Optimal energy management of an urban district

The unbearable lightness of SDDP

F. Pacaud Advisors: P. Carpentier, J.-P. Chancelier, M. De Lara May 31, 2017

A paradigm shift in energy transition

The ambition of Efficacity is to improve urban energy efficiency.

Our team focus on the control of energy management system.

What do we do

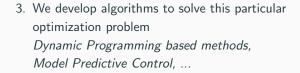
How to control storage inside urban microgrid?

We follow a common procedure in operation research:

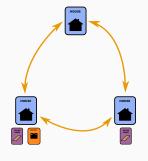
1. We consider a real world problem How to control a bunch of stocks?

2. We model it as an optimization problem

As demands are not predictable, we formulate
a stochastic optimization problem



Analyzing the real world problem



We consider a system where different units (houses) are connected together via a local network (microgrid).

The houses have different stocks available:

- batteries,
- electrical hot water tank
 and are equipped with solar panels.

We control the stocks every 15mn and we want to

- minimize electric bill
- maintain a comfortable temperature inside the house

Outline

Physical modeling

Modeling a house

Modeling the network

Building the optimization problem

Resolution methods

Describing MPC and SDDP

Assessing strategies

Numerical resolution

Settings

Results

Physical modeling

Outline

Physical modeling

Modeling a house

Modeling the network

Building the optimization problem

Resolution methods

Describing MPC and SDDP

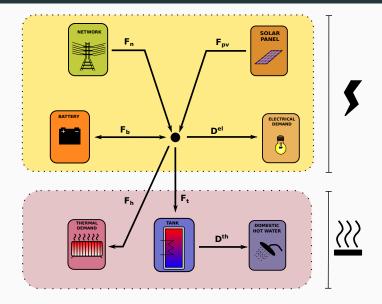
Assessing strategies

Numerical resolution

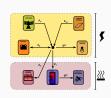
Settings

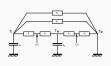
Results

For each house, we consider the following devices



We introduce states, controls and noises

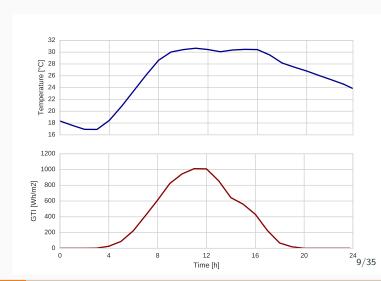




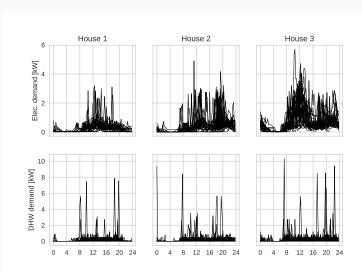
- Stock variables $\mathbf{X}_t = \left(\mathbf{B}_t, \mathbf{H}_t, \boldsymbol{\theta}_t^i, \boldsymbol{\theta}_t^w\right)$
 - \mathbf{B}_t , battery level (kWh)
 - **H**_t, hot water storage (kWh)
 - θ_t^i , inner temperature (° C)
 - θ_t^w , wall's temperature (° C)
- $\bullet \ \ \text{Control variables} \ \ \textbf{U}_t = \left(\textbf{F}_{\textbf{B},t}, \textbf{F}_{T,t}, \textbf{F}_{\textbf{H},t}\right)$
 - **F**_{B,t}, energy exchange with the battery (kW)
 - $\mathbf{F}_{T,t}$, energy used to heat the hot water tank (kW)
 - F_{H,t}, thermal heating (kW)
- Uncertainties $W_t = (D_t^E, D_t^{DHW})$
 - \mathbf{D}_t^E , electrical demand (kW)
 - \mathbf{D}_t^{DHW} , domestic hot water demand (kW)

We work with real data

We consider one day during summer 2015 (data from Meteo France):



