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Airline operations problems

Schedule planning

Select flight legs operated

Legs operated

Fleet assignment

Choose fleet covering each leg

Legs operated by a fleet

Aircraft routing

Choose Aircraft rotations

Airplane rotations

Crew pairing

Choose Crew rotations

`1 Paris 10:15 – New York

`2 Paris 10:25 – Montreal

`1 A380

`2 A330

Rotation = sequence of flight legs
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Aircraft Routing and Crew Pairing problems

Aircraft Routing Problem

Flight v ∈ V
Aircraft Connection

Feasible routes r ∈ R

min
∑
r∈R

crxr

s.t.

∣∣∣∣∣∣
∑
r3v

xr = 1 ∀v ∈ V

xr ∈ {0, 1} ∀r ∈ R

Crew Pairing Problem

Flight v ∈ V
Crew Connection

Feasible pairings p ∈ P

min
∑
p∈P

cpyp

s.t.

∣∣∣∣∣∣
∑
p3v

yp = 1 ∀v ∈ V

yp ∈ {0, 1} ∀p ∈ P
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Delay Propagation

New York Paris

Each flight must be operated by an airplane and a crew

Delay propagation model

ξ` = max(ξ`1 − w1, ξ`2 − w2, 0) + ξint`

plane `1

crew `2

`

t

w1

w2

Probabilistic constraints on delay propagation

P(ξ` > τ) ≤ α for all `
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Part content

1. Column generation for rotation problems
1.1 General method
1.2 What delay changes

2. An algebraic path problem framework

3. Stochastic paths problems and delay in rotation problems
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Column generation for rotation problems

depot
start

depot
end

v1

v2
v3

v4

v5

v6

v7

v8

time

min
∑
P∈P

cPxP∑
P3v

xP = 1 ∀v

xP ∈ {0, 1}

I Path cost not linear in arc costs

I Path must satisfy constraints

Constraint example

Limited number of arcs in P
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Column generation primer

Restricted master problem P ′ ⊂ P, with |P ′| � |P|
min
x

∑
P∈P

cPxP

st
∑
P3v

xv = 1 ∀` ∈ L

xP ≥ 0

Restricted dual problem

max
∑
v∈V

yv

s.t.
∑
v∈P

yv ≤ cP ∀P ∈ P ′

Pricing subproblem

min
P∈P

cP −
∑
v∈P

yP

P

P ∈ P\P ′

Algorithm:

I solve on P ′
I solve pricing

subproblem

I add violated
dual constraint
to P ′

Key element in the performance: pricing subproblem algorithm

Axel Parmentier Optimizing crew rotations for an airline May 24th, 2018 7 / 32



Column generation primer

Restricted master problem P ′ ⊂ P, with |P ′| � |P|
min
x

∑
P∈P

cPxP

st
∑
P3v

xv = 1 ∀` ∈ L

xP ≥ 0

Restricted dual problem

max
∑
v∈V

yv

s.t.
∑
v∈P

yv ≤ cP ∀P ∈ P ′

Pricing subproblem

min
P∈P

cP −
∑
v∈P

yP

P

P ∈ P\P ′

Algorithm:

I solve on P ′
I solve pricing

subproblem

I add violated
dual constraint
to P ′

Key element in the performance: pricing subproblem algorithm

Axel Parmentier Optimizing crew rotations for an airline May 24th, 2018 7 / 32



Column generation primer

Restricted master problem P ′ ⊂ P, with |P ′| � |P|
min
x

∑
P∈P

cPxP

st
∑
P3v

xv = 1 ∀` ∈ L

xP ≥ 0

Restricted dual problem

max
∑
v∈V

yv

s.t.
∑
v∈P

yv ≤ cP ∀P ∈ P ′

Pricing subproblem

min
P∈P

cP −
∑
v∈P

yP

P

P ∈ P\P ′

Algorithm:

I solve on P ′
I solve pricing

subproblem

I add violated
dual constraint
to P ′

Key element in the performance: pricing subproblem algorithm

Axel Parmentier Optimizing crew rotations for an airline May 24th, 2018 7 / 32



Resource constrained shortest path algorithm

min
P∈P

cP −
∑
v∈P

yP

depot
start

depot
end

v1

v2
v3

v4

v5

v6

v7

v8

time

Pricing subproblem is a resource constrained shortest path algorithm
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What a good pricing algorithms changes – Airline crew pairing

