A new look at the Stochastic Dual Dynamic Programming algorithm

V. Leclère, P. Carpentier, J-P. Chancelier, A. Lenoir, F. Pacaud SESO 2018

24/05/2018

Contents

(1) Introduction

- Setting
- Duality and cuts
- Strength and weaknesses of SDDP
(2) Abstract SDDP
- Linear Bellman Operator
- Abstract SDDP
(3) Primal SDDP
- Primal Bellman operators
- Primal SDDP algorithm
(4) Dual SDDP
- Fenchel transform of LBO
- Dual SDDP
- Converging upper bound and stopping test
- Inner Approximation
(5) Numerical results

Contents

(1) Introduction

- Setting
- Duality and cuts
- Strength and weaknesses of SDDP
(2) Abstract SDDP
- Linear Bellman Operator
- Abstract SDDP
(3) Primal SDDP
- Primal Bellman operators
- Primal SDDP algorithm
(4) Dual SDDP
- Fenchel transform of LBO
- Dual SDDP
- Converging upper bound and stopping test
- Inner Approximation
(5) Numerical results

Introduction

We are interested in multistage stochastic optimization problems of the form

$$
\begin{array}{ll}
\min _{\pi} & \mathbb{E}\left[\sum_{t=0}^{T-1} L_{t}\left(\boldsymbol{X}_{t}, \boldsymbol{U}_{t}, \boldsymbol{\xi}_{t}\right)+K\left(\boldsymbol{X}_{T}\right)\right] \\
\text { s.t. } & \boldsymbol{X}_{t+1}=f_{t}\left(\boldsymbol{X}_{t}, \boldsymbol{U}_{t}, \boldsymbol{\xi}_{t}\right), \quad \boldsymbol{X}_{0}=x_{0} \\
& \boldsymbol{U}_{t}=\pi_{t}\left(\boldsymbol{X}_{t}, \boldsymbol{\xi}_{t}\right) \in U_{t}\left(x, \boldsymbol{\xi}_{t}\right)
\end{array}
$$

where

- \boldsymbol{x}_{t} is the state of the system,
- \boldsymbol{u}_{t} is the control applied at time t,
- $\boldsymbol{\xi}_{t}$ is the noise happening between time t and $t+1$, assumed to be time-independent,
- π is the policy.

Time-decomposition

$$
\begin{array}{cc}
\min _{\pi} & \mathbb{E}\left[L_{0}\left(x_{0}, \boldsymbol{U}_{0}, \boldsymbol{\xi}_{0}\right)+\mathbb{E}\left[\sum_{t=1}^{T-1} L_{t}\left(\boldsymbol{X}_{t}, \boldsymbol{U}_{t}, \boldsymbol{\xi}_{t}\right)+K\left(\boldsymbol{X}_{T}\right)\right]\right] \\
\text { s.t. } & \boldsymbol{X}_{0}=x_{0} \\
& \boldsymbol{X}_{1}=f_{t}\left(\boldsymbol{X}_{0}, \boldsymbol{U}_{0}, \boldsymbol{\xi}_{0}\right), \\
& \boldsymbol{U}_{0}=\pi_{0}\left(x_{0}, \xi_{0}\right) \in U_{0}\left(x_{0}, \boldsymbol{\xi}_{0}\right) \\
& \boldsymbol{X}_{1}=f_{t}\left(\boldsymbol{X}_{0}, \boldsymbol{U}_{0}, \boldsymbol{\xi}_{0}\right) \\
& \boldsymbol{X}_{t+1}=f_{t}\left(\boldsymbol{X}_{t}, \boldsymbol{U}_{t}, \boldsymbol{\xi}_{t}\right) \\
& \boldsymbol{U}_{t}=\pi_{t}\left(\boldsymbol{X}_{t}, \boldsymbol{\xi}_{t}\right) \in U_{t}\left(\boldsymbol{X}_{t}, \boldsymbol{\xi}_{t}\right)
\end{array}
$$

Stochastic Dynamic Programming

By the white noise assumption, this problem can be solved by Dynamic Programming, where the Bellman functions satisfy

$$
\begin{cases}V_{T}(x) & =K(x) \\ \hat{V}_{t}(x, \xi) & =\min _{u_{t} \in U_{t}(x, \xi)} L_{t}\left(x, u_{t}, \xi\right)+V_{t+1} \circ \underbrace{f_{t}\left(x, u_{t}, \xi\right)}_{" x_{t+1} "} \\ V_{t}(x) & =\mathbb{E}\left[\hat{V}_{t}\left(x, \boldsymbol{\xi}_{t}\right)\right]\end{cases}
$$

Indeed, π is an optimal policy if

Stochastic Dynamic Programming

By the white noise assumption, this problem can be solved by Dynamic Programming, where the Bellman functions satisfy

$$
\begin{cases}V_{T}(x) & =K(x) \\ \hat{V}_{t}(x, \xi) & =\min _{u_{t} \in U_{t}(x, \xi)} L_{t}\left(x, u_{t}, \xi\right)+V_{t+1} \circ \underbrace{f_{t}\left(x, u_{t}, \xi\right)}_{" x_{t+1} "} \\ V_{t}(x) & =\mathbb{E}\left[\hat{V}_{t}\left(x, \boldsymbol{\xi}_{t}\right)\right]\end{cases}
$$

Indeed, π is an optimal policy if

$$
\pi_{t}(x, \xi) \in \underset{u_{t} \in U_{t}(x, \xi)}{\arg \min }\{\underbrace{L_{t}\left(x, u_{t}, \xi\right)}_{\text {current cost }}+\underbrace{V_{t+1} \circ f_{t}\left(x, u_{t}, \xi\right)}_{\text {future costs }}\}
$$

Bellman operator

For any time t, and any function $R: \mathbb{X} \rightarrow \mathbb{R} \cup\{+\infty\}$ we define

$$
\hat{\mathcal{T}}_{t}(R)(x, \xi):=\min _{u_{t} \in \mathbb{U}} L_{t}\left(x, u_{t}, \xi\right)+R \circ f_{t}\left(x, u_{t}, \xi\right)
$$

and

$$
\mathcal{T}_{t}(R)(x):=\mathbb{E}\left[\hat{\mathcal{T}}_{t}(R)(x, \boldsymbol{\xi})\right]
$$

Incidentally, R induce a policy $\pi_{t}^{R}(x, \xi)$ given by a minimizer of the above problem, and an optimal policy is given by π^{V}.
Finally the Bellman equation simply reads

Bellman operator

For any time t, and any function $R: \mathbb{X} \rightarrow \mathbb{R} \cup\{+\infty\}$ we define

$$
\hat{\mathcal{T}}_{t}(R)(x, \xi):=\min _{u_{t} \in \mathbb{U}} L_{t}\left(x, u_{t}, \xi\right)+R \circ f_{t}\left(x, u_{t}, \xi\right)
$$

and

$$
\mathcal{T}_{t}(R)(x):=\mathbb{E}\left[\hat{\mathcal{T}}_{t}(R)(x, \boldsymbol{\xi})\right]
$$

Incidentally, R induce a policy $\pi_{t}^{R}(x, \xi)$ given by a minimizer of the above problem, and an optimal policy is given by π^{V}.

