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• Many financial contracts involve optionalities that give the
counterparties some control over the cash-flows: American
options, convertible/callable bonds, mortgages, delivery
contracts in electricity etc.

• Most of financial mathematics, however, addresses
contingent claims without optionalities.

• The best known exception is the pricing theory for
American options but most of that is concerned with
superhedging where the counterparties accept no risk.

• In practice, however, most trades expose both
counterparties to risk (in addition to possibility of returns).

• Our aim is to study

◦ optimal investment with options,
◦ indifference pricing of options.
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• Optimal investment and asset pricing are often treated as
separate problems (Markovitz vs. Black–Scholes).

• In practice, valuations have been largely disconnected from
investment and risk management. This lead to large losses
during 2008 e.g. with credit derivatives.

• Building on convex stochastic optimization, we describe a
unified approach to optimal investment, valuation and risk
management.

• The resulting valuations

◦ are based on hedging costs,
◦ extend and unify financial and actuarial valuations,
◦ reduce to “risk neutral valuations” for perfectly liquid
securities.
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Let M be the linear space of adapted sequences of cash-flows
on a filtered probability space (Ω,F , (Ft)

T
t=0, P ).

• The financial market is described by a convex set C ⊂ M
of claims that can be superhedged without cost (i.e. each
c ∈ C is freely available in the financial market).

• In models with a perfectly liquid cash-account,

C = {c ∈ M|
T∑

t=0

ct ∈ C}

where C ⊂ L0(Ω,FT , P ) are the claims at T that can be
hedged without cost [Delbaen and Schachermayer, 2006].

• Conical C: [Dermody and Rockafellar, 1991], [Jaschke and
Küchler, 2001], [Jouini and Napp, 2001], [Madan, 2014].
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Example 1 (The classical model) In the classical perfectly
liquid market model with a cash-account

C = {c ∈ M|∃x ∈ N :
T∑

t=0

ct ≤
T−1∑

t=0

xt ·∆st+1}

which is a convex cone. This set has been extensively studied
in the literature; see e.g. [Föllmer and Schied, 2004] or
[Delbaen and Schachermayer, 2006] and their references.
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The limit order book of TDC A/S in Copenhagen Stock
Exchange on January 12, 2005 at 13:58:19.43.
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• For duality theory, we would need the additional structure

C = {c ∈ M|∃x ∈ N : (x, c) ∈ S P -a.s.},

where S is a random set taking values in R
n × R

1+T .

• Recall that a set-valued mapping S : Ω ⇒ R
n × R

1+T is
measurable if the inverse images

S−1(O) = {ω ∈ Ω |S(ω) ∩O 6= ∅}

of open sets O ⊂ R
n × R

1+T are measurable.

• We ignore this structure for now but it will become
important when we get to optionalities.
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• Financial valuations are based on hedging costs.

• Consider an agent with liabilities c ∈ M, access to C and a
loss function V : M → R that measures disutility/regret/
risk/. . . of delivering c ∈ M. For example,

V(c) = E

T∑

t=0

−ut(−ct).

• The optimum value of the hedging problem is

ϕ(c) := inf
d∈C

V(c− d)

• We assume that V is convex, nondecreasing and V(0) = 0.
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• In a swap contract, an agent receives a sequence p ∈ M of
premiums and delivers a sequence c ∈ M of claims.

• Examples:

◦ Traditionally in mathematical finance,

p = (1, 0, . . . , 0) and c = (0, . . . , 0, cT ).

◦ Futures: p = (0, . . . , 0, 1) and c = (0, . . . , 0, cT ).
◦ Swaps with a “fixed leg”: p = (1, . . . , 1), random c.
◦ In credit derivatives (CDS, CDO, . . . ) and other
insurance contracts, both p and c are random.

• Claims and premiums live in the same space

M = {(ct)
T
t=0 | ct ∈ L0(Ω,Ft, P ;R)}.
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• If we already have liabilities c̄ ∈ M, then

π(c̄, p; c) := inf{α ∈ R |ϕ(c̄+ c− αp) ≤ ϕ(c̄)}

gives the least swap rate that would allow us to enter a
swap contract without worsening our financial position.