Instance |V | Alg RCSP time
av (mm:ss)

Pricing
time

Total time
(hh:mm:ss)

CP50 290 LS 00:00.560 97.55% 00:04:37.5
LC 00:01.275 97.38% 00:11:36.9

Our A∗ 00:00.016 59.87% 00:00:17.2
CP70 408 LS 00:11.489 99.52% 05:07:05.0

LC 00:17.157 99.56% 07:28:22.2
Our A∗ 00:00.039 58.48% 00:01:12.1

CP90 516 LS 00:40.707 Stopped after 48h
LC 01:42.864 Stopped after 48h

Our A∗ 00:00.340 81.86% 00:12:36.3
A318 669 LS 00:53.009 Stopped after 48h

LC 01:36.035 Stopped after 48h
Our A∗ 00:01.651 86.97% 01:32:49.6
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What delay changes for aircraft routing or crew pairing

Considering only aircraft or crews

ξ` = max(ξ`2 − w2, 0) + ξint`

Delay is a pairing property: dealt with in
the subproblem: a stochastic resource
constrained shortest path problem

crew `2 `w2

Monotonicity of · 7→
max(·, 0) enables to
use our framework

depot
start

depot
end

v1

v2
v3

v4

v5

v6

v7

v8

time

min
∑
P∈P

cPxP∑
P3v

xP = 1 ∀v

P(ξv > τ) ≤ α ∀v ∈ V

xP ∈ {0, 1}
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Delay links aircraft routing and crew pairing

Delay propagation model

ξ` = max(ξ`1 − w1, ξ`2 − w2, 0) + ξint`

plane `1

crew `2

`

t

w1

w2

When considering airplane and crews delay, we cannot hide delay anymore
in the set of rotations P.
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Practice and trends in airlines

Sequential resolution

Two solution schemes

Aircraft Routing

Column generation

Master problem

Solve LP on R′ ⊆ R

cost rot.

Pricing subproblem

Update R′ (path pb)

Short connect.

used

Crew Pairing

Column generation

Master problem

Solve LP on P ′ ⊆ P

cost rot.

Pricing subproblem

Update P ′ (path pb)

I Feasible solutions of the Crew Pairing depend on the solutions of the
Aircraft Routing: sequential resolution is not optimal
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Part content

1. Column generation for rotation problems

2. An algebraic path problem framework
2.1 Computing bounds

3. Stochastic paths problems and delay in rotation problems
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Usual shortest path problem

Input:

I Digraph D = (V ,A)

I Origin o

I Destination d

I Cost ca ∈ R for all a ∈ A

Output :

I An o-d path P minimizing

cP =
∑
a∈P

ca

o d
ca1 ca2 ca3

Ford-Bellman

Polynomial (ccyc. ≥ 0)
Dyn. Programming

Dijkstra

Polynomial
ca ≥ 0

A∗

Non polynomial
Branch & Bound
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Generalize the shortest path problem

A framework that enables to model

I many constraints,∑
a∈P

qia ≤ Q i , for i ∈ [n],

I non linear cost / constraints,

qP 6=
∑
a∈P

qa

∣∣∣∣ Cost c(qP),
Constraint ρ(qP) = 0,

I stochastic cost / constraints,

minE (c(ξP)) / P(ξP ≤ M) ≤ ε.

Constrained Shortest Path Problem : NP-complete.

q : resource

o

d

qa1

qa2

qa3

Ford-Bellman

Polynomial
⇒ bounds

Dijkstra

Polynomial
⇒ bounds

A∗

Non polynomial
⇒ solve

Label cor.