Bellman operator

For any time t, and any function $R: \mathbb{X} \rightarrow \mathbb{R} \cup\{+\infty\}$ we define

$$
\hat{\mathcal{T}}_{t}(R)(x, \xi):=\min _{u_{t} \in \mathbb{U}} L_{t}\left(x, u_{t}, \xi\right)+R \circ f_{t}\left(x, u_{t}, \xi\right)
$$

and

$$
\mathcal{T}_{t}(R)(x):=\mathbb{E}\left[\hat{\mathcal{T}}_{t}(R)(x, \boldsymbol{\xi})\right]
$$

Incidentally, R induce a policy $\pi_{t}^{R}(x, \xi)$ given by a minimizer of the above problem, and an optimal policy is given by π^{V}.
Finally the Bellman equation simply reads

$$
\left\{\begin{array}{l}
V_{T}=K \\
V_{t}=\mathcal{T}_{t}\left(V_{t+1}\right)
\end{array}\right.
$$

Properties of the Bellman operator

- Monotonicity:

$$
V \leq \bar{V} \quad \Rightarrow \mathcal{T}_{t}(V) \leq \mathcal{T}_{t}(\bar{V})
$$

- Convexity: if L_{t} is jointly convex in $(x, u), V$ is convex, and f_{t} is affine then

$$
x \mapsto \mathcal{T}_{t}(V)(x) \quad \text { is convex }
$$

- Polyhedrality: for any polyhedral function V, if L_{t} is also polyhedral, and f_{t} affine, then

$$
x \mapsto \mathcal{T}_{t}(V)(x) \quad \text { is polyhedral }
$$

Contents

(1) Introduction

- Setting
- Duality and cuts
- Strength and weaknesses of SDDP
(2) Abstract SDDP
- Linear Bellman Operator
- Abstract SDDP
(3) Primal SDDP
- Primal Bellman operators
- Primal SDDP algorithm
(4) Dual SDDP
- Fenchel transform of LBO
- Dual SDDP
- Converging upper bound and stopping test
- Inner Approximation
(5) Numerical results

Duality property

- Consider $J: \mathbb{X} \times \mathbb{U} \rightarrow \mathbb{R}$ jointly convex, and define

$$
\varphi(x)=\min _{u \in \mathbb{U}} J(x, u)
$$

- Then we can obtain a subgradient $\lambda \in \partial \varphi\left(x_{0}\right)$ as the dual multiplier of

$$
\begin{array}{ll}
\min _{x, u} & J(x, u), \\
\text { s.t. } & x_{0}-x=0
\end{array}
$$

(This is the marginal interpretation of the multiplier)

- In particular, we have that

$$
\varphi(\cdot) \geq \varphi\left(x_{0}\right)+\left\langle\lambda, \cdot-x_{0}\right\rangle
$$

Computing cuts (1/2)

Suppose that we have $\underline{V}_{t+1}^{(k+1)} \leq V_{t+1}$

$$
\begin{aligned}
& \hat{\beta}_{t}^{(k+1)}=\min _{x, u} L_{t}\left(x, u \quad+\underline{V}_{t+1}^{(k+1)} \circ f_{t}(x, u)\right. \\
& \text { s.t } \quad x=x_{t}^{(k)} \quad\left[\hat{\lambda}_{t}^{(k+1)}\right]
\end{aligned}
$$

This can also be written as

Computing cuts (1/2)

Suppose that we have $\underline{V}_{t+1}^{(k+1)} \leq V_{t+1}$

$$
\begin{aligned}
& \hat{\beta}_{t}^{(k+1)}=\min _{x, u} L_{t}\left(x, u \quad+\underline{V}_{t+1}^{(k+1)} \circ f_{t}(x, u)\right. \\
& \text { s.t } \quad x=x_{t}^{(k)} \quad\left[\hat{\lambda}_{t}^{(k+1)}\right]
\end{aligned}
$$

This can also be written as

$$
\begin{array}{ll}
\hat{\beta}_{t}^{(k+1)} & =\hat{\mathcal{T}}_{t}\left(\underline{V}_{t+1}^{(k+1)}\right)(x \quad) \\
\hat{\lambda}_{t}^{(k+1)} & \in \partial_{x} \hat{\mathcal{T}}_{t}\left(\underline{V}_{t+1}^{(k+1)}\right)(x)
\end{array}
$$

Computing cuts (1/2)

Suppose that we have $\underline{V}_{t+1}^{(k+1)} \leq V_{t+1}$

$$
\begin{aligned}
& \hat{\beta}_{t}^{(k+1)}=\min _{x, u} L_{t}\left(x, u \quad+\underline{V}_{t+1}^{(k+1)} \circ f_{t}(x, u)\right. \\
& \text { s.t } \quad x=x_{t}^{(k)} \quad\left[\hat{\lambda}_{t}^{(k+1)}\right]
\end{aligned}
$$

This can also be written as

$$
\begin{array}{ll}
\hat{\beta}_{t}^{(k+1)} & =\hat{\mathcal{T}}_{t}\left(\underline{V}_{t+1}^{(k+1)}\right)(x \quad) \\
\hat{\lambda}_{t}^{(k+1)} & \in \partial_{x} \hat{\mathcal{T}}_{t}\left(\underline{V}_{t+1}^{(k+1)}\right)(x)
\end{array}
$$

Thus, $\hat{\mathcal{C}}_{t}^{(k+1)}: x \mapsto \hat{\beta}_{t}^{(k+1)}+\left\langle\hat{\lambda}_{t}^{(k+1)} \quad, x-x_{t}^{(k)}\right\rangle$ satisfy

$$
\hat{\mathcal{C}}_{t}^{(k+1)}(x) \leq \hat{\mathcal{T}}_{t}\left(\underline{V}_{t+1}^{(k+1)}\right)(x \quad) \leq \hat{\mathcal{T}}_{t}\left(V_{t+1}\right)(x \quad)=\hat{V}_{t}(x \quad)
$$

Computing cuts (1/2)

Suppose that we have $\underline{V}_{t+1}^{(k+1)} \leq V_{t+1}$

$$
\begin{aligned}
\hat{\beta}_{t}^{(k+1)}(\xi)=\min _{x, u} & L_{t}(x, u, \xi)+\underline{V}_{t+1}^{(k+1)} \circ f_{t}(x, u, \xi) \\
\text { s.t } & x=x_{t}^{(k)} \quad\left[\hat{\lambda}_{t}^{(k+1)}(\xi)\right]
\end{aligned}
$$

This can also be written as

$$
\begin{aligned}
& \hat{\beta}_{t}^{(k+1)}(\xi)=\hat{\mathcal{T}}_{t}\left(\underline{V}_{t+1}^{(k+1)}\right)(x, \xi) \\
& \hat{\lambda}_{t}^{(k+1)}(\xi) \in \partial_{x} \hat{\mathcal{T}}_{t}\left(\underline{V}_{t+1}^{(k+1)}\right)(x, \xi)
\end{aligned}
$$

