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Äıd, Possamäı & Touzi Optimal Electricity Demand-Response Contracting 1 / 26



Agenda

1 The problem

2 The model

3 Optimal contract

4 Linear case

5 Conclusion
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The problem

Problem
How to cope with intermittent sources of energy in power systems?

The need for more flexibility in electric systems can be satisfied either

... by batteries or ...

... a better use of demand flexibility potential.

Possible to use distributed control of appliances (Meyn et al. (2015),
Tindemans et al. (2015))

Also possible to use demand-response.

Important demand-response (DR) and smart grid world wide. EU investment
in smart metering: 45 billions e to reach 200 millions smart meters.

DR programs reduce consumption level. What about volatility?
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The problem
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〈X 〉 = 12 + 12 + ...+ 12 = 12 〈X 〉 = 122 + 112 + 101..+ 12 = 650

Questions
Is it possible to encite consumers to reduce the volatility of their
consumption?
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The problem

Results
We designed a volatility risk trade model between one producer and one
consumer in the framework of continuous-time optimal contract theory.

We obtain closed-form expression for the optimal contract in the case of
linear energy value discrepancy between producer and consumer.

Optimal contract allows the system to bear more risk as it may lead to an
increase of consumption volatility.

We obtained closed-form expression of the first-best optimal contract
problem. The first-best is equal to the second-best only in the case where the
consumer values more energy than the producer. Same result regarding the
potential of an increase of volatility.
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The model

The model
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The model

The consumer (The Agent)

Dynamics of the deviation from baseline consumption

X a,b
t = X0 +

∫ t

0

(−
N∑
i=1

ai (s))ds +

∫ t

0

N∑
i=1

σi
√
bi (s)dW i

s

Cost function for efforts ν := (a, b):

c(a, b) :=
1

2

N∑
i=1

ai
2

µi︸ ︷︷ ︸
c1(a)

+
1

2

N∑
i=1

σi (bi
−ηi − 1)

λiηi︸ ︷︷ ︸
c2(b)

, 0 ≤ ai , 0 < bi ≤ 1.

Consumer’s criterion:

JA(ξ, ν) := Eν
[
UA

(
ξ +

∫ T

0

(f (X ν
s )− c(νs)) ds

)]
,

with UA(x) = −e−r x .
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The model

The producer (The Principal)

JP(ξ,Pν) := EPν
[
U

(
− ξ −

∫ T

0

g(Xs)ds − h

2
〈X 〉T

)]

g generation cost function, convexe centered at zero

h direct unitary cost of volatility

U(x) = −e−p x .

The producer’s problem is:

VP := sup
ξ∈Ξ

sup
Pν∈P?(ξ)

JP(ξ,Pν).

with the participation constraint: the consumer enters in the contract only if his
expected utility is above R := R0e

−rπ where

R0 := sup
Pν∈P

JA(0,Pν) = EPν
[
UA

(∫ T

0

(f (Xs)− c(νs)) ds
)]

,

is the utility he gets without contract and π is a premium.
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The model

Remarks
The consumer has never an interest in making an effort to reduce
consumption without contract.

Because of risk-aversion, the consumer has an interest in making an effort to
reduce volatility even without contract
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The model

Consumer’s reservation utility

The consumer’s reservation utility is given by R0 = −e−ru(0,X0), where u is the
unique viscosity solution of the HJB equation

−∂tu = f + H(ux , uxx − ru2
x ), with u(T , .) = 0,

where H is the consumer’s Hamiltonian

H(z , γ) := sup
(a,b)

{
−a · 1z +

1

2
|σ(b)|2γ − c(a, b)

}
, 1 := (1, · · · , 1),

which optimizers are

â(z) := µz−, b̂j(γ) := 1 ∧ (λjγ
−)
− 1

1+ηj .

If in addition u is smooth, then the optimal efforts of the consumer are

a0 := 0, b0
j := 1 ∧

(
λj ( uxx − ru2

x )−
)− 1

1+ηj

.
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Optimal contract

Optimal contract
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Optimal contract

The optimal contract

Cvitanic, Possamäı & Touzi (2015) proves the optimal contract is of the form

Y Y0,Z ,Γ := Y0+

∫ t

0

ZsdXs+
1

2

∫ t

0

(Γs+rZs
2)d〈X 〉s−

∫ t

0

(
H(Zs , Γs)+f (Xs)

)
ds.

Y0 is going to be the certainty equivalent of reservation utility of the
consumer.

Payment (Zt ≤ 0) if consumption decreases (dX ≤ 0)

Payment (Γt ≤ 0) if volatility decreases

Compensation for induced volatility cost rZ 2
s

Minus the natural benefits the consumer earns when making efforts induced
by (Zt , Γt), i.e. H(Zs , Γs) + f (Xs)
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Optimal contract

Solution of the producer’s problem

VP = −e−p(v(0,X0)−L0) with L0 = −r−1 log(−R) and where v is the unique
viscosity solution of the PDE

−∂tv = (f − g) +
1

2
µ̄ v2

x −
1

2
inf
z∈R

{
F0

(
q(vx , vxx , z)

)
+ µ̄(z− + vx)2

}
,

v(T , x) = 0,

with µ̄ :=
∑

i µi , λ̄ = maxi λi and

F0(q) = q|σ̂(−q)|2 + ĉ2(−q), q(vx , vxx , z) := h − vxx + rz2 + p(z − vx)2,

and

γ? := −
(
q(vx , vxx , z

?) ∨ 1

λ̄

)
,

and z? satisfies z? ∈
(
vx ,

p
r+p vx

)
, when vx ≤ 0, and z? = p

r+p vx when vx ≥ 0.
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Optimal contract

Remarks

Assume that (f − g)(x) = δx .

