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Optimization for subway stations

Paris subway stations consumption = 40, 000 houses

Subway stations have unexploited energies that can be
harnessed through electrical storage

We use stochastic optimization for short term control and
long term aging and invesment management of batteries
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Why electrical storage in
subway stations?
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Subway stations have unexploited energy ressources

Two time scales SDP May 31, 2017 4 / 33



Energy recovery requires a buffer
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Managing storage
short term operations
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Microgrid concept for subway stations
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Stochastic optimization is relevant

Subways braking energy is unpredictible

We can optimize battery operations using
Stochastic Dynamic Programming
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Battery operation impacts
long term aging!

Two time scales SDP May 31, 2017 7 / 33



Outline

1 Context: Electrical storage management in subway stations
Why electrical storage in subway stations?
Managing storage short term operations
Battery operation impacts long term aging!

2 Modeling: Management of batteries operation, aging and renewal
Two time scales management: investment/operation
Short term operation model
Long term renewals model
Two time scales stochastic optimization problem

3 Solving: Decomposition method and numerical results
Decomposition method
Numerical results

Two time scales SDP May 31, 2017 7 / 33



Two time scales
management:

investment/operation
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Two time scales

2∆T∆T0 . . . D∆T
24h24h

∆T∆T

2∆T

M − 1
. . .

2∆t∆t

∆T
1 min 1 min1 min

∆t ∆t∆t

Long term aging and renewal

Short term operation
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We make decisions every minutes m and every day d

Day d , Minute m: How much energy Ud ,m do I charge or discharge
from my current battery with capacity Cd?

At the end of Day d should I buy a new battery with capacity Rd?

d , 2d , 1d , 0 . . . d ,M − 1 d ,M d + 1, 0
∆t∆t ∆t 0

Ud ,2Ud ,1Ud ,0 Ud ,M−1 Rd

Two time scales SDP May 31, 2017 9 / 33



Uncertain events occur right after we made our decisions

Day d , end of Minute m: we observe how much intermitent energy
W d ,m+1 we receive

At the end of Day d we observe the batteries cost W d+1 on the
market

d , 2d , 1d , 0 . . . d ,M − 1 d ,M d + 1, 0
∆t∆t ∆t 0

Ud ,2Ud ,1Ud ,0 Ud ,M−1 Rd

W d ,3W d ,2W d ,1 W d ,M W d+1
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Decisions and uncertainty impact state variables

Day d , end Minute m: decision Ud ,m and realization W d ,m+1 change
our battery state of charge Sd ,m to Sd ,m+1 and our battery state of
health Hd ,m to Hd ,m+1

At the end of Day d decision Rd change our battery capacity Cd to
Cd+1

d , 2d , 1d , 0 . . . d ,M − 1 d ,M d + 1, 0
∆t∆t ∆t 0

Ud ,2Ud ,1Ud ,0 Ud ,M−1 Rd

Sd ,2, Hd ,2Sd ,1, Hd ,1Sd ,0, Hd ,0 Sd ,M−1,Hd ,M−1Sd ,M ,Hd ,M

Cd+1

W d ,3W d ,2W d ,1 W d ,M W d+1
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Short term
operation model
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Electrical network representation

S

	D ⊕ B

E s
E l

Station node

D: Demand station

E s : From grid to station

	: Discharge battery

Subways node

B: Braking

E l : From grid to battery

⊕: Charge battery
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Battery state of charge dynamics
For a given charge/discharge strategy U over a day d :

Sd ,m+1 = Sd ,m −
1

ρd
U

−
d ,m︸ ︷︷ ︸

	

+ ρcsat(Sd ,m,U
+
d ,m,Bd ,m+1)︸ ︷︷ ︸

⊕

with

sat(x , u, b) = min(
Smax − x

ρc
,max(u, b))

d , 0 . . . d ,M − 1
1 min1 min
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Battery aging dynamics
For a given charge/discharge strategy U over a day d

Hd ,m+1 = Hd ,m −
1

ρd
U

−
d ,m − ρcsat(Sd ,m,U

+
d ,m,Bd ,m+1)

d , 0 . . . d ,M
1 min1 min
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Every minute we save energy and money

If we have a battery on day d and minute m we save:

ped ,m

(
E

s
d ,m+1 + E

l
d ,m+1 −Dd ,m+1︸ ︷︷ ︸

Saved energy

)

ped ,m is the cost of electricity on day d at minute m
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Summary of short term/Fast variables model

We call, at day d and minute m,

fast state variables: X f
d ,m =

(
Sd,m

Hd,m

)

fast decision variables: U f
d ,m =

(
U
−
d,m

U
+
d,m

)

fast random variables: W f
d ,m =

(
Bd,m

Dd,m

)
fast cost function: Lfd ,m(X f

d ,m,U
f
d ,m,W

f
d ,m+1)

fast dynamics: X f
d ,m+1 = F f

d ,m(X f
d ,m,U

f
d ,m,W

f
d ,m+1)
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Long term renewals
model
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We decide our battery purchases at the end of each day

2∆T∆T0 . . . D
24h24h

Should we replace our battery Cd by buying a new one Rd or not?