Non polynomial
⇒ solve
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Ordered sets and lattices

Definition: lattice

A partially ordered set (R,�) is a lattice if any pair (q, q̃) admits:

A greatest lower bound or
meet denoted q ∧ q̃

b � q
b � q̃

}
⇔ b � q ∧ q̃

q q̃

q ∨ q̃

q ∧ q̃

A least upper bound or join
denoted q ∨ q̃

b � q
b � q̃

}
⇔ b � q ∧ q̃

Ex: Natural numbers

(N, |)
I q ∧ q̃ = GCD(q, q̃)

I q ∨ q̃ = LCM(q, q̃)

Ex: Paris – Toulouse by car

(R2,≤) with the product order

q = (d , t) = (distance, time)

I q ∧ q̃ =
(

min(d , d̃),min(t, t̃)
)

I q ∨ q̃ =
(

max(d , d̃),max(t, t̃)
)
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Shortest Path in an ordered monoid

Arc resources qa in a lattice ordered
monoid (R,⊕,6)

I Associative ⊕: path resources

q1 q2 q3

qP = q1 ⊕ q2 ⊕ q3

I Neutral element 0: empty path

I An order 6 compatible with ⊕ :

o dv
P b 6 qP̃

b 6 qP̃ ⇒ qP⊕b 6 qP⊕qP̃ = qP+P̃

(R,⊕,6) is a lattice ordered
monoid if

(R,⊕) is a monoid:

I ⊕ is associative,

I ⊕ has a neutral element 0

6 is compatible with ⊕:

q 6 q̃ ⇒
{

r ⊕ q 6 r ⊕ q̃
q ⊕ r 6 q̃ ⊕ r

(R,6) is a lattice

Ex: Paris - Toulouse by car

q ⊕ q̃ = (d , t)⊕ (d̃ , t̃) = (d + d̃ , t + t̃)
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Shortest path with resources in an ordered monoid

Given a lattice ordered monoid (R,⊕,6)
Input:

I Digraph D = (V ,A)

I Two vertices o, d ∈ V

I Resources qa ∈ R
I Two non-decreasing oracles

c : R → R
ρ : R → {0, 1}

Output:

I An o-d path P such that

ρ
(⊕

a∈P qa
)

= 0

which minimizes

c
(⊕

a∈P qa
)

Ex: Paris-Toulouse by car

I q = (d , t)

I Cost: c(q) = λ1d + λ2t

I On time arrival:
ρ(q) = 1(τ,+∞)(t)

qP = q1 ⊕ q2 ρ(qP) = 0

o d
q1 q2
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Example: Crew Pairing Pricing Subproblem

Find a pairing p of minimum reduced cost.

I p is an o-d path in the connection
graph

Night rest

o d

I max. 4 legs per day.

I max. 3 legs if previous rest is reduced.

(`t , `d , “p”)⊕ (˜̀t , ˜̀d , ν̃) =
∞ if `d > 4

(`t + ˜̀t , ˜̀d , “p”) if ν = “n”

(`t + ˜̀t , `d + ˜̀d , “p”) otherwise

q = (`t , `d , ν)

`t : total nb legs
`d : daily nb legs

ν =

{
“n” if rest
“p” otherwise

Arc `da =

{
2 if reduced rest
1 otherwise

c(q) = max(c0, λ`
t)

ρ(q) = 1(4,+∞)(`
d)

(`t , `d , “p”) 6 (˜̀t , ˜̀d , “p”) if

`t ≤ ˜̀t and `d ≤ ˜̀d
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Usual A∗ algorithm

o

v

d

P ≤ bv

≥ CUB
od

P̃
I qP ∈ R

I CUB
od ≥ min

P∈Po,d

qP

I bv ≤ qP , ∀P ∈ Pvd

A path P ∈ Pov satisfying qP + bv > CUB
od is not the subpath of an

optimal path.

I Generate all the paths satisfying

qP + bv ≤ CUB
od

I Update CUB
od
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Generalized A∗ algorithm

o

v

d

P � bv

≥ CUB
od

P̃
I qP ∈ R

I CUB
od ≥ min

P|ρ(P)=0
c(qP)

I bv � qP̃ , ∀P̃ ∈ Pvd

A path P ∈ Pov satisfying c(qP ⊕ bv ) > CUB
od or ρ(qP ⊕ bv ) = 1 is not

the subpath of an optimal path.

