Nodal decomposition of stochastic Bellman functions

Application to the decentralized management of urban microgrids

P. Carpentier — J.P. Chancelier — M. De Lara — <u>F. Pacaud</u>

SESO 2018

ENSTA ParisTech — ENPC ParisTech — Efficacity

Motivation

We consider a *peer-to-peer* community, where different buildings exchange energy

- Decision centers at nodes
- Power flows through edges
- Multistage decisions
- Large-scale problem

Problem statement

Price and resource decomposition algorithms

Application to the management of microgrids

Problem statement

Modeling energy exchanges between nodes

Grid is represented by a graph $G = (\mathcal{N}, \mathcal{A})$

Let $\mathcal{T} \in \mathbb{N}^{\star}$ be a horizon and

- **Q**^{*a*}_{*t*} energy exchanged through arc *a*,
- \mathbf{F}_t^i energy imported at node *i*

At each time $t \in [0, T - 1]$ we consider a coupling between the nodal subproblems

$$\mathsf{F}_t^i = \sum_{a \in input(i)} \mathsf{Q}_t^a - \sum_{b \in output(i)} \mathsf{Q}_t^b$$

At each node i of the grid, at each time t, we have

- Xⁱ_t ∈ Xⁱ_t: state variable (battery, hot water tank)
- Uⁱ_t ∈ Uⁱ_t: control variable (energy production)
- Wⁱ_t ∈ Wⁱ_t: noise (consumption, renewable)

Electrical and thermal demands are uncertain

These scenarios are generated with StRoBE, a generator open-sourced by KU-Leuven $_{6/24}$

Writing down the nodal production problem

We aim at minimizing the operational costs over the nodes $i \in \llbracket 1, N \rrbracket$

$$J_{P}^{i}(\mathbf{F}^{i}) = \min_{\mathbf{X}^{i}, \mathbf{U}^{i}} \mathbb{E}\Big[\sum_{t=0}^{T-1} \underbrace{\mathcal{L}_{t}^{i}(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}^{i})}_{\text{operational cost}} + \mathcal{K}^{i}(\mathbf{X}_{T}^{i})\Big]$$

subject to, for all $t \in \llbracket 0, T - 1 \rrbracket$

i) The nodal dynamics constraint

(for battery and hot water tank)

$$\mathbf{X}_{t+1}^i = f_t^i(\mathbf{X}_t^i, \mathbf{U}_t^i, \mathbf{W}_{t+1}^i)$$

- ii) The non-anticipativity constraint (future remains unknown) $\sigma(\mathbf{U}_t^i) \subset \sigma(\mathbf{W}_0^i, \cdots, \mathbf{W}_t^i)$
- iii) The load balance equation (production + import = demand)

$$\Delta_t^i(\mathbf{X}_t^i, \mathbf{U}_t^i, \mathbf{F}_t^i, \mathbf{W}_{t+1}^i) = 0$$

Transportation costs are decoupled in time

At each time step $t \in [\![0, T-1]\!]$, we define the transport cost as the sum of the costs of flows \mathbf{Q}_t^a through the arcs *a* of the grid

$$J_{\mathcal{T},t}(\mathbf{Q}_t) = \mathbb{E}\Big(\sum_{a \in \mathcal{A}} I_t^a(\mathbf{Q}_t^a)\Big)$$

where the $l_t^{a'}$ s are easy to compute functions (say quadratic)

Kirchhoff's law

The balance equation stating the conservation between \mathbf{Q}_t and \mathbf{F}_t rewrites in a compact manner

$$A\mathbf{Q}_t + \mathbf{F}_t = 0$$

where A is the node-arc incidence matrix of the grid.

The production cost J_P aggregates the costs at all nodes i

$$J_P(\mathbf{F}) = \sum_{i \in \mathcal{N}} J_P^i(\mathbf{F}^i)$$

and the transport cost J_T aggregates the edges costs at all time t

$$J_{\mathcal{T}}(\mathbf{Q}) = \sum_{t=0}^{T-1} J_{T,t}(\mathbf{Q}_t)$$

The compact production transport problem formulation writes

 $V^{\sharp} = \min_{\mathbf{F}, \mathbf{Q}} J_{P}(\mathbf{F}) + J_{T}(\mathbf{Q})$ s.t. $A\mathbf{Q} + \mathbf{F} = 0$

What do we plan to do?

