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Ultimate goal of the lecture

How to to obtain “good” strategies (or cost-to-go functions) for
a large scale stochastic optimal control problem in discrete time,
for example a problem corresponding to the optimal management
over a given time horizon of a system involving a large amount of
dynamical production units.

In order to obtain decision strategies (closed-loop controls),
we have to use dynamic programming or related methods.

Assumption: Markovian case,
Difficulty: curse of dimensionality.

To overcome the barrier of the dimension, we want to use
decomposition/coordination techniques, so that we have to
take into account the information pattern induced by the
stochastic optimization problem.

P. Carpentier Decomposition methods for SOC problems March 2017 2 / 91



Examples and mathematical background
About decomposition in stochastic optimization

Dual approximate dynamic programming (DADP)
Hydro valleys management problem

Practical applications under consideration

Electricity production management for large hydro valleys

1 year time horizon:
compute each month

the “values of water”

(cost-to-go functions)

stochastic framework:
rain, market prices

large-scale valley:
4 dams and much more
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Decomposition and coordination

Unit 1 Unit N

Unit 2 Unit 3

Interconnected units

The “large system” to be optimized
consists of interconnected subsystems:
we want to use this structure in order
to formulate optimization subproblems
of reasonable complexity.

But the presence of interactions requires
a level of coordination.

Coordination must provide a local model
of the interactions to each subproblem:
it is an iterative process.

The ultimate goal is to obtain the solution
of the overall problem by concatenation of
the solutions of the subproblems.
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Example: the “flower model”

Unit 2

Unit 1 Unit N

Unit 3

Coupling

constraint

min
u

N∑

i=1

Ji (ui ) ,

s.t.
N∑

i=1

Θi (ui ) = θ .

Unit Commitment Problem
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Example: the “cascade model”

Unit 1

Unit 2

Coupling

constraints

Unit N

min
u,v

N∑

i=1

Ji (ui , vi ) ,

s.t. Hi (ui , vi ) = vi+1 ∀i .

Dams Management Problem

Link with the flower model: Θi (ui , vi ) =
(
0, . . . ,−vi ,Hi (ui , vi ), . . . , 0

)>
.
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A general model

Unit 1 Unit N

Unit 3

Unit i

Unit 2

Coupling

constraints

min
u,v

N∑

i=1

Ji

(
ui ,
∑

j 6=i

vj ,i

)
,

s.t. Hi

(
ui ,
∑

j 6=i

vj ,i

)
= vi .

Smart Grid
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Motivation for theoretical developments

Mathematical ingredients needed to tackle such problems.

Optimization mathematical framework.

Duality theory (handling of constraints).

 Lagrangian relaxation.

Decomposition/coordination methods

 Price decomposition (Walras groping).

Points already covered since the beginning of the week.

Stochastic optimization.

Dynamic programming.
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Optimization without explicit constraint

min
u∈Uad

J(u) .

U : Hilbert space with scalar product 〈· , ·〉.
Examples: U = Rn (vectors) or U = L2

(
Ω,A,P;Rn

)
(random variables).

Uad: closed convex subset of U .
J : U → R: function satisfying some properties
(convexity, continuity, differentiability, coercivity).

Characterization of a solution u] (optimality conditions):
〈
∇J(u]) , u − u]

〉
≥ 0 ∀u ∈ Uad .

Computation of the solution u] (projected gradient algorithm):

u(k+1) = projUad

(
u(k) − ρ∇J(u(k))

)
.
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Optimization with explicit constraints I

min
u∈Uad

J(u) subject to Θ(u) ∈ −C . (P)

U : Hilbert space.

Uad: closed convex subset of U .

J : U → R: cost function.

V: another Hilbert space.

Θ : U → V: constraint function satisfying some properties
(convexity w.r.t. C , continuity, differentiability).

C : cone of V (examples: C =
{

0
}

, C =
{
v ≥ 0

}
).

An additional condition on the constraint function is needed!

Constraint Qualification Condition, e.g. 0 ∈ int
(
Θ(Uad) + C

)
.
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Optimization with explicit constraints II

Karush-Kuhn-Tucker Conditions

In addition to standard conditions on J and Θ, we assume that
the constraints are qualified.

Then a necessary and sufficient condition for u] ∈ Uad to be a
solution of Problem (P) is that there exists λ] ∈ V such that:

1
〈
∇J(u]) + [Θ′(u])]>λ] , u − u]

〉
≥ 0 ∀u ∈ Uad,

2 Θ(u]) ∈ −C ,

3 λ] ∈ C ?,

4
〈
λ] ,Θ(u])

〉
= 0 (Complementary Slackness).

