs Pp and Pq over (Ω,F)



How player p evaluates an admissible strategies profile λ

I Measurable solution map attached to λ ∈ Λad
A is

Sλ : Ω→ H

I Measurable criterion (costs or payoffs) is

jp : H→ R

I The composition of criteria with the solution map
provides a random variable

jp ◦ Sλ : Ω→ R

I The random variable can be integrated w.r.t. the belief Pp, yielding

EPp

[
jp ◦ Sλ

]
∈ R

where EPp denotes the mathematical expectation
w.r.t. the probability Pp on (Ω,F)
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Pure (admissible) strategies profiles
I A pure (admissible) strategy for player p is an element of

Λad
Ap

=
∏
a∈Ap

Λad
a

I The set of pure (admissible) strategies for all players is∏
p∈P

Λad
Ap

=
∏
p∈P

∏
a∈Ap

Λad
a =

∏
a∈A

Λad
a = Λad

A

I An (admissible) strategies profile is

λ = (λp)p∈P ∈
∏
p∈P

Λad
Ap

I When we focus on player p, we write

λ = (λp, λ−p) ∈ Λad
Ap
×
∏
p′ 6=p

Λad
Ap′︸ ︷︷ ︸

Λad
A−p



Pure Bayesian Nash equilibrium

We say that the pure (admissible) strategies profile

λ = (λp)p∈P ∈
∏
p∈P

Λad
Ap

is a Bayesian Nash equilibrium if (in case of payoffs), for all p ∈ P,

EPp

[
jp ◦ S(λp,λ−p)

]
≥ EPp

[
jp ◦ S(λp,λ−p)

]
, ∀λp ∈ Λad

Ap



Mixed (admissible) strategies profiles
(or selecting pure strategies randomly)

I A mixed (admissible) strategy (or randomized strategy) for player p
is an element of

∆
(
Λad
Ap

)
= ∆

( ∏
a∈Ap

Λad
a

)
the set of probability distributions over the set of (admissible)
strategies of his executives in Ap

I The definition of mixed strategies for player p reflects
his ability to coordinate his team of executives in Ap

I By contrast, behavioral (admissible) strategies for player p are∏
a∈Ap

∆
(
Λad
a

)
⊂ ∆

( ∏
a∈Ap

Λad
a

)
and they do not require any correlating procedure



Mixed (admissible) strategies for players

I The set of mixed (admissible) strategies profiles is∏
p∈P

∆
(
Λad
Ap

)
=
∏
p∈P

∆
( ∏
a∈Ap

Λad
a

)
I A mixed (admissible) strategies profile is

µ = (µp)p∈P ∈
∏
p∈P

∆
(
Λad
Ap

)
I When we focus on player p, we write

µ = (µp, µ−p) ∈ ∆
(
Λad
Ap

)
×
∏
p′ 6=p

∆
(
Λad
Ap′

)



We can now define a mixed Bayesian Nash equilibrium

Mixed Bayesian Nash equilibrium
We say that the mixed (admissible) strategies profile

µ = (µp)p∈P ∈
∏
p∈P

∆
(
Λad
Ap

)
is a Bayesian Nash equilibrium if (in case of payoffs), for all p ∈ P,∫

Λad
p ×Λad

−p

µp(dλp)⊗ µ−p(dλ−p)EPp

[
jp ◦ S(λp,λ−p)

]
≥∫

Λad
p ×Λad

−p

µp(dλp)⊗ µ−p(dλ−p)EPp

[
jp ◦ S(λp,λ−p)

]

∀µp ∈ ∆
(
Λad
p

)



Technical difficulties

I With which σ-algebra M can we equip
the set Λad

A of admissible strategies?
So that we can consider and manipulate ∆

(
Λad
A

)
,

the set of probability distributions over Λad
A

I Is the solution map

Λad
A × Ω→ H , (λ, ω) 7→ Sλ(ω)

measurable w.r.t. M⊗ F?
I Do we have to restrict to a subset

of the set Λad
A of admissible strategies?



What land have we covered?
What comes next?