- We have formulated a stochastic optimization problem
- We will handle the coupling constraints by two methods:
 - Price decomposition
 - Resource decomposition
- We will show the scalability of decomposition algorithms! (We solve problem gathering up to 48 buildings)

Assumption

 $J_P(\cdot)$ and $J_T(\cdot)$ are differentiables and strongly-convex w.r.t. **F** and **Q**

Price and resource decomposition algorithms

Price decomposition formulates as a capitalistic world

Three levels of hierarchy

- 1. The *boss* fixes the price λ so as to optimize global cost
- 2. The *nodal managers* manage buildings to decrease local costs
- 3. The *workers* compute locally nodal value functions for each building

The boss basically just listens to the global oracle

• The boss aims to find the optimal deterministic price λ

$$\max_{\boldsymbol{\lambda}} \ \underline{V}(\boldsymbol{\lambda}) := \min_{\boldsymbol{\mathsf{F}}, \boldsymbol{\mathsf{Q}}} J_{\mathcal{P}}(\boldsymbol{\mathsf{F}}) + J_{\mathcal{T}}(\boldsymbol{\mathsf{Q}}) + \left\langle \boldsymbol{\lambda} \ , A\boldsymbol{\mathsf{Q}} + \boldsymbol{\mathsf{F}} \right\rangle$$

• Let $\lambda^{(k)}$ be a given price The boss decomposes the global function $\underline{V}(\lambda^{(k)})$ w.r.t. nodes and arcs

 Once subproblems solved by each nodal managers, she updates the price with the oracle ∇V(λ^(k))

$$\boldsymbol{\lambda}^{(k+1)} = \boldsymbol{\lambda}^{(k)} + \rho \nabla \underline{V}(\boldsymbol{\lambda}^{(k)})$$

Managing buildings in each node

At each building $i \in \llbracket 1, N \rrbracket$, the nodal manager

• Receives a deterministic price λ^i from the boss and build the nodal problem $\underline{V}^i(\lambda^i) = \min_{\mathbf{r}^i} J^i_P(\mathbf{F}^i) + \langle \lambda^i, \mathbf{F}^i \rangle$

which rewrites as a Stochastic Optimal Control problem

$$\underline{V}^{i}(\lambda^{i}) = \min_{\mathbf{X}^{i}, \mathbf{U}^{i}, \mathbf{F}^{i}} \mathbb{E} \left[\sum_{t=0}^{T-1} L_{t}^{i}(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}^{i}) + \langle \lambda_{t}^{i}, \mathbf{F}_{t}^{i} \rangle + \mathcal{K}^{i}(\mathbf{X}_{T}^{i}) \right]$$

s.t. $\mathbf{X}_{t+1}^{i} = f_{t}^{i}(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{W}_{t+1}^{i})$
 $\sigma(\mathbf{U}_{t}^{i}) \subset \sigma(\mathbf{W}_{0}^{i}, \cdots, \mathbf{W}_{t}^{i})$
 $\Delta_{t}^{i}(\mathbf{X}_{t}^{i}, \mathbf{U}_{t}^{i}, \mathbf{F}_{t}^{i}) = 0$

- Solves \underline{V}^i by Dynamic Programming
- Estimates by Monte Carlo the local gradient with the optimal flow (Fⁱ)[♯] = (Fⁱ₀, · · · , Fⁱ_{T−1})[♯]

$$abla \underline{V}^i(\boldsymbol{\lambda}^i) = \mathbb{E}[(\mathbf{F}^i)^{\sharp}] \in \mathbb{R}^7$$

Workers compute value functions on the assembly line

The price process is deterministic $\lambda = (\lambda_0, \dots, \lambda_{T-1})$. So

- We are able to compute value functions $\{\underline{V}_t^i\}$ by backward recursion
- Each worker has to solve the one-step DP problem

$$\underline{V}_t^i(x_t^i) = \min_{u_t^i, f_t^i} \mathbb{E} \left[L_t(x_t^i, u_t^i, \mathbf{W}_{t+1}^i) + \left\langle \lambda_t^i, f_t^i \right\rangle + \underline{V}_{t+1}^i(f_t^i(x_t^i, u_t^i, \mathbf{W}_{t+1}^i)) \right]$$

• DP one-step problems formulate as LP or QP problems!