Thus, $\hat{\mathcal{C}}_{t}^{(k+1), \xi}: x \mapsto \hat{\beta}_{t}^{(k+1)}(\xi)+\left\langle\hat{\lambda}_{t}^{(k+1)}(\xi), x-x_{t}^{(k)}\right\rangle$ satisfy, for all ξ,

$$
\hat{\mathcal{C}}_{t}^{(k+1), \xi}(x) \leq \hat{\mathcal{T}}_{t}\left(\underline{V}_{t+1}^{(k+1)}\right)(x, \xi) \leq \hat{\mathcal{T}}_{t}\left(V_{t+1}\right)(x, \xi)=\hat{V}_{t}(x, \xi)
$$

Computing cuts (2/2)

Thus,

$$
\hat{\beta}_{t}^{(k+1)}(\xi)+\left\langle\hat{\lambda}_{t}^{(k+1)}(\xi), x-x_{t}^{(k)}\right\rangle \leq \hat{V}_{t}(x, \xi)
$$

for each realization ξ of $\boldsymbol{\xi}_{t}$.
Replacing ξ by ξ_{t} and taking the expectation yields
$\mathbb{E}\left[\hat{\beta}_{t}^{(k+1)}\left(\xi_{t}\right)\right]+\mathbb{E}\left[\left\langle\hat{\lambda}_{t}^{(k+1)}\left(\boldsymbol{\xi}_{t}\right), x-x_{t}^{(k)}\right\rangle\right] \leq \mathbb{E}\left[\hat{V}_{t}\left(x, \boldsymbol{\xi}_{t}\right)\right]=V_{t}(x)$
and finally we have the cut
where

Computing cuts (2/2)

Thus,

$$
\hat{\beta}_{t}^{(k+1)}(\xi)+\left\langle\hat{\lambda}_{t}^{(k+1)}(\xi), x-x_{t}^{(k)}\right\rangle \leq \hat{V}_{t}(x, \xi)
$$

for each realization ξ of $\boldsymbol{\xi}_{t}$.
Replacing ξ by ξ_{t} and taking the expectation yields
$\mathbb{E}\left[\hat{\beta}_{t}^{(k+1)}\left(\xi_{t}\right)\right]+\mathbb{E}\left[\left\langle\hat{\lambda}_{t}^{(k+1)}\left(\xi_{t}\right), x-x_{t}^{(k)}\right\rangle\right] \leq \mathbb{E}\left[\hat{V}_{t}\left(x, \boldsymbol{\xi}_{t}\right)\right]=V_{t}(x)$
and finally we have the cut

$$
\beta_{t}^{(k+1)}+\left\langle\lambda_{t}^{(k+1)}, \cdot-x_{t}^{(k)}\right\rangle \leq V_{t}
$$

where

$$
\begin{cases}\beta_{t}^{(k+1)} & :=\mathbb{E}\left[\hat{\beta}_{t}^{(k+1)}\left(\boldsymbol{\xi}_{t}\right)\right]=\mathcal{T}_{t}\left(\underline{V}_{t+1}^{(k)}\right)(x) \\ \lambda_{t}^{(k+1)} & :=\mathbb{E}\left[\hat{\lambda}_{t}^{(k+1)}\left(\boldsymbol{\xi}_{t}\right)\right] \in \partial \mathcal{T}_{t}\left(\underline{V}_{t+1}^{(k)}\right)(x)\end{cases}
$$

Contents

(1) Introduction

- Setting
- Duality and cuts
- Strength and weaknesses of SDDP
(2) Abstract SDDP
- Linear Bellman Operator
- Abstract SDDP
(3) Primal SDDP
- Primal Bellman operators
- Primal SDDP algorithm
(4) Dual SDDP
- Fenchel transform of LBO
- Dual SDDP
- Converging upper bound and stopping test
- Inner Approximation
(5) Numerical results

SDDP algorithm

Under linear dynamics, and convex costs, the SDDP algorithm iteratively constructs polyhedral outer approximations of V_{t}.

More precisely, at iteration k

- We have polyhedral functions $\underline{V}_{t}^{k}(\cdot)=\max _{\kappa \leq k}\left\{\left\langle\lambda_{t}^{\kappa}, \cdot\right\rangle+\beta_{t}^{\kappa}\right\}$, such that $\underline{V}_{t}^{k} \leq V_{t}$.
- Forward pass: We simulate the dynamical system, along one scenario, according to $\pi \underline{V}^{k}$, yielding a trajectory $\left\{\underline{x}_{t}^{k}\right\}_{t \in \llbracket 0, T \rrbracket}$.
- Backward pass: We compute cuts

$$
\mathcal{C}_{t}^{k}: x \mapsto\left\langle\lambda_{t}^{k+1}, x\right\rangle+\beta_{t}^{k+1} \leq V_{t}
$$

along this trajectory, and update our outer approximations.

SDDP strengths

- SDDP is a widely used algorithm in the energy community, with multiple applications in
- mid and long term water storage management problem,
- long-term investment problems,
- ...
- Recent works have presented extensions of the algorithm to
- deal with some non-convexity,
- treat risk-averse or distributionally robust problems,
- incorporate integer variables.
- Multiple numerical improvements have been proposed
- cut selection
- regularization
- multi-cut or ε-resolution

SDDP weaknesses

There are still some gaps in our knowledge of this approach:

- there is no convergence speed guaranteed,
- regularization methods are not mature yet,
- there is no good stopping test.

SDDP Stopping test

- Exact lower bound of the problem : $\underline{V}_{0}^{k}\left(x_{0}\right)$.
- Upper-bound estimated by Monte-Carlo simulation yielding costly statistical stopping tests (Pereira Pinto (1991) or Shapiro (2011))
- Alternative statistical tests have been proposed (see Homem de Mello et al (2011))
- Exact upper-bound computation has been proposed by Philpott et al (2013) but without any proof of convergence, leading to possibly not converging stopping tests.

Contents

(1) Introduction

- Setting
- Duality and cuts
- Strength and weaknesses of SDDP
(2) Abstract SDDP
- Linear Bellman Operator
- Abstract SDDP
(3) Primal SDDP
- Primal Bellman operators
- Primal SDDP algorithm
(4) Dual SDDP
- Fenchel transform of LBO
- Dual SDDP
- Converging upper bound and stopping test
- Inner Approximation
(5) Numerical results