Witsenhausen intrinsic games cover
I deterministic games (with finite or measurable decision sets)
I deterministic dynamic games (finite span time)
I stochastic games
I stochastic dynamic games (finite span time)
I games in Kuhn extensive form (finite span time)

For games with enumerable or continuous span time,
the Witsenhausen intrinsic model has to be adapted
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Research questions

I How should we talk about games using WIM?
I Can we extend the Bayesian Nash Equilibrium concept

to general risk measures?
I Can we re-organize the games bestiary using WIM?
I How does the notion of subgame perfect Nash equilibrium

translate within this framework?
I WIM: game theoretical results

I What would a Nash theorem be in the WIM setting?
I When do we have a generalized ”backward induction” mechanism?
I Under proper sufficient conditions on the information structure

(extension of perfect recall), can we restrict the search among
behavioral strategies instead of mixed strategies?

I Applications of WIM
I What kind of applications do we target?
I Can we use the WIM framework for mechanism design?
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General risk measures

I We denote real-valued random variables on (Ω,F) by

L(Ω,F) = {X : (Ω,F)→ (R,BR) , X−1(BR) ⊂ F}

I A risk measure Gp for the player p is a mapping

Gp : L(Ω,F)→ R ∪ {+∞}

I For example, the worst-case risk measure is

G
[
X
]

= inf
ω∈Ω

X(ω)



Nash Equilibrium with general risk measures

We say that the players mixed (admissible) strategies profile

µ = (µp)p∈P ∈
∏
p∈P

∆
(
Λad
Ap

)
is a Nash equilibrium if (in case of payoffs), for all p ∈ P,∫

Λad
p ×Λad

−p

µp(dλp)⊗ µ−p(dλ−p)Gp

[
jp ◦ S(λp,λ−p)

]
≥∫

Λad
p ×Λad

−p

µp(dλp)⊗ µ−p(dλ−p)Gp

[
jp ◦ S(λp,λ−p)

]
∀µp ∈ ∆

(
Λad
p

)
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Can we re-organize the games bestiary using WIM?
H. S. Witsenhausen. The intrinsic model for discrete stochastic control:
Some open problems. In A. Bensoussan and J. L. Lions, editors

With four relations between agents,
I Precedence relation P

I Subsystem relation S

I Information-memory relation M

I Decision-memory relation D

we can provide a typology of systems
I Static team
I Station
I Sequential systems
I Partially nested systems
I Quasiclassical systems
I Classical systems
I Hierarchical systems, Parallel coordinated systems, etc.



Subgames and subgame perfect Nash equilibrium

I A subgame can be defined
thanks to the notion of subsystem of agents in the WIM setting

I What are the conditions on a subsystem
— w.r.t. players and their criteria —
that make it possible to define a subgame?



A subsystem is a subset of agents closed w.r.t. information

We define the information IB ⊂ H of the subset B ⊂ A of agents by

IB =
∨
b∈B

Ib

that is, the smallest σ-fields that contains all the σ-fields Ib, for b ∈ B

Subsystem (Witsenhausen, 1975)
A nonempty subset B of agents in A is a subsystem if the information
field IB at most depends on the decisions of the agents in B, that is,

IB ⊂ UB ⊗ F =
⊗
b∈B

Ub ⊗
⊗
c 6∈B

{∅,Uc} ⊗ F

Thus, the information received by agents in B depends upon
states of Nature and decisions of members of B only



Example: subsystems in stochastic control

In stochastic control, when past information accumulates in a filtration
from initial time t = 0 to horizon t = T ,

I agents {0, 1, . . . , t} up to time t form a subsystem,
as they do not require decisions made by agents in {t + 1, . . . ,T}
to make their own decisions

I whereas agents in {t + 1, . . . ,T} do not form a subsystem,
as they do need decisions made by agents in {0, 1, . . . , t}
to make their own decisions



Subsystems allow to decompose stochastic systems

If the stochastic system

A , (Ω,F) , {Ua,Ua, Ia}a∈A

possesses a subsystem B ⊂ A of agents,
I we can identify any information field Ia, a ∈ B,

Ia ⊂
⊗
b∈B

Ub ⊗
⊗
c 6∈B

{∅,Uc} ⊗ F with Ia ⊂
⊗
b∈B

Ub ⊗ F

I we can define two partial stochastic systems

agents Nature decision and information
B (Ω,F) {Ub,Ub, Ib}b∈B

A\B
(∏

b∈B Ub × Ω,
⊗

b∈B Ub ⊗ F
)

{Ua,Ua, Ia}a∈A\B



Subsystems allow to decompose admissible strategies
I We write, for any strategy λ ∈ ΛA, λ = (λB , λA\B), where

