Nonsmooth optimization:
 beyond first order methods.

A tutorial
 focusing on bundle methods

Claudia Sagastizábal
(IMECC-UniCamp, Campinas Brazil, adjunct researcher)

$$
\text { SESO 2018, Paris, May } 23 \text { and 25, } 2018
$$

Computational NSO: what do we mean?

For the unconstrained problem

$$
\min f(x),
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex but not differentiable at some points Algorithms defined according on how much information is provided by certain oracle

Computational NSO: what do we mean?

For the unconstrained problem

$$
\min f(x)
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex but not differentiable at some points, Algorithms defined according on how much information is provided by certain oracle
an informative oracle

Computational NSO: what do we mean?

For the unconstrained problem

$$
\min f(x)
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex but not differentiable at some points Algorithms defined according on how much information is provided by certain oracle
a "black box"

Computational NSO: what do we mean?

For the unconstrained problem

$$
\min f(x)
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex but not differentiable at some points, Algorithms defined according on how much information is provided by certain oracle
a
"black box"

How common are nonsmooth objective functions in optimization?

When does nonsmoothness appear?

* if the nature of the problem imposes a nonsmooth model; or
* if sparsity of the solution is a concern; or
\% in problems difficult to solve,
- because they are large scale
- because they are heterogeneous
sometimes the solution method induces
nonsmoothness

Example of NS model

Recovery of blocky images (ℓ_{1}-regularization of TV)

Recovered image (PCIP)

Example of sparse optimization $\min \left\{\|x\|_{1}: A x=b\right\}$

Basis pursuit: find least 1-norm point on the affine plane
Tends to return a sparse point (sometimes, the sparsest)

ℓ_{1} ball touches the affine plane

Example of sparse optimization $\min \left\{\|x\|_{1}: A x=b\right\}$

Basis pursuit: find least 1-norm point on the affine plane
Tends to return a sparse point (sometimes, the sparsest)

ℓ_{1} ball touches the affine plane

$$
\begin{aligned}
& \text { LASSO denoises basis pursuit } \\
& \text { min }\left\{\|A x-b\|_{2}^{2}:\|x\|_{1} \leq \tau\right\} \\
& \text { or } \\
& \qquad \min \left\{\|x\|_{1}+\frac{\mu}{2}\|A x-b\|_{2}^{2}\right\} \\
& \text { or } \\
& \qquad \min \left\{\|x\|_{1}:\|A x-b\|_{2}^{2} \leq \sigma\right\}
\end{aligned}
$$

Example of sparse optimization $\min \left\{\|x\|_{1}: \mathbf{h}(\mathbf{x}) \leq \mathbf{b}\right\}$

Basis pursuit: find least 1-norm point on a nonlinear set
Tends to return a sparse point (sometimes, the sparsest)

LASSO denoises basis pursuit

$$
\begin{aligned}
& \min \left\{\left\|(\mathbf{h}(\mathbf{x})-\mathrm{b})^{+}\right\|_{2}^{2}:\|x\|_{1} \leq \tau\right\} \\
& \text { or } \\
& \min \left\{\|x\|_{1}+\frac{\mu}{2}\left\|(\mathbf{h}(\mathbf{x}) x-\mathrm{b})^{+}\right\|_{2}^{2}\right\} \\
& \text { or }
\end{aligned}
$$

ℓ_{1} ball touches the set

$$
\min \left\{\|x\|_{1}:\left\|(\mathbf{h}(\mathbf{x}) x-\mathrm{b})^{+}\right\|_{2}^{2} \leq \sigma\right\}
$$

Lagrangian Relaxation Example

Real-life optimization problems

$$
\text { (primal) } \begin{cases}\min & \sum_{j \in J} \mathcal{C}^{j}\left(p^{j}\right) \\ & \text { for } j \in J: p^{j} \in \mathcal{P}^{j} \\ & \sum_{j \in J} g^{j}\left(p^{j}\right)=D e m\end{cases}
$$

Lagrangian Relaxation Example

Real-life optimization problems

$$
\text { (primal) } \begin{cases}\max & \sum_{j \in J}-\mathcal{C}^{j}\left(p^{j}\right) \\ & \text { for } j \in J: p^{j} \in \mathcal{P}^{j} \\ & \sum_{j \in J} g^{j}\left(p^{j}\right)=D e m \quad \leftarrow x\end{cases}
$$

Lagrangian Relaxation Example

Real-life optimization problems

$$
\text { (primal) }\left\{\begin{aligned}
\max \quad & \sum_{j \in J}-\mathcal{C}^{j}\left(p^{j}\right) \\
& \text { for } \mathfrak{j} \in J: p^{j} \in \mathcal{P}^{j} \\
& \sum_{j \in J} g^{j}\left(p^{j}\right)=\operatorname{Dem} \quad \leftarrow x
\end{aligned}\right.
$$

often exhibit separable structure passing to the (dual) :

Lagrangian Relaxation Example

Real-life optimization problems

$$
\text { (primal) }\left\{\begin{aligned}
\max & \sum_{j \in J}-\mathcal{C}^{j}\left(p^{j}\right) \\
& \text { for } j \in J: p^{j} \in \mathcal{P}^{j} \\
& \sum_{j \in J} g^{j}\left(p^{j}\right)=\operatorname{Dem} \quad \leftarrow x
\end{aligned}\right.
$$

often exhibit separable structure passing to the (dual) :

Lagrangian Relaxation Example

Real-life optimization problems

$$
\text { (primal) }\left\{\begin{aligned}
\max \quad & \sum_{j \in J}-\mathcal{C}^{j}\left(p^{j}\right) \\
& \text { for } \mathfrak{j} \in J: p^{j} \in \mathcal{P}^{j} \\
& \sum_{j \in J} g^{j}\left(p^{\mathfrak{j}}\right)=\operatorname{Dem} \quad \leftarrow \chi
\end{aligned}\right.
$$

often exhibit separable structure passing to the (dual) :

$$
\begin{aligned}
& \min _{x} f(x):=f_{0}(x) \quad+\sum_{j \in J}(x) \\
& \min _{x} \quad-\langle x, \text { Dem }\rangle
\end{aligned}
$$

Benders Decomposition Example

Similar situation, but now the uncoupling is done on a primal level
(primal) $\begin{cases}\min & \sum_{j \in J} \mathcal{I}^{\mathfrak{j}}\left(\Delta p^{\mathfrak{j}}\right)+\mathcal{C}^{\mathfrak{j}}\left(\mathrm{p}^{\mathfrak{j}}\right) \\ & \text { for } \mathfrak{j} \in \mathrm{J}: \mathrm{p}^{\mathfrak{j}} \in \mathcal{P}^{\mathfrak{j}} \quad \Longleftrightarrow \mathbf{p}^{\mathbf{j}} \leq \overline{\mathbf{p}}^{\mathbf{j}}+\Delta \mathbf{p}^{\mathbf{j}} \\ \Delta \mathrm{p} \in \mathrm{D}\end{cases}$

Benders Decomposition Example

Similar situation, but now the uncoupling is done on a primal level

$$
\begin{aligned}
& \text { (primal) } \begin{cases}\min & \sum_{j \in J} \mathcal{I}^{\mathfrak{j}}\left(\Delta p^{\mathfrak{j}}\right)+\mathcal{C}^{\mathfrak{j}}\left(\mathrm{p}^{\mathfrak{j}}\right) \\
& \text { for } \mathfrak{j} \in \mathrm{J}: \mathrm{p}^{\mathfrak{j}} \in \mathcal{P}^{\mathfrak{j}} \quad \Longleftrightarrow \mathbf{p}^{\mathbf{j}} \leq \overline{\mathbf{p}}^{\mathbf{j}}+\Delta \mathbf{p}^{\mathbf{j}} \\
\Delta \mathrm{p} \in \mathrm{D}\end{cases} \\
& \begin{cases}\min _{\Delta p} & \sum_{\mathfrak{j} \in \mathrm{J}} \mathcal{I}^{\mathbf{j}}\left(\Delta \mathrm{p}^{\mathbf{j}}\right)+\mathcal{V}^{\mathbf{j}}\left(\Delta \mathbf{p}^{\mathbf{j}}\right) \\
& \Delta \mathrm{p} \in \mathrm{D}\end{cases} \\
& \mathcal{V}^{\boldsymbol{j}}\left(\Delta p^{\mathfrak{j}}\right):= \begin{cases}\min & \mathcal{C}^{j}\left(p^{j}\right) \\
& p^{\mathfrak{j}} \leq \bar{p}^{j}+\Delta p^{j}\end{cases}
\end{aligned}
$$

Benders Decomposition Example

Similar situation, but now the uncoupling is done on a primal level

$$
\begin{aligned}
& \text { (primal) } \begin{cases}\min & \sum_{j \in J} \mathcal{I}^{\mathfrak{j}}\left(\Delta p^{j}\right)+\mathcal{C}^{j}\left(p^{j}\right) \\
& \text { for } \mathfrak{j} \in J: \mathrm{p}^{\mathfrak{j}} \in \mathcal{P}^{\mathfrak{j}} \quad \Longleftrightarrow \mathbf{p}^{\mathbf{j}} \leq \overline{\mathbf{p}}^{\mathbf{j}}+\Delta \mathbf{p}^{\mathbf{j}}\end{cases} \\
& \Delta p \in \mathrm{D}
\end{aligned}
$$

$$
\begin{aligned}
& \min f(x):=\sum_{\mathfrak{j} \in \boldsymbol{j}} f^{\mathfrak{j}}\left(\Delta p^{\mathfrak{j}}\right) \quad \text { for } f^{\mathfrak{j}}\left(\Delta p^{\mathfrak{j}}\right):=\mathcal{I}^{\mathfrak{j}}\left(\Delta p^{\mathfrak{j}}\right)+\mathcal{V}^{\mathfrak{j}}\left(\Delta p^{\mathfrak{j}}\right)
\end{aligned}
$$

Computing $\partial f\left(x^{k}\right)$: how difficult is it?

1. $f(x)=|x|$, for $\mathfrak{n}=1$
2. A linear Lasso function, $f(x)=\|x\|_{1}+\frac{\mu}{2}\|A x-b\|_{2}^{2}$
3. A nonlinear Lasso function, $h \in C^{1}$,

$$
f(x)=\|x\|_{1}+\frac{\mu}{2}\left\|(h(x)-b)^{+}\right\|_{2}^{2}
$$

4. One of the local subproblems in the Lagrangian example,

$$
f^{j}\left(x^{k}\right):= \begin{cases}\max & -\mathcal{C}^{j}\left(p^{j}\right)+\left\langle x^{k}, g^{j}\left(p^{j}\right)\right\rangle \\ & p^{j} \in \mathcal{P}^{j}\end{cases}
$$

5. One of the local subproblems in the Benders example,

$$
\left(\mathcal{I}^{\mathfrak{j}}\left(\Delta p^{\mathfrak{j}}\right)+\mathcal{V}^{j}\left(\Delta p^{\mathfrak{j}}\right)=f^{\mathfrak{j}}\left(x^{\mathrm{k}, \mathfrak{j}}\right)=\min \left\{\mathcal{C}^{\mathfrak{j}}\left(\mathfrak{p}^{\mathfrak{j}}\right): \mathfrak{p}^{\mathfrak{j}} \leq \bar{p}^{\mathfrak{j}}+x^{\mathrm{k}, \mathfrak{j}}\right\}\right.
$$

But why would one want ALL of $\partial f\left(x^{k}\right)$?

But why would one want ALL of $\partial f\left(x^{k}\right)$?
Indispensible to calculate the proximal point

$$
p=\operatorname{prox}_{\mathrm{t}}^{f}(x) \Longleftrightarrow p=\arg \min f(y)+\frac{1}{2 t}\|y-x\|_{2}^{2}
$$

But why would one want ALL of $\partial f\left(x^{k}\right)$?
Indispensible to calculate the proximal point

$$
\begin{aligned}
p=\operatorname{prox}_{\mathrm{t}}^{f}(x) & \Longleftrightarrow p=\arg \min f(y)+\frac{1}{2 t}\|y-x\|_{2}^{2} \\
& \Longleftrightarrow 0 \in \partial f(p)+\frac{1}{\mathrm{t}}(p-x)
\end{aligned}
$$

But why would one want ALL of $\partial f\left(x^{k}\right)$?
Indispensible to calculate the proximal point

$$
\begin{aligned}
p=\operatorname{prox}_{\mathrm{t}}^{f}(x) & \Longleftrightarrow p=\arg \min f(y)+\frac{1}{2 t}\|y-x\|_{2}^{2} \\
& \Longleftrightarrow 0 \in \partial f(p)+\frac{1}{\mathrm{t}}(p-x) \\
& \Longleftrightarrow \frac{1}{\mathbf{t}}(\mathbf{x}-\mathbf{p}) \in \partial \mathbf{f}(\mathbf{p})
\end{aligned}
$$

But why would one want ALL of $\partial f\left(x^{k}\right)$?
Indispensible to calculate the proximal point

$$
\begin{aligned}
p=\operatorname{prox}_{t}^{f}(x) & \Longleftrightarrow p=\arg \min f(y)+\frac{1}{2 t}\|y-x\|_{2}^{2} \\
& \Longleftrightarrow 0 \in \partial f(p)+\frac{1}{t}(p-x) \\
& \Longleftrightarrow \frac{\mathbf{1}}{\mathbf{t}}(\mathbf{x}-\mathbf{p}) \in \partial \mathbf{f}(\mathbf{p})
\end{aligned}
$$

Without full knowledge of the subdifferential, the implicit inclusion cannot be solved!