We generate scenarios of demands during this day



Discrete time state equations

We have the four state equations (all linear), describing the evolution over time of the stocks:

$$\begin{aligned} \mathbf{B}_{t+1} = & \alpha_{\mathsf{B}} \mathbf{B}_t + \Delta T \left(\rho_c \mathbf{F}_{\mathsf{B},t}^+ - \frac{1}{\rho_d} \mathbf{F}_{\mathsf{B},t}^- \right) \\ \mathbf{H}_{t+1} = & \alpha_{\mathsf{H}} \mathbf{H}_t + \Delta T \left[\mathbf{F}_{T,t} - \mathbf{D}_t^{DHW} \right] \end{aligned}$$

$$\mathbf{H}_{t+1} = \!\! \alpha_{\mathsf{H}} \mathbf{H}_t + \Delta T \big[\mathbf{F}_{T,t} - \mathbf{D}_t^{\mathit{DHW}} \big]$$

$$\boldsymbol{\theta}_{t+1}^{w} = \boldsymbol{\theta}_{t}^{w} + \frac{\Delta T}{c_{m}} \left[\frac{\boldsymbol{\theta}_{t}^{i} - \boldsymbol{\theta}_{t}^{w}}{R_{i} + R_{s}} + \frac{\boldsymbol{\theta}_{t}^{e} - \boldsymbol{\theta}_{t}^{w}}{R_{m} + R_{e}} + \gamma \mathbf{F}_{\mathbf{H},t} + \frac{R_{i}}{R_{i} + R_{s}} P_{t}^{int} + \frac{R_{e}}{R_{e} + R_{m}} P_{t}^{ext} \right]$$

$$\theta_{t+1}^{i} = \theta_{t}^{i} + \frac{\Delta T}{c_{i}} \left[\frac{\theta_{t}^{w} - \theta_{t}^{i}}{R_{i} + R_{s}} + \frac{\theta_{t}^{e} - \theta_{t}^{i}}{R_{v}} + \frac{\theta_{t}^{e} - \theta_{t}^{i}}{R_{f}} + (1 - \gamma) \mathbf{F}_{\mathbf{H}, t} + \frac{R_{s}}{R_{i} + R_{s}} P_{t}^{int} \right]$$

which will be denoted:

$$\mathbf{X}_{t+1} = f_t(\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_{t+1})$$

Outline

Physical modeling

Modeling a house

Modeling the network

Building the optimization problem

Resolution methods

Describing MPC and SDDP

Assessing strategies

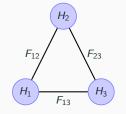
Numerical resolution

Settings

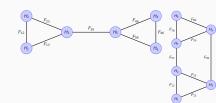
Results

Viewing the network as a graph

We consider three different configurations



H1	House 1	PV + Battery
H2	House 2	PV
H3	House 3	

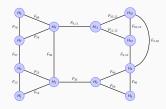


H1 H2 H3	House 1 House 2 House 3	PV + Battery PV
H4 H5 H6	House 4 House 5 House 6	PV + Battery PV

H1	House 1	PV + Battery
H2	House 2	PV
Н3	House 3	·
H4	House 4	PV + Battery
H5	House 5	PV
H6	House 6	•
H7	House 7	PV + Battery
H8	House 8	PV
H9	House 9	•
H10	House 10	PV + Battery
H11	House 11	PV
H12	House 12	. 10

13/35

Modeling exchange through the graph



We denote by ${\bf Q}$ the flows through the arcs, and ${\bf \Delta}$ the balance at the nodes.

The flows must satisfy the Kirchhoff's law:

$$A\mathbf{Q} = \mathbf{\Delta}$$

where A is the node-incidence matrix.

We suppose furthermore that losses occurs through the arcs ($\eta=0.96$).

