Intr	od.	LICTI	on
IIILI	ou	ucu	OII

Problem formulation

Resolution

Conclusion

An optimization algorithm for load-shifting of large sets of electric hot water tanks

BEEKER Nathanaël, EDF Lab - MINES ParisTech

SESO, May 31, 2017

Introduction : Goals

Uses	TWh	Share
Heating	46	29.9%
Hot water	20.2	13.1%
Cooking	11.6	7.5%
Others	76.2	49.5%
All	154	100%

Table: French electric consumption in primary residence (Sources : CEREN, 2011)

Pools of electric hot water tanks (EHWT) appear as promising for load shifting applications.

- Dimension
- Flexibility
- Geographically distributed

Introduction : Goals

Figure: Day-ahead market prices (Sources : EPEX Spot)

Pools of electric hot water tanks (EHWT) appear as promising for load shifting applications.

- Dimension
- Flexibility
- Geographically distributed

Historically: time-of-use pricing policy.

Home automation: more cost reduction with other load curves.

Introduction : Goals

Figure: Day-ahead market prices (Sources : EPEX Spot)

Pools of electric hot water tanks (EHWT) appear as promising for load shifting applications.

- Dimension
- Flexibility
- Geographically distributed

Historically: time-of-use pricing policy.

Home automation: more cost reduction with other load curves.

 \Rightarrow How to schedule the heating times to obtain an objective load?

Problem formulation

Resolution

Conclusion

Outline of the presentation

Outline of the presentation

1 Introduction

- 2 Formulation of the problem
 - Electric water heating
 - Heat loss
 - Minimization problem

Outline of the presentation

Introduction

- 2 Formulation of the problem
 - Electric water heating
 - Heat loss
 - Minimization problem
- 8 Resolution heuristic and simulations [Contribution]
 - Stochastic heuristic
 - Simulation results

Outline of the presentation

Introduction

- 2 Formulation of the problem
 - Electric water heating
 - Heat loss
 - Minimization problem
- 8 Resolution heuristic and simulations [Contribution]
 - Stochastic heuristic
 - Simulation results

Problem formulation

Resolution

Conclusion

Water heating

Outline of the presentation

Introduction

- 2 Formulation of the problem
 - Electric water heating
 - Heat loss
 - Minimization problem
- Resolution heuristic and simulations [Contribution]
 Stochastic heuristic
 Simulation and the
 - Simulation results

4 Conclusion and perspectives

Water heating

Electric water heating

Figure: Schematic EHWT

- Phenomena: Forced convection, natural convection, thermal diffusion, heat loss
- To minimize thermo-hydraulic hazards: heating time undivided

Water heating

Electric water heating

Figure: Schematic EHWT

- Phenomena: Forced convection, natural convection, thermal diffusion, heat loss
- To minimize thermo-hydraulic hazards: heating time undivided
- Each tank *i* is defined by power p^i , heat loss k^i and start time Δt^i
- Energy: $e_0^i \rightarrow e_f^i$

Problem formulation

Resolution

Conclusion

Heat loss

Duration modification due to heat loss

Duration of heating depends on the moment it begins

Problem formulation

Resolution

Conclusion

Heat loss

Duration modification due to heat loss

Duration of heating depends on the moment it begins

Basically, $\Delta t^i_b > \Delta t^i_a \Rightarrow d^i_b < d^i_a$

Problem formulation

Resolution

Conclusion

Heat loss

Duration modification due to heat loss

Duration of heating depends on the moment it begins

Basically, $\Delta t_b^i > \Delta t_a^i \Rightarrow d_b^i < d_a^i$ Energy balance

$$\frac{\mathrm{d}\boldsymbol{e}^{i}}{\mathrm{d}t}=-\boldsymbol{k}^{i}\boldsymbol{e}^{i}+\boldsymbol{u}^{i}-\boldsymbol{c}^{i},$$

Problem formulation

Resolution

Conclusion

Heat loss

Duration modification due to heat loss

Duration of heating depends on the moment it begins

Basically, $\Delta t_b^i > \Delta t_a^i \Rightarrow d_b^i < d_a^i$ Energy balance

$$\frac{\mathrm{d}\boldsymbol{e}^{i}}{\mathrm{d}t}=-k^{i}\boldsymbol{e}^{i}+\boldsymbol{u}^{i}-\boldsymbol{c}^{i},$$

yields

$$d^{i}(\Delta t^{i}) = d^{i}_{a} + \frac{1}{k^{i}} \ln(e^{(k^{i}(\Delta t^{i} - d^{i}_{a}))} + e^{(k^{i}\Delta t^{i}_{a})} - e^{(k^{i}(\Delta t^{i}_{a} - d^{i}_{a}))}) - \Delta t^{i}.$$

6/14

Introduction	Problem formulation ○○○●	Resolution 000000	Conclusion
Minimization problem			
Formulation of t	he problem		