Linear Bellman Operator

An operator $\mathcal{B}: F\left(\mathbb{R}^{n_{x}}\right) \rightarrow F\left(\mathbb{R}^{n_{x}}\right)$ is said to be a linear Bellman operator (LBO) if it is defined as follows

$$
\begin{aligned}
\mathcal{B}(R): x \mapsto & \inf _{(\boldsymbol{u}, \boldsymbol{y})} \mathbb{E} \\
& {\left[\boldsymbol{c}^{\top} \boldsymbol{u}+R(\boldsymbol{y})\right] } \\
\text { s.t. } & T x+\mathcal{W}_{u}(\boldsymbol{u})+\mathcal{W}_{y}(\boldsymbol{y}) \leq \boldsymbol{h}
\end{aligned}
$$

where $\mathcal{W}_{u}: \mathcal{L}^{0}\left(\mathbb{R}^{n_{u}}\right) \rightarrow \mathcal{L}^{0}\left(\mathbb{R}^{n_{c}}\right)$ and $\mathcal{W}_{y}: \mathcal{L}^{0}\left(\mathbb{R}^{n_{x}}\right) \rightarrow \mathcal{L}^{0}\left(\mathbb{R}^{n_{c}}\right)$ are two linear operators. We denote $S(R)(x)$ the set of \boldsymbol{y} that are part of optimal solutions to the above problem.
We also define $\mathcal{G}(x)$

$$
\mathcal{G}(x):=\left\{(\boldsymbol{u}, \boldsymbol{y}) \mid T x+\mathcal{W}_{u}(\boldsymbol{u})+\mathcal{W}_{y}(\boldsymbol{y}) \leq \boldsymbol{h}\right\}
$$

Examples

- Linear point-wise operator:

$$
\begin{array}{cccc}
\mathcal{W}: & \mathcal{L}^{0}\left(\mathbb{R}^{n_{x}}\right) & \rightarrow & \mathcal{L}^{0}\left(\mathbb{R}^{n_{c}}\right) \\
& (\omega \mapsto y(\omega)) & \mapsto & (\omega \mapsto A \boldsymbol{y}(\omega))
\end{array}
$$

Such an operator allows to encode almost sure constraints.

- Linear expected operator:

$$
\begin{array}{cccc}
\mathcal{W}: & \mathcal{L}^{0}\left(\mathbb{R}^{n_{x}}\right) & \rightarrow & \mathcal{L}^{0}\left(\mathbb{R}^{n_{c}}\right) \\
(\omega \mapsto y(\omega)) & \mapsto & (\omega \mapsto A \mathbb{E}(\boldsymbol{y}))
\end{array}
$$

Such an operator allows to encode constraints in expectation.

Relatively Complete Recourse and cuts

Definition (Relatively Complete Recourse)

We say that the pair (\mathcal{B}, R) satisfy a relatively complete recourse (RCR) assumption if for all $x \in \operatorname{dom}(\mathcal{G})$ there exists admissible controls $(\boldsymbol{u}, \boldsymbol{y}) \in \mathcal{G}(x)$ such that $\boldsymbol{y} \in \operatorname{dom}(R)$.

Cut

If R is proper and polyhedral, with RCR assumption, then $\mathcal{B}(R)$ is a proper polyhedral function.
Furthermore, computing $\mathcal{B}(R)(x)$ consists of solving a linear problem which also generates a supporting hyperplane of $\mathcal{B}(R)$, that is, a pair $(\lambda, \beta) \in \mathbb{R}^{n_{x}} \times \mathbb{R}$ such that

$$
\left\{\begin{array}{l}
\langle\lambda, \cdot\rangle+\beta \leq \mathcal{B}(R)(\cdot) \\
\langle\lambda, x\rangle+\beta=\mathcal{B}(R)(x)
\end{array}\right.
$$

Contents

(1) Introduction

- Setting
- Duality and cuts
- Strength and weaknesses of SDDP
(2) Abstract SDDP
- Linear Bellman Operator
- Abstract SDDP

- Primal Bellman operators
- Primal SDDP algorithm
(4) Dual SDDP
- Fenchel transform of LBO
- Dual SDDP
- Converging upper bound and stopping test
- Inner Approximation
(5) Numerical results

Setting

Consider a compatible sequence of LBO $\left\{\mathcal{B}_{t}\right\}_{t \in \llbracket 0, T-1 \rrbracket}$, that is, such that all admissible controls of \mathcal{B}_{t} lead to admissible states of \mathcal{B}_{t+1}.
Consider a sequence of functions such that

$$
\left\{\begin{array}{l}
R_{T}=K \\
R_{t}=\mathcal{B}_{t}\left(R_{t+1}\right) \quad \forall t \in \llbracket 0, T-1 \rrbracket
\end{array}\right.
$$

Then, the abstract SDDP algorithm generates a sequence of lower polyhedral approximations of R_{t}. In a forward pass it simulates a trajectory of states, along which the approximation is refined in the backward pass.

Setting

Consider a compatible sequence of LBO $\left\{\mathcal{B}_{t}\right\}_{t \in \llbracket 0, T-1 \rrbracket}$, that is, such that all admissible controls of \mathcal{B}_{t} lead to admissible states of \mathcal{B}_{t+1}.
Consider a sequence of functions such that

$$
\left\{\begin{array}{l}
R_{T}=K \\
R_{t}=\mathcal{B}_{t}\left(R_{t+1}\right) \quad \forall t \in \llbracket 0, T-1 \rrbracket
\end{array}\right.
$$

Then, the abstract SDDP algorithm generates a sequence of lower polyhedral approximations of R_{t}. In a forward pass it simulates a trajectory of states, along which the approximation is refined in the backward pass.

Abstract SDDP

$\mathrm{t}=0$
$\mathrm{t}=1$
$\mathrm{t}=2$

Final Cost $V_{2}=K$

Abstract SDDP

$\mathrm{t}=0$

X
X
x
Real Bellman function $V_{1}=T_{1}\left(V_{2}\right)$

Abstract SDDP

x
X
x
Real Bellman function $V_{0}=T_{0}\left(V_{1}\right)$

Abstract SDDP

$$
\mathrm{t}=1
$$

x
Lower polyhedral approximation \underline{K} of K

Abstract SDDP

x

x
$\mathrm{t}=2$

x

Lower polyhedral approximation $\underline{V}_{1}=T_{t}(\underline{K})$ of V_{1}

Abstract SDDP

X

$$
\mathrm{t}=1
$$

$$
\mathrm{t}=2
$$

x

Lower polyhedral approximation $\underline{V}_{0}=T_{t}\left(\underline{V}_{1}\right)$ of V_{0}

Abstract SDDP

$\mathrm{t}=0$

X
$\mathrm{t}=1$

Assume that we have lower polyhedral approximations of V_{t}

Abstract SDDP

Thus we have a lower bound on the value of our problem

Abstract SDDP

$\mathrm{t}=2$

x

We apply $\pi_{0}^{\underline{V}_{1}^{(2)}}$ to x_{0} and obtain $\boldsymbol{X}_{1}^{(2)}$

Abstract SDDP

x

$\mathrm{t}=2$

x

We apply $\pi_{0}^{\underline{V}_{1}^{(2)}}$ to x_{0} and obtain $\boldsymbol{X}_{1}^{(2)}$

Abstract SDDP

Draw a random realisation $x_{1}^{(2)}$ of $\boldsymbol{X}_{1}^{(2)}$

Abstract SDDP

X

X

We apply $\pi_{1}^{\underline{V}_{1}^{(2)}}$ to $x_{1}^{(2)}$ and obtain $\boldsymbol{X}_{2}^{(2)}$

Abstract SDDP

We apply $\pi_{1}^{V_{1}^{(2)}}$ to $x_{1}^{(2)}$ and obtain $\boldsymbol{X}_{2}^{(2)}$