Outline

Physical modeling

Modeling a house

Modeling the network

Building the optimization problem

Resolution methods

Describing MPC and SDDP

Assessing strategies

Numerical resolution

Settings

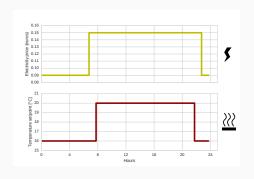
Results

Two commandments to rule them all

Thou shall:

- Satisfy thermal comfort
- Optimize operational costs

Prices and temperature setpoints vary along time



- $T_f = 24h, \Delta T = 15mn$
- Electricity peak and off-peak hours

$$\pi_{\rm t}^{\rm E}=$$
 0.09 or 0.15 euros/kWh

• Temperature set-point $\bar{\theta}_{\star}^{i} = 16^{\circ} C \text{ or } 20^{\circ} C$

The costs we have to pay

• Cost to import electricity from the network

$$-\underbrace{b_t^E \max\{0, -\mathbf{F}_{NE, t+1}\}}_{\text{selling}} + \underbrace{\pi_t^E \max\{0, \mathbf{F}_{NE, t+1}\}}_{\text{buying}}$$

where we define the recourse variable (electricity balance):

$$\underbrace{\frac{\textbf{F}_{\textit{NE},t+1}}_{\textit{Network}}} = \underbrace{\textbf{D}_{t+1}^{\textit{E}}}_{\textit{Demand}} + \underbrace{\textbf{F}_{\textbf{B},t}}_{\textit{Battery}} + \underbrace{\textbf{F}_{\textbf{H},t}}_{\textit{Heating}} + \underbrace{\textbf{F}_{\textit{T},t}}_{\textit{Tank}} - \underbrace{\textbf{F}_{\textit{pv},t}}_{\textit{Solar panel}} + \underbrace{\textbf{\Delta}_{t}}_{\textit{Exchange}}$$

• Virtual Cost of thermal discomfort: $\kappa_{th}(\underbrace{\theta_t^i - \overline{\theta}_t^i}_{\text{deviation from setpoint}})$



κ_{th}

Piecewise linear cost which penalizes temperature if below given setpoint

Instantaneous and final costs for a single house

• The instantaneous convex costs are for the house h

$$\begin{split} L_t^h(\mathbf{X}_t, \mathbf{U}_t, \mathbf{\Delta}_t, \mathbf{W}_{t+1}) &= \underbrace{-b_t^E \max\{0, -\mathbf{F}_{NE, t+1}\}}_{buying} + \underbrace{\pi_t^E \max\{0, \mathbf{F}_{NE, t+1}\}}_{selling} \\ &+ \underbrace{\kappa_{th}(\boldsymbol{\theta}_t^i - \bar{\boldsymbol{\theta}}_t^i)}_{discomfort} \end{split}$$

We add a final linear cost

$$K(\mathbf{X}_{T_f}) = -\pi^{\mathsf{H}} \mathbf{H}_{T_f} - \pi^{\mathsf{B}} \mathbf{B}_{T_f}$$

to avoid empty stocks at the final horizon T_f

Writing the stochastic optimization problem

We aim to minimize the costs for all houses

$$\min_{X,U,Q,\Delta} \qquad \sum_h J^h(X^h, U^h)$$
 $s.t \qquad AQ = \Delta$

where for each house h:

$$J^h(X^h, U^h, \Delta^h) = \mathbb{E}\left[\sum_{t=0}^{T_f-1} L_t^h(\mathbf{X}_t^h, \mathbf{U}_t^h, \boldsymbol{\Delta}_t^h, \mathbf{W}_{t+1}) + K(\mathbf{X}_{T_f}^h)
ight]$$
 $s.t \quad \mathbf{X}_{t+1}^h = f_t(\mathbf{X}_t^h, \mathbf{U}_t^h, \mathbf{W}_{t+1}) \quad \text{Dynamic}$
 $X^b \leq \mathbf{X}_t^h \leq X^\sharp$
 $U^b \leq \mathbf{U}_t^h \leq U^\sharp$
 $X_0^h = X_{ini}^h$
 $\sigma(\mathbf{U}_t^h) \subset \sigma(\mathbf{W}_1, \dots, \mathbf{W}_t) \quad \text{Non-anticipativity}$

Resolution methods

Outline

Physical modeling

Modeling a house

Modeling the network

Building the optimization problem

Resolution methods

Describing MPC and SDDP

Assessing strategies

Numerical resolution

Settings

Results

How to solve this stochastic optimal control problem?

We have 96 timesteps (4 \times 24) and for each problem

	3 houses	6 houses	12 houses
Stocks	10	20	40
Controls	14	30	68
Uncertainties	8	8	8

How to solve this stochastic optimal control problem?