But why would one want ALL of $\partial f\left(x^{k}\right)$?
Indispensible to calculate the proximal point

$$
\begin{aligned}
p=\operatorname{prox}_{t}^{f}(x) & \Longleftrightarrow p=\arg \min f(y)+\frac{1}{2 t}\|y-x\|_{2}^{2} \\
& \Longleftrightarrow 0 \in \partial f(p)+\frac{1}{t}(p-x) \\
& \Longleftrightarrow \frac{\mathbf{1}}{\mathbf{t}}(\mathbf{x}-\mathbf{p}) \in \partial \mathbf{f}(\mathbf{p})
\end{aligned}
$$

Without full knowledge of the subdifferential, the implicit inclusion cannot be solved!

note: $p \in x-\operatorname{t\partial f}(p)$ akin to a subgradient method

Proximal point algorithms (Accel. Nesterov, FISTA, AugLag)

$$
\begin{gathered}
x^{k+1}=\operatorname{prox}_{t_{k}}^{f}\left(x^{k}\right) \\
\Longleftrightarrow \\
x^{k+1}=\arg \min f(y)+\frac{1}{2 t_{k}}\left\|y-x^{k}\right\|_{2}^{2}
\end{gathered}
$$

Proximal point algorithms (Accel. Nesterov, FISTA, AugLag)

$$
\begin{gathered}
x^{k+1}=\operatorname{prox}_{t_{k}}^{f}\left(x^{k}\right) \\
\Longleftrightarrow \\
x^{k+1}=\arg \min f(y)+\frac{1}{2 t_{k}}\left\|y-x^{k}\right\|_{2}^{2}
\end{gathered}
$$

- of interest if computing $\operatorname{prox}_{\mathrm{t}_{k}}^{\mathrm{f}}\left(\mathrm{x}^{k}\right)$ is much easier than minimizing f
- stepsize $t_{k}>0$ impacts on the number of iterations

Proximal point algorithms (Accel. Nesterov, FISTA, AugLag)

$$
\begin{gathered}
x^{k+1}=\operatorname{prox}_{t_{k}}^{f}\left(x^{k}\right) \\
\Longleftrightarrow \\
x^{k+1}=\arg \min f(y)+\frac{1}{2 t_{k}}\left\|y-x^{k}\right\|_{2}^{2}
\end{gathered}
$$

- of interest if computing $\operatorname{prox}_{\mathrm{t}_{k}}^{f}\left(x^{k}\right)$ is much easier than minimizing f
- stepsize $t_{k}>0$ impacts on the number of iterations

Proximal point: calculus rules

- separable sum:

$$
\begin{aligned}
& f(x, y)=(g(x), h(y)) \Longrightarrow \\
& \operatorname{prox}_{t}^{f}(x)=\left(\operatorname{prox}_{t}^{g}(x), \operatorname{prox}_{t}^{h}(y)\right)
\end{aligned}
$$

- scalar factor $(\alpha \neq 0)$ and translation $(v \neq 0)$:

$$
\begin{aligned}
& f(x)=g(\alpha x+v) \Longrightarrow \\
& \operatorname{prox}_{t}^{f}(x)=\frac{1}{\alpha}\left(\operatorname{prox}_{t}^{\alpha^{2} g}(\alpha x+v)-v\right)
\end{aligned}
$$

- "perspective" ($\alpha>0$):

$$
f(x)=\alpha g\left(\frac{1}{\alpha} x\right) \Longrightarrow \operatorname{prox}_{t}^{f}(x)=\alpha \operatorname{prox}_{t}^{g / \alpha}\left(\frac{x}{\alpha}\right)
$$

Proximal point: special functions

- + linear term $(v \neq 0)$:

$$
f(x)=g(x)+\langle v, x\rangle \Longrightarrow \operatorname{prox}_{t}^{f}(x)=\operatorname{prox}_{t}^{g}(x-v)
$$

- + convex quadratic term $(\mathrm{t}>0)$:

$$
\begin{aligned}
& f(x)=g(x)+\frac{1}{2 t}\|x-v\|^{2} \Longrightarrow \\
& \operatorname{prox}_{t}^{f}(x)=\operatorname{prox}_{t}^{\lambda g}(\lambda x+(1-\lambda) v) \text { for } \lambda=\frac{t}{t+1}
\end{aligned}
$$

- composition with linear term such that $A^{\top} A=\frac{1}{\alpha} I$, $(\alpha \neq 0)$:

$$
f(x)=g(A x+v) \Longrightarrow
$$

$$
\operatorname{prox}_{t}^{f}(x)=\left(I-\alpha A^{\top} A\right) x+\alpha A^{\top}\left[\operatorname{prox}_{t}^{g / \alpha}(A x+v)-v\right]
$$

Proximal point algorithm: convergence

If $\arg \min f \neq \emptyset$ then

$$
f\left(x^{k}\right)-f(\bar{x}) \leq \frac{\left\|x^{0}-\bar{x}\right\|^{2}}{2 \sum_{i=1}^{k} t_{i}}
$$

Proximal point algorithm: convergence

If $\arg \min f \neq \emptyset$ then

$$
f\left(x^{k}\right)-f(\bar{x}) \leq \frac{\left\|x^{0}-\bar{x}\right\|^{2}}{2 \sum_{i=1}^{k} t_{i}}
$$

\Longrightarrow convergence if $\sum t_{i} \rightarrow+\infty$
\Longrightarrow rate $1 / k$ if $\left\{t_{k}\right\}$ bounded away from zero

Proximal point algorithm: acceleration

$$
\begin{gathered}
x^{k+1}=\operatorname{prox}_{t_{k}}^{f}\left(x^{k}+\theta_{\mathbf{k}+\mathbf{1}}\left(\frac{\mathbf{1}}{\theta_{\mathbf{k}}}-\mathbf{1}\right)\left(\mathbf{x}^{\mathbf{k}}-\mathbf{x}^{\mathbf{k}-\mathbf{1}}\right)\right) \\
\text { for } \\
\frac{\theta_{k+1}^{2}}{\mathrm{t}_{k+1}}=\left(1-\theta_{k+1}\right) \frac{\theta_{k}^{2}}{t_{k}}
\end{gathered}
$$

Proximal point algorithm: acceleration

$$
\begin{gathered}
x^{k+1}=\operatorname{prox}_{\mathrm{t}_{k}}^{f}\left(x^{k}+\theta_{\mathbf{k}+\mathbf{1}}\left(\frac{\mathbf{1}}{\theta_{\mathbf{k}}}-\mathbf{1}\right)\left(\mathbf{x}^{\mathbf{k}}-\mathbf{x}^{\mathbf{k}-\mathbf{1}}\right)\right) \\
\text { for } \\
\frac{\theta_{k+1}^{2}}{\mathrm{t}_{k+1}}=\left(1-\theta_{k+1}\right) \frac{\theta_{k}^{2}}{t_{k}}
\end{gathered}
$$

\Longrightarrow convergence if $\sum \sqrt{t_{i}} \rightarrow+\infty$
\Longrightarrow rate $1 / \mathrm{k}^{2}$ if $\left\{\mathrm{t}_{\mathrm{k}}\right\}$ bounded away from zero

What if prox $_{t}^{f}$ is not computable?

What if prox $_{t}^{f}$ is not computable?

Use bundle methods!

What if prox $_{t}^{f}$ is not computable?

Use bundle methods!
When do bundle method prove most useful?

What if prox $_{t}^{f}$ is not computable?

Use bundle methods!

When do bundle method prove most useful?

In situations

- when the objective function is not available explicitly

and/or

- when we do not have access to the full subdifferential and/or
- when calculations need to be done with high precision

Bundling to approximate the prox

$$
\text { WANT: } \begin{aligned}
p=\operatorname{prox}_{\mathrm{t}}^{f}(x) & \Longleftrightarrow p=\arg \min f(y)+\frac{1}{2 t}\|y-x\|_{2}^{2} \\
& \Longleftrightarrow 0 \in \partial f(p)+\frac{1}{t}(p-x) \\
& \Longleftrightarrow \frac{1}{\mathrm{t}}(x-p) \in \partial f(p)
\end{aligned}
$$

Bundling to approximate the prox

WANT: $p=\operatorname{prox}_{\mathrm{t}}^{f}(x) \Longleftrightarrow p=\arg \min f(y)+\frac{1}{2 t}\|y-x\|_{2}^{2}$

$$
\begin{aligned}
& \Longleftrightarrow \quad 0 \in \partial f(p)+\frac{1}{\mathfrak{t}}(p-x) \\
& \Longleftrightarrow \quad \frac{1}{\mathfrak{t}}(x-p) \in \partial f(p)
\end{aligned}
$$

HAVE: $\mathrm{q}=\operatorname{prox}_{\mathrm{t}}^{\mathbf{M}}(x) \Longleftrightarrow \mathrm{q}=\arg \min \mathbf{M}(y)+\frac{1}{2 \mathrm{t}}\|y-x\|_{2}^{2}$

$$
\begin{aligned}
& \Longleftrightarrow \quad 0 \in \partial \mathbf{M}(q)+\frac{1}{\mathfrak{t}}(q-x) \\
& \Longleftrightarrow \quad \frac{1}{\mathfrak{t}}(x-q) \in \partial \mathbf{M}(q)
\end{aligned}
$$

Bundling to approximate the prox

WANT: $p=\operatorname{prox}_{\mathrm{t}}^{\mathrm{f}}(\mathrm{x}) \Longleftrightarrow \mathrm{p}=\arg \min \mathrm{f}(\mathrm{y})+\frac{1}{2 \mathrm{t}}\|y-x\|_{2}^{2}$

$$
\begin{aligned}
& \Longleftrightarrow \quad 0 \in \partial f(p)+\frac{1}{t}(p-x) \\
& \Longleftrightarrow \quad \frac{1}{t}(x-p) \in \partial f(p)
\end{aligned}
$$

HAVE: $q=\operatorname{prox}_{\mathrm{t}}^{\mathbf{M}}(x) \Longleftrightarrow \mathrm{q}=\arg \min \mathbf{M}(\mathrm{y})+\frac{1}{2 t}\|y-x\|_{2}^{2}$

$$
\begin{aligned}
& \Longleftrightarrow \quad 0 \in \partial \mathbf{M}(q)+\frac{1}{\mathrm{t}}(q-x) \\
& \Longleftrightarrow \quad \frac{1}{\mathrm{t}}(x-q) \in \partial \mathbf{M}(q)
\end{aligned}
$$

\mathbf{M} is a model of f for which we do have full knowledge of the subdifferential: the implicit inclusion can be solved!

Bundling to approximate the prox

WANT: $p=\operatorname{prox}_{\mathrm{t}}^{\mathrm{f}}(\mathrm{x}) \Longleftrightarrow \mathrm{p}=\arg \min \mathrm{f}(\mathrm{y})+\frac{1}{2 \mathrm{t}}\|y-x\|_{2}^{2}$

$$
\begin{aligned}
& \Longleftrightarrow \quad 0 \in \partial f(p)+\frac{1}{t}(p-x) \\
& \Longleftrightarrow \quad \frac{1}{t}(x-p) \in \partial f(p)
\end{aligned}
$$

HAVE: $q=\operatorname{prox}_{\mathrm{t}}^{\mathbf{M}}(x) \Longleftrightarrow \mathrm{q}=\arg \min \mathbf{M}(\mathrm{y})+\frac{1}{2 t}\|y-x\|_{2}^{2}$

$$
\begin{aligned}
& \Longleftrightarrow \quad 0 \in \partial \mathbf{M}(q)+\frac{1}{\mathrm{t}}(q-x) \\
& \Longleftrightarrow \quad \frac{1}{\mathrm{t}}(x-q) \in \partial \mathbf{M}(q)
\end{aligned}
$$

\mathbf{M} is a model of f for which we do have full knowledge of the subdifferential: the implicit inclusion can be solved!