How about resource allocation?

- Same idea, but in a communistic world!
- We fix allocations R rather than prices λ and solve

$$\min_{\mathbf{R}} \overline{V}(\mathbf{R}) := \overline{V}_{P}(\mathbf{R}) + \overline{V}_{T}(\mathbf{R})$$

with

$$\overline{V}_{P}(\mathbf{R}) = \min_{\mathbf{F}} J_{P}(\mathbf{F}) \qquad \overline{V}_{T}(\mathbf{R}) = \min_{\mathbf{Q}} J_{T}(\mathbf{Q})$$

s.t. $\mathbf{F} - \mathbf{R} = 0$ s.t. $A\mathbf{Q} + \mathbf{R} = 0$

• We must ensure that $\mathbf{R}_t \in im(A)$, that is

$$\mathbf{R}_t^1 + \cdots + \mathbf{R}_t^N = \mathbf{0}$$

• The update step becomes

$$\mathbf{R}^{(k+1)} = \mathbf{R}^{(k)} - \rho \nabla \overline{V}(\mathbf{R}^{(k)})$$

Theorem

• For all multipliers
$$oldsymbol{\lambda} = (oldsymbol{\lambda}_0, \cdots, oldsymbol{\lambda}_{T-1})$$

• For all allocations $\mathbf{R} = (\mathbf{R}_0, \cdots, \mathbf{R}_{T-1})$ such that

 $\mathbf{R}_t^1 + \dots + \mathbf{R}_t^N = 0$

we have

 $\underline{V}(oldsymbol{\lambda}) \leq V^{\sharp} \leq \overline{V}(\mathsf{R})$

Application to the management of microgrids

• One day horizon at 15mn time step: T = 96

• Weather corresponds to a sunny day in Paris (June 28th, 2015)

- We mix three kind of buildings
 - 1. Battery + Electrical Hot Water Tank
 - 2. Solar Panel + Electrical Hot Water Tank
 - 3. Electrical Hot Water Tank

and suppose that all consumers are commoners sharing their devices

We consider different configurations

Algorithms inventory

Nodal decomposition

- Encompass price and resource decomposition
- Resolution by Quasi-Newton (BFGS) gradient descent

 $\boldsymbol{\lambda}^{(k+1)} = \boldsymbol{\lambda}^{(k)} + \rho^{(k)} \boldsymbol{W}^{(k)} \nabla \underline{\boldsymbol{V}}(\boldsymbol{\lambda}^{(k)})$

- BFGS iterates till no descent direction is found
- Each nodal subproblem solved by SDDP (quickly converge)
- Oracle $\nabla \underline{V}(\boldsymbol{\lambda})$ estimated by Monte Carlo ($N^{scen} = 1,000$)

SDDP

We use as a reference the good old SDDP algorithms

- Noises W¹_t,..., W^N_t are independent node by node (total support size is |supp(Wⁱ_t)|^N.) Need to resample the noise!
- Level-one cut selection algorithm
- Converged once gap between UB and LB is lower than 1%

Each level of hierarchy has its own algorithm

L-BFGS (IPOPT)

SDDP (StochDynamicProgramming)

QP (Gurobi)

All glue code is implemented in Julia 0.6 with JuMP

Results

Graph	3-Nodes	6-Nodes	12-Nodes	24-Nodes	48-Nodes
SDDP time	1'	3'	10'	79'	453'
SDDP LB	2.252	4.559	8.897	17.528	33.103
SDDP value	2.26 ± 0.006	4.71 ± 0.008	9.36 ± 0.011	18.59 ± 0.016	35.50 ± 0.023
Price time	6'	14'	29'	41'	128'
Price LB	2.137	4.473	8.967	17.870	33.964
Price value	2.28 ± 0.006	4.64 ± 0.008	9.23 ± 0.012	18.39 ± 0.016	34.90 ± 0.023
Resource time	13'	15'	36'	64'	
Resource UB	2.539	5.273	10.537	21.054	
Resource value	2.29 ± 0.006	4.71 ± 0.008	9.31 ± 0.011	18.56 ± 0.016	