We have 96 timesteps (4×24) and for each problem

	3 houses	6 houses	12 houses
Stocks	10	20	40
Controls	14	30	68
Uncertainties	8	8	8

The state dimension is high (\geq 10), the problem is not tractable by a straightforward use of *dynamic programming* because of the curse of dimensionality! :-(

How to solve this stochastic optimal control problem?

We have 96 timesteps (4×24) and for each problem

	3 houses	6 houses	12 houses
Stocks	10	20	40
Controls	14	30	68
Uncertainties	8	8	8

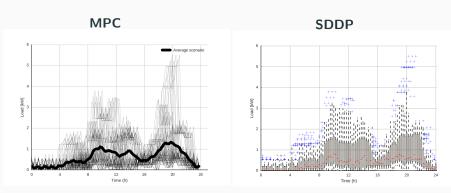
The state dimension is high (\geq 10), the problem is not tractable by a straightforward use of *dynamic programming* because of the curse of dimensionality! :-(

We will compare two methods that overcome this curse:

- 1. Model Predictive Control (MPC)
- 2. Stochastic Dual Dynamic Programming (SDDP)

MPC vs SDDP: uncertainties modelling

The two algorithms use optimization scenarios to model the uncertainties:



MPC considers the average ...

...and SDDP discrete laws

MPC vs SDDP: online resolution

At the beginning of time period $[\tau, \tau + 1]$, do

MPC

- $\bullet \ \ {\it Consider a} \ \ {\it rolling horizon} \ [\tau,\tau+{\it H}[$
- $\bullet \quad \text{Consider a } \mathbf{deterministic} \ \mathbf{scenario} \ \mathbf{of} \\ \mathbf{demands} \ \big(\mathbf{forecast} \big) \ \big(\overline{W}_{\tau+1}, \dots, \overline{W}_{\tau+H} \big)$
- Solve the deterministic optimization problem

$$\min_{X,U} \left[\sum_{t=\tau}^{\tau+H} L_t(X_t, U_t, \overline{W}_{t+1}) + K(X_{\tau+H}) \right]$$

$$s.t. \quad X_{t+1} = f(X_t, U_t, \overline{W}_{t+1})$$

$$X^b \leq X_t \leq X^{\sharp}$$

$$U^b \leq U_t \leq U^{\sharp}$$

- Get optimal solution $(U_{\tau}^{\#}, \dots, U_{\tau+H}^{\#})$ over horizon H = 24h
- Send first control $U_{\tau}^{\#}$ to assessor

SDDP

 We consider the approximated value functions (\$\widetilde{V}_t\$)_0^{T_f}

$$\widetilde{V}_t$$
 $\leq V_t$

• Solve the stochastic optimization problem

$$\begin{split} \min_{u_{\tau}} \ \mathbb{E}_{W_{\tau+1}} \Big[L_{\tau}(X_{\tau}, u_{\tau}, W_{\tau+1}) \\ &\quad + \widetilde{V}_{\tau+1} \Big(f_{\tau}(X_{\tau}, u_{\tau}, W_{\tau+1}) \Big) \Big] \\ \iff \min_{u_{\tau}} \sum_{i} \pi_{i} \Big[L_{\tau}(X_{\tau}, u_{\tau}, W_{\tau+1}^{i}) \\ &\quad + \widetilde{V}_{\tau+1} \Big(f_{\tau}(X_{\tau}, u_{\tau}, W_{\tau+1}^{i}) \Big) \Big] \end{split}$$

- Get optimal solution U[#]_τ
- Send $U_{\tau}^{\#}$ to assessor

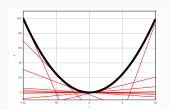
A brief recall on Dynamic Programming

Dynamic Programming

 μ_t is the probability law of W_t and is being used to estimate expectation and compute **offline** value functions with the backward equation:

$$\begin{split} V_T(x) &= \mathcal{K}(x) \\ V_t(x_t) &= \min_{U_t} \mathbb{E}_{\mu_t} \Big[\underbrace{L_t(x_t, U_t, W_{t+1})}_{\text{current cost}} + \underbrace{V_{t+1} \Big(f(x_t, U_t, W_{t+1}) \Big)}_{\text{future costs}} \Big] \end{split}$$