The load curve is then defined

$$f(t) = \sum_{i=1}^{n} p^{i} \mathbf{1}_{[\Delta t^{i}, \Delta t^{i} + d^{i}]}$$

Introduction	Problem formulation ○○○●	Resolution 000000	Conclusion
Minimization problem			
Formulation of t	the problem		

The load curve is then defined

$$f(t) = \sum_{i=1}^{n} p^{i} \mathbf{1}_{[\Delta t^{i}, \Delta t^{i} + d^{i}]}$$

Introduction	Problem formulation ○○○●	Resolution 000000	Conclusion
Minimization problem			
Formulation	of the problem		

The load curve is then defined

$$f(t) = \sum_{i=1}^{n} p^{i} \mathbf{1}_{[\Delta t^{i}, \Delta t^{i} + d^{i}]}$$

We desire to solve

$$\min_{\Delta t^1,\dots,\Delta t^n} \int_0^{t_f} (f(t) - P(t))^2 dt \qquad \text{s.t. } \forall i \ \Delta t^i + d^i (\Delta t^i) \leq t_f$$

Some inequality constraints can be added to represent time-of-use policies

Introduction	Problem formulation	Resolution (Conclusi
Stochastic heuristic			

Outline of the presentation

Introduction

- 2 Formulation of the problem
 - Electric water heating
 - Heat loss
 - Minimization problem
- Resolution heuristic and simulations [Contribution]
 Stochastic heuristic
 - Simulation results

4 Conclusion and perspectives

Introduction	Problem formulation	Resolution 0●0000	Conclusion
Stochastic heuristic			
Stochastic h	euristic		

- In discrete time, this problem is not easy and is equivalent to the "exact cover problem" (NP-complete [Karp,1972])
- We propose a heuristic tailored for the objective curves

Introduction	Problem formulation	Resolution 000000	Conclusion
Stochastic heuristic			
Stochastic h	neuristic		

- In discrete time, this problem is not easy and is equivalent to the "exact cover problem" (NP-complete [Karp,1972])
- We propose a heuristic tailored for the objective curves
- We use the flexibility of small durations, scheduling each tank one-by-one from the longest duration to the shortest
- We generate diversity by introducing stochasticity

Problem formulation

Resolution 00●000

Stochastic heuristic

Stochastic heuristic: principle

The longest durations are the less flexible

- We sort the tanks decreasingly by duration as if they all start at $\Delta t^i = 0$
- We schedule each tank one-by-one

Figure: Distribution of the durations

Problem formulation

Resolution 00●000

Stochastic heuristic

Stochastic heuristic: principle

The longest durations are the less flexible

- We sort the tanks decreasingly by duration as if they all start at $\Delta t^i = 0$
- We schedule each tank one-by-one

Figure: Distribution of the durations

Introd	luction
	laction

Problem formulation

Resolution 000●00

Conclusion

Stochastic heuristic

Stochastic heuristic: steps and distributions

Use of residual load curve (initialized $f_r^0(t) = f_o(t)$)

Introduction	Problem formulation	Resolution 000●00	Conclusion
Stochastic heuristic			

Stochastic heuristic: steps and distributions

Use of residual load curve (initialized $f_r^0(t) = f_o(t)$)

Introd	luction
	laction

Problem formulation

Resolution 000●00

Conclusion

Stochastic heuristic

Stochastic heuristic: steps and distributions

Use of residual load curve (initialized $f_r^0(t) = f_o(t)$)

Step i

Using f_rⁱ⁻¹(t), define a set of admissible starting times Sⁱ

Introd	luction
1111100	action

Problem formulation

Resolution 000●00

Conclusion

Stochastic heuristic

Stochastic heuristic: steps and distributions

Use of residual load curve (initialized $f_r^0(t) = f_o(t)$)

Step i

- Using f_rⁱ⁻¹(t), define a set of admissible starting times Sⁱ
- ⁽²⁾ Randomly allocate Δt^i

Resolution 000●00

Stochastic heuristic

Stochastic heuristic: steps and distributions

Use of residual load curve (initialized $f_r^0(t) = f_o(t)$)

- Using f_rⁱ⁻¹(t), define a set of admissible starting times Sⁱ
- 2 Randomly allocate Δt^i
- Update $f_r^i(t) = f_r^{i-1}(t) p^i$ on $[\Delta t^i, \Delta t^i + d^i]$

Stochastic heuristic

Stochastic heuristic: steps and distributions

Use of residual load curve (initialized $f_r^0(t) = f_o(t)$)

- Using f_rⁱ⁻¹(t), define a set of admissible starting times Sⁱ
- 2 Randomly allocate Δt^i
- Update $f_r^i(t) = f_r^{i-1}(t) p^i$ on $[\Delta t^i, \Delta t^i + d^i]$

Stochastic heuristic

Stochastic heuristic: steps and distributions

Use of residual load curve (initialized $f_r^0(t) = f_o(t)$)