Model built with the black box

A quick overview of Convex Analysis

An example of a convex nonsmooth function

A quick overview of Convex Analysis

An example of a convex nonsmooth function

A quick overview of Convex Analysis

An example of a convex nonsmooth function

$\{\nabla f(x)\}=\{$ slope of the linearization supporting f, tangent at $x\}$

A quick overview of Convex Analysis

An example of a convex nonsmooth function

$\{\nabla f(x)\}=\{$ slope of the linearization supporting f, tangent at $x\}$ By convexity,

$$
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle \text { for all } y
$$

A quick overview of Convex Analysis

An example of a convex nonsmooth function

A quick overview of Convex Analysis

An example of a convex nonsmooth function

A quick overview of Convex Analysis

An example of a convex nonsmooth function

A quick overview of Convex Analysis

An example of a convex nonsmooth function

A quick overview of Convex Analysis

An example of a convex nonsmooth function

$$
\partial f(x)=\left\{g \in \mathbb{R}^{n}: f(y) \geq f(x)+\langle g, y-x\rangle \text { for all } y\right\}
$$

A quick overview of Convex Analysis

An example of a convex nonsmooth function

$$
\begin{aligned}
\partial f(x) & =\left\{g \in \mathbb{R}^{n}: f(y) \geq f(x)+\langle g, y-x\rangle \text { for all } y\right\} \\
& =\{\text { slopes of linearizations supporting } f, \text { tangent at } x\}
\end{aligned}
$$

What can be done with the oracle output?

An example of a convex nonsmooth function

$$
\begin{aligned}
\partial f(x) & =\left\{g \in \mathbb{R}^{n}: f(y) \geq f(x)+\langle g, y-x\rangle \text { for all } y\right\} \\
& =\{\text { slopes of linearizations supporting } f, \text { tangent at } x\}
\end{aligned}
$$

What can be done with the oracle output?

An example of a convex nonsmooth function

$$
\begin{aligned}
\partial f(x) & =\left\{g \in \mathbb{R}^{n}: f(y) \geq f(x)+\langle g, y-x\rangle \text { for all } y\right\} \\
& =\{\text { slopes of linearizations supporting } f, \text { tangent at } x\}
\end{aligned}
$$

1 oracle call

if oracle output is not accurate,

wrong $g\left(\chi^{k}\right)$ gives bad linearization at χ^{k}

$$
\partial f(x)=\left\{g \in \mathbb{R}^{n}: f(y) \geq f(x)+\langle g, y-x\rangle \text { for all } y\right\}
$$

(similarly if wrong $f\left(x^{k}\right)$, more on this later)

How is the oracle information used?

Putting together linearizations

creates a cutting-plane model \mathbf{M} for f

$$
\begin{aligned}
& \stackrel{f}{i}^{i}=f\left(x^{i}\right) \\
& g^{i}=g\left(x^{i}\right)
\end{aligned}
$$

$$
f^{i}+\left\langle g^{i}, x-x^{i}\right\rangle
$$

How is the oracle information used?

Putting together linearizations

creates a cutting-plane model \mathbf{M} for f
$f^{i}=f\left(x^{i}\right)$
$g^{i}=g\left(x^{i}\right)$

$$
\Longrightarrow \mathbf{M}(y)=\max _{i}\left\{f^{i}+\left\langle g^{i}, x-x^{i}\right\rangle\right\}
$$

How is the oracle information used?

Putting together linearizations

creates a cutting-plane model \mathbf{M} for f
$f^{i}=f\left(x^{i}\right)$
$g^{i}=g\left(x^{i}\right)$

$$
\Longrightarrow \mathbf{M}(y)=\max _{i}\left\{f^{i}+\left\langle g^{i}, x-x^{i}\right\rangle\right\}
$$

How is the oracle information used?

Putting together linearizations

creates a cutting-plane model \mathbf{M} for f
$f^{i}=f\left(x^{i}\right)$
$g^{i}=g\left(x^{i}\right)$

$$
\Longrightarrow \mathbf{M}(y)=\max _{i}\left\{f^{i}+\left\langle g^{i}, y-x^{i}\right\rangle\right\}
$$

(just one type of model, many others are possible)

How is the oracle information used?

Putting together linearizations

creates a cutting-plane model \mathbf{M} for f
$f^{i}=f\left(x^{i}\right)$
$g^{i}=g\left(x^{i}\right)$

$$
\Longrightarrow \mathbf{M}_{k}(y)=\max _{i \leq k}\left\{f^{i}+\left\langle g^{i}, y-x^{i}\right\rangle\right\}
$$

(just one type of model, many others are possible)

Infinite bundling yields prox $_{t}^{f}$
WANT: $p=\operatorname{prox}_{\mathfrak{t}}^{f}(x)$
$\Longleftrightarrow p=\arg \min f(y)+\frac{1}{2 t}\|y-x\|_{2}^{2}$
HAVE: $q^{k}=\operatorname{prox}_{t_{k}}^{M_{k}}(x) \Longleftrightarrow q^{k}=\arg \min M_{k}(y)+\frac{1}{2 t_{k}}\left\|y-x^{k}\right\|_{2}^{2}$
$\Longleftrightarrow 0=G^{k}+\frac{1}{t_{k}}\left(q^{k}-x^{k}\right)$
for $G^{k} \in \partial M_{k}\left(q^{k}\right)$

Infinite bundling yields prox ${ }_{t}^{f}$
WANT: $p=\operatorname{prox}_{\mathrm{t}}^{f}(x)$

$$
\Longleftrightarrow p=\arg \min f(y)+\frac{1}{2 t}\|y-x\|_{2}^{2}
$$

$$
\text { HAVE: } q^{k}=\operatorname{prox}_{t_{k}}^{M_{k}}(x) \quad \Longleftrightarrow \quad q^{k}=\arg \min M_{k}(y)+\frac{1}{2 t_{k}}\left\|y-x^{k}\right\|_{2}^{2}
$$

$$
\Longleftrightarrow \quad 0=G^{k}+\frac{1}{t_{k}}\left(q^{k}-x^{k}\right)
$$

$$
\text { for } G^{k} \in \partial M_{k}\left(q^{k}\right)
$$

Theorem [CL93] Suppose the models satisfy

- $M_{k}(y) \leq f(y)$ for all k and y
- $M_{k+1}(y) \geq f\left(q^{k}\right)+\left\langle g\left(q^{k}\right), y-x^{k}\right\rangle$
- $M_{k+1}(y) \geq M_{k}\left(q^{k}\right)+\left\langle G^{k}, y-x^{k}\right\rangle$

If $0<t_{\text {min }} \leq t_{k+1} \leq t_{k}$, then

$$
\lim _{k \rightarrow \infty} q^{k}=p \quad \text { and } \quad \lim _{k \rightarrow \infty} M_{k}\left(q^{k}\right)=f(p)
$$

Models for the half-and-half function

\(\left.\begin{array}{c|cc}STRUCTURE \& f(x)

\hline none \& \sqrt{x^{\top} A x}+x^{\top} B x \&

\hline sum \& f_{1}(x)+f_{2}(x) \& f_{1}(x)=\sqrt{x^{\top} A x}

f_{2}(x)=x^{\top} B x\end{array}\right]\)| | |
| :---: | :---: |
| compo | $(h \circ c)(x)$ |
| sition | |

Models for the half-and-half function

STRUCTURE	$f(x)$	
none	$\sqrt{x^{\top} A x}+x^{\top} B x$	
sum	$f_{1}(x)+f_{2}(x)$	$f_{1}(x)=\sqrt{x^{\top} A x}$
		$f_{2}(x)=x^{\top} B x$
		f_{2} is smooth
compo	$(h \circ c)(x)=\left(x, x^{\top} B x\right) \in \mathbb{R}^{n+1}$	
sition		c is smooth
		$h(C)=\sqrt{C_{1: n}^{\top} A C_{1: n}}+C_{n+1}$
		h is sublinear

Models for the half-and-half function

\(\left.\begin{array}{c|cc}STRUCTURE \& f(x) \&

\hline none \& \sqrt{x^{\top} A x}+x^{\top} B x \& f^{k}:=f\left(x^{k}\right), g^{k} \in \partial f\left(x^{k}\right)

\hline sum \& f_{1}(x)+f_{2}(x) \& f_{1}(x)=\sqrt{x^{\top} A x}

f_{2}(x)=x^{\top} B x\end{array}\right]\)| | |
| :---: | :--- |
| compo | $(h \circ c)(x)=\left(x, x^{\top} B x\right) \in \mathbb{R}^{n+1}$ |
| sition | |

Models for the half-and-half function

Structure	$f(x)$	
none	$\sqrt{\chi^{\top} A x}+\chi^{\top} B x$	$f^{k}:=f\left(x^{k}\right), g^{k} \in \partial f\left(x^{k}\right)$
sum	$\mathrm{f}_{1}(\mathrm{x})+\mathrm{f}_{2}(\mathrm{x})$	$\begin{aligned} & f_{1}(x)=\sqrt{x^{\top} A x} \\ & f_{2}(x)=x^{\top} B x \\ & f_{1}^{k}, g_{1}^{k}, f_{2}^{k}, \nabla f_{2}\left(x^{k}\right) \end{aligned}$
compo sition	$(h \circ c)(x)$	$\begin{gathered} c(x)=\left(x, x^{\top} B x\right) \in \mathbb{R}^{n+1} \\ h(C)=\sqrt{C_{1: n}^{\top} A C_{1: n}}+C_{n+1} \end{gathered}$

Models for the half-and-half function

STRUCTURE	$f(x)$	
none	$\sqrt{x^{\top} A x}+x^{\top} B x$	$f^{k}:=f\left(x^{k}\right), g^{k} \in \partial f\left(x^{k}\right)$
sum	$f_{1}(x)+f_{2}(x)$	$f_{1}(x)=\sqrt{x^{\top} A x}$
		$f_{2}(x)=x^{\top} B x$
		$f_{1}^{k}, g_{1}^{k}, f_{2}^{k}, \nabla f_{2}\left(x^{k}\right)=\left(x, x^{\top} B x\right) \in \mathbb{R}^{n+1}$
compo	$(h \circ c)(x)$	$c^{k}=c\left(x^{k}\right), c^{\prime}\left(x^{k}\right)$
sition		$h(C)=\sqrt{C_{1: n}^{\top} A C_{1: n}}+C_{n+1}$
		$h^{k}, g^{k} \in \partial h\left(c^{k}\right)$

Stopping test in smooth optimization

Algorithms for unconstrained smooth optimization use as optimality certificate Fermat's rule

$$
0=\nabla f(\bar{x})
$$

and generate a minimizing sequence:

$$
\left\{x^{k}\right\} \rightarrow \bar{x} \text { such that } \nabla f\left(x^{k}\right) \rightarrow 0 .
$$

If $f \in C^{1}$, then $\nabla f(\bar{x})=0$

Stopping test in smooth optimization

Algorithms for unconstrained smooth optimization use as optimality certificate Fermat's rule

$$
0=\nabla f(\bar{x})
$$

and generate a minimizing sequence:

$$
\left\{x^{k}\right\} \rightarrow \bar{x} \text { such that } \nabla f\left(x^{k}\right) \rightarrow 0 .
$$

If $f \in C^{1}$, then $\nabla f(\bar{x})=0$ things are less straightforward if f is nonsmooth...

What happens with the stopping test in NSO?

Algorithms for unconstrained NSO use as optimality certificate the inclusion

$$
0 \in \partial f(\bar{x})
$$

- As a set-valued mapping $\partial f(x)$ is osc:

$$
\left(x^{k}, g\left(x^{k}\right) \in \partial f\left(x^{k}\right)\right):\left\{\begin{array}{c}
x^{k} \rightarrow \bar{x} \\
g\left(x^{k}\right) \rightarrow \bar{g}
\end{array} \Longrightarrow \bar{g} \in \partial f(\bar{x})\right.
$$

What happens with the stopping test in NSO?

Algorithms for unconstrained NSO use as optimality certificate the inclusion

$$
0 \in \partial f(\bar{x})
$$

- As a set-valued mapping $\partial f(x)$ is osc:

$$
\left(x^{k}, g\left(x^{k}\right) \in \partial f\left(x^{k}\right)\right):\left\{\begin{array}{c}
x^{k} \rightarrow \bar{x} \\
g\left(x^{k}\right) \rightarrow \bar{g}
\end{array} \Longrightarrow \bar{g} \in \partial f(\bar{x})\right.
$$

- As a set-valued mapping, $\partial f(x)$ is not isc: Given $\bar{g} \in \partial f(\bar{x})$

$$
\exists\left(x^{k}, g\left(x^{k}\right) \in \partial f\left(x^{k}\right)\right):\left\{\begin{array}{c}
x^{k} \rightarrow \bar{x} \\
g\left(x^{k}\right) \rightarrow \bar{g}
\end{array}\right.
$$

What happens with the stopping test in NSO?

Algorithms for unconstrained NSO use as optimality certificate the inclusion

$$
0 \in \partial f(\bar{x})
$$

- As a set-valued mapping $\partial f(x)$ is osc:

$$
\left(x^{k}, g\left(x^{k}\right) \in \partial f\left(x^{k}\right)\right):\left\{\begin{array}{c}
x^{k} \rightarrow \bar{x} \\
g\left(x^{k}\right) \rightarrow \bar{g}
\end{array} \Longrightarrow \bar{g} \in \partial f(\bar{x})\right.
$$

- As a set-valued mapping, $\partial f(x)$ is not isc: Given $\bar{g} \in \partial f(\bar{x})$

$$
/ / / \neq f\left(x^{k}, g\left(x^{k}\right) \in \partial f\left(x^{k}\right)\right):\left\{\begin{array}{c}
x^{k} \rightarrow \bar{x} \\
g\left(x^{k}\right) \rightarrow \bar{g}
\end{array}\right.
$$

The subdifferential

$$
\partial f(x)= \begin{cases}-1 & x<0 \\ {[-1,1]} & x=0 \\ 1 & x>0\end{cases}
$$

What happens with the stopping test in NSO?