• Similarly,

πb(c̄, p; c) := sup{α ∈ R |ϕ(c̄−c+αp) ≤ ϕ(c̄)} = −π(c̄, p;−c)

gives the greatest swap rate we would need on the opposite
side of the trade.

• When p = (1, 0, . . . , 0) and c = (0, . . . , 0, cT ), we get an
extension of the indifference price of [Hodges and
Neuberger, 1989] to nonconical models.
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Define the super- and subhedging swap rates,

πsup(p; c) = inf{α | c−αp ∈ C∞}, πinf(p; c) = sup{α |αp−c ∈ C∞},

where C∞ is the recession cone of C. If C is conical, (like it usually
is in math finance), C∞ = C.

Theorem 2 If π(c̄, p; 0) ≥ 0, then

πinf(p; c) ≤ πb(c̄, p; c) ≤ π(c̄, p; c) ≤ πsup(p; c)

with equalities if c− αp ∈ C∞ ∩ (−C∞) for some α ∈ R.

• Agents with identical views, preferences and financial position
have no reason to trade with each other.

• Prices are independent of such subjective factors when
c− αp ∈ C∞ ∩ (−C∞) for some α ∈ R.
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Example 3 (The classical model) Consider the classical
perfectly liquid market model where

C = {c ∈ M|∃x ∈ N :
T∑

t=0

ct ≤
T−1∑

t=0

xt ·∆st+1}

and C∞ = C. The condition c− αp ∈ C∞ ∩ (−C∞) holds if
there exist x ∈ N such that

T∑

t=0

ct = α

T∑

t=0

pt +
T−1∑

t=0

xt ·∆st+1.

The converse holds under the no-arbitrage condition. When
p = (1, 0, . . . , 0) this is the classical attainability condition.
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• An option allows its owner to choose a sequence c = (ct)
T
t=0 of

cash-flows subject to the constraint that there is an exercise
strategy e = (et)

T
t=0 with (e, c) ∈ C for a given random set C.

• The values of ct and et have to be chosen by time t.

• We assume et takes values in R
d so C is a set in R

(1+T )(1+d).

Example 4 An American option on X = (Xt)
T
t=0 corresponds to

C = {(e, c) | ct ≤ etXt,

T∑

t=0

et ≤ 1, et ∈ {0, 1}}.

The strategy e corresponds to a stopping time τ with τ = t if and
only if et = 1.



Financial contracts with optionalities

Financial markets

ALM

Indifference pricing

Optionalities

Buyer’s problem

Seller’s problem

15 / 24

Below, we assume that the owner can buy/sell energy at
market price X.

Example 5 A delivery contract (swing option) with tariff K

corresponds to

C = {(e, c) | ct ≤ et(Xt −K),
T∑

t=0

et ≤ E, et ∈ [lt, ut]}.

Example 6 A storage with capacity E corresponds to

C = {(e, c) | ct ≤ −∆etXt, et ∈ [0, E], ∆et ∈ [lt, ut]}.
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Given access to the financial markets and to the payouts of
the option, the buyer’s ALM problem becomes

minimize V(c− d− d′) over d ∈ C, d′ ∈ MC ,

where

MC := {c ∈ M|∃e ∈ N : (e, c) ∈ C P -a.s.}.

• This has the same structure as the earlier ALM problem.

• We will denote the optimum value by

ϕC(c) := inf
d∈C, d′∈MC

V(c− d− d′) = inf
d′∈MC

ϕ(c− d′).



Buyer’s problem

Financial markets

ALM

Indifference pricing

Optionalities

Buyer’s problem

Seller’s problem

17 / 24

The indifference swap rate for a long position in C is given by

πl(c̄, p;C) := sup{α ∈ R | inf
c∈MC

ϕ(c̄+ αp− c) ≤ ϕ(c̄)}.

If the infimum is attained for every c̄ and α ∈ R (we have
reasonable conditions for this), this may be written as

πl(c̄, p;C) = sup
c∈MC

πl(c̄, p; c),

where

πl(c̄, p; c) := sup{α ∈ R |ϕ(c̄− c+ αp) ≤ ϕ(c̄)}

is the indifference rate for a long position in the swap (c, p).
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Theorem 2 thus gives

sup
c∈MC

πinf(c) ≤ sup
c∈MC

πl(c̄, p; c) ≤ sup
c∈MC

πs(c̄, p; c) ≤ sup
c∈MC

πsup(c).