The dual cone of C is defined by: C? =
{
λ ∈ V, 〈λ , v〉 ≥ 0 ∀v ∈ C

}
.
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Optimization with explicit constraints III

Let L : Uad × C ? → R be the Lagrangian associated to (P):

L(u, λ) = J(u) +
〈
λ ,Θ(u)

〉
.

A point (u], λ]) ∈ Uad × C ? is a saddle point of L if

L(u], λ) ≤ L(u], λ]) ≤ L(u, λ]) ∀(u, λ) ∈ Uad × C ? .

If (u], λ]) is a saddle point of L, then u] is a solution of (P).

If u] is a solution of (P) and if the KKT conditions are met
for some λ], then (u], λ]) is a saddle point of L.

Moreover we have that

L(u], λ]) = J(u]) = min
u∈Uad

max
λ∈C?

L(u, λ) = max
λ∈C?

min
u∈Uad

L(u, λ) .
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Optimization with explicit constraints IV

Dealing with the dual problem

max
λ∈C?

min
u∈Uad

L(u, λ) ,

paves the way for algorithmic methods. Define the dual function Φ
associated to the Lagrangian L as

Φ(λ) = min
u∈Uad

L(u, λ) .

The problem of maximizing the dual function Φ is equivalent to
the one of solving the dual problem:

max
λ∈C?

Φ(λ) ⇐⇒ max
λ∈C?

min
u∈Uad

L(u, λ) .

The gradient of Φ is obtained from the minimization step in u:

∇Φ(λ) = Θ(ûλ), with ûλ unique solution of min
u∈Uad

L(u, λ) .
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Optimization with explicit constraints V

In order to obtain a solution of the original constrained problem,
we use a gradient algorithm for maximizing the dual function:

max
λ∈C?

Φ(λ) .

The gradient of Φ at the current point λ(k) of the algorithm is
obtained by minimizing L(u, λ(k)) w.r.t. u.

Uzawa’s Algorithm

Choose λ(0) ∈ C ?. At each iteration k ,

1 obtain the solution u(k+1) = arg min
u∈Uad

J(u) +
〈
λ(k) ,Θ(u)

〉
,

2 update the multiplier λ(k+1) = projC?

(
λ(k) + ρΘ(u(k+1))

)
.
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Specific problem structure: additive model I

Consider the optimization problem with explicit constraints:

min
u∈Uad⊂U

J(u) subject to Θ(u) = θ ∈ V .

We assume that the space U writes as a Cartesian product:

U = U1 × · · · × UN , so that u =
(
u1, . . . , uN

)
with ui ∈ Ui .

We moreover assume that this space decomposition is such that

the admissible set Uad writes as a Cartesian product:

Uad = Uad
1 × · · · × Uad

N with Uad
i ⊂ Ui ,

the functions J and Θ write additively:

J(u) = J1(u1) + · · ·+ JN(uN) ,

Θ(u) = Θ1(u1) + · · ·+ ΘN(uN) .
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Specific problem structure: additive model II

Then the original problem displays the so-called additive structure:

min
u1∈Uad

1...
uN∈Uad

N

N∑

i=1

Ji (ui ) subject to
N∑

i=1

Θi (ui )− θ = 0 .

Note that the coupling between the i ’s only arises from the
constraint Θ. As a matter of fact,

min
u1∈Uad

1...
uN∈Uad

N

N∑

i=1

Ji (ui ) ⇐⇒ min
ui∈Uad

i

Ji (ui ) ∀i = 1, . . . ,N .
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Additive model — Price decomposition I

min
u∈Uad

N∑

i=1

Ji (ui ) subject to
N∑

i=1

Θi (ui )− θ = 0 .

1 Form the Lagrangian of the problem. The dual problem writes:

max
λ∈V

min
u∈Uad

N∑

i=1

(
Ji (ui ) +

〈
λ ,Θi (ui )

〉)
−
〈
λ , θ

〉
.

2 Solve this problem by the Uzawa algorithm:

u
(k+1)
i ∈ arg min

ui∈Uad
i

Ji (ui ) +
〈
λ(k) ,Θi (ui )

〉
, i = 1 . . . ,N ,

λ(k+1) = λ(k) + ρ

( N∑

i=1

Θi

(
u

(k+1)
i

)
− θ
)
.