Graph	3-Nodes	6-Nodes	12-Nodes	24-Nodes	48-Nodes
SDDP time	1'	3'	10'	79'	453'
SDDP LB	2.252	4.559	8.897	17.528	33.103
SDDP value	2.26 ± 0.006	4.71 ± 0.008	9.36 ± 0.011	18.59 ± 0.016	35.50 ± 0.023
Price time	6'	14'	29'	41'	128'
Price LB	2.137	4.473	8.967	17.870	33.964
Price value	2.28 ± 0.006	4.64 ± 0.008	9.23 ± 0.012	18.39 ± 0.016	34.90 ± 0.023
Resource time	13'	15'	36'	64'	
Resource UB	2.539	5.273	10.537	21.054	
Resource value	2.29 ± 0.006	4.71 ± 0.008	9.31 ± 0.011	18.56 ± 0.016	

 For large problems (N ≥ 12), Price Decomposition yields a better lower bound than SDDP (the larger the better)

Graph	3-Nodes	6-Nodes	12-Nodes	24-Nodes	48-Nodes
SDDP time	1'	3'	10'	79'	453'
SDDP LB	2.252	4.559	8.897	17.528	33.103
SDDP value	2.26 ± 0.006	4.71 ± 0.008	9.36 ± 0.011	18.59 ± 0.016	35.50 ± 0.023
Price time	6'	14'	29'	41'	128'
Price LB	2.137	4.473	8.967	17.870	33.964
Price value	2.28 ± 0.006	4.64 ± 0.008	9.23 ± 0.012	18.39 ± 0.016	34.90 ± 0.023
Resource time	13'	15'	36'	64'	
Resource UB	2.539	5.273	10.537	21.054	
Resource value	2.29 ± 0.006	4.71 ± 0.008	9.31 ± 0.011	18.56 ± 0.016	

- For large problems (N ≥ 12), Price Decomposition yields a better lower bound than SDDP (the larger the better)
- The upper bound is further from optimal than the lower bound

Graph	3-Nodes	6-Nodes	12-Nodes	24-Nodes	48-Nodes
SDDP time	1'	3'	10'	79'	453'
SDDP LB	2.252	4.559	8.897	17.528	33.103
SDDP value	2.26 ± 0.006	4.71 ± 0.008	9.36 ± 0.011	18.59 ± 0.016	35.50 ± 0.023
Price time	6'	14'	29'	41'	128'
Price LB	2.137	4.473	8.967	17.870	33.964
Price value	2.28 ± 0.006	4.64 ± 0.008	9.23 ± 0.012	18.39 ± 0.016	34.90 ± 0.023
Resource time	13'	15'	36'	64'	
Resource UB	2.539	5.273	10.537	21.054	
Resource value	2.29 ± 0.006	4.71 ± 0.008	9.31 ± 0.011	18.56 ± 0.016	

- For large problems (N ≥ 12), Price Decomposition yields a better lower bound than SDDP (the larger the better)
- The upper bound is further from optimal than the lower bound
- For the biggest instance, Price Decomposition is 3.5x as fast as SDDP

Hunting down the duck curve

Looking at the average global electricity import from EDF

22/24

Do the nodal units manage well their buildings?

- Node 1: 3kWh Battery
- Node 2: nothing
- Node 3: 16m² of solar panels

Looking at Node 3

- During day, Node 3
 - Produces energy with its solar panels
 - Exports energy to other nodes (F₃ < 0)
 - Has lowest marginal price λ_3
- During evening, Node 3
 - Imports energy from Node 1 (who has battery)
 - Has larger marginal price than Node 1

 $\lambda_1 < \lambda_3$

Conclusion

• We design an algorithm that decompose spatially and temporally, in a decentralized manner

• Beat SDDP for large instances (\geq 24 nodes)

• Can we obtain tighter bounds? If we select properly the stochastic processes R and λ , we can obtain nodal value functions but with an extended local state