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Introduction

Introduction : Goals

Uses TWh | Share Pools of electric hot water tanks
Heating 46 | 29.9% (EHWT) appear as promising for
Hot water | 20.2 | 13.1% load shifting applications.
COOking 11.6 75% @ Dimension
0,
Others 76.2 | 49.5% o Flexibility
All 154 | 100% . .
@ Geographically distributed

in

Table: French electric consumption

primary residence
(Sources : CEREN, 2011)
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= How to schedule the heating times to obtain an objective load?



Introduction

Outline of the presentation

@ Introduction



Introduction

Outline of the presentation

@ Introduction

© Formulation of the problem
@ Electric water heating
@ Heat loss
@ Minimization problem



Introduction

Outline of the presentation

@ Introduction

© Formulation of the problem
@ Electric water heating
@ Heat loss
@ Minimization problem

© Resolution heuristic and simulations [Contribution]
@ Stochastic heuristic
@ Simulation results



Introduction

Outline of the presentation

@ Introduction

© Formulation of the problem
@ Electric water heating
@ Heat loss
@ Minimization problem

© Resolution heuristic and simulations [Contribution]
@ Stochastic heuristic

@ Simulation results

@ Conclusion and perspectives



Problem formulation
[ 1}

Water heating

Outline of the presentation

© Formulation of the problem
@ Electric water heating
@ Heat loss
@ Minimization problem



Problem formulation
oe

Water heating

Electric water heating

x @ Phenomena: Forced

h+ .
/\ convection, natural

convection, thermal
diffusion, heat loss

-1 insulation
@ To minimize

" thermostat thermo-hydraulic hazards:
heating time undivided

heating

elements
0t \w

cold water ]T | hot water

Figure: Schematic EHWT
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Electric water heating

x @ Phenomena: Forced

h+ .
/\ convection, natural

convection, thermal
diffusion, heat loss

-1 insulation
@ To minimize

" thermostat thermo-hydraulic hazards:
heating time undivided

heating

\‘ elements @ Each tank i is defined by
cold water f | hot water power p', heat loss k' and
start time At’

Figure: Schematic EHWT o Energy: eé N e,’;
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Energy balance
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Heat loss

Duration modification due to heat loss

Duration of heating depends on the moment it begins

Total power

da db < du
| [ [ | Time
AL t ty

Basically, At > Ath = d] < d!
Energy balance .

de L

diet = —k'e' +u' -,
yields
d(AE) = df + L In(eK (A —d) 4 (KAL) _ ((K(Aad=d)) _ a4l

ki
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Minimization problem

Formulation of the problem

The load curve is then defined

Load (W)
Cumulative curve

n
F(£) = p'liar ariva

i=1 —

tf

Time
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°

Minimization problem

Formulation of the problem

The load curve is then defined

Objective curve
Cumulative curve

n
F(£) = p'liar ariva
i=1

Time

tf

We desire to solve
min (f(t) — P(t))?dt st Vi At' +d'(At) < tf

Some inequality constraints can be added to represent time-of-use
policies
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@ Stochastic heuristic
@ Simulation results
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@ In discrete time, this problem is not easy and is equivalent to
the "exact cover problem” (NP-complete [Karp,1972])

@ We propose a heuristic tailored for the objective curves
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Stochastic heuristic

@ In discrete time, this problem is not easy and is equivalent to
the "exact cover problem” (NP-complete [Karp,1972])

@ We propose a heuristic tailored for the objective curves

@ We use the flexibility of small durations, scheduling each tank
one-by-one from the longest duration to the shortest

@ We generate diversity by introducing stochasticity
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The longest durations are the less 0s
flexible

@ We sort the tanks
decreasingly by duration as if
they all start at At' =0

Percentage of initial load

@ We schedule each tank 01

one-by-one i A
Time (b)

Figure: Distribution of the durations
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Use of residual load curve
Objective curve (initianzed ﬁO(t) _ fo(t))

Cumulative curve

Load (W)

ty
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Stochastic heuristic: steps and distributions

Use of residual load curve

Probability distribution (Inltlallzed f;,o(t) = fo(t))
M Time @ Using f/~1(t), define a set of
T admissible starting times S’

@ Randomly allocate At/

© Update f/(t) = f;/'(t) — p'
on [At! At! + d]

Stop when each tank duration is set

(The distribution for allocation is a matter of know-how and varies,
depending on the shape of the objective)
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Stochastic heuristic: steps and distributions

Use of residual load curve
(initialized £2(t) = f,(t))

§ o @ Using £/ ~1(t), define a set of
é admissible starting times S’
@ Randomly allocate At/
H < @ Update f/(t) = f/~}(t) — p'
o L on [Al”, At' + d']

Time (1

h)
Stop when each tank duration is set

(The distribution for allocation is a matter of know-how and varies,
depending on the shape of the objective)
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Simulation: examples

Distribution: real household measurement
Objective curves: 8 objectives, for each season week-+weekends

12

Percentage of maximal load

0 2 4 6 8 10 12
Time (h)

Figure: 500 tanks, 100 timesteps
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Simulation: quantification

Quadratic quality index:
o (fo(s) — fo(s))?ds
J (fo(s))2ds

to
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Simulation results

Simulation: quantification

Quadratic quality index:
o (fo(s) — fo(s))?ds

i (fols))2ds
Objective load curve Qo Computation time
1 0.29% 22.3s
2 0.41% 18.6s
3 0.42% 18.5s
4 0.44% 17.9s
5 0.30% 25.6s
6 2.45% 20.3s
7 0.42% 15.4s
8 0.65% 17.2s

Table: Objective load curves 1 to 8 (5000 tanks, 1000 timesteps).
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Conclusion and perspectives

For load-shifting of large pools of electric hot water tanks:
@ Formulation of an optimization problem.
@ Resolution in the form of a stochastic heuristic.
@ Satisfying results with less than 1% of optimality loss.
Perspectives
@ Formulation with uncertainty.

@ Load balance for several days.
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