Cd+1 =

{
Rd , if Rd > 0

f (Cd ,Hd ,M), otherwise

paying renewal cost Pb
dRd at uncertain market prices Pb

d
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Summary of long term/Slow variables model

We call, at day d ,

slow state variables: X s
d = ( Cd )

slow decision variables: Us
d = ( Rd )

slow random variables: W s
d = ( Pb

d )

slow cost function: Lsd(X s
d ,U

s
d ,W

s
d+1) = Pb

dRd

slow dynamics: X s
d+1 = F s

d (X s
d ,U

s
d ,W

s
d+1)

Two time scales SDP May 31, 2017 18 / 33



The link between time scales

The initial ”fast state” at the begining of day d deduces from:

X
f
d ,0 = φd(X s

d ,X
f
d−1,M)

The initial ”slow state” at the begining of day d + 1 deduces from all that
happened the previous day:

X
s
d+1 = F s

d (X s
d ,U

s
d ,W

s
d+1,X

f
d ,0,U

f
d ,:,W

f
d ,:)

d , 2d , 1d , 0 . . . d ,M − 1 d ,M d + 1, 0
∆t∆t ∆t 0

U f
d ,2U f

d ,1U f
d ,0 U f

d ,M−1 Us
d

X f
d ,2X f

d ,1X
f
d ,0,X

s
0 X f

d ,M−1 X f
d ,M

U f
d+1,0

X
f
d+1,0,X

s
d+1

W f
d ,3W f

d ,2W f
d ,1 W f

d ,M W s
d+1
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We formulate
a two time scales

stochastic optimization
problem
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We minimize fast and slow costs over the long term

min
X f ,X s ,Uf ,Us

E
[D−1∑
d=0

(M−1∑
m=0

Lfd ,m(X f
d ,m,U

f
d ,m,W

f
d ,m+1)

)
+ Lsd(X s

d ,U
s
d ,W

s
d+1,X

f
d ,0,U

f
d ,:,W

f
d ,:)
]

X
f
d ,m+1 = F f

d ,m(X f
d ,m,U

f
d ,m,W

f
d ,m+1)

X
f
d ,0 = φd(X s

d ,X
f
d−1,M)

X
s
d+1 = F s

d (X s
d ,U

s
d ,W

s
d+1,X

f
d ,0,U

f
d ,:,W

f
d ,:)

U
f
d ,m � Fd ,m

U
s
d � Fd ,M
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Stochastic optimal control reformulation

We call

X d = (X f
d−1,M ,X

s
d)

Ud = (U f
d ,:,U

s
d)

W d = (W f
d−1,:,W

s
d)

we can reformulate the problem as

min
X ,U

E
[D−1∑
d=0

Ld(X d ,Ud ,W d+1)
]

X d+1 = Fd(X d ,Ud ,W d+1)

U
f
d ,m � Fd ,m

U
s
d � Fd ,M

where the non-anticipativity constraints are not standard
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Information flow model

Fd ,m = σ

W f
d ′,m′

, d ′<d , m′≤M+1

W s
d ′

, d ′≤d

W f
d ,m′

, m′≤m

 = σ

(
previous days fast noises
previous days slow noises

current day previous minutes fast noises

)

d , 0 . . . d + 1, 0

U f
d ,2U f

d ,1U f
d ,0 U f

d ,M−1 Us
d

X d = (X f
d ,0,X

s
0)

U f
d+1,0

X d+1 = (X f
d+1,0,X

s
d+1)

W f
d ,3W f

d ,2W f
d ,1 W f

d ,M W s
d+1

Fd ,2Fd ,1Fd ,0 Fd ,M−1 Fd ,M

W f
d+1,1

Fd+1,0

Two time scales SDP May 31, 2017 22 / 33



We can write a dynamic programming equation

When the W d are independent

d , 0 . . . d + 1, 0

U f
d ,2U f

d ,1U f
d ,0 U f

d ,M−1 Us
d

xd

U f
d+1,0

X d+1

W f
d ,3W f

d ,2W f
d ,1 W f

d ,M W s
d+1

Fd ,2Fd ,1Fd ,0 Fd ,M−1 Fd ,M

W f
d+1,1

Fd+1,0

Vd(xd) = min
U
d

E
[
Ld(xd ,Ud ,W d+1) + Vd+1(X d+1))

]
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With value functions defined inductively

Every day d , we can define a value function that factorizes as function of
the state X d if the W d are independent.