Abstract SDDP

Draw a random realisation $x_{2}^{(2)}$ of $\boldsymbol{X}_{2}^{(2)}$

Abstract SDDP

Compute a cut for K at $x_{2}^{(2)}$

Abstract SDDP

Add the cut to $\underline{V}_{2}^{(2)}$ which gives $\underline{V}_{2}^{(3)}$

Abstract SDDP

A new lower approximation of V_{1} is $T_{1}\left(\underline{V}_{2}^{(3)}\right)$

Abstract SDDP

We only compute the face active at $x_{1}^{(2)}$

Abstract SDDP

Add the cut to $\underline{V}_{1}^{(2)}$ which gives $\underline{V}_{1}^{(3)}$

Abstract SDDP

A new lower approximation of V_{0} is $T_{0}\left(\underline{V}_{1}^{(3)}\right)$

Abstract SDDP

$\mathrm{t}=1$

X

We only compute the face active at x_{0}

Abstract SDDP

$\mathrm{t}=1$

x

We only compute the face active at x_{0}

Abstract SDDP

x

\qquad
x
x
We obtain a new lower bound

Abstract SDDP

x

\qquad
x
x
We obtain a new lower bound

Data: Initial point x_{0}
$\underline{R}_{t}^{(0)} \leftarrow-\infty$
for $k: 0,1, \ldots$ do
// Forward Pass : compute a set of trial points $\left\{x_{t}^{k}\right\}_{t \in \llbracket 0, T \rrbracket}$
$x_{0}^{k} \leftarrow x_{0}$
for $t: 0$ to $T-1$ do
select $\boldsymbol{x}_{t+1}^{k} \in \arg \min \mathcal{T}_{t}\left(\underline{R}_{t+1}^{k}\right)\left(x_{t}^{k}\right)$
Randomly select $\omega_{t}^{k} \in \Omega$

$$
x_{t+1}^{k} \leftarrow \boldsymbol{x}_{t+1}^{k}\left(\omega_{t}^{k}\right)
$$

end for
// Backward Pass : refine the lower approximations at the trial points
$\underline{R}_{T}^{k+1} \leftarrow K$
for $t: T-1$ to 0 do
$\theta_{t}^{k+1} \leftarrow \mathcal{B}_{t}\left(\underline{R}_{t+1}^{k+1}\right)\left(x_{t}^{k}\right) \quad / /$ cut coefficients
select $\lambda_{t}^{k+1} \in \partial \mathcal{B}_{t}\left(\underline{R}_{t+1}^{k+1}\right)\left(x_{t}^{k}\right)$
$\beta_{t}^{k+1} \leftarrow \theta_{t}^{k+1}-\left\langle\lambda_{t}^{k+1}, \bar{x}_{t}^{k}\right\rangle$
Define $\mathcal{C}_{t}^{k+1}: x \mapsto\left\langle\lambda_{t}^{k+1}, x\right\rangle+\beta_{t}^{k+1}$
// new cut $\underline{R}_{t}^{k+1} \leftarrow \max \left\{\underline{R}_{t}^{k}, \mathcal{C}_{t}^{k+1}\right\}$
// update lower approximation

end for

STOP if some stopping test is satisfied end for

Absract SDDP convergence

Theorem

Assume that Ω is finite, $R\left(x_{0}\right)$ is finite, and $\left\{\mathcal{B}_{t}\right\}_{t}$ is compatible. Further assume that, for all $t \in \llbracket 0, T \rrbracket$ there exists compact sets X_{t} such that, for all $k, x_{t}^{k} \in X_{t}$ (e.g. \mathcal{B}_{t} have compact domain).

Then, $\left(\underline{R}_{t}^{k}\right)_{k \in \mathbb{N}}$ is a non-decreasing sequence of lower approximations of R_{t}, and $\lim _{k} \underline{R}_{0}^{k}\left(x_{0}\right)=R_{0}\left(x_{0}\right)$, for $t \in \llbracket 0, T-1 \rrbracket$.

Further, the cuts coefficients generated remain in a compact set.

Contents

(1) Introduction

- Setting
- Duality and cuts
- Strength and weaknesses of SDDP
(2) Abstract SDDP
- Linear Bellman Operator
- Abstract SDDP
(3) Primal SDDP
- Primal Bellman operators
- Primal SDDP algorithm
(4) Dual SDDP
- Fenchel transform of LBO
- Dual SDDP
- Converging upper bound and stopping test
- Inner Approximation
(5) Numerical results

Stochastic Optimization problem

Recall the optimization problem

$$
\begin{array}{ll}
\min _{\pi} & \mathbb{E}\left[\sum_{t=0}^{T-1} L_{t}\left(\boldsymbol{X}_{t}, \boldsymbol{U}_{t}, \boldsymbol{\xi}_{t}\right)+K\left(\boldsymbol{X}_{T}\right)\right] \\
\text { s.t. } & \boldsymbol{X}_{t+1}=f_{t}\left(\boldsymbol{X}_{t}, \boldsymbol{U}_{t}, \boldsymbol{\xi}_{t}\right) \\
& \boldsymbol{U}_{t}=\pi_{t}\left(\boldsymbol{X}_{t}, \boldsymbol{\xi}_{t}\right) \in U_{t}(x, \xi)
\end{array}
$$

With associated Dynamic Programming equation

$$
\begin{cases}V_{T}(x) & =K(x) \\ \hat{V}_{t}(x, \xi) & =\min _{u_{t} \in U_{t}(x, \xi)} L_{t}\left(x, u_{t}, \xi\right)+V_{t+1} \circ f_{t}\left(x, u_{t}, \xi\right) \\ V_{t}(x) & =\mathbb{E}\left[\hat{V}_{t}\left(x, \xi_{t}\right)\right]\end{cases}
$$

Primal Bellman equation

Consequently we introduce the following Bellman operators

$$
\hat{\mathcal{T}}_{t}(R)(x, \xi)=\min _{u_{t} \in \mathbb{U}} L_{t}\left(x, u_{t}, \xi\right)+R \circ f_{t}\left(x, u_{t}, \xi\right)
$$

and

$$
\mathcal{T}_{t}(R): x \mapsto \mathbb{E}\left[\hat{\mathcal{T}}_{t}\left(R\left(x, \boldsymbol{\xi}_{t}\right)\right)\right]
$$

Which allow to rewrite the Dynamic Programming equation as

$$
\left\{\begin{array}{l}
V_{T}=K \\
\hat{V}_{t}=\hat{\mathcal{T}}_{t}\left(V_{t+1}\right) \\
V_{t}=\mathcal{T}_{t}\left(V_{t+1}\right)
\end{array}\right.
$$

Contents

(1) Introduction

- Setting
- Duality and cuts
- Strength and weaknesses of SDDP
(2) Abstract SDDP
- Linear Bellman Operator
- Abstract SDDP
(3) Primal SDDP
- Primal Bellman operators
- Primal SDDP algorithm
(4) Dual SDDP
- Fenchel transform of LBO
- Dual SDDP
- Converging upper bound and stopping test
- Inner Approximation
(5) Numerical results

What are the specificities of Primal SDDP algorithm?