We need to design a sound stopping test that does not rely on the straightforward extension of Fermat's rule.

What happens with the stopping test in NSO?

We need to design a sound stopping test that does not rely on the straightforward extension of
Fermat's rule. We use instead

$$
\bar{g} \in \partial_{\bar{\varepsilon}} f(\bar{x}) \quad \text { for }\|\bar{g}\| \text { and } \bar{\varepsilon} \text { small }
$$

where the ε-subdifferential contains the slopes of linearizations supporting f up to ε, tangent at x :

$$
\partial_{\varepsilon} f(x)=\left\{g \in \mathbb{R}^{n}: f(y) \geq f(x)+\langle g, y-x\rangle-\varepsilon \text { for all } y\right\}
$$

The ε-subdifferential

$$
\partial_{\varepsilon} f(x)=\left\{g \in \mathbb{R}^{n}: f(y) \geq f(x)+\langle g, y-x\rangle-\varepsilon \text { for all } y\right\}
$$

The ε-subdifferential

$$
\partial_{\varepsilon} f(x)=\left\{g \in \mathbb{R}^{n}: f(y) \geq f(x)+\langle g, y-x\rangle-\varepsilon \text { for all } y\right\}
$$

The ε-subdifferential

$$
\partial_{\varepsilon} f(x)=\left\{g \in \mathbb{R}^{n}: f(y) \geq f(x)+\langle g, y-x\rangle-\varepsilon \text { for all } y\right\}
$$

The ε-subdifferential

$$
\partial_{\varepsilon} f(x)=\left\{g \in \mathbb{R}^{n}: f(y) \geq f(x)+\langle g, y-x\rangle-\varepsilon \text { for all } y\right\}
$$

The ε-subdifferential

$$
\partial f(x)= \begin{cases}-1 & x<0 \\ {[-1,1]} & x=0 \\ 1 & x>0\end{cases}
$$

The ε-subdifferential

$$
\begin{aligned}
& \text { For the absolute value function, } f(x)=|x| \\
& \partial_{\varepsilon} f(x)= \begin{cases}{[-1,-1-\varepsilon / x]} & \text { if } x<-\varepsilon / 2 \\
{[-1,1]} & \text { if }-\varepsilon / 2 \leq x 1 \leq \varepsilon 1 / 2 \\
{[1-\varepsilon / x, 1]} & \text { if } x>\varepsilon / 2\end{cases}
\end{aligned}
$$

$$
\partial f(x)= \begin{cases}-1 & x<0 \\ {[-1,1]} & x=0 \\ 1 & x>0\end{cases}
$$

The ε-subdifferential

- As a set-valued mapping $\partial_{\varepsilon} f(x)$ is osc:

$$
\left(\varepsilon^{k}, x^{k}, G\left(x^{k}\right) \in \partial_{\varepsilon^{k}} f\left(x^{k}\right)\right):\left\{\begin{array}{r}
\varepsilon^{k} \rightarrow \varepsilon \\
x^{k} \rightarrow \bar{x} \quad \Longrightarrow \bar{g} \in \partial_{\bar{\varepsilon}} f(\bar{x}), ~ \\
G\left(x^{k}\right) \rightarrow \bar{g}
\end{array}\right.
$$

- As a set-valued mapping, $\partial_{\varepsilon} f(x)$ is isc: Given $\bar{g} \in \partial_{\bar{\varepsilon}} f(\bar{x})$

$$
\exists\left(\varepsilon^{k}, x^{k}, G\left(x^{k}\right) \in \partial_{\varepsilon^{k}} f\left(x^{k}\right)\right):\left\{\begin{aligned}
\varepsilon^{k} & \rightarrow \bar{\varepsilon} \\
x^{k} & \rightarrow \bar{x} \\
G\left(x^{k}\right) & \rightarrow \bar{g}
\end{aligned}\right.
$$

The ε-subdifferential and bundle methods

Generate iterates so that for a subsequence $\left\{\hat{\chi}^{k}\right\}$

- As a set-valued mapping $\partial_{\varepsilon} f(x)$ is osc:

$$
\left(\varepsilon^{k}, \hat{x}^{k}, G\left(\hat{x}^{k}\right) \in \partial_{\varepsilon^{k}} f\left(\hat{x}^{k}\right)\right):\left\{\begin{array}{r}
\varepsilon^{k} \rightarrow \bar{\varepsilon} \\
x^{k} \rightarrow \bar{x} \quad \Longrightarrow \bar{g} \in \partial_{\bar{\varepsilon}} f(\bar{x}), ~ \\
G\left(\hat{x}^{k}\right) \rightarrow \bar{g}
\end{array}\right.
$$

with $\bar{\varepsilon}=0$ and $\bar{g}=0$

- As a set-valued mapping, $\partial_{\varepsilon} f(x)$ is isc:Given $\bar{g} \in \partial_{\bar{\varepsilon}} f(\bar{x})$:

$$
\exists\left(\varepsilon^{k}, \hat{\chi}^{k}, G\left(\hat{x}^{k}\right) \in \partial_{\varepsilon^{k}} f\left(\hat{x}^{k}\right)\right):\left\{\begin{array}{c}
\varepsilon^{k} \rightarrow \bar{\varepsilon} \\
x^{k} \rightarrow \bar{x} \\
G\left(x^{k}\right) \rightarrow \bar{g}
\end{array}\right.
$$

The ε-subdifferential and bundle methods

 You told us
we were going to use subgradient information provided by an oracle or a black box, and now you want to use ε-subgradients!

The transportation formula

How to express subgradients at χ^{i} as ε-subgradients at $\hat{\chi}^{k}$?

$$
\begin{aligned}
& \quad g^{i} \in \partial f\left(x^{i}\right) \quad \text { if and only if, for all } y \in \mathbb{R}^{n} \\
& f(y) \geq f\left(x^{i}\right)+\left\langle g^{i}, y-x^{i}\right\rangle
\end{aligned}
$$

The transportation formula
How to express subgradients at χ^{2} as ε-subgradients at $\hat{\chi}^{k}$?

$$
\begin{aligned}
& g^{i} \in \partial f\left(x^{i}\right) \quad \text { if and only if, for all } y \in \mathbb{R}^{n} \\
f(y) & \geq f\left(x^{i}\right)+\left\langle g^{i}, y-x^{i}\right\rangle \\
& =f\left(x^{i}\right)+\left\langle g^{i}, y-x\right\rangle \pm f\left(\hat{x}^{k}\right)
\end{aligned}
$$

The transportation formula

How to express subgradients at χ^{i} as ε-subgradients at $\hat{\chi}^{k}$?

$$
\begin{aligned}
& g^{i} \in \partial f\left(x^{i}\right) \quad \text { if and only if, for all } y \in \mathbb{R}^{n} \\
f(y) & \geq f\left(x^{i}\right)+\left\langle g^{i}, y-x^{i}\right\rangle \\
& =f\left(x^{i}\right)+\left\langle g^{i}, y-x\right\rangle \pm f\left(\hat{x}^{k}\right) \\
& =f\left(\hat{x}^{k}\right)+\left\langle g^{i}, y-x\right\rangle-\left(f\left(\hat{x}^{k}\right)-f\left(x^{i}\right)\right)
\end{aligned}
$$

The transportation formula

How to express subgradients at χ^{2} as ε-subgradients at $\hat{\chi}^{k}$?

$$
\begin{aligned}
& g^{i} \in \partial f\left(x^{i}\right) \quad \text { if and only if, for all } y \in \mathbb{R}^{n} \\
f(y) & \geq f\left(x^{i}\right)+\left\langle g^{i}, y-x^{i}\right\rangle \\
& =f\left(x^{i}\right)+\left\langle g^{i}, y-x\right\rangle \pm f\left(\hat{x}^{k}\right) \\
& =f\left(\hat{x}^{k}\right)+\left\langle g^{i}, y-x\right\rangle-\left(f\left(\hat{x}^{k}\right)-f\left(x^{i}\right)\right) \\
& =f\left(\hat{x}^{k}\right)+\left\langle g^{i}, y-x \pm \hat{x}^{k}\right\rangle-\left(f\left(\hat{x}^{k}\right)-f\left(x^{i}\right)\right)
\end{aligned}
$$

The transportation formula

How to express subgradients at χ^{\imath} as ε-subgradients at $\hat{\chi}^{k}$?

$$
\begin{aligned}
& g^{i} \in \partial f\left(x^{i}\right) \quad \text { if and only if, for all } y \in \mathbb{R}^{n} \\
f(y) & \geq f\left(x^{i}\right)+\left\langle g^{i}, y-x^{i}\right\rangle \\
& =f\left(x^{i}\right)+\left\langle g^{i}, y-x\right\rangle \pm f\left(\hat{x}^{k}\right) \\
& =f\left(\hat{x}^{k}\right)+\left\langle g^{i}, y-x\right\rangle-\left(f\left(\hat{x}^{k}\right)-f\left(x^{i}\right)\right) \\
& =f\left(\hat{x}^{k}\right)+\left\langle g^{i}, y-x \pm \hat{x}^{k}\right\rangle-\left(f\left(\hat{x}^{k}\right)-f\left(x^{i}\right)\right) \\
& =f\left(\hat{x}^{k}\right)+\left\langle g^{i}, y-\hat{x}^{k}\right\rangle-\left(f\left(\hat{x}^{k}\right)-f\left(x^{i}\right)-\left\langle g^{i}, \hat{x}^{k}-x^{i}\right\rangle\right)
\end{aligned}
$$

The transportation formula

How to express subgradients at χ^{\imath} as ε-subgradients at $\hat{\chi}^{k}$?

$$
\begin{aligned}
& g^{i} \in \partial f\left(x^{i}\right) \quad \text { if and only if, for all } y \in \mathbb{R}^{n} \\
f(y) & \geq f\left(x^{i}\right)+\left\langle g^{i}, y-x^{i}\right\rangle \\
& =f\left(x^{i}\right)+\left\langle g^{i}, y-x\right\rangle \pm f\left(\hat{x}^{k}\right) \\
& =f\left(\hat{x}^{k}\right)+\left\langle g^{i}, y-x\right\rangle-\left(f\left(\hat{x}^{k}\right)-f\left(x^{i}\right)\right) \\
& =f\left(\hat{x}^{k}\right)+\left\langle g^{i}, y-x \pm \hat{x}^{k}\right\rangle-\left(f\left(\hat{x}^{k}\right)-f\left(x^{i}\right)\right) \\
& =f\left(\hat{x}^{k}\right)+\left\langle g^{i}, y-\hat{x}^{k}\right\rangle-\left(f\left(\hat{x}^{k}\right)-f\left(x^{i}\right)-\left\langle g^{i}, \hat{x}^{k}-x^{i}\right\rangle\right) \\
& =f\left(\hat{x}^{k}\right)+\left\langle g^{i}, y-\hat{x}^{k}\right\rangle-e^{i}\left(\hat{x}^{k}\right)
\end{aligned}
$$

The transportation formula

How to express subgradients at χ^{2} as ε-subgradients at $\hat{\chi}^{k}$?

$$
\begin{aligned}
& g^{i} \in \partial f\left(x^{i}\right) \quad \text { if and only if, for all } y \in \mathbb{R}^{n} \\
f(y) & \geq f\left(x^{i}\right)+\left\langle g^{i}, y-x^{i}\right\rangle \\
& =f\left(x^{i}\right)+\left\langle g^{i}, y-x\right\rangle \pm f\left(\hat{x}^{k}\right) \\
& =f\left(\hat{\chi}^{k}\right)+\left\langle g^{i}, y-x\right\rangle-\left(f\left(\hat{x}^{k}\right)-f\left(x^{i}\right)\right) \\
& =f\left(\hat{x}^{k}\right)+\left\langle g^{i}, y-x \pm \hat{x}^{k}\right\rangle-\left(f\left(\hat{x}^{k}\right)-f\left(x^{i}\right)\right) \\
& =f\left(\hat{x}^{k}\right)+\left\langle g^{i}, y-\hat{x}^{k}\right\rangle-\left(f\left(\hat{x}^{k}\right)-f\left(x^{i}\right)-\left\langle g^{i}, \hat{x}^{k}-x^{i}\right\rangle\right) \\
& =f\left(\hat{x}^{k}\right)+\left\langle g^{i}, y-\hat{x}^{k}\right\rangle-e^{i}\left(\hat{x}^{k}\right) \\
\Longrightarrow & g^{i} \in \partial_{e^{i}\left(\hat{x}^{k}\right)} f\left(\hat{x}^{k}\right) \\
e^{i}\left(\hat{\chi}^{k}\right) & :=f\left(\hat{x}^{k}\right)-f\left(x^{i}\right)-\left\langle g^{i}, \hat{x}^{k}-x^{i}\right\rangle \geq 0
\end{aligned}
$$