Generalized A∗ Algorithm: a Branch & Bound

I Generate all the paths satisfying

c(qP ⊕ bv ) ≤ CUB
od and ρ(qP ⊕ bv ) = 0 (Low)

I Update CUB
od
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Generalized A∗ algorithm (2/2)

Initially: L← empty path in o

o d
CUB
od =∞

While L is not empty:

I extract min
P∈L

c (qP ⊕ bv )

o dv
P qP̃ > bv

I If (Low) is satisfied,

{
ρ(qP ⊕ bv ) = 0
c(qP ⊕ bv ) < CUB

od

o d
P

CUB
od ← c(qP)

o v
P

extend P

L: list of paths to be
considered
CUB
od : upper bound

on optimal solution
cost

Preprocessing: bv
lower bound on v -d
paths resources

Key: c(qP ⊕ bv )
Test: (Low)
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Generalized A∗ algorithm

Theorem

Under general assumptions (corresponding to the absence of negative cy-
cles), A∗ converges after a finite number of iterations and

I if CUB
od =∞, then there is no feasible o-d paths,

I otherwise, CUB
od is the cost of an optimal solution.

Instance |V | Alg RCSP iter
av. nb.

Cut
Dom.

RCSP time
av (mm:ss)

CP50 290 LS 1.020e+04 – 00:00.560
LC 1.308e+04 – 00:01.275

Our A∗ 4.914e+02 4.01% 00:00.016
CP70 408 LS 5.644e+04 – 00:11.489

LC 7.730e+04 – 00:17.157
Our A∗ 1.994e+03 4.28% 00:00.039

CP90 516 LS 9.779e+04 – 00:40.707
LC 2.007e+05 – 01:42.864

Our A∗ 9.966e+03 5.88% 00:00.340
A318 669 LS 1.319e+05 – 00:53.009

LC 3.802e+05 – 01:36.035
Our A∗ 2.549e+04 3.72% 00:01.651
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Ford-Bellman algorithm for usual shortest path problem

Minimum costs bv of v -d paths satisfy the dynamic programming equation:


bd = 0,

bv 6=d = min

(
bv , min

u∈N+(v)

(
q(v ,u) + bu

)) bv

b0

b1

b2

q(v,u0)

q(v,u1)

q(v,u2)

(bv ) is a fixed point of:

F : (bv )v 7→ (b′v )v s.t.:


b′d = 0

b′v 6=d = min

(
bv , min

u∈N+(v)

(
q(v ,u) + bu

))
Usual Ford-Bellman algorithm

(bkv ) = F k(∞) is the cost of a shortest v -d path with at most k arcs.

If there is no cycles of negative costs, (bv ) = F n(∞) satisfies the dynamic
programming equation. n = |V |.
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Generalized dynamic programming (1/2)

Generalized dynamic programming equation
bd = 0,

bv 6=d =
∧qv ,

∧
u∈N+(v)

(
q(v ,u) ⊕ bu

)
Admits a greatest solution b†v (Knaster-Tarski fixed-point theorem)

F : (bv )v 7→ (b′v )v st:


b′d = 0

b′v 6=o =
∧bv ,

∧
u∈N+(v)

(
q(v ,u) ⊕ bu

)
Generalized Ford-Bellman algorithm

(bkv ) = F k(∞) 6 qP for of any v -d path P with at most k arcs.
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Generalized dynamic programming (2/2)

F : (bv )v 7→ (b′v )v st:

{
b′d = 0

b′v 6=o =
∧(

bv ,
∧

u∈N+(v)

(
q(v ,u) ⊕ bu

))
I bkv = F k(bv )

I b∞v =
∧

k∈Z+
bkv

I b†v = F (b†v )

I boptv =
∧

p∈Pvd
qP

I `∗: nb arcs in
longest elem. path

Theorem

b†v 6 b∞v 6 b`
∗
v 6 boptv 6 qP for all P in Pvd .
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Part content

1. Column generation for rotation problems

2. An algebraic path problem framework

3. Stochastic paths problems and delay in rotation problems
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Stochastic path problems

A slightly simpler problem

min
P

c(qP)

s.t. P

(∑
a∈P

ξa > τ

)
≤ 5%

I lattice ordered monoid ?