λB : UA\B × UB × Ω→ UB , λA\B : UA\B × UB × Ω→ UA\B

I For the two partial stochastic systems, we denote
I ΛB and ΛA\B the sets of strategies
I Λad

A and Λad
A\B the sets of admissible strategies

We suppose that all σ-fields include singletons

Proposition
When B ⊂ A is a subsystem,

I in any admissible strategy λ = (λB , λA\B),
the strategy λB can be identified with

λB : UB × Ω→ UB that is, Λad
A ⊂ ΛB × ΛA\B

I the set Λad
A of admissible strategies can be naturally decomposed as

Λad
A = Λad

B × Λad
A\B

that is, as admissible strategies on the two partial stochastic systems



The solvability property is inherited
by partial stochastic systems

Proposition
Suppose that

I the stochastic system {Ua,Ua, Ia}a∈A
displays the solvability property

I the subset B ⊂ A is a subsystem
Then each of the two partial stochastic systems, with agents B and A\B,
also displays the solvability property



The solvability property induces partial solution maps

Proposition (Existence of partial solution maps)
When B ⊂ A is a subsystem, and the strategy λ = (λB , λA\B) is
admissible, the two partial solution maps

SλB
: Ω→ UB × Ω and SλA\B : UB × Ω→ UA\B × UB × Ω

are defined by the two partial solvability properties

uB = λB
(
uB , ω

)
⇐⇒ uB = SλB

(ω)

uA\B = λA\B
(
uB , uA\B , ω

)
⇐⇒ uA\B = SλA\B

(
uB , ω

)



Subsystem, solvability and co-cycle property

Proposition (Co-cycle property of the solution map)
Suppose that

I the stochastic system {Ua,Ua, Ia}a∈A
displays the solvability property

I the subset B ⊂ A is a subsystem
I the strategy λ = (λB , λA\B) is admissible

The solution map Sλ : Ω→ UB × Ω and the two partial solution maps

SλB
: Ω→ UB × Ω and SλA\B : UB × Ω→ UA\B × UB × Ω

satisfy the following co-cycle property

Sλ = S(λB ,λA\B ) = SλA\B ◦ SλB

S(λB ,λA\B ) : Ω
SλB−→ UB × Ω

SλA\B−→ UA\B × UB × Ω
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Behavioral vs mixed strategies
I Mixed strategies profiles are∏

p∈P

∆
( ∏
a∈Ap

Λad
a

)
and reflect the synchronization of his agents by the player

I Behavioral strategies profiles are∏
p∈P

∏
a∈Ap

∆
(
Λad
a

)
and they do not require any correlating procedure

I Under proper sufficient conditions on the information structure —
generalizing perfect recall — we expect to prove that some games
can be solved over the smaller set of behavioral strategies profiles
instead of the large set of mixed strategies profiles∏

p∈P

∏
a∈Ap

∆
(
Λad
a

)
︸ ︷︷ ︸

behavioral

⊂
∏
p∈P

∆
( ∏
a∈Ap

Λad
a

)
︸ ︷︷ ︸

mixed



When do we have a generalized
”backward induction” mechanism?

H. S. Witsenhausen. On Policy Independence of Conditional
Expectations. Information and Control, 28(1):65–75, 1975.

I Witsenhausen introduced the notion of
strategy independence of conditional expectation (SICE)

I He showed that SICE was a key assumption for a generalized
”backward induction” mechanism in stochastic optimal control

I He showed that conditions, on the information structure,
generalizing perfect recall ensured SICE (at least in discrete settings)

I Under assumption SICE, we provide sufficient conditions
for a two players Bayesian Nash equilibrium
to be obtained by bi-level optimization
(Work in progress. . . )



Optimization problem

We suppose given a measurable criterion (objective function)

j : UA × Ω→ R

We consider the optimization problem

min
λA∈Λad

A

EP
(
j ◦ Sλ

)



Strategy independence of conditional expectation (SICE)

Assumption SICE

1. There exists a probability QB on UB × Ω such that

P ◦ S−1
λB

= TλB
QB with EQB

[
TλB
| IB

]
> 0 , ∀λB ∈ Λad

B

2. There exists a probability QA on UA×Ω = UA\B ×UB ×Ω such that

P ◦ S−1
λA

= TλA
QA with EQA

[
TλA
| IA
]
> 0 , ∀λA ∈ Λad

A

In the discrete case, Witsenhausen provides sufficient conditions, on the
information structure, to obtain SICE
H. S. Witsenhausen. On Policy Independence of Conditional
Expectations. Information and Control, 28(1):65–75, 1975.