The transportation formula

How to express subgradients at χ^{i} as ε-subgradients at $\hat{\chi}^{k}$?

$$
\begin{aligned}
& g^{i} \in \partial f\left(x^{i}\right) \quad \text { if and only if, for all } y \in \mathbb{R}^{n} \\
f(y) & \geq f\left(x^{i}\right)+\left\langle g^{i}, y-x^{i}\right\rangle \\
& =f\left(x^{i}\right)+\left\langle g^{i}, y-x\right\rangle \pm f\left(\hat{\chi}^{k}\right) \\
& =f\left(\hat{\chi}^{k}\right)+\left\langle g^{i}, y-x\right\rangle-\left(f\left(\hat{x}^{k}\right)-f\left(x^{i}\right)\right) \\
& =f\left(\hat{\chi}^{k}\right)+\left\langle g^{i}, y-x \pm \hat{\chi}^{k}\right\rangle-\left(f\left(\hat{x}^{k}\right)-f\left(x^{i}\right)\right) \\
& =f\left(\hat{x}^{k}\right)+\left\langle g^{i}, y-\hat{x}^{k}\right\rangle-\left(f\left(\hat{x}^{k}\right)-f\left(x^{i}\right)-\left\langle g^{i}, \hat{x}^{k}-x^{i}\right\rangle\right) \\
& =f\left(\hat{x}^{k}\right)+\left\langle g^{i}, y-\hat{x}^{k}\right\rangle-e^{i}\left(\hat{x}^{k}\right) \\
\Longrightarrow & g^{i} \in \partial_{e^{i}\left(\hat{x}^{k}\right)} f\left(\hat{x}^{k}\right) \\
e^{i}\left(\hat{x}^{k}\right) & :=f\left(\hat{x}^{k}\right)-f\left(x^{i}\right)-\left\langle g^{i}, \hat{x}^{k}-x^{i}\right\rangle \geq 0
\end{aligned}
$$

Linearization errors

The ε-subdifferential and bundle methods

We collect the black-box
$x^{i}, i=1,2, \ldots, k$, so that at iteration k we can define a bundle of information, centered at a special iterate $\hat{\chi}^{k} \in\left\{\chi^{i}\right\}$

$$
\mathcal{B}^{k}:=\binom{e^{i}\left(\hat{\chi}^{k}\right)=f\left(\hat{\chi}^{k}\right)-f\left(x^{i}\right)-\left\langle g^{i}, \hat{\chi}^{k}-x^{i}\right\rangle}{ g^{i} \in \partial_{e^{i}\left(\hat{\chi}^{k}\right)} f\left(\hat{\chi}^{k}\right)}
$$

The ε-subdifferential and bundle methods

We collect the black-box
$x^{i}, i=1,2, \ldots, k$, so that at iteration k we can define a bundle of information, centered at a special iterate $\hat{\chi}^{k} \in\left\{\chi^{i}\right\}$

$$
\mathcal{B}^{k}:=\binom{e^{i}\left(\hat{\chi}^{k}\right)=f\left(\hat{\chi}^{k}\right)-f\left(x^{i}\right)-\left\langle g^{i}, \hat{\chi}^{k}-x^{i}\right\rangle}{ g^{i} \in \partial_{e^{i}\left(\hat{\chi}^{k}\right)} f\left(\hat{\chi}^{k}\right)}
$$

A suitable convex combination

$$
\varepsilon^{k}:=\sum_{i \in \mathcal{B}^{k}} \alpha^{i} e^{i}\left(\hat{x}^{k}\right) \text { and } G^{k}:=\sum_{\mathfrak{i} \in \mathcal{B}^{k}} \alpha^{i} g^{i}
$$

will eventually satisfy the optimality condition!

Why special NSO methods?

Smooth optimization techniques do not work

$$
\left|\nabla f\left(x^{k}\right)\right|=1, \forall x^{k} \neq 0 \quad \partial f(0)=[-1,1]
$$

Smooth stopping test fails:
$\left|\nabla f\left(x^{k}\right)\right| \leq$ TOL $\quad\left(\leftrightarrow\left|g\left(x^{k}\right)\right| \leq\right.$ TOL $)$

Why special NSO methods?

Smooth optimization techniques do not work
Smooth approximations of derivatives by finite differences fail

For $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined by $f(x)=\max \left(x_{1}, x_{2}, x_{3}\right)$ $\partial f(0)=$?
Forward finite difference $\frac{f(x+\Delta x)-f(x)}{\Delta x}$
Central finite difference $\frac{f(x+\Delta x)-f(x-\Delta)}{2 \Delta x}$

Why special NSO methods?

Smooth optimization techniques do not work
Smooth approximations of derivatives by finite differences fail

For $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined by $f(x)=\max \left(x_{1}, x_{2}, x_{3}\right)$ $\partial f(0)=$?
Forward finite difference $\frac{f(x+\Delta x)-f(x)}{\Delta x}=(\mathbf{1}, \mathbf{1}, \mathbf{1})$ Central finite difference $\frac{f(x+\Delta x)-f(x-\Delta)}{2 \Delta x}=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right.$ none of them in the subdifferential!

Why special NSO methods?

Smooth optimization techniques do not work
Linesearches get trapped in kinks and fail

Why special NSO methods?

Smooth optimization techniques do not work

Linesearches get trapped in kinks and fail

Example 9.1
"Instability of steepest
descent"

Why special NSO methods?

Smooth optimization techniques do not work
$-g\left(x^{k}\right)$ may not provide descent

Why special NSO methods?

Smooth optimization techniques do not work
$-g\left(x^{k}\right)$ may not provide descent

Why special NSO methods?

Smooth optimization techniques do not work
Smooth stopping test fails
Finite difference approximations fail
Linesearches get trapped in kinks and fail
Direction opposite to a subgradient may increase the functional values

In NSO the skier is blind

Bundle Methods

WANT: $p=\operatorname{prox}_{\mathrm{t}}^{\mathrm{f}}(\mathrm{x}) \quad \Longleftrightarrow \mathrm{p}=\arg \min \mathrm{f}(\mathrm{y})+\frac{1}{2 \mathrm{t}}\|y-x\|_{2}^{2}$
HAVE: $q^{k}=\operatorname{prox}_{t_{k}}^{M_{k}}(x) \Longleftrightarrow q^{k}=\arg \min M_{k}(y)+\frac{1}{2 t_{k}}\left\|y-x^{k}\right\|_{2}^{2}$
$\Longleftrightarrow \quad 0=G^{k}+\frac{1}{t_{k}}\left(q^{k}-x^{k}\right)$
for $G^{k} \in \partial M_{k}\left(q^{k}\right)$
$\Longleftrightarrow \quad G^{k} \in \partial_{\varepsilon_{k}} f(x)$
for $\varepsilon_{k}=f(x)-M_{k}\left(q^{k}\right)-t_{k}\left\|G^{k}\right\|_{2}^{2}$

Bundle Methods

WANT: $p=\operatorname{prox}_{\mathrm{t}}^{\mathrm{f}}(\mathrm{x}) \quad \Longleftrightarrow \mathrm{p}=\arg \min \mathrm{f}(\mathrm{y})+\frac{1}{2 \mathrm{t}}\|\mathrm{y}-\mathrm{x}\|_{2}^{2}$
HAVE: $q^{k}=\operatorname{prox}_{t_{k}}^{M_{k}}(x) \Longleftrightarrow q^{k}=\arg \min M_{k}(y)+\frac{1}{2 t_{k}}\left\|y-x^{k}\right\|_{2}^{2}$

$$
\begin{aligned}
& \Longleftrightarrow 0=G^{k}+\frac{1}{t_{k}}\left(q^{k}-x^{k}\right) \\
& \quad \text { for } G^{k} \in \partial M_{k}\left(q^{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Longleftrightarrow \quad G^{k} \in \partial_{\varepsilon_{k}} f(x) \\
& \text { for } \varepsilon_{k}=f(x)-M_{k}\left(q^{k}\right)-t_{k}\left\|G^{k}\right\|_{2}^{2}
\end{aligned}
$$

Two subsequences

- Iterates giving sufficiently good approximal points
- Iterates just helping the optimization process

Bundle Methods

$$
\begin{array}{rlr}
\text { HAVE: } q^{k}=\operatorname{prox}_{t_{k}}^{M_{k}}(x)= & x^{k}+t_{k} G^{k} \quad G^{k} \in \partial_{\varepsilon_{k}} f(x) \\
& \text { for } \varepsilon_{k}=f(x)-M_{k}\left(q^{k}\right)-t_{k}\left\|G^{k}\right\|_{2}^{2}
\end{array}
$$

Two subsequences

- Iterates giving sufficiently good approximal points moving towards minimum
in a manner that makes $\delta_{k}:=\varepsilon_{k}+t_{k}\left\|G^{k}\right\|_{2}^{2} \rightarrow 0$
(serious)
- Iterates just helping the optimization process

CL93 eventually applies (null)

Bundle Methods

Bundle Methods

0 Choose x^{1}, set $k=1$, and let $\hat{x}^{1}=x^{1}$.
1 Compute $x^{k+1}=\arg \min \mathbf{M}_{k}(x)+\frac{1}{2 t_{k}}\left|x-\hat{x}^{k}\right|^{2}$
2 If $\delta_{\mathbf{k}}:=f\left(\hat{x}^{k}\right)-\mathbf{M}_{k}\left(x^{k+1}\right) \leq$ tol STOP
3 Call the oracle at χ^{k+1}. If

$$
f\left(x^{k+1}\right) \leq f\left(\hat{x}^{k}\right)-m \delta_{k}, \operatorname{set} \hat{x}^{k+1}=x^{k+1}
$$

(Serious Step) Otherwise, maintain $\hat{x}^{k+1}=\hat{x}^{k}$ (Null Step)
4 Define $\mathbf{M}_{\mathrm{k}+1}, \mathrm{t}_{\mathrm{k}+1}$, make $\mathrm{k}=\mathrm{k}+1$, and loop to 1 .

Bundle Methods: selection mechanism

$\mathbf{M}_{\mathrm{k}+1}(\cdot)=\max \left(\mathbf{M}_{\mathrm{k}}(\cdot), \mathrm{f}^{\mathrm{k}}+\left\langle\mathrm{g}^{\mathrm{k}}, \cdot-\mathrm{x}^{\mathrm{k}}\right\rangle\right)$,
now the choice of the new model is more flexible:
$x^{k+1} \in \arg \min \mathbf{M}_{k}(x)+\frac{1}{2 t_{k}}\left|x-\hat{x}^{k}\right|^{2}$
with $\mathbf{M}_{k}(x)=\max _{i \leq k}\left\{f^{i}+\left\langle g^{i}, x-x^{i}\right\rangle\right\}$ is equivalent to a QP:
$\{$
A posteriori, the solution remains the same if ...

Bundle Methods: selection mechanism

$\mathbf{M}_{\mathrm{k}+1}(\cdot)=\max \left(\mathbf{M}_{\mathrm{k}}(\cdot), \mathrm{f}^{\mathrm{k}}+\left\langle\mathrm{g}^{\mathrm{k}}, \cdot-x^{\mathrm{k}}\right\rangle\right)$,
now the choice of the new model is more flexible:
$\chi^{k+1} \in \arg \min \mathbf{M}_{k}(x)+\frac{1}{2 t_{k}}\left|x-\hat{x}^{k}\right|^{2}$
with $\mathbf{M}_{k}(x)=\max _{i \leq k}\left\{\boldsymbol{f}^{i}+\left\langle g^{i}, x-x^{i}\right\rangle\right\}$ is equivalent to a QP:

$$
\begin{cases}\min _{r \in \mathbb{R}, x \in \mathbb{R}^{n}} & r+\frac{1}{2 t_{k}}\left|x-\hat{x}^{k}\right|^{2} \\ \text { s.t. } & r \geq f^{i}+\left\langle g^{i}, x-x^{i}\right\rangle \text { for } \mathbf{i} \leq \mathbf{k}\end{cases}
$$

A posteriori, the solution remains the same if all, or

Bundle Methods: selection mechanism

$\mathbf{M}_{\mathrm{k}+1}(\cdot)=\max \left(\mathbf{M}_{\mathrm{k}}(\cdot), \mathrm{f}^{\mathrm{k}}+\left\langle\mathrm{g}^{\mathrm{k}}, \cdot-\mathrm{x}^{\mathrm{k}}\right\rangle\right)$,
now the choice of the new model is more flexible:
$x^{k+1} \in \arg \min \mathbf{M}_{k}(x)+\frac{1}{2 t_{k}}\left|x-\hat{x}^{k}\right|^{2}$
with $\mathbf{M}_{k}(x)=\max _{i \leq k}\left\{f^{i}+\left\langle g^{i}, x-x^{i}\right\rangle\right\}$ is equivalent to a QP:

$$
\begin{cases}\min _{r \in \mathbb{R}, x \in \mathbb{R}^{n}} & r+\frac{1}{2 t_{k}}\left|x-\hat{x}^{k}\right|^{2} \\ \text { s.t. } & r \geq f^{i}+\left\langle g^{i}, x-x^{i}\right\rangle \text { for active i's }\end{cases}
$$

A posteriori, the solution remains the same if all, or active, or ...