Then, we guess that v(t, x) = A(t)x + B(t) with

−A′(t) = δ,

−B ′(t) =
1

2
µ̄A2(t)− 1

2
inf
z∈R

{
F0

(
h + rz2 + p(z − A(t))2

)
+ µ̄(z− + A(t))2

}
,

A(T ) = B(T ) = 0.

Thus, we have A(t) = δ(T − t) and the sign of vx is given by the sign δ.
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Linear case

Linear Case
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Linear case

Consumer’s reservation utility in the linear case f (x) = κ x

Then, the reservation utility of the consumer is

R0 = − exp
(
− r
(
κX0T + E (T )

))
,

where E (T ) := − 1
2

∫ T

0
F0(−γ0

s

)
ds, γ0

s := −rκ2(T − s)2.

The consumer’s optimal effort is

a0 = 0, and b0
j (t) := 1 ∧

(
λj rκ

2(T − t)2
)− 1

1+ηj ,

thus inducing the dynamics

dX 0
t = σ0 · dWt ,

with σ0 := σ̂
(
γ0
t

)
.

Äıd, Possamäı & Touzi Optimal Electricity Demand-Response Contracting 16 / 26



Linear case

Optimal contract when energy has more value for the consumer δ ≥ 0

If δ ≥ 0, the optimal payments rate are

z?t =
p

r + p
δ(T − t), γ?t = −

[(
h + ρ δ2(T − t)2

)
∨ 1

λ̄

]
,

1

ρ
:=

1

r
+

1

p
.

The dynamics of the consumption deviation is

dX ?
t = σ?t · dWt ,

with σ?t := σ̂(γ?t ). And the optimal contract is

ξ? = L0 +

∫ T

0

(
1

2
ĉ2(γ?t )− κXt +

1

2

rp2δ2

(p + r)2
(T − t)2|σ?t |2

)
dt +

∫ T

0

z?t σ
?
t · dWt .
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Linear case

Remark
If δ = 0 and h = 0, the producer induces no effort from the consumer and
thus, the volatility under optimal contract is |σ|2 ≥ |σ0

t |2.
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Linear case
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Figure: (Left) Volatilities of two usages without contract (red) and with optimal contract
(blue). (Right) Quadratic variation when no efforts are done (black) without contract
(red) and with optimal contract (blue).

µ = (1, 5), σ = (2.0, 5.0), λ = (1/2, 1/5), η = (1, 1), r = 1, π = 0, p = 2,
h = 4.5, κ = 5 δ = 3
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Linear case
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Figure: (Left) Total volatility of consumption deviation under optimal contract as a
function of the direct volatility cost h and the risk-aversion parameter p of the consumer
compared to the total volatility without contract (flat surface). (Right) Certainty
equivalent of the producer with contract and without contract as a function of the direct
volatility cost h and the risk-aversion parameter p.
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Linear case

Certainty equivalent gain

When δ ≥ 0, the certainty equivalent gain from the contract for the producer is:

GP = −π +
1

2

∫ T

0

F0(−γ0
s )ds − 1

2

∫ T

0

ĉ2(γ?s )ds +
h

2

(∫ T

0

(
|σ0

s |2 − |σ?s |2
)
ds

)
+

p

2

∫ T

0

(
(κ− δ)2|σ0

s |2 −
r

r + p
δ2|σ?s |2

)
(T − s)2ds

)
︸ ︷︷ ︸

Indirect volatility cost compromise

.
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Linear case

Optimal contract with δ ≤ 0

If δ ≤ 0 and h + rδ2T 2 ≤ 1
λ̄
, the optimal payments rate are

γ?t = − 1

λ̄
, z?t = Λδ(T − t),with Λ :=

1 + p |σ|
2

µ̄

1 + (r + p) |σ|
2

µ̄

The dynamics of the consumption deviation is

dX ?
t = µ̄z?t dt + σ · dWt .

And the optimal contract is

ξ? = L0 +
1

2

∫ t

0

(
µ̄+ r |σ|2

)
(z?s )2ds −

∫ t

0

κXsds +

∫ T

0

z?s σ · dWs
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Linear case

Certainty equivalent gain

When δ ≤ 0 and h + rδ2T 2 ≤ 1
λ̄

, the certainty equivalent gain from the contract
for the producer is:

GP =− π + κTX0 +
1

2

∫ T

0

F0(−γ0
t )dt +

h

2

∫ T

0

(|σ0
t |2 − |σ|2)dt

+

∫ T

0

δµ̄(T − t)z?t dt −
1

2

∫ T

0

(µ̄+ r |σ|2)(z?t )2dt

+
p

2

∫ T

0

(κ2|σ0
t |2 − (1− Λ)2δ2|σ|2(z?t )2)(T − t)2dt.

Remark

The positive term δµ̄(T − t)z?t is the rate of revenue from the energy
reduction while 1

2 (µ̄+ r |σ|2)(z?t )2 is the rate of cost.

This cost is made of two terms: the direct cost of effort made by the
consumer to reduce consumption (µ̄(z?t )2) and the indirect cost of volatility
induced by this reduction on the mean consumption (r |σ|2(z?t )2).
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Conclusion

Conclusion & Perspectives

Conclusion
Trading volatility of consumption can benefit to both generation and
consumption, allowing the system to bear more risk.

Future work

Calibration to publicly available demand-response programs (London, Austin)

Extension to a group of consumers

Identification of consumers types (adverse selection)
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