In complete markets, the indifference rate is thus given by

sup
c∈MC

πsup(c),

which is independent of the buyer’s views and risk preferences.
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• The seller of the option does not know the counter party’s
strategy but only observes (ct, et) at time t = 0, . . . , T .

• Being Bayesian, the seller models the sequence (e, c) as an
R

(1+T )(1+d)-valued random variable on (Ω,F , P ).

• The seller’s information at time t is thus given by the
sigma-algebra F e,c

t ⊂ F generated by Ft and the random
variables (cs, es), s = 0, . . . , t.

• This reduces the option to a nonoptional claim so we can
simply apply the existing theory and techniques.
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• If the market is described by a random set S the seller’s
ALM problem can be written as

minimize V(c− d) over (x, d) ∈ N e,c

subject to (x, d) ∈ C P -a.s.

where N e,c denotes the feasible trading strategies adapted
to the enlarged filtration (F e,c

t )Tt=0.

• We will denote the optimum value of the above by ϕe,c.

• The seller’s indifference price is given by

πe,c
s (c̄, p; c) := inf{α ∈ R |ϕe,c(c̄+ c− αp) ≤ ϕ(c̄)},
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If ϕe,c(c̄) = ϕ(c̄), Theorem 2 gives

π
e,c

inf(p; c) ≤ π
e,c

l (c̄, p; c) ≤ πe,c
s (c̄, p; c) ≤ πe,c

sup(p; c),

where (assuming, for simplicity, that S is conical)

πe,c
sup(p; c) := inf{α | c− αp ∈ Ce,c}

and

Ce,c = {d ∈ M|∃x ∈ N e,c : (x, d) ∈ S P -a.s.}.

Clearly,

πe,c
sup(p; c) ≤ sup

(e,c)∈L0(C)

inf{α | c− αp ∈ Ce,c}.
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• How is the above related to the theory of American options?

• By Doob-Dynkin lemma, xt is F
c,e
t -measurable iff there is an

(Ft ⊗ Bt)-measurable function x̃t such that xt = x̃t◦g. Here
g(ω) := (ω, c(ω), e(ω)) and Bt is the sigma algebra on
R
(1+T )(1+d) generated by the projections (c, e) 7→ (ct, et).

• The representation x̃t is unique P ◦g−1-almost surely.

• Thus, the space N c,e is isomorphic to the space

{(xt)
T
t=0 |xt ∈ L0(Ω× R

(1+T )(1+d),Ft ⊗ Bt, P ◦g−1)},

which is a quotient space of the linear space Ñ of functions

(ω, c, e) 7→ x̃(ω, c, e)

such that x̃t is Ft ⊗ Bt-measurable.
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We have

πe,c
sup(p; c) ≤ inf{α | c− αp ∈ Ce,c ∀(e, c) ∈ L0(C)}

≤ inf{α ∈ R | ∃x̃ ∈ Ñ : (x̃(e, c), c− αp) ∈ S a.s.

∀(e, c) ∈ L0(C)}.

Example 7 (American options) In [Föllmer and Schied, 2004],
a self-financing trading strategy xa ∈ N whose value process
(liquidation value) dominates X is called a superhedging strategy
for X. Given such an xa, the functions x̃t(ω, e, c) = xat (ω)1{t<τ}

are (Ft ⊗ Bt)-measurable and, for any (e, c) ∈ L0(C),

x(ω) = x̃(e(ω), c(ω), ω)

superhedges c.



Summary

Financial markets

ALM

Indifference pricing

Optionalities

Buyer’s problem

Seller’s problem

24 / 24

• Optimal investment with liabilities (ALM) provides a
unifying framework for economic valuations.

• Convex stochastic optimization allows for extending the
classical theory to nonlinear market models with portfolio
constraints, nonlinear illiquidity effects, etc.

• Convex duality (not discussed in this talk) extends the
“fundamental theorem of asset pricing” to general convex
market models and indifference pricing.

• Financial contracts with optionalities can be reduced to
nonoptional ones.

• Our formulation extends the theory of American options to
more general financial contracts, general convex market
models and beyond superhedging.
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