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An optimization algorithm for load-shifting of large
sets of electric hot water tanks
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Introduction : Goals

Uses TWh Share

Heating 46 29.9%
Hot water 20.2 13.1%
Cooking 11.6 7.5%
Others 76.2 49.5%
All 154 100%

Table: French electric consumption in
primary residence
(Sources : CEREN, 2011)

Pools of electric hot water tanks
(EHWT) appear as promising for
load shifting applications.

Dimension

Flexibility

Geographically distributed

Historically: time-of-use pricing
policy.
Home automation: more cost
reduction with other load curves.

⇒ How to schedule the heating times to obtain an objective load?
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Outline of the presentation

1 Introduction

2 Formulation of the problem
Electric water heating
Heat loss
Minimization problem

3 Resolution heuristic and simulations [Contribution]
Stochastic heuristic
Simulation results

4 Conclusion and perspectives
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Water heating

Electric water heating

insulation

thermostat

heating
elements

hot watercold water

Figure: Schematic EHWT

Phenomena: Forced
convection, natural
convection, thermal
diffusion, heat loss

To minimize
thermo-hydraulic hazards:
heating time undivided

Each tank i is defined by
power pi , heat loss k i and
start time ∆t i

Energy: e i0 → e if
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Heat loss

Duration modification due to heat loss

Duration of heating depends on the moment it begins

Total power

Time

tf∆ta ∆tb

da db < da

Basically, ∆t ib > ∆t ia ⇒ d i
b < d i

a

Energy balance
de i

dt
= −k ie i + ui − c i ,

yields

d i (∆t i ) = d i
a +

1

k i
ln(e(k i (∆t i−d i

a)) + e(k i∆t ia) − e(k i (∆t ia−d i
a)))−∆t i .
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Minimization problem

Formulation of the problem

The load curve is then defined

f (t) =
n∑

i=1

pi1[∆t i ,∆t i+d i ]

Load (W)

Time

tf

Cumulative curve

We desire to solve

min
∆t1,...,∆tn

∫ tf

0
(f (t)− P(t))2dt s.t. ∀i ∆t i + d i (∆t i ) ≤ tf

Some inequality constraints can be added to represent time-of-use
policies
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Stochastic heuristic

Stochastic heuristic

In discrete time, this problem is not easy and is equivalent to
the “exact cover problem” (NP-complete [Karp,1972])

We propose a heuristic tailored for the objective curves

We use the flexibility of small durations, scheduling each tank
one-by-one from the longest duration to the shortest

We generate diversity by introducing stochasticity
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Stochastic heuristic

Stochastic heuristic: principle

The longest durations are the less
flexible

We sort the tanks
decreasingly by duration as if
they all start at ∆t i = 0

We schedule each tank
one-by-one
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Figure: Distribution of the durations
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Stochastic heuristic

Stochastic heuristic: steps and distributions

Load (W)

Time

tf

Objective curve

Cumulative curve

Use of residual load curve
(initialized f 0

r (t) = fo(t))

Step i

1 Using f i−1
r (t), define a set of

admissible starting times S i

2 Randomly allocate ∆t i

3 Update f ir (t) = f i−1
r (t)− pi

on [∆t i ,∆t i + d i ]

Stop when each tank duration is set

(The distribution for allocation is a matter of know-how and varies,
depending on the shape of the objective)
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Stochastic heuristic: steps and distributions
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Simulation results

Simulation: examples

Distribution: real household measurement
Objective curves: 8 objectives, for each season week+weekends
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Figure: 500 tanks, 100 timesteps
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Simulation results

Simulation: quantification

Quadratic quality index:

q2 =

∫ tf
t0

(fb(s)− fo(s))2ds∫ tf
t0

(fo(s))2ds

Objective load curve q2 Computation time

1 0.29% 22.3s
2 0.41% 18.6s
3 0.42% 18.5s
4 0.44% 17.9s
5 0.30% 25.6s
6 2.45% 20.3s
7 0.42% 15.4s
8 0.65% 17.2s

Table: Objective load curves 1 to 8 (5000 tanks, 1000 timesteps).
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Conclusion and perspectives

For load-shifting of large pools of electric hot water tanks:

Formulation of an optimization problem.

Resolution in the form of a stochastic heuristic.

Satisfying results with less than 1% of optimality loss.

Perspectives

Formulation with uncertainty.

Load balance for several days.
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Introduction of uncertainty
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Figure: 5000 tanks, 1000 timesteps
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