Stochastic Dual Dynamic Programming



- Convex value functions V_t are approximated as a supremum of a finite set of affine functions
- Affine functions (=cuts) are computed during forward/backward passes, till convergence

$$\widetilde{V}_t(x) = \max_{1 \le k \le K} \left\{ \lambda_t^k x + \beta_t^k \right\} \le V_t(x)$$

SDDP makes an extensive use of LP solver

Outline

Physical modeling

Modeling a house

Modeling the network

Building the optimization problem

Resolution methods

Describing MPC and SDDP

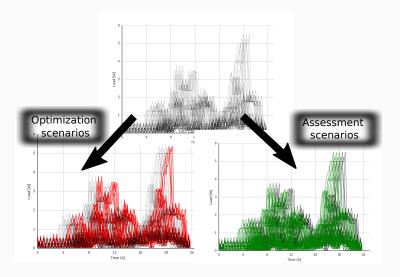
Assessing strategies

Numerical resolution

Settings

Results

Out-of-sample comparison



Numerical resolution

Outline

Physical modeling

Modeling a house

Modeling the network

Building the optimization problem

Resolution methods

Describing MPC and SDDP

Assessing strategies

Numerical resolution

Settings

Results

Our stack is deeply rooted in Julia language

- Modeling Language: JuMP
- Open-source SDDP Solver: StochDynamicProgramming.jl

• LP Solver: Gurobi 7.0

https://github.com/JuliaOpt/StochDynamicProgramming.jl

Outline

Physical modeling

Modeling a house

Modeling the network

Building the optimization problem

Resolution methods

Describing MPC and SDDP

Assessing strategies

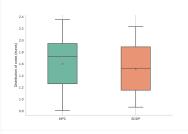
Numerical resolution

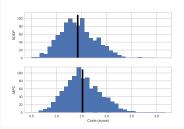
Settings

Results

Comparison of MPC and SDDP

We compare MPC and SDDP over 1000 assessment scenarios

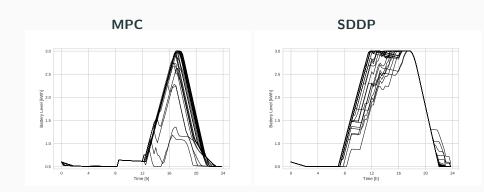




	MPC	SDDP	Diff	
	3 h	ouses		
Costs t_c	1.52 0.8	1.42 2.8	-6.6 % ×3.5	
	6 houses			
Costs t_c	3.04 1.7	2.85 4.6	-6.3 % ×2.7	
12 houses				
Costs t_c	6.08 3.5	5.74 8.6	-5.6 % ×2.5	

 t_c : average time to compute the control online (in ms)

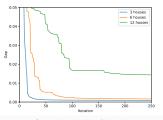
MPC and SDDP use differently the battery



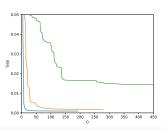
Trajectories of battery for the '3 houses' problem.

Discussing the convergence of SDDP w.r.t. the dimension

We compute the upper-bound afterward, with a great number of scenarios (10000) We define the gap as : gap = (ub - lb)/ub.



Gap against number of iterations



Gap against time

We compare the time (in seconds) taken to achieve a particular gap:

3 houses	6 houses	12 houses
7.0	21.0	137.8
8.0	28.8	
8.0	47.2	
65.1		
	7.0 8.0 8.0	7.0 21.0 8.0 28.8 8.0 47.2

- SDDP scales up to 40 dimensions!
- We have to use a variant of SDDP to compute cuts in Decision-Hazard, because classical SDDP gives poor results
- SDDP beats MPC, however the difference narrows along the number of dimensions (because of the convergence of SDDP)
- Both MPC and SDDP are penalized if dimension becomes too high

Perspectives

Mix SDDP with spatial decomposition like Dual Approximate Dynamic Programming (DADP) to control bigger urban neighbourhood (from 10 to 100 houses)