- In the forward pass you don't need to solve $\mathcal{T}_{t}\left(\underline{V}_{t+1}^{k}\right)\left(x_{t}^{k}\right)$
- It is enough to solve $\hat{\mathcal{T}}_{t}\left(\underline{V}_{t+1}^{k}\right)\left(x_{t}^{k}, \xi_{t}^{k}\right)$
- In the backward pass you need to solve $\hat{\mathcal{T}}_{t}\left(\underline{V}_{t+1}^{k+1}\right)\left(x_{t}^{k}, \xi\right)$ for all $\xi \in \operatorname{supp}\left(\xi_{t}\right)$
- And the cut coefficients are computed as the mean of the cut coefficient associated to \hat{V}_{t}
- And that's it !

What are the specificities of Primal SDDP algorithm?

- In the forward pass you don't need to solve $\mathcal{T}_{t}\left(\underline{V}_{t+1}^{k}\right)\left(x_{t}^{k}\right)$
- It is enough to solve $\hat{\mathcal{T}}_{t}\left(\underline{V}_{t+1}^{k}\right)\left(x_{t}^{k}, \xi_{t}^{k}\right)$
- In the backward pass you need to solve $\hat{\mathcal{T}}_{t}\left(\underline{V}_{t+1}^{k+1}\right)\left(x_{t}^{k}, \xi\right)$ for all $\xi \in \operatorname{supp}\left(\xi_{t}\right)$
- And the cut coefficients are computed as the mean of the cut coefficient associated to \hat{V}_{t}
- And that's it !

What are the specificities of Primal SDDP algorithm?

- In the forward pass you don't need to solve $\mathcal{T}_{t}\left(\underline{V}_{t+1}^{k}\right)\left(x_{t}^{k}\right)$
- It is enough to solve $\hat{\mathcal{T}}_{t}\left(\underline{V}_{t+1}^{k}\right)\left(x_{t}^{k}, \xi_{t}^{k}\right)$
- In the backward pass you need to solve $\hat{\mathcal{T}}_{t}\left(\underline{V}_{t+1}^{k+1}\right)\left(x_{t}^{k}, \xi\right)$ for all $\xi \in \operatorname{supp}\left(\xi_{t}\right)$
- And the cut coefficients are computed as the mean of the cut coefficient associated to \hat{V}_{t}
- And that's it !

Data: initial point x_{0}, initial lower bounds \underline{V}_{t}^{0} on V_{t}
for k : $0,1, \ldots$ do
// Forward Pass : compute a set of trial points $\left\{x_{t}^{k}\right\}_{t \in \llbracket 0, T \rrbracket}$
Draw a noise scenario $\left\{\xi_{t}^{k}\right\}_{t \in \llbracket 1, T \rrbracket}$
for t : 0 to $T-1$ do
select $x_{t+1}^{k} \in \arg \min \widehat{\mathcal{T}}_{t}\left(\underline{V}_{t+1}^{k}\right)\left(x_{t}^{k}, \xi_{t+1}^{k}\right)$
end for
// Backward Pass : refine the lower-approximations at the trial points
for $t: T-1$ to 0 do
for $\xi \in \operatorname{supp}\left(\xi_{t+1}\right)$ do

$$
\underline{\theta}_{t}^{\xi, k+1} \leftarrow \hat{\mathcal{T}}_{t}\left(\underline{V}_{t+1}^{k+1}\right)\left(x_{t}^{k}, \xi\right)
$$

$$
\underline{\lambda}_{t}^{\xi, k+1} \in \partial \hat{\mathcal{T}}_{t}\left(\underline{V}_{t+1}^{k+1}\right)\left(x_{t}^{k}, \xi\right)
$$

end for
$\underline{\lambda}_{t}^{k+1} \leftarrow \sum_{\xi \in \operatorname{supp}\left(\boldsymbol{\xi}_{t+1}\right)} \pi_{t+1}^{\xi} \underline{\lambda}_{t}^{\xi, k+1}$
$\underline{\beta}_{t}^{k+1} \leftarrow \sum_{\xi \in \operatorname{supp}\left(\xi_{t+1}\right)} \pi_{t+1}^{\xi}\left(\underline{\theta}_{t}^{\xi, k+1}-\left\langle\underline{\lambda}_{t}^{\xi, k+1}, x_{t}^{k}\right\rangle\right)$
$\underline{V}_{t}^{k+1} \leftarrow \max \left\{\underline{V}_{t}^{k},\left\langle\underline{\lambda}_{t}^{k}, \cdot\right\rangle+\underline{\beta}_{t}^{k+1}\right\} \quad / /$ update lower approximation
end for
STOP if some stopping test is satisfied
end for

Contents

(1) Introduction

- Setting
- Duality and cuts
- Strength and weaknesses of SDDP
(2) Abstract SDDP
- Linear Bellman Operator
- Abstract SDDP
(3) Primal SDDP
- Primal Bellman operators
- Primal SDDP algorithm

4 Dual SDDP

- Fenchel transform of LBO
- Dual SDDP
- Converging upper bound and stopping test
- Inner Approximation
(5) Numerical results

Fenchel transform of LBO

Theorem

Assume that the pair (\mathcal{B}, R) satisfy the $R C R$ assumption, R being proper polyhedral, and \mathcal{B} compact (i.e. \mathcal{G} is compact valued with compact domain).

Then $\mathcal{B}(R)$ is a proper function and we have that

$$
[\mathcal{B}(R)]^{\star}=\mathcal{B}^{\ddagger}\left(R^{\star}\right)
$$

where \mathcal{B}^{\ddagger} is an explicitely given $L B O$.

Dual LBO

More precisely we have

$$
\begin{aligned}
\mathcal{B}^{\ddagger}(Q): \lambda \mapsto \inf _{\boldsymbol{\mu} \in \mathcal{L}^{0}\left(\mathbb{R}^{n}\right), \boldsymbol{\nu} \in \mathcal{L}^{0}\left(\mathbb{R}^{n_{c}}\right)} & \mathbb{E}\left[-\boldsymbol{\mu}^{\top} \boldsymbol{h}+Q(\boldsymbol{\nu})\right] \\
\text { s.t. } & T^{\top} \mathbb{E}[\boldsymbol{\mu}]+\lambda=0 \\
& \mathcal{W}_{u}^{\dagger}(\boldsymbol{\mu})=\boldsymbol{C} \\
& \mathcal{W}_{y}^{\dagger}(\boldsymbol{\mu})=\boldsymbol{\nu} \\
& \boldsymbol{\mu} \leq 0
\end{aligned}
$$

Contents

(1) Introduction

- Setting
- Duality and cuts
- Strength and weaknesses of SDDP
(2) Abstract SDDP
- Linear Bellman Operator
- Abstract SDDP
(3) Primal SDDP
- Primal Bellman operators
- Primal SDDP algorithm
(4) Dual SDDP
- Fenchel transform of LBO
- Dual SDDP
- Converging upper bound and stopping test
- Inner Approximation
(5) Numerical results

Recursion over dual value function

Denote $\mathcal{D}_{t}:=V_{t}^{\star}$.