Vd(xd) = min
X
d+1

,U
d

E
[
Ld(xd ,Ud ,W d+1) + Vd+1(X d+1)

]
s.t X d+1 = Fd(X d ,Ud ,W d+1)

U
f
d ,m � σ(X d ,W

f
d ,1:m)

U
s
d � σ(X d ,W

f
d ,1:M)

Ud = (U f
d ,:,U

s
d)

X d = xd

The value of the whole problem being: V0(x0).
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How to decompose the problem
into

a daily optimization problem
and

an intraday optimization problem?
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Let’s split the min

Vd(xd) = min
X
d+1

min
U
d

E
[
Ld(xd ,Ud ,W d+1) + Vd+1(X d+1)

]
s.t X d+1 = Fd(X d ,Ud ,W d+1)

U
f
d ,m � σ(X d ,W

f
d ,1:m)

U
s
d � σ(X d ,W

f
d ,1:M)

Ud = (U f
d ,:,U

s
d)

X d = xd
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We hide the fast decisions variables

Inside the value of the intraday control problem φd

with fixed initial state xd

with fixed stochastic final state X d+1

Vd(xd) = min
X
d+1

[ intraday problem︷ ︸︸ ︷
φd(xd , [X d+1]) +

next expected value︷ ︸︸ ︷
EVd+1(X d+1)

]
s.t X d+1 � σ(X d ,W d+1)
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Significant difficulties remain

Computing φd(xd , [X d+1]) for every X d+1 is very expensive!

X d+1 � σ(X d ,W d+1)

Then why is it interesting?

We can solve the intraday problem φd with another method (DP,
SDDP, SP, PH)

We can exploit the problem periodicity (∀d , φd = φ0?)

We can simplify measurability (X d+1 � σ(X d))

We can exploit value functions monotonicity (relax the coupling
constraint Fd(X d ,Ud ,W d+1) ≥ X d+1) [2]
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Numerical results
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Synthetic price of batteries data

Batteries cost stochastic model: synthetic scenarios that
approximately coincide with market forecasts
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Net Present Value

7 years horizon

Yearly discount factor = 0.95

10, 000 Cb scenarios to model randomness

1 buying/aging decision per month

1 charge/discharge decision every 15 min

Constraint: having a battery everytime with at least one cycle a day

Objective: maximize expected discounted revenues over 7 years
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Numerical method: Intraday DP + Extraday DP

We use DP for intraday decisions and another DP for end of the day
decisions.

We exploit monotonicity (relax end of the day aging constraint), daily
periodicity and we decide aging at the beginning of the day
X d+1 � σ(X d).
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Results

SDP SDP + SDP
Offline comp. time ∞ 1 min + 15 min
Simulation comp. time ? [25s,30s]
Upper bound ? +128k

In Julia with a Core I7, 1.7 Ghz, 8Go ram + 12Go swap SSD
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1 simulation: cycles

NPV = 80,000 euros
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Conclusion and ongoing work

Our study leads to the following conclusions:

Controlling aging is relevant

Our decomposition method provides encouraging results

It can be used for aging aware intraday control

We have to improve simplifications

We are now focusing on

Improving risk modelling

Improving batteries cost stochastic model

Aging model with capacity degradation

Dual decomposition of the coupling constraint
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Let’s introduce an auxiliary variable

Vd(xd) = min
Y
d+1

min
X
d+1

min
U
d

E
[
Ld(xd ,Ud ,W d+1) + Vd+1(X d+1)

]
s.t X d+1 = Y d+1

Fd(X d ,Ud ,W d+1) = Y d+1

U
f
d ,m � σ(X d ,W

f
d ,1:m)

U
s
d � σ(X d ,W

f
d ,1:M)

Ud = (U f
d ,:,U

s
d)

X d = xd

Y d+1 � σ(X d ,W d+1)
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Let’s distribute the mins

Vd(xd) = min
Y
d+1

[
min
U
d

E Ld(xd ,Ud ,W d+1) + min
X
d+1

E Vd+1(X d+1)
]

s.t X d+1 = Y d+1

Fd(X d ,Ud ,W d+1) = Y d+1

U
f
d ,m � σ(X d ,W

f
d ,1:m)

U
s
d � σ(X d ,W

f
d ,1:M)

Ud = (U f
d ,:,U

s
d)

X d = xd

Y d+1 � σ(X d ,W d+1)
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A first subproblem appears

For a given Y d+1 ∈ L0(Ω,F ,P), with σ(Y d+1) ⊂ σ(X d ,W d+1),

φd(xd , [Y d+1]) = min
U
d

E Ld(xd ,Ud ,W d+1)

s.t Fd(X d ,Ud ,W d+1) = Y d+1

U
f
d ,m � σ(X d ,W

f
d ,1:m)

U
s
d � σ(X d ,W

f
d ,1:M)

Ud = (U f
d ,:,U

s
d)

X d = xd

We use the notation f ([W ]) to emphasize that f ’s domain is L0(Ω,F ,P).
This is the intraday problem with stochastic final state constraint!
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Substitute in the dynamic programming equation

Vd(xd) = min
Y
d+1

[
φd(xd , [Y d+1]) + min

X
d+1

E Vd+1(X d+1)
]

s.t X d+1 = Y d+1

Y d+1 � σ(X d ,W d+1)

Finally let’s eliminate this unecessary auxialiary variable

Vd(xd) = min
X
d+1

[
φd(xd , [X d+1]) + E Vd+1(X d+1)

]
s.t X d+1 � σ(X d ,W d+1)
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Intraday value for empty 80 kWh battery
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Cash flow
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