 Walras groping
P. Carpentier Decomposition methods for SOC problems March 2017 22 / 91



Examples and mathematical background
About decomposition in stochastic optimization

Dual approximate dynamic programming (DADP)
Hydro valleys management problem

Interconnected systems
Optimization background
Standard decomposition methods

Additive model — Price decomposition II

λ(k+1) = λ(k) + ρ

(∑
Θi

(
u
(k+1)
i

)
− θ

)

Subproblem 1 Subproblem i Subproblem N

Coordination

min J1(u1) + 〈λ(k),Θ1(u1)〉 min Ji(ui) + 〈λ(k),Θi(ui)〉 min JN(uN) + 〈λ(k),ΘN(uN)〉

λ(k) ΘN (u
(k)
N )Θ1(u

(k)
1 ) λ(k) λ(k)Θi(u

(k)
i )
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Additive model — Resource allocation I

min
u∈Uad

N∑

i=1

Ji (ui ) subject to
N∑

i=1

Θi (ui )− θ = 0 .

1 Write the constraint in a equivalent manner by introducing
new variables (v1, . . . , vN) (the so-called “allocation”):

N∑

i=1

Θi (ui )−θ = 0 ⇔ Θi (ui )−vi = 0 and
N∑

i=1

vi−θ = 0 .

Minimize the criterion w.r.t. u and v :

min
v∈VN

N∑

i=1

(
min

ui∈Uad
i

Ji (ui ) s.t. Θi (ui )−vi = 0
)

s.t.
N∑

i=1

vi−θ = 0 .
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Additive model — Resource allocation II

min
v∈VN

N∑

i=1

(
min

ui∈Uad
i

Ji (ui ) s.t. Θi (ui )− vi = 0

︸ ︷︷ ︸
Gi (vi )

)
s.t.

N∑

i=1

vi − θ = 0 ,

m
min
v∈VN

N∑

i=1

Gi (vi ) s.t.
N∑

i=1

vi − θ = 0 .

2 Solve the last problem using a projected gradient method:

Gi (v
(k)
i ) = min

ui∈Uad
i

Ji (ui ) s.t. Θi (ui )− v
(k)
i = 0  λ

(k+1)
i ,

v
(k+1)
i = v

(k)
i + ρ

(
λ

(k+1)
i − 1

N

N∑

j=1

λ
(k+1)
j

)
.
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Additive model — Resource allocation III

v
(k)
1

Subproblem i

Coordination

min Ji(ui) s.t. Θi(ui)− v
(k)
i = 0

Subproblem 1

min J1(u1) s.t. Θ1(u1)− v
(k)
1 = 0

Subproblem N

v
(k+1)
i = v

(k)
i + ρ

(
λ
(k+1)
i − 1

N
∑

λ
(k+1)
j

)

min JN(uN) s.t. ΘN(uN)−v
(k)
N =0

v
(k)
N λ

(k)
Nλ

(k)
1 v

(k)
iλ

(k)
i
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Additive model: conclusions

1 Price decomposition
Pros: subproblems are always feasible.
Cons: admissible solution once convergence achieved.

2 Resource allocation
Pros: admissible solution at each iteration.
Cons: potential existence of unfeasible subproblems.

Straightforward extension to inequality constraints. . .

Other methods are available, even for non-additive structures.
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References on decomposition/coordination methods

Further readings on decomposition/coordination:

G. Cohen, “Optimisation des grands systèmes”. Cours du DEA
Modélisation et Méthodes Mathématiques en Économie, 2004.

G. Cohen, “Auxiliary Problem Principle and Decomposition of
Optimization Problems”. Journal of Optimization Theory and
Applications, 32, 1980.

G. Cohen & D.L. Zhu, “Decomposition coordination methods
in large scale optimization problems. The nondifferentiable case
and the use of augmented Lagrangians”. In J.B. Cruz (Ed.):
“Advances in Large Scale Systems”, 1, 203-266, JAI Press,
Greenwich, Connecticut, 1984.
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Final remarks on decomposition methods I

The theory is available for general (infinite dimensional) Hilbert
spaces, and thus applies in the stochastic framework, that is, the
case where U is a space of random variables.

The minimization algorithm used for solving the subproblems is not
specified in the decomposition process and is left to the user! It is
however assumed that the user is able to solve the subproblem, for
example in the price decomposition case:

min
ui∈Uad

i

Ji (ui ) +
〈
λ(k) ,Θi (ui )

〉
,

and to send the requested information, namely Θi (u
(k+1)
i ), to the

coordination level.

Question: what methods are suitable for a stochastic problem?
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Final remarks on decomposition methods II

Whatever the decomposition/coordination scheme used (price,
allocation. . . ), new variables (depending on u(k) and/or λ(k)) are
present in the subproblems arising at iteration k of the associated
algorithm.