Bundle Methods: selection mechanism

$\mathbf{M}_{\mathrm{k}+1}(\cdot)=\max \left(\mathbf{M}_{\mathrm{k}}(\cdot), \mathrm{f}^{\mathrm{k}}+\left\langle\mathrm{g}^{\mathrm{k}}, \cdot-x^{\mathrm{k}}\right\rangle\right)$,
now the choice of the new model is more flexible:
$x^{k+1} \in \arg \min \mathbf{M}_{k}(x)+\frac{1}{2 t_{k}}\left|x-\hat{x}^{k}\right|^{2}$
with $\mathbf{M}_{k}(x)=\max _{i \leq k}\left\{f^{i}+\left\langle g^{i}, x-x^{i}\right\rangle\right\}$ is equivalent to a QP:
$\left\{\begin{array}{l}\min \\ \text { st. }\end{array}\right.$

$$
\begin{aligned}
& r+\frac{1}{2 t_{k}}\left|x-\hat{x}^{k}\right|^{2} \\
& r \geq \sum_{i} \bar{\alpha}^{i}\left(f^{i}+\left\langle g^{i}, x-x^{i}\right\rangle\right)
\end{aligned}
$$

posteriori, the solution remains the same if all, or active, or the optimal convex combination

Bundle Methods: selection mechanism

$\mathbf{M}_{\mathrm{k}+1}(\cdot)=\max \left(\mathbf{M}_{\mathrm{k}}(\cdot), \mathrm{f}^{\mathrm{k}}+\left\langle\mathrm{g}^{\mathrm{k}}, \cdot-x^{\mathrm{k}}\right\rangle\right)$,
now the choice of the new model is more flexible:
$x^{k+1} \in \arg \min \mathbf{M}_{k}(x)+\frac{1}{2 t_{k}}\left|x-\hat{x}^{k}\right|^{2}$
with $\mathbf{M}_{k}(x)=\max _{i \leq k}\left\{f^{i}+\left\langle g^{i}, x-x^{i}\right\rangle\right\}$ is equivalent to a QP:
$\{$ $\min _{r \in \mathbb{R}, x \in \mathbb{R}^{n}} \quad r+\frac{1}{2 t_{k}}\left|x-\hat{x}^{k}\right|^{2}$ s.t.

$$
r \geq \sum_{i} \bar{\alpha}^{i}\left(f^{i}+\left\langle g^{i}, x-\chi^{i}\right\rangle\right)
$$

A posteriori, the solution remains the same if all, or active, or the optimal convex combination are kept

Bundle Methods: next model options

$$
\mathbf{M}_{\mathrm{k}+1}(\cdot)=\max \left(\mathbf{M}_{\mathrm{k}}(\cdot), \mathrm{f}^{\mathrm{k}}+\left\langle\mathrm{g}^{\mathrm{k}}, \cdot-\mathrm{x}^{\mathrm{k}}\right\rangle\right)
$$

or

$$
\mathbf{M}_{k+1}(\cdot)=\max \left(\max _{\text {active }}, f^{\mathrm{k}}+\left\langle\mathrm{g}^{\mathrm{k}}, \cdot-x^{\mathrm{k}}\right\rangle\right)
$$

or

$$
\mathbf{M}_{k+1}(\cdot)=\max \left(\text { aggregate }, f^{k}+\left\langle g^{k}, \cdot-x^{k}\right\rangle\right)
$$

Same QP solution if all, or active, or the optimal convex combination aggregate=full Bundle Compression: QP with only 2 constraints (but slows down the overall process)

The cutting-plane model
You told us

we were going to use a bundle \mathcal{B}_{k} composed by linearization errors and ε-subgradients at $\hat{\chi}^{k}$, but the model uses f^{i} and $g^{i} \in \partial f\left(x^{i}\right)$

Rewriting the cutting-plane model

The transportation formula centers the ith linearization in the serious iterate

$$
\begin{aligned}
f(y) & \geq f\left(x^{i}\right)+\left\langle g^{i}, y-x^{i}\right\rangle \\
& =f\left(\hat{x}^{k}\right)+\left\langle g^{i}, y-\hat{x}^{k}\right\rangle-e^{i}\left(\hat{x}^{k}\right)
\end{aligned}
$$

Rewriting the cutting-plane model

The transportation formula centers the ith linearization in the serious iterate

$$
\begin{aligned}
f(y) & \geq f\left(x^{i}\right)+\left\langle g^{i}, y-x^{i}\right\rangle \\
& =f\left(\hat{x}^{k}\right)+\left\langle g^{i}, y-\hat{x}^{k}\right\rangle-e^{i}\left(\hat{x}^{k}\right)
\end{aligned}
$$

this translates into the model as follows

$$
\begin{array}{rlrl}
\mathbf{M}_{k}(y) & =\max \left\{f\left(x^{i}\right)+\left\langle g^{i}, y-x^{i}\right\rangle\right. & & \left.: i \in \mathcal{B}_{k}\right\} \\
& =\max \left\{f\left(\hat{x}^{k}\right)+\left\langle g^{i}, y-\hat{x}^{k}\right\rangle-e^{i}\left(\hat{x}^{k}\right)\right. & \left.: i \in \mathcal{B}_{k}\right\} \\
& =f\left(\hat{x}^{k}\right)+\max \left\{\left\langle g^{i}, y-\hat{x}^{k}\right\rangle-e^{i}\left(\hat{x}^{k}\right)\right. & \left.: i \in \mathcal{B}_{k}\right\}
\end{array}
$$

Bundle Method

0 Choose x^{1}, set $k=1$, and let $\hat{x}^{1}=x^{1}$.
1 Compute $x^{k+1}=\arg \min \mathbf{M}_{k}(x)+\frac{1}{2 t_{k}}\left|x-\hat{x}^{k}\right|^{2}$
2 If $\delta_{k}:=f\left(\hat{x}^{k}\right)-\mathbf{M}_{k}\left(x^{k+1}\right) \leq$ tol STOP
3 Call the oracle at χ^{k+1}. If
$f\left(x^{k+1}\right) \leq f\left(\hat{\chi}^{k}\right)-m \delta_{k}, \operatorname{set} \hat{\chi}^{k+1}=x^{k+1}$

Otherwise, maintain $\hat{\chi}^{k+1}=\hat{\chi}^{k}$

4 Define $\mathbf{M}_{\mathrm{k}+1}, \mathrm{t}_{\mathrm{k}+1}$, make $\mathrm{k}=\mathrm{k}+1$, and loop to 1 .

Bundle Method

0 Choose x^{1}, set $k=1$, and let $\hat{x}^{1}=x^{1}$.
1 Compute $x^{k+1}=\arg \min \mathbf{M}_{k}(x)+\frac{1}{2 t_{k}}\left|x-\hat{x}^{k}\right|^{2}$
2 If $\delta_{k}:=f\left(\hat{x}^{k}\right)-\mathbf{M}_{k}\left(x^{k+1}\right) \leq$ tol STOP
3 Call the oracle at χ^{k+1}. If
$f\left(x^{k+1}\right) \leq f\left(\hat{\chi}^{k}\right)-m \delta_{k}, \operatorname{set} \hat{\chi}^{k+1}=x^{k+1}$
(Serious Step) $\mathbf{k} \in \mathbf{K}_{\mathbf{S}}$
Otherwise, maintain $\hat{\chi}^{k+1}=\hat{\chi}^{k}$
(Null Step) $k \in K_{N}$
4 Define $\mathbf{M}_{\mathrm{k}+1}, \mathrm{t}_{\mathrm{k}+1}$, make $\mathrm{k}=\mathrm{k}+1$, and loop to 1 .

Bundle Method

When $k \rightarrow \infty$, the algorithm generates two subsequences.
Convergence analysis addresses the mutually exclusive situations

- either the SS subsequence is infinite
- or there is a last SS, followed by infinitely many null steps

Bundle Method

When $\mathrm{k} \rightarrow \infty$, the algorithm generates two subsequences. Convergence analysis addresses the mutually exclusive situations

- either the SS subsequence is infinite

$$
\mathbf{K}_{\infty}:=\left\{\mathbf{k} \in \mathbf{K}_{\mathbf{S}}\right\}
$$

- or there is a last SS, followed by infinitely many null steps

$$
\mathbf{K}_{\infty}:=\left\{\mathbf{k} \in \mathbf{K}_{\mathbf{N}}: \mathbf{k} \geq \text { last } \mathbf{S S}\right\}
$$

Bundle Method

When $\mathrm{k} \rightarrow \infty$, the algorithm generates two subsequences.
Convergence analysis addresses the mutually exclusive situations

- either the SS subsequence is infinite

$$
\mathbf{K}_{\infty}:=\left\{\mathbf{k} \in \mathbf{K}_{\mathbf{S}}\right\} \text { (limit point minimizes } \mathbf{f} \text {) }
$$

- or there is a last SS, followed by infinitely many null steps
$\mathbf{K}_{\infty}:=\left\{\mathbf{k} \in \mathbf{K}_{\mathbf{N}}: \mathbf{k} \geq \mathbf{l a s t} \mathbf{S S}\right\}$
(last SS minimizes f and null \rightarrow last $\mathbf{S S}$)

Equivalent QPs

1. Given t_{k}, the stepsize parameter of the proximal bundle method, with QP subproblem given by

$$
(\mathrm{PB})_{k} \quad \min \mathbf{M}_{\mathrm{k}}(x)+\frac{1}{2 t_{k}}\left|x-\hat{x}^{k}\right|^{2}
$$

2. Given Δ_{k}, the radius parameter of the trust-region bundle method, with QP subproblem given by

$$
(\mathrm{TRB})_{\mathrm{k}} \begin{cases}\min & \mathbf{M}_{\mathrm{k}}(x) \\ \text { s.t. } & \left|x-\hat{x}^{k}\right|^{2} \leq \Delta_{\mathrm{k}}\end{cases}
$$

3. Given ℓ_{k}, the level parameter of the level bundle method,
with QP subproblem given by

$$
(L B)_{k} \begin{cases}\min & \frac{1}{2}\left|x-\hat{x}^{k}\right|^{2} \\ \text { s.t. } & \mathbf{M}_{k}(x) \leq \ell_{k}\end{cases}
$$

Show that

1. given t_{k}, there exists Δ_{k} such that if χ^{k+1} solves $(P B)_{k}$, then x^{k+1} solves $(T R B)_{k}$.
2. given Δ_{k}, there exists ℓ_{k} such that if x^{k+1} solves $(T R B)_{k}$, then x^{k+1} solves $(L B)_{k}$.
3. given
$e l_{k}$, there exists t_{k} such that if χ^{k+1} solves $(L B)_{k}$, then x^{k+1} solves $(P B)_{k}$.