- Using f_rⁱ⁻¹(t), define a set of admissible starting times Sⁱ
- 2 Randomly allocate Δt^i
- Update $f_r^i(t) = f_r^{i-1}(t) p^i$ on $[\Delta t^i, \Delta t^i + d^i]$

Stochastic heuristic

Stochastic heuristic: steps and distributions

Use of residual load curve (initialized $f_r^0(t) = f_o(t)$)

- Using f_rⁱ⁻¹(t), define a set of admissible starting times Sⁱ
- ⁽²⁾ Randomly allocate Δt^i
- Update $f_r^i(t) = f_r^{i-1}(t) p^i$ on $[\Delta t^i, \Delta t^i + d^i]$

Stochastic heuristic

Stochastic heuristic: steps and distributions

Use of residual load curve (initialized $f_r^0(t) = f_o(t)$)

- Using f_rⁱ⁻¹(t), define a set of admissible starting times Sⁱ
- 2 Randomly allocate Δt^i
- Update $f_r^i(t) = f_r^{i-1}(t) p^i$ on $[\Delta t^i, \Delta t^i + d^i]$

Stochastic heuristic

Stochastic heuristic: steps and distributions

Stop when each tank duration is set

Use of residual load curve (initialized $f_r^0(t) = f_o(t)$)

- Using f_rⁱ⁻¹(t), define a set of admissible starting times Sⁱ
- **2** Randomly allocate Δt^i

• Update
$$f_r^i(t) = f_r^{i-1}(t) - p^i$$

on $[\Delta t^i, \Delta t^i + d^i]$

	t i	\mathbf{r}	a		0	÷	\sim	m
	u			u		L		ш

Problem formulation

Resolution 000●00 Conclusion

Stochastic heuristic

Stochastic heuristic: steps and distributions

Use of residual load curve (initialized $f_r^0(t) = f_o(t)$)

Step i

- Using f_rⁱ⁻¹(t), define a set of admissible starting times Sⁱ
- **2** Randomly allocate Δt^i

• Update
$$f_r^i(t) = f_r^{i-1}(t) - p^i$$

on $[\Delta t^i, \Delta t^i + d^i]$

Stop when each tank duration is set

(The distribution for allocation is a matter of know-how and varies, depending on the shape of the objective)

Problem formulation

Resolution 000●00 Conclusion

Stochastic heuristic

Stochastic heuristic: steps and distributions

Stop when each tank duration is set

Use of residual load curve (initialized $f_r^0(t) = f_o(t)$)

Step i

- Using f_rⁱ⁻¹(t), define a set of admissible starting times Sⁱ
- **2** Randomly allocate Δt^i

• Update
$$f_r^i(t) = f_r^{i-1}(t) - p^i$$

on $[\Delta t^i, \Delta t^i + d^i]$

(The distribution for allocation is a matter of know-how and varies, depending on the shape of the objective)

Introduction	Problem formulation	Resolution ○○○○●○	Conclusion
Simulation results			
Simulation:	examples		

Distribution: real household measurement Objective curves: 8 objectives, for each season week+weekends

Figure: 500 tanks, 100 timesteps

Introduction	Problem formulation	Resolution ○○○○●○	Conclusion
Simulation results			
Simulation:	examples		

Distribution: real household measurement Objective curves: 8 objectives, for each season week+weekends

Figure: 5000 tanks, 1000 timesteps

Introduction	Problem formulation	Resolution ○○○○●○	Conclusion
Simulation results			
Simulation:	examples		

Distribution: real household measurement Objective curves: 8 objectives, for each season week+weekends

Figure: 5000 tanks, 1000 timesteps

Introduction	Problem formulation	Resolution ○○○○○●	Conclusion
Simulation results			
Simulation:	quantification		

Quadratic quality index:

$$q_2 = rac{\int_{t_0}^{t_f} (f_b(s) - f_o(s))^2 ds}{\int_{t_0}^{t_f} (f_o(s))^2 ds}$$

Introduction	Problem formulation	Resolution ○○○○○●	Conclusion
Simulation results			
Simulation:	quantification		

Quadratic quality index:

$$q_2 = rac{\int_{t_0}^{t_f} (f_b(s) - f_o(s))^2 ds}{\int_{t_0}^{t_f} (f_o(s))^2 ds}$$

Objective load curve	q_2	Computation time
1	0.29%	22.3s
2	0.41%	18.6s
3	0.42%	18.5s
4	0.44%	17.9s
5	0.30%	25.6s
6	2.45%	20.3s
7	0.42%	15.4s
8	0.65%	17.2s

Table: Objective load curves 1 to 8 (5000 tanks, 1000 timesteps).

Conclusion and perspectives

For load-shifting of large pools of electric hot water tanks:

- Formulation of an optimization problem.
- Resolution in the form of a stochastic heuristic.
- Satisfying results with less than 1% of optimality loss.

Perspectives

- Formulation with uncertainty.
- Load balance for several days.

Introduction of uncertainty

Figure: 5000 tanks, 1000 timesteps

Figure: 5000 tanks, 1000 timesteps