Example: subproblem i in price decomposition:

min
ui∈Uad

i

Ji (ui ) +
〈
λ(k) ,Θi (ui )

〉
.

All these new variables are considered as fixed when solving the
subproblems (they only depend on the iteration index k). They
are nothing but constant elements in the space V.

Question: which consequences in the stochastic case?
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Reminder of our ultimate goal

How to to obtain “good” strategies (or cost-to-go functions) for
a large scale stochastic optimal control problem in discrete time,
for example a problem corresponding to the optimal management
over a given time horizon of a system involving a large amount of
dynamical production units.

In order to obtain decision strategies (closed-loop controls),
we have to use dynamic programming or related methods.

Assumption: Markovian case,
Difficulty: curse of dimensionality.

To overcome the barrier of the dimension, we want to use
decomposition/coordination techniques, so that we have to
take into account the information pattern induced by the
stochastic optimization problem.
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Stochastic optimal control problem in discrete time

We consider a stochastic optimal control (SOC) problem

min
U,X

E
( N∑

i=1

( T−1∑

t=0

Lit(X
i
t ,U

i
t ,W t+1) + K i (X i

T )
))

,

subject to the constraints:

X i
0 = f i-1(W 0) , i = 1 . . .N ,

X i
t+1 = f it (X i

t ,U
i
t ,W t+1) , t = 0 . . .T−1 , i = 1 . . .N ,

U i
t = E

(
U i

t

∣∣ Ft

)
, t = 0 . . .T−1 , i = 1 . . .N ,

N∑

i=1

Θi
t(X

i
t ,U

i
t) = 0 , t = 0 . . .T−1 .
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Couplings and decompositions for SOC problems I

unit

time

uncertainty

min
∑

ω

∑

i

∑

t

πωL
i
t(X

i
t ,U

i
t ,W t+1)

s.t. X i
t+1 − f it (X i

t ,U
i
t ,W t+1) = 0

U i
t − E

(
U i

t

∣∣ Ft

)
= 0

∑

i

Θi
t(X

i
t ,U

i
t) = 0

3 additive structures!
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Couplings and decompositions for SOC problems II

unit

time

uncertainty

min
∑

ω

∑

i

∑

t

πωL
i
t(X

i
t ,U

i
t ,W t+1)

s.t. X i
t+1 − f it (X i

t ,U
i
t ,W t+1) = 0

U i
t − E

(
U i

t

∣∣ Ft

)
= 0

∑

i

Θi
t(X

i
t ,U

i
t) = 0

3 additive structures!
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Couplings and decompositions for SOC problems III

unit

time

uncertainty

min
∑

ω

∑

i

∑

t

πωL
i
t(X

i
t ,U
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Couplings and decompositions for SOC problems VI
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Couplings and decompositions for SOC problems VIII
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Mixing spatial decomposition and dynamic programming

Consider the SOC problem (the spatial structure is highlighted)

min
U,X

N∑

i=1

(
E
( T−1∑

t=0

Lit(X
i
t ,U

i
t ,W t+1) + K i (X i

T )
))

,

subject to the constraints:

X i
t+1 = f it (X i

t ,U
i
t ,W t+1) , t = 0 . . .T−1 , i = 1 . . .N ,

U i
t = E

(
U i

t

∣∣ Ft

)
, t = 0 . . .T−1 , i = 1 . . .N ,

N∑

i=1

Θi
t(X

i
t ,U

i
t) = 0 , t = 0 . . .T−1  Λt ,

and assume that the random variables W t are independent
(white noise assumption).
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Dynamic programming yields centralized controls

Under the white noise assumption, it is possible to use dynamic
programming (DP) in order to solve the SOC problem.

The true optimal control U i
t of unit i is a feedback of the whole

system state, that is, a function of all X i
t ’s:

U i
t = γ it

(
X 1

t , . . . ,X
N
t

)
.

Of course, a straightforward use of DP is prohibited for N large
(curse of dimensionality), and decomposition is needed!

But the feedback γ it structurally induces a coupling between all the
units! Moreover, a naive decomposition of the problem should lead
to decentralized feedbacks:

U i
t = γ̂ it(X

i
t) ,

which, in most cases, are far from being optimal. . .
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Price decomposition in the stochastic case

Apply price decomposition to the SOC problem by dualizing the

spatial coupling constraint. Then a dual multiplier Λ
(k)
t appears

in each subproblem i at each iteration k :

min
U i ,X i

E
( T−1∑

t=0

(
Lit(X

i
t ,U

i
t ,W t+1) + Λ

(k)
t ·Θi

t(X
i
t ,U

i
t)
)

+ K i (X i
T )
)
.