Theorem $\quad \mathbf{K}_{\infty}:=\left\{\mathbf{k} \in \mathbf{K}_{\mathbf{S}}\right\}$

Suppose the bundle method loops forever and there are infinitely many serious steps. Either the solution set of minf is empty and $f\left(\hat{x}^{k}\right) \searrow-\infty$ or the following holds
(i) $\lim _{k \in K_{S}} \delta_{k}=0$ and $\lim _{k \in K_{S}} \varepsilon_{k}=0$.
(ii) If the stepsizes are chosen so that $\sum_{k \in K_{S}} t_{k}=+\infty$ then $\left\{\hat{\chi}^{k}\right\}$ is a minimizing sequence.
(iii) If, in addition, $\mathrm{t}_{\mathrm{k}} \leq \mathrm{t}^{\text {up }}$ for all $k \in \mathrm{~K}_{\mathrm{S}}$, then the subsequence $\left\{\hat{\chi}^{k}\right\}$ is bounded. In this case, any limit point x^{∞} minimizes f and the whole sequence converges to χ^{∞}

Theorem $\quad \mathbf{K}_{\infty}:=\left\{\mathbf{k} \in \mathbf{K}_{\mathbf{N}} \geq \hat{\mathbf{k}}\right\}$

Suppose the bundle method loops forever and there are infinitely many null steps after a last serious one, denoted by \hat{x} and generated at iteration \widehat{k}. Suppose stepsizes are chosen so that

$$
t_{l_{0}} \leq t_{k+1} \leq t_{k} \quad \text { for all } k \in K_{\infty}
$$

The following holds

1. The sequence $\left\{x^{k+1}\right\}$ is bounded
2. $\lim _{k \in \mathrm{~K}_{\infty}} \mathbf{M}_{\mathrm{k}}\left(x^{\mathrm{k}+1}\right)=\mathrm{f}(\hat{\chi})$
3. \hat{x} minimizes f
4. $\lim _{k \in \mathrm{~K}_{\infty}} \mathrm{k}^{\mathrm{k}+1}=\hat{\chi}$

Model requirements

1. $\mathbf{M}_{\mathrm{k}} \leq \mathrm{f}$
2. If k was declared a null step
a) $\mathbf{M}_{k+1}(x) \geq f^{k+1}+\left\langle g^{k+1}, x-x^{k+1}\right\rangle$
b) $\mathbf{M}_{k+1}(x) \geq A_{k}(x)=\mathbf{M}_{k}\left(x^{k+1}\right)+\left\langle G^{k}, x-x^{k+1}\right\rangle$

Model requirements

1. $\mathbf{M}_{\mathrm{k}} \leq \mathrm{f}$
2. If k was declared a null step
a) $\mathbf{M}_{k+1}(x) \geq f^{k+1}+\left\langle g^{k+1}, x-x^{k+1}\right\rangle$
b) $\mathbf{M}_{k+1}(x) \geq A_{k}(x)=\mathbf{M}_{k}\left(x^{k+1}\right)+\left\langle G^{k}, x-x^{k+1}\right\rangle$

Any model satisfying these conditions that is used in the QP maintains the convergence results

Comparing the methods: bundle and SG

Typical performance on a battery of Unit Commitment problems

Bundle Methods with on-demand accuracy the new generation

Oracle types: exact and upper

- $f^{1}(x) / g^{1}(x) \in \partial f^{1}(x)$ is easy: exact $f^{1}(x) / g^{1}(x)$
- $f^{2}(x) / g^{2}(x) \in \partial f^{2}(x)$ is difficult: inexact f_{x}^{2} / g_{x}^{2}

Oracle f_{χ}^{2} / g_{x}^{2} NOT of lower type

Oracle types: exact and lower

- $f^{1}(x) / g^{1}(x) \in \partial f^{1}(x)$ is easy: exact $f^{1}(x) / g^{1}(x)$
- $f^{2}(x) / g^{2}(x) \in \partial f^{2}(x)$ is less difficult: inexact f_{x}^{2} / g_{x}^{2}

组 - Oracle $f_{\chi}^{2} / g_{\chi}^{2}$ of lower type

For the EM problem $f^{\mathfrak{j}}(x)=\max \left\{-\mathcal{C}^{\boldsymbol{j}}\left(q^{\mathfrak{j}}\right)+\left\langle x, g^{\boldsymbol{j}}\left(\mathrm{q}^{\mathfrak{j}}\right)\right\rangle: \mathrm{q}^{\mathfrak{j}} \in \mathcal{P}^{\boldsymbol{j}}\right\}$
By computing $f_{x^{k}}$ and $g_{x^{k}}$ satisfying

$$
f_{x^{k}}=f\left(x^{k}\right)-\eta^{k} \quad \text { and } \quad g_{x^{k}} \in \partial_{\eta^{k}} f\left(x^{k}\right)
$$

we can build

- A lower oracle
- An asymptotically exact oracle

$$
\eta^{k} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty
$$

- A partly asymptotically exact oracle

$$
\eta^{k} \rightarrow 0 \quad \text { as } \quad K_{s} \ni \mathrm{k} \rightarrow \infty
$$

- An on-demand accuracy oracle

$$
\eta^{k} \leq \bar{\eta}^{k} \quad \text { when } \quad f_{x^{k}} \leq f_{\hat{x}^{k}}-m \delta_{k}
$$

BM with lower inexact oracles

- $\mathbf{M}_{k}(x)=\max \left\{f_{x^{i}}+\left\langle g_{x^{i}}, x-x^{i}\right\rangle: i \in \boldsymbol{B}_{k}\right\}$
- $\delta^{k}=\varepsilon_{k}+t_{k}\left|G^{k}\right|^{2}$
- SS test: $\boldsymbol{f}_{x^{k+1}} \leq \hat{f}^{k}-\mathfrak{m} \delta^{k}$
- $\hat{f}^{k}:=\max \left\{\mathrm{f}_{\hat{\chi}^{k}}, \max \left(\mathbf{M}_{\mathbf{j}}\left(\hat{\chi}^{k}\right), \mathfrak{j} \geq \hat{\mathrm{k}}\right)\right\}$
+ Oracle inaccuracy is locally bounded:
$\forall R \geq 0 \exists \eta(R) \geq 0:|x| \leq R \Longrightarrow \eta \leq \eta(R)$ convergence as before, up to the accuracy on SS

BM with lower inexact oracles

- $\mathbf{M}_{k}(x)=\max \left\{f_{x^{i}}+\left\langle g_{x^{i}}, x-x^{i}\right\rangle: i \in \mathcal{B}_{k}\right\}$
- $\delta^{k}=\varepsilon_{k}+t_{k}\left|G^{k}\right|^{2}$
- SS test: $\boldsymbol{f}_{x^{k+1}} \leq \hat{f}^{k}-\mathfrak{m} \boldsymbol{\delta}^{k}$
- $\hat{f}^{k}:=\max \left\{f_{\hat{\chi}^{k}}, \max \left(\mathbf{M}_{\mathbf{j}}\left(\hat{\chi}^{k}\right), \mathbf{j} \geq \hat{k}\right)\right\}$
+ Oracle inaccuracy is locally bounded:
$\forall R \geq 0 \exists \eta(R) \geq 0:|x| \leq R \Longrightarrow \eta \leq \eta(R)$ convergence as before, up to the accuracy on SS Convex proximal bundle methods in depth: a unified analysis for inexact oracles W. de Oliveira, C. Sagastizábal, C. Lemaréchal MathProg 148, pp 241-277, 2014

General comments

Bundle methods are

- robust (do not oscillate, as CP methods do)
- reliable (have a stopping test, unlike SG methods)
- can deal with inaccuracy in a reasonable manner

Extending bundle methods

Constrained NSO problems: an example

Optimal management of the hydrovalley

$$
\begin{cases}\max & \lambda^{\top} \mathbb{E}_{\eta}(\rho(u)) \\ \text { s.t. } & (x, u) \in \mathcal{P} \\ & \mathbb{P}_{\eta}\left(A u+a_{\min } \leq M \eta \leq A u+a_{\max }\right) \geq p\end{cases}
$$

Optimal management of the hydrovalley

$$
\begin{cases}\max & \lambda^{\top} \mathbb{E}_{\eta}(\rho(u)) \\ \text { s.t. } & (x, u) \in \mathcal{P} \\ & \mathbb{P}_{\eta}\left(A u+a_{\min } \leq M \eta \leq A u+a_{\max }\right) \geq p\end{cases}
$$

Is this a convex program?

Optimal management of the hydrovalley

$$
\begin{cases}\max & \lambda^{\top} \mathbb{E}_{\eta}(\rho(u)) \\ \text { s.t. } & (x, u) \in \mathcal{P} \\ & \mathbb{P}_{\eta}\left(A u+a_{\min } \leq M \eta \leq A u+a_{\max }\right) \geq p\end{cases}
$$

Is this a convex program? YES: the function

$$
\mathfrak{u} \mapsto \log \left(\mathbb{P}_{\mathfrak{\eta}}\left(\mathcal{A} \mathfrak{u}+\mathrm{a}_{\min } \leq \mathrm{M} \mathfrak{\eta} \leq A \mathfrak{u}+\mathrm{a}_{\max }\right)\right) \quad \text { is convex. }
$$

We need to solve $\left\{\begin{array}{ll}\min & f(u) \\ \text { s.t. } & (x, \mathfrak{u}) \in \mathcal{P} \\ & \mathfrak{c}(\mathfrak{u}) \leq 0\end{array}\right.$ for linear f and with
$\mathfrak{c}(\mathfrak{u}):=\log \left(\mathbb{P}_{\mathfrak{\eta}}\left(A \mathfrak{u}+\mathrm{a}_{\min } \leq M \eta \leq A \mathfrak{u}+\mathrm{a}_{\max }\right)\right)-\log p$

Optimal management of the hydrovalley

$$
\begin{cases}\max & \lambda^{\top} \mathbb{E}_{\eta}(\rho(u)) \\ \text { s.t. } & (x, u) \in \mathcal{P} \\ & \mathbb{P}_{\eta}\left(A u+a_{\min } \leq M \eta \leq A u+a_{\max }\right) \geq p\end{cases}
$$

Is this a convex program? YES: the function

$$
\mathfrak{u} \mapsto \log \left(\mathbb{P}_{\eta}\left(A u+a_{\min } \leq M \eta \leq A u+a_{\max }\right)\right) \quad \text { is convex. }
$$

We need to solve $\left\{\begin{array}{ll}\min & f(u) \\ \text { s.t. } & (x, u) \in \mathcal{P} \\ & c(u) \leq 0\end{array}\right.$ for linear f and with
$c(u):=\log \left(\mathbb{P}_{\eta}\left(A u+a_{\min } \leq M \eta \leq A u+a_{\max }\right)\right)-\log p$ difficult to compute!

Need to solve the constrained problem

for linear f and with inexact evaluation of c and its gradient, via a black box with controllable inaccuracy (bounded by a given tolerance ε, with confidence level 99%, noting that evaluation errors can be positive or negative)

Handling constraints in NSO

For nonsmooth constrained problems

$$
\min f(u) \quad \text { s.t. } \quad c(u) \leq 0
$$

use the Improvement Function

$$
\max _{\mathfrak{u}}\{\mathbf{f}(\mathfrak{u})-\mathbf{f}(\widehat{u}), \mathfrak{c}(\mathfrak{u})\}
$$

(changes with each serious point \hat{u} and supposes exact f / c
values available)
[SagSol SiOPT, 2005 and
KarasRibSagSol MPB, 2009]

Improvement function

Let (\bar{x}, \bar{u}) be a solution to (P). The function

$$
\mathrm{H}_{\overline{\mathfrak{u}}}(\mathfrak{u}):=\max _{(x, \mathfrak{u}) \in \mathcal{P}}\{\mathbf{f}(\mathbf{u})-\mathrm{f}(\overline{\mathrm{u}}), \mathrm{c}(\mathfrak{u})\}
$$

has perfect theoretical properties:
If Slater condition $(\exists(x, u) \in \mathcal{P}$ s.t. $c(u)<0)$ holds, then

$$
\begin{equation*}
\overline{\mathfrak{u}} \text { solves } \min _{(x, \mathfrak{u}) \in \mathcal{P}} f(\mathfrak{u}) \quad \text { s.t. } \quad \mathfrak{c}(\mathfrak{u}) \leq 0 \tag{P}
\end{equation*}
$$

$$
\begin{aligned}
& \min _{(x, u) \in \mathcal{P}} H_{\bar{u}}(\mathfrak{u})^{\mathbb{1}}=H_{\bar{u}}(\bar{u})=0 \\
& 0 \in \partial H(\bar{u}) \text { for } H(\cdot):=H_{\bar{u}}(\cdot)
\end{aligned}
$$

Improvement function

Let (\bar{x}, \bar{u}) be a solution to (P). The function

$$
\mathrm{H}_{\overline{\mathfrak{u}}}(\mathfrak{u}):=\max _{(x, \mathfrak{u}) \in \mathcal{P}}\{\mathbf{f}(\mathbf{u})-\mathrm{f}(\overline{\mathrm{u}}), \mathrm{c}(\mathfrak{u})\}
$$

has perfect theoretical properties:

Without Slater condition

$$
\begin{gather*}
\bar{u} \text { solves } \min _{(x, \mathfrak{u}) \in \mathcal{P}} f(\mathfrak{u}) \quad \text { s.t. } \quad c(u) \leq 0 \tag{P}\\
\Downarrow \quad \text { BUT } \nVdash \\
\min _{(x, \mathfrak{u}) \in \mathcal{P}} H_{\bar{u}}(\mathfrak{u})=H_{\bar{u}}(\bar{u})=0 \\
\Downarrow \quad \text { and also } \Uparrow \\
0 \in \partial H(\bar{u}) \text { for } H(\cdot):=H_{\bar{u}}(\cdot)
\end{gather*}
$$

Improvement function

Let (\bar{x}, \bar{u}) be a solution to (P). The function

$$
\mathrm{H}_{\overline{\mathfrak{u}}}(\mathfrak{u}):=\max _{(x, \mathfrak{u}) \in \mathcal{P}}\{\mathbf{f}(\mathbf{u})-\mathrm{f}(\overline{\mathrm{u}}), \mathrm{c}(\mathfrak{u})\}
$$

has perfect theoretical properties:

Without Slater condition

$$
\begin{equation*}
\overline{\mathfrak{u}} \text { solves } \min _{(x, \mathfrak{u}) \in \mathcal{P}} f(\mathfrak{u}) \quad \text { s.t. } \quad \mathfrak{c}(\mathfrak{u}) \leq 0 \tag{P}
\end{equation*}
$$

\Uparrow : when $c(\bar{u}) \leq 0 \bar{u}$ solves (\mathbf{P}), otherwise it minimizes infeasibility over \mathcal{P}

$$
\begin{gathered}
\min _{(x, u) \in \mathcal{P}} H_{\bar{u}}(\mathfrak{u})=H_{\overline{\mathfrak{u}}}(\overline{\mathfrak{u}})=0 \\
\mathbb{\imath} \\
0 \in \partial \mathrm{H}(\overline{\mathrm{u}}) \text { for } \mathrm{H}(\cdot):=\mathrm{H}_{\bar{u}}(\cdot)
\end{gathered}
$$

Handling nonconvex

 problems- Nonconvex proximal point mapping [PR96]

$$
p_{R} f(x):=\operatorname{argmin}_{y \in \mathbb{R}^{N}}\left\{f(y)+\frac{R}{2}|y-x|^{2}\right\}
$$

x is the prox-center and $R>R_{x}$ is the prox-parameter
Theorem If f is convex

- $p_{R} f$ is well defined for any $R>0$.
$-p_{R} f$ is single valued and loc. Lip.
$-p=p_{R} f(x) \Longleftrightarrow R(x-p) \in \partial f(p)$
$-x^{*}$ minimizes $f \Longleftrightarrow x^{*}=p_{R} f\left(x^{*}\right)$ for any $R>0$.
$-\chi_{k+1}=p_{R} f\left(x_{k}\right)$ converges to a minimizer x^{*}.