Dynamic programming equation
(Work in progress. . . )

VA = EQA

[
j | IA

]

VB = min
λA\B∈Λad

A\B

EQB

[
VA ◦ SλA\B | IB

]

V∅ = min
λB∈Λad

B

EP
[
VB ◦ SλB

]
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We obtain a Nash theorem in the WIM setting

Theorem
Any finite, solvable, Witsenhausen game has a mixed Nash equilibrium
Proof

I The set of strategies is finite, as strategies map the finite history set
towards finite decision sets

I To each strategy profile, we associate a payoff vector
I We thus obtain a matrix game and we can apply Nash theorem



Generalized existence result of Nash equilibria
By discretization

I Discretize decisions sets and sample space,
and equip them with trace σ-fields

I Introduce discretized history set and σ-field

Current difficulties:
I How do sets of admissible strategies, for the trace discretized

information fields, behave when discretization is refined?
I With which topology can we equip the sample space Ω

and the set Λad
A of admissible strategies?

I Can we prove continuity for the solution map

Λad
A × Ω→ H , (λ, ω) 7→ Sλ(ω) ?

I Do we have to restrict to a subset of Λad
A

(like continuous admissible strategies)?



Generalized existence result of Nash equilibria
By best-reply set-valued mapping

I Define the best-reply set-valued mapping∏
p∈P

∆
(
Λad
Ap

)
⇒
∏
p∈P

∆
(
Λad
Ap

)
Current difficulties:

I With which topology can we equip the sample space Ω
and the set Λad

A of admissible strategies?
I Can we prove continuity for the solution map

Λad
A × Ω→ H , (λ, ω) 7→ Sλ(ω) ?

I Do we have to restrict to a subset of Λad
A

(like continuous admissible strategies)?
I What are the properties of the best-reply set-valued mapping?

(measurability, convexity, continuity)?
I What are the proper fixed point theorems for set-valued mappings?
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Causality

In a causal system, agents are ordered, one playing after the other
with available information depending only on agents acting earlier,
but the order may depend upon the history



We lay out mathematical ingredients to define causality:
Orderings and partial orderings

I Let O denote the set of total orderings of agents in A, that is,
injective mappings from {1, . . . , (A]} to A, where A] = card(A)

I For k ∈ {1, . . . , (A]}, let Ok denote the set of k-orderings, that is,
injective mappings from {1, . . . , k} to A (thus O = O(A])

I There is a natural restriction mapping ψk : O→ Ok ,
the restriction of any ordering of A to the domain set {1, . . . , k}



We lay out mathematical ingredients to define causality:
History-orderings

I Define a history-ordering as a mapping ϕ : H→ O
from histories towards orderings

I Along each history h ∈ H, the agents are ordered by ϕ(h) ∈ O
I With any k ∈ {1, . . . , (A]} and k-ordering ρk ∈ Ok ,

we associate the set Hϕk,ρk of histories that induce the same order
than ρk for the agents having a rank smaller or equal to k , that is,

Hϕk,ρk = {h ∈ H | ψk(ϕ(h)) = ρk}



Now, we define causality

Causality
A stochastic system is causal
if there exists (at least one) history-ordering ϕ from H towards O,
with the property that for any k ∈ {1, . . . , (A]} and ρk ∈ Ok ,
the set Hϕk,ρk satisfies

Hϕk,ρk ∩ G ∈ U{ρk (1),...,ρk (k−1)} ⊗ F , ∀G ∈ Iρk (k)

I In other words, when the first k agents are known
and ordered by (ρk(1), . . . , ρk(k)),
the information Iρk (k) of the agent ρk(k) with rank k
depends at most on the decisions of agents with rank < k ,
that is, ρk(1), . . . , ρk(k − 1)

I We say that a stochastic system is sequential if it is causal
with a constant history-ordering



Causality implies solvability

Proposition
Causality implies (recursive) solvability with a measurable solution map



A causal but non sequential system

I We consider a set of agents A = {a, b} with

Ua = {u1
a , u

2
a} , Ub = {u1

b , u
2
b} , Ω = {ω1, ω2}

I The agents’ information fields are given by

Ia = σ({u1
a , u

2
a} × {u1

b , u
2
b} × {ω2}, {u1

a , u
2
a} × {u1

b} × {ω1})
Ib = σ({u1

a , u
2
a} × {u1

b , u
2
b} × {ω1}, {u1

a} × {u1
b , u

2
b} × {ω2})