Theorem

Then

$$
\begin{cases}\mathcal{D}_{T} & =K^{\star} \\ \mathcal{D}_{t} & =\mathcal{B}_{t, L_{t+1}}^{\ddagger}\left(\mathcal{D}_{t+1}\right) \quad \forall t \in \llbracket 0, T-1 \rrbracket\end{cases}
$$

where $\mathcal{B}_{t, L_{t+1}}^{\ddagger}:=\mathcal{B}_{t}^{\ddagger}+\mathbb{I}_{\left\|\lambda_{t+1}\right\|_{\infty} \leq L_{t+1}}$.
This is a Bellman recursion on \mathcal{D}_{t} instead of V_{t}.
Further, under easy technical assumptions, $\left\{\mathcal{B}_{t, L_{t+1}}^{\ddagger}\right\}_{t \in \llbracket 0, T \rrbracket}$ is a compatible sequence of LBOs, where V_{t} is L_{t}-Lipschitz.

What's different with Dual SDDP

- It's exactly the abstract SDDP algorithm applied to the dual Bellman Operator...
- except that we need a starting point, and some bounds on the dual variables.
- the main differences with primal SDDP:
- need to solve the coupled problem $\mathcal{T}_{t}^{\ddagger}\left(\mathcal{D}_{t+1}^{k}\right)\left(\lambda_{t}^{k}\right)$ in the forward pass, instead of a "one-realisation" (hat) version
- also need to solve the coupled problem in the Backward phase, instead of multiple "one-realisation" version that are averaged

What's different with Dual SDDP

- It's exactly the abstract SDDP algorithm applied to the dual Bellman Operator...
- except that we need a starting point, and some bounds on the dual variables.
- the main differences with primal SDDP:
- need to solve the coupled problem $\mathcal{T}_{t}^{\ddagger}\left(\mathcal{D}_{t-1}^{k}\right)\left(\lambda_{t}^{k}\right)$ in the forward pass, instead of a "one-realisation" (hat) version - also need to solve the coupled problem in the Backward phase, instead of multiple "one-realisation" version that are averaged

What's different with Dual SDDP

- It's exactly the abstract SDDP algorithm applied to the dual Bellman Operator...
- except that we need a starting point, and some bounds on the dual variables.
- the main differences with primal SDDP:
- need to solve the coupled problem $\mathcal{T}_{t}^{\ddagger}\left(\mathcal{D}_{t+1}^{k}\right)\left(\lambda_{t}^{k}\right)$ in the forward pass, instead of a "one-realisation" (hat) version
- also need to solve the coupled problem in the Backward phase, instead of multiple "one-realisation" version that are averaged

Data: Initial primal point x_{0}, Lipschitz bounds $\left\{L_{t}\right\}_{t \in \llbracket 0, T \rrbracket}$
$\underline{\mathcal{D}}_{t}^{(0)} \leftarrow-\infty$
for $k: 0,1, \ldots$ do
// Forward Pass : compute a set of trial points $\left\{\lambda_{t}^{(k)}\right\}_{t \in \llbracket 0, T \rrbracket}$
Select $\lambda_{0}^{k} \in \arg \max _{\left\|\lambda_{0}\right\|_{\infty} \leq L_{0}}\left\{x_{0}^{\top} \lambda_{0}-\underline{\mathcal{D}}_{0}^{k}\left(\lambda_{0}\right)\right\} \quad / /$ Fenchel transform for t : 0 to $T-1$ do

$$
\text { select } \lambda_{t+1}^{k} \in \arg \min \mathcal{T}_{t, L_{t+1}}^{\ddagger}\left(\mathcal{D}_{t+1}^{k}\right)\left(\lambda_{t}^{k}\right)
$$

and draw a realization λ_{t+1}^{k} of $\boldsymbol{\lambda}_{t+1}^{k}$
end for
// Backward Pass : refine the lower-approximations at the trial points $\underline{\mathcal{D}}_{T}^{k} \leftarrow K^{\star}$.
for $t: T-1$ to 0 do $\bar{\theta}_{t}^{k+1} \leftarrow \mathcal{T}_{t, L_{t+1}}^{\ddagger}\left(\mathcal{D}_{t+1}^{k+1}\right)\left(\lambda_{t}^{k}\right) \quad / /$ computing cut coefficients select $\bar{x}_{t}^{k+1} \in \partial \mathcal{T}_{t, L_{t+1}}^{\ddagger}\left(\mathcal{D}_{t+1}^{k+1}\right)\left(\lambda_{t}^{k}\right)$ $\bar{\beta}_{t}^{k+1} \leftarrow \bar{\theta}_{t}^{k+1}-\left\langle\lambda_{t}^{k}, \bar{x}_{t}^{k+1}\right\rangle$
Define $\mathcal{C}_{t}^{k+1}: \lambda \mapsto\left\langle\bar{x}_{t}^{k+1}, \lambda\right\rangle+\bar{\beta}_{t}^{k+1}$ $\underline{\mathcal{D}}_{t}^{k+1} \leftarrow \max \left\{\underline{\mathcal{D}}_{t}^{k}, \mathcal{C}_{t}^{k+1}\right\}$
// update lower approximation
end for
STOP if some stopping test is satisfied

Contents

(1) Introduction

- Setting
- Duality and cuts
- Strength and weaknesses of SDDP
(2) Abstract SDDP
- Linear Bellman Operator
- Abstract SDDP
(3) Primal SDDP
- Primal Bellman operators
- Primal SDDP algorithm
(4) Dual SDDP
- Fenchel transform of LBO
- Dual SDDP
- Converging upper bound and stopping test
- Inner Approximation
(5) Numerical results

Converging upper bound and stopping test

We have

$$
\underline{V}_{t}^{k} \leq V_{t}
$$

and

$$
\underline{\mathcal{D}}_{t}^{k} \leq \mathcal{D}_{t} \quad \Longrightarrow \quad \underbrace{\left(\mathcal{D}_{t}^{k}\right)^{\star}}_{: \approx \bar{V}_{t}^{k}} \geq\left(\mathcal{D}_{t}^{\star}\right)=V_{t}^{\star \star}=V_{t}
$$

Finally, we obtain

$$
\underline{V}_{0}\left(x_{0}\right) \leq V_{0}\left(x_{0}\right) \leq \bar{V}_{0}\left(x_{0}\right) .
$$

Using the convergence of the abstract SDDP algorithm we show that this bounds are converging, yielding converging deterministic stopping tests.