Nonconvex difficulties

Proximal Bundle Methods are the most robust and reliable (oracle) methods for convex minimization. Their success relies heavily on convexity. If f is convex:
$-x_{k+1}=p_{R} f\left(x_{k}\right)$ converges to a minimizer χ^{*}.

- \check{f}_{k} lies entirely below f.

May no longer be true for nonconvex f

Nonconvex difficulties

Proximal Bundle Methods are the most robust and reliable (oracle) methods for convex minimization. Their success relies heavily on convexity. If f is convex

- $\chi_{k+1}=p_{R} f\left(\chi_{k}\right)$ converges to a minimizer χ^{*}.
- \check{f}_{k} lies entirely below f.

May no longer be true for nonconvex f

Nonconvex difficulties

Proximal Bundle Methods are the most robust and reliable (oracle) methods for convex minimization. Their success relies heavily on convexity. If f is convex
$-\chi_{k+1}=p_{R} f\left(\chi_{k}\right)$ converges to a minimizer χ^{*}.

- \check{f}_{k} lies entirely below f.

May no longer be true for nonconvex f

Nonconvex difficulties

Proximal Bundle Methods are the most robust and reliable (oracle) methods for convex minimization. Their success relies heavily on convexity. If f is convex
$-x_{k+1}=p_{R} f\left(x_{k}\right)$ converges to a minimizer χ^{*}.

- \check{f}_{k} lies entirely below f.

May no longer be true for nonconvex f

Nonconvex difficulties

Proximal Bundle Methods are the most robust and reliable (oracle) methods for convex minimization. Their success relies heavily on convexity. If f is convex
$-x_{k+1}=p_{R} f\left(x_{k}\right)$ converges to a minimizer χ^{*}.

- \check{f}_{k} lies entirely below f.

May no longer be true for nonconvex f

How this difficulty has been addressed?

Take each plane in the model: $f_{i}+\left\langle g_{i}, \cdot-y_{i}\right\rangle$ and rewrite it, centered at χ_{k} :

$$
\begin{array}{ll}
f\left(x_{k}\right)-\left[f\left(x_{k}\right)-\left(f_{i}+\left\langle g_{i}, x_{k}-y_{i}\right\rangle\right)\right] & +\left\langle g_{i}, \cdot-x_{k}\right\rangle \\
f\left(x_{k}\right)-c & e_{k, i}^{f} \\
& +\left\langle g_{i}, \cdot-x_{k}\right\rangle
\end{array}
$$

Good: $e_{k, i}^{f}$ positive \Rightarrow convergence Good: If f convex $\Rightarrow e_{k, i}^{f}$ positive. BAD: If f nonconvex, $e_{k, i}^{f}$ may be negative

Nonconvex bundle methods
fix negative linearization errors, replacing \check{f}_{k} by:

$$
\mathrm{f}_{\mathrm{k}}^{\text {FIX }}(\mathrm{y})=\max \left\{\mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)-\left|\mathbf{e}_{\mathrm{k}, \mathbf{i}}^{\mathbf{f}}\right|+\left\langle\mathrm{g}_{\mathfrak{i}}, \mathrm{y}-\mathrm{x}_{\mathrm{k}}\right\rangle\right\}
$$

[Mif77, Lem80, Kiw85, Luk98]

Nonconvex bundle methods
fix negative linearization errors, replacing \check{f}_{k} by:

$$
\mathfrak{f}_{\mathrm{k}}^{\mathbf{F I X}}(\mathrm{y})=\max \left\{\mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)-\left|\mathbf{e}_{\mathrm{k}, \mathrm{i}}^{\mathbf{f}}\right|+\left\langle\mathrm{g}_{i}, \mathrm{y}-\mathrm{x}_{\mathrm{k}}\right\rangle\right\}
$$

[Mif77, Lem80, Kiw85, Luk98]

Nonconvex bundle methods
fix negative linearization errors, replacing \check{f}_{k} by:

$$
\mathrm{f}_{\mathrm{k}}^{\mathbf{F I X}}(\mathrm{y})=\max \left\{\mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)-\left|\mathbf{e}_{\mathrm{k}, \mathbf{i}}^{\mathbf{f}}\right|+\left\langle\mathrm{g}_{\mathrm{i}}, \mathrm{y}-\mathrm{x}_{\mathrm{k}}\right\rangle\right\}
$$

[Mif77, Lem80, Kiw85, Luk98]

Nonconvex bundle methods fix negative linearization errors, replacing \check{f}_{k} by:

$$
\mathrm{f}_{k}^{\mathrm{FIX}}(y)=\max \left\{\mathrm{f}\left(x_{\mathrm{k}}\right)-\left|\mathbf{e f}_{\mathrm{k}, \mathrm{i}}\right|+\left\langle\mathrm{g}_{\mathfrak{i}}, y-x_{k}\right\rangle\right\}
$$

[Mif77, Lem80, Kiw85, Luk98]

Nonconvex bundle methods fix negative linearization errors, replacing \check{f}_{k} by:

$$
\mathrm{f}_{\mathrm{k}}^{\mathbf{F I X}}(\mathrm{y})=\max \left\{\mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)-\left|\mathbf{e}_{\mathrm{k}, \mathrm{i}}^{\mathrm{f}}\right|+\left\langle\mathrm{g}_{\mathfrak{i}}, \mathrm{y}-\mathrm{x}_{\mathrm{k}}\right\rangle\right\}
$$

[Mif77, Lem80, Kiw85, Luk98]

Nonconvex bundle methods
fix negative linearization errors, replacing \check{f}_{k} by:

$$
\mathfrak{f}_{\mathrm{k}}^{\mathbf{F I X}}(\mathrm{y})=\max \left\{\mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)-\left|\mathbf{e}_{\mathrm{k}, \mathrm{i}}^{\mathbf{f}}\right|+\left\langle\mathrm{g}_{i}, \mathrm{y}-\mathrm{x}_{\mathrm{k}}\right\rangle\right\}
$$

[Mif77, Lem80, Kiw85, Luk98]

A new method
A different approach (ours) is based on the following trick
Take $\eta, \mu>0: R=\eta+\mu$ and note

$$
\begin{array}{rllll}
p_{R} f\left(x_{k}\right) & =\min _{\mathcal{w}}\{ & f(w) & + & R
\end{array} \begin{aligned}
& \frac{1}{2}\left|w-x_{k}\right|^{2} \\
& = \\
& =\min _{w}\{
\end{aligned}
$$

Redistributed Proximal Bundle Method

At $\ell^{\text {th }}$-iteration, for $k=k(\ell)$, given R_{k}, x_{k} and a bundle $\mathcal{B}=\left\{y_{i}, f_{i}, g_{i}, i \in I_{\ell}\right\}$

0 . Split R_{k} into η_{ℓ} and μ_{ℓ}.

1. Model $F_{\mathfrak{\eta}_{\ell}} \quad \check{F}_{\eta_{\ell}, \ell}(y)=\max _{i \in \mathcal{B}}\left\{F_{\boldsymbol{\eta}_{\ell \mathfrak{i}}}+\left\langle g_{\mathfrak{\eta}_{\ell \mathfrak{i}}}, y-y_{i}\right\rangle\right\}$
2. Minimize the penalized model
$y_{\ell+1}=\arg \min \left\{\check{\mathrm{F}}_{\eta_{\ell}, \ell}(\mathrm{y})+\frac{\mu_{\ell}}{2}\left|y-x_{k}\right|^{2}\right\}$
3. Descent test If $y_{\ell+1}$ good: $x_{k+1} \leftarrow y_{\ell+1}$, define R_{k+1} serious step

If $y_{\ell+1}$ bad:
4. Update bundle $\mathcal{B} \leftarrow \mathcal{B} \cup\left\{y_{\ell+1}, f_{\ell+1}, g_{\ell+1}\right\}$

$\mathcal{V U}$ quasi-Newton bundle

For $x \in \mathbb{R}^{n}$, given matrices $A \succeq 0, B \succ 0, f(x)=\sqrt{x^{\top} A x}+x^{\top} B x$ has a unique minimizer at $\bar{\chi}=0$. On $\mathcal{N}(A)$ the function is not differentiable, and the first term vanishes: $\left.f\right|_{\mathcal{N}(A)}$ looks smooth.

$\mathcal{R}(\mathrm{A})$
\mathcal{V}

$\mathcal{N}(\mathrm{A})$
U
parallel to $\partial f(\bar{x})$
\mathcal{U} perpendicular to \mathcal{V}
\mathcal{V} is parallel to $\mathcal{N}(A)$, the "ridge" of nonsmoothness

\mathcal{V}-Algorithm:

(Mifflin\&Sagastizábal, MathProg 05) Recall that
$\boldsymbol{f}_{\mathcal{V} \| \mathcal{N}(\mathrm{A})}$ is nice: the key is the two QP-solves

$\mathcal{R}(A)$
\mathcal{V}
2 bundle QPs

$\mathcal{N}(\mathrm{A})$
\mathcal{U}
Newton-move

Two successive bundle QPs identify the "ridge" of nonsmoothness
Solve a \quad to create an approximation of \mathcal{V} based on $\partial \check{f}\left(\hat{p}^{k}\right)$

\mathcal{V} - -Algorithm:

superlinear "serious" subsequence (Mifflin\&Sag, MathProg 05)

To learn more

Bundle methods history

R. Mifflin, C. SagastizÁbal, Documenta Math, 2012. A Science Fiction Story in Nonsmooth Optimization Originating at IIASA
https://www.math.uni-bielefeld.de/documenta/
vol-ismp/44_mifflin-robert.pdf
(exact) Bundle books
J.F. Bonnans, J.C. Gilbert, C. Lemaréchal, and
C. SAGASTIZÁBAL, Numerical Optimization: Theoretical and Practical Aspects, Springer, 2nd ed., 2006.
J.B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms II, no. 306 in Grund. der math. Wissenschaften, Springer, 2nd ed., 1996.
Inexact Bundle theory
(next page)

Inexact Bundle theory

M. Hintermüller, A proximal bundle method based on approximate subgradients, COAp 20 (2001), pp. 245-266.
M. V. Solodov, On Approximations with Finite Precision in Bundle Methods for Nonsmooth Optimization. JoTA 119.1 (2003), pp. 151-165 K.C. Kiwiel, A proximal bundle method with approximate subgradient linearizations, SiOpt 16 (2006), pp. 1007-1023.
W. de Oliveira, C. Sagastizábal, and C. Lemaréchal, Convex proximal bundle methods in depth: a unified analysis for inexact oracles, MathProg 148 (2014), pp. 241-277.
Inexact Bundle variants with applications
G. Emiel and C. SAGAStizÁBAL, Incremental-like bundle methods with application to energy planning, COAp 46 (2010), pp. 305-332. W. de Oliveira, C. Sagastizábal, and S. Scheimberg, Inexact bundle methods for two-stage stochastic programming, SiOpt 21 (2011), pp. 517-544. (next page)
W. van Ackooij and C. Sagastizábal, Constrained bundle methods for upper inexact oracles with application to joint chance constrained energy problems, SiOpt 24 (2014), pp. 733-765.
W. De Oliveira and C. Sagastizábal, Level bundle methods for oracles with on-demand accuracy, OMS 29 (2014), pp. 1180-1209 W. de Oliveira and C. Sagastizábal, Bundle methods in the xxi century: A birds'-eye view, Pesquisa Operacional 34 (2014), pp. 647 670.
W. de Oliveira and M. Solodov, A doubly stabilized bundle method for nonsmooth convex optimization, MathProg 156(1), pp. 126-159, 2016.

Any doubts or questions?
Just e-mail me