Slacks makes things more complicated

ξ` = max(ξ`2 − w2, 0) + ξint`

but the same ideas can be used

crew `2 `w2

Monotonicity of · 7→
max(·, 0) enables to
use our framework
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General case: almost sure order and addition

Almost sure order on random variables on (Ω,A,P):

ξ ≤ ξ̃ if ξ(ω) ≤ ξ̃(ω) a.s.

Meet of two random variables:

(ξ ∧ ξ̃)(ω) = min(ξ(ω), ξ̃(ω)).

Compatible with addition ξ + ξ̃.

Sampling

I Any random variable can be approximated by a random variable on a
finite probability space Ω = {ω1, . . . , ωn}

I Bounds on the error

Problem with n scenarios can be computationally difficult
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Independent ξa: work with the distribution
Pov

t

F (t)

t

F^(t)

Usual stochastic order ≤st

ξ ≤st ξ̃ if P(ξ ≤ t) ≥ P(ξ̃ ≤ t) for all t

Meet of two random variables

Fξ∧ξ̃ = max(Fξ,Fξ̃)

compatible with convolution product ∗

I ≤st is coarser than almost sure order: ξ ≤ ξ̃ ⇒ ξ ≤st ξ̃.

I Better bounds: bopt,asv ≤st b
opt,st
v
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Numerical results on Stochastic Crew Pairing

Instance α
(min)

Alg. κ CG iter. Pricing
time

Avg.
paths

Cut
Dom.

MIP
time

Add.
Cost

Total time
(hh:mm:ss)

CP50 5% A∗ 10 67 93.23% 1.730e+03 – 0.253% 138.01% 00:00:55.5
CP50 10% A∗ 10 78 92.34% 1.741e+03 – 0.161% 72.65% 00:01:02.0
CP50 15% A∗ 10 94 93.34% 3.029e+03 – 0.243% 0.00% 00:02:34.1
CP50 5% cor. 10 54 94.53% 1.903e+03 0.33% 0.232% 138.01% 00:01:02.2
CP50 10% cor. 10 62 94.75% 1.846e+03 0.30% 0.146% 72.65% 00:01:07.9
CP50 15% cor. 10 97 95.53% 2.976e+03 0.27% 0.083% 0.00% 00:03:32.8
CP70 5% A∗ 10 125 95.62% 1.172e+04 – 0.118% 57.64% 00:06:10.2
CP70 10% A∗ 10 150 95.11% 1.059e+04 – 0.756% 53.04% 00:06:28.1
CP70 15% A∗ 10 150 95.56% 1.822e+04 – 0.066% 0.00% 00:10:33.0
CP70 5% cor. 10 121 97.20% 1.150e+04 0.49% 0.069% 57.64% 00:09:37.6
CP70 10% cor. 10 140 97.46% 1.123e+04 0.45% 0.686% 53.07% 00:12:12.3
CP70 15% cor. 10 145 98.30% 1.562e+04 0.31% 0.026% 0.00% 00:23:01.4
CP90 5% A∗ 30 218 98.66% 7.928e+04 – 0.016% 45.57% 01:53:20.0
CP90 10% A∗ 30 236 98.93% 8.701e+04 – 0.053% 41.22% 02:23:22.6
CP90 15% A∗ 30 295 98.95% 1.324e+05 – 0.009% 0.00% 04:16:44.0
A318 5% A∗ 150 341 99.76% 3.888e+05 – 0.002% 8.30% 57:08:59.0
A318 10% A∗ 150 381 99.74% 4.342e+05 – 0.001% 7.32% 70:00:06.8
A318 15% A∗ 150 395 99.77% 4.783e+05 – 0.001% 0.00% 94:32:26.5

I P(ξ` > τ) ≤ α for all ` with τ = 30 minutes
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Perspective: airplane and crews delay

Even if routing and pairings solution xr and yp are known, computing the
distribution of ξ` is difficult (inference problem in a probabilistic graphical
model with large treewidth)

plane `1

crew `2

`

t

w1

w2

Use a scenario approach.

I Delay cannot be dealt with in the subproblem

I Poorer relaxation
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