I When the state of Nature is ω2, agent a only sees ω2, whereas
agent b sees ω2 and the decision of a: thus a acts first, then b

I The reverse holds true when the state of Nature is ω1

I A non constant history-ordering mapping
ϕ : H→ {(a, b), (b, a)} is defined by (for any couple (ua, ub))

ϕ
(

(ua, ub, ω
2)
)

= (a, b) and ϕ
(

(ua, ub, ω
1)
)

= (b, a)

I The system is causal but not sequential



Don Juan wants to get married!1

I Don Juan p is considering giving a phone call to his ex-lovers q, r ,
asking them if they want to marry him

I Don Juan selects one of his ex-lovers in the set {q, r} and phones her
I If the answer to the first phone call is “yes”,

Don Juan marries the first called ex-lover
(and decides not to give a second phone call)

I If the answer to the first phone call is “no”,
Don Juan makes a second phone call to the remaining ex-lover

I In that case, the remaining ex-lover answers “yes” or “no”

1Thanks to Miquel Oliu Barton



Don Juan wants to get married!
Agents and decisions

I Agents

A = {
Don Juan︷ ︸︸ ︷
p1, p2 ,

ex-lovers︷︸︸︷
q, r }

because player Don Juan p makes two decisions,
hence has two executive agents p1, p2

I No Nature, but finite decisions sets

Up1 = {q, r} , Up2 = {q, r , ∂} , Uq = {Y ,N} , Ur = {Y ,N}

I Agent p1 selects an ex-lover in the set Up1 = {q, r} and phones her
I Agent p2 either stops (decision ∂)

or selects an ex-lover in {q, r}
I Agents q, r either say “yes” or “no”,

hence select a decision in the set {Y ,N}
I The finite decisions sets Up1 ,Up2 ,Uq,Ur

are equipped with the complete finite σ-fields Up1 , Up2 , Uq, Ur



Don Juan wants to get married!
Information structure: Don Juan

I When agent Don Juan p1 makes the first phone call,
he knows nothing

Ip1 = {∅,Up1} ⊗ {∅,Up2} ⊗ {∅,Uq} ⊗ {∅,Ur}

I The agent Don Juan p2 remembers who Don Juan p1 called first,
and knows the answer

Ip2 = Up1︸︷︷︸
remembering

⊗{∅,Up2} ⊗ Uq ⊗ Ur︸ ︷︷ ︸
knowing the answer



Don Juan wants to get married!
Information structure: ex-lovers

I If ex-lover q receives a phone call from Don Juan,
she does not know if she was called first or second,
hence she cannot distinguish the elements in the set

{(q, q), (q, r), (q, ∂)︸ ︷︷ ︸
called first

, (r , q)}︸ ︷︷ ︸
called second

so that her information field is

Iq = {∅, {(q, q), (q, r), (q, ∂), (r , q)}︸ ︷︷ ︸
called

, {(r , r), (r , ∂)}︸ ︷︷ ︸
not called

,Up1×Up2}⊗Uq⊗Ur

I Conversely

Ir = {∅, {(r , r), (r , q), (r , ∂), (q, r)}, {(q, q), (q, ∂)},Up1×Up2}⊗Uq⊗Ur



Don Juan wants to get married!
A causal but non sequential system

If Don Juan p1 calls ex-lover q first, the agents play in the following order

p1 → q → p2 → r

and conversely
I History

H = Up1 × Up2 × Uq × Ur

I History partition

Hq = {q} × Up2 × Uq × Ur , Hr = {r} × Up2 × Uq × Ur

I A non constant history-ordering mapping is

ϕ : H→ {(p1, q, p2, r), (p1, r , p2, q)}

such that

ϕ|Hq
≡ (p1, q, p2, r) , ϕ|Hr

≡ (p1, r , p2, r)



Outline of the presentation
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What kind of applications do we target?

I The WIM is of particular interest for non sequential games
I In particular we envision applications for networks, auctions

and decentralized energy systems



Mechanism design presented in the intrinsic framework

I The designer (= principal) can extend the natural history set,
by offering new decisions to every agent (messages)

I He is free to extend the information fields of the agents as he wishes
I He can partly shape the objective functions of the players



Conclusion

I a rich language
I a lot of open questions, and a lot of things not yet properly defined
I we are looking for feedback

Thank you :-)
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