Link between primal and dual approximations

Contents

(1) Introduction

- Setting
- Duality and cuts
- Strength and weaknesses of SDDP
(2) Abstract SDDP
- Linear Bellman Operator
- Abstract SDDP
(3) Primal SDDP
- Primal Bellman operators
- Primal SDDP algorithm
(4) Dual SDDP
- Fenchel transform of LBO
- Dual SDDP
- Converging upper bound and stopping test
- Inner Approximation
(5) Numerical results

Inner Approximation

- $\bar{V}_{t}^{k}:=\left[\underline{\mathcal{D}}_{t}^{k}\right]^{\star}$ which is lower than V_{t} on X_{t}
- Or

$$
\bar{V}_{t}^{k}(x)=\min _{\sigma \in \Delta}\left\{-\sum_{\kappa=1}^{k} \sigma_{\kappa} \bar{\beta}_{t}^{\kappa} \mid \sum_{\kappa=1}^{k} \sigma_{\kappa} \bar{x}_{t}^{\kappa}=x\right\}
$$

- The inner approximation can be computed by solving

$$
\begin{aligned}
\bar{V}_{t}^{k+1}(x)=\sup _{\lambda, \theta} & x^{\top} \lambda-\theta \\
\text { s.t. } & \theta \geq\left\langle\underline{x}_{t}^{i}, \lambda\right\rangle+\bar{\beta}_{t}^{\kappa} \quad \forall \kappa \in \llbracket 1, k \rrbracket
\end{aligned}
$$

Inner Approximation - regularized

- $\bar{V}_{t}^{k}:=\left[\underline{\underline{\mathcal{D}}}_{t}^{k}\right]^{\star} \square\left(L_{t}\|\cdot\|_{1}\right)$ which is lower than V_{t} on X_{t}
- Or

$$
\bar{V}_{t}^{k}(x)=\min _{y \in \mathbb{R}^{n} x, \sigma \in \Delta}\left\{L_{t}\|x-y\|_{1}-\sum_{\kappa=1}^{k} \sigma_{\kappa} \bar{\beta}_{t}^{\kappa} \mid \sum_{\kappa=1}^{k} \sigma_{\kappa} \bar{x}_{t}^{\kappa}=y\right\}
$$

- The inner approximation can be computed by solving

$$
\begin{aligned}
\bar{V}_{t}^{k+1}(x)=\sup _{\lambda, \theta} & x^{\top} \lambda-\theta \\
\text { s.t. } & \theta \geq\left\langle\underline{x}_{t}^{i}, \lambda\right\rangle+\bar{\beta}_{t}^{\kappa} \quad \forall \kappa \in \llbracket 1, k \rrbracket \\
& \|\lambda\|_{\infty} \leq L_{t}
\end{aligned}
$$

A converging strategy - with guaranteed payoff

Theorem

Let $C_{t}^{I A, k}(x)$ be the expected cost of the strategy $\pi^{V_{t}^{k}}$ when starting from state x at time t.
We have,

$$
C_{t}^{I A, k}(x) \leq \bar{V}_{t}^{k}(x) \quad \lim _{k} C_{t}^{I A, k}(x)=V_{t}(x)
$$

Thus, the inner-approximation yields a new converging strategy, and we have an upper-bound on the (expected) value of this strategy.

Numerical results

Stopping test

	Dual stopping test		Statistical stopping test	
$\varepsilon(\%)$	n it.	CPU time	n it.	CPU time
2.0	156	183 s	250	618 s
1.0	236	400 s	300	787 s
0.5	388	1116 s	450	1429 s
0.1	>1000	.	1000	5519 s

Table: Comparing dual and statistical stopping criteria for different accuracy levels ε.

Conclusion

- We extend the SDDP algorithm to an abstract framework.
- Leveraging Fenchel conjugate we are able to show a dynamic recursion between dual Bellman value functions.
- Me can apply SDDP to this dual recursion
- This yields a converging exact upper bound on the value of the original problem, hence giving exact and converging stopping tests.
- This also yields a converging strategy with guaranteed payoff

More information: http://www.optimization-online.org/ DB_FILE/2018/04/6575.pdf

Conclusion

- We extend the SDDP algorithm to an abstract framework.
- Leveraging Fenchel conjugate we are able to show a dynamic recursion between dual Bellman value functions.
- We can apply SDDP to this dual recursion.
- This yields a converging exact upper bound on the value of the original problem, hence giving exact and converging stopping tests.
- This also yields a converging strategy with guaranteed payoff

More information : http://www.optimization-online.org/ DB_FILE/2018/04/6575.pdf

Conclusion

- We extend the SDDP algorithm to an abstract framework.
- Leveraging Fenchel conjugate we are able to show a dynamic recursion between dual Bellman value functions.
- We can apply SDDP to this dual recursion.
- This yields a converging exact upper bound on the value of the original problem, hence giving exact and converging stopping tests.
- This also yields a converging strategy with guaranteed payoff

More information: http://www.optimization-online.org/ DB_FILE/2018/04/6575.pdf

Conclusion

- We extend the SDDP algorithm to an abstract framework.
- Leveraging Fenchel conjugate we are able to show a dynamic recursion between dual Bellman value functions.
- We can apply SDDP to this dual recursion.
- This yields a converging exact upper bound on the value of the original problem, hence giving exact and converging stopping tests.
- This also yields a converging strategy with guaranteed payoff.

More information: http://www.optimization-online.org/ DB_FILE/2018/04/6575.pdf

Conclusion

- We extend the SDDP algorithm to an abstract framework.
- Leveraging Fenchel conjugate we are able to show a dynamic recursion between dual Bellman value functions.
- We can apply SDDP to this dual recursion.
- This yields a converging exact upper bound on the value of the original problem, hence giving exact and converging stopping tests.
- This also yields a converging strategy with guaranteed payoff.

More information : http://www.optimization-online.org/ DB_FILE/2018/04/6575.pdf

Implementation

- We developp an open-source software in the recent, fast and efficient julia language
- You can test Julia through www.juliabox.com
- This software focus on solving stochastic dynamic problem through dynamic programming and SDDP
- You can install the package in Julia simply by typing
Pkg.add("StochDynamicProgramming")
in your Julia console
- You can test the dual version through https://github.com/frapac/DualSDDP.jl

Bibliography

嘈
Mario VF Pereira and Leontina MVG Pinto．
Multi－stage stochastic optimization applied to energy planning．
Mathematical programming，52（1－3）：359－375， 1991.

宣
Tito Homem－de Mello，Vitor L De Matos，and Erlon C Finardi．
Sampling strategies and stopping criteria for stochastic dual dynamic programming：a case study in long－term hydrothermal scheduling．
Energy Systems，2（1）：1－31， 2011.
國 Andrew Philpott，Vitor de Matos，and Erlon Finardi．
On solving multistage stochastic programs with coherent risk measures．
Operations Research，61（4）：957－970， 2013.
家
Alexander Shapiro．
Analysis of stochastic dual dynamic programming method．
European Journal of Operational Research，209（1）：63－72， 2011.
目
Pierre Girardeau，Vincent Leclere，and Andrew B Philpott．
On the convergence of decomposition methods for multistage stochastic convex programs．
Mathematics of Operations Research，40（1）：130－145， 2014.

Bibliography

Regan Baucke, Anthony Downward, and Golbon Zakeri.
A deterministic algorithm for solving multistage stochastic programming problems.
Optimization Online, 2017.Vincent Guigues.
Dual dynamic programing with cut selection: Convergence proof and numerical experiments.

```
European Journal of Operational Research, 258(1):47-57, }2017
```


Wim Van Ackooij, Welington de Oliveira, and Yongjia Song.
On regularization with normal solutions in decomposition methods for multistage stochastic programming.
Optimization Online, 2017.