The Λ
(k)
t ’s are fixed random variables at this step of the algorithm.

Subproblem i encompasses two noise variables, namely W t+1 and

Λ
(k)
t , but the Λ

(k)
t ’s may be correlated in time, in which case the

white noise assumption fails!

Otherwise stated, the original state X i
t is not a “good” state for

subproblem i : the feature which seemed to have been won by
decomposition is actually lost again by dynamic programming.
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Summary

On the one hand, it seems that dynamic programming cannot
be decomposed in a straightforward manner.

On the other hand, applying a decomposition scheme to a
SOC problem introduces coordination instruments in the

subproblems, e.g. the multipliers Λ
(k)
t in the case of price

decomposition. They correspond to additional fixed random
variables whose time structure is unknown,1 so that dynamic
programming cannot be used for solving the subproblems

Question: how to handle these coordination instruments in order
to be able to use dynamic programming and to obtain (at least
an approximation of) the overall optimum of the SOC problem?

1One can only say that Λ(k)
t is measurable with respect to (W 0, . . . ,W t).
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Optimization problem

We recall the SOC problem under consideration.

min
U,X

N∑

i=1

(
E
( T−1∑

t=0

Lit(X
i
t ,U

i
t ,W t+1) + K i (X i

T )
))

, (1a)

subject to dynamics constraints

X i
0 = f i-1(W 0) , (1b)

X i
t+1 = f it (X i

t ,U
i
t ,W t+1) , (1c)

to measurability constraints

U i
t � σ(W 0, . . . ,W t) , (1d)

and to spatial constraints

N∑

i=1

Θi
t(X

i
t ,U

i
t) = 0 . Coupling constraints (1e)
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Assumptions

Assumption 1 (White noise)

Noises W 0, . . . ,W T are independent over time.

Note that we also assume full noise observation:

U i
t � σ(W 0, . . . ,W t) .

As a consequence of these assumptions, there is no optimality loss
to seek the controls U i

t as a function of the state at time t rather
than a function of the past noises:

U i
t = γti (X 1

t , . . . ,X
N
t ) .

We are in the so-called Markovian case, and DP applies.
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Lagrangian formulation

We dualize the coupling constraints and obtain the Lagrangian

L
(
X ,U ,Λ

)
=

N∑

i=1

(
E
( T−1∑

t=0

Lit(X
i
t ,U

i
t ,W t+1) + K i (X i

T )

+
T−1∑

t=0

Λt ·Θi
t(X

i
t ,U

i
t)

))
,

where the Λt ’s are σ(W 0, . . . ,W t) - measurable random variables.

We assume that a saddle point of L exists,2 so that

min
U,X

max
Λ
L
(
X ,U ,Λ

)
= max

Λ
min
U,X
L
(
X ,U ,Λ

)
.

2Such an assumption requires going beyond the Hilbert setting. . .
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Uzawa algorithm

At iteration k of the algorithm,3

1 Solve subproblem i , i = 1, . . . ,N, with Λ(k) fixed:

min
U i ,X i

E
( T−1∑

t=0

(
Lit(X

i
t ,U

i
t ,W t+1) + Λ

(k)
t ·Θi

t(X
i
t ,U

i
t)
)

+ K i (X i
T )

)
,

subject to

X i
t+1 = f it (X i

t ,U
i
t ,W t+1) ,

U i
t � σ(W 0, . . . ,W t) .

The subproblem solution is denoted
(
U i ,(k+1),X i ,(k+1)

)
.

2 Update the multipliers Λt :

Λ
(k+1)
t = Λ

(k)
t + ρt

( N∑

i=1

Θi
t

(
X i,(k+1)

t ,U i,(k+1)
t

))
.

3The convergence of this algorithm is not guaranteed in this context. . .
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Main idea of the approximation

As already seen, Λ
(k)
t depends on (W 0, . . . ,W t), so that solving

a subproblem by DP is as complex as solving the initial problem.

In order to overcome the difficulty, we choose at each time t a
random variable Y t which is measurable w.r.t. the past noises(
W 0, . . . ,W t

)
. We call Y =

(
Y 0, . . . ,Y T−1

)
the information

process associated to the constraint.

The core idea is to replace the multiplier Λ
(k)
t at iteration k

by its conditional expectation w.r.t. Y t , that is, E(Λ
(k)
t | Y t).

This will lead to a “good” approximation if

Y t is “sufficiently” correlated to the random variable Λt .

Note that we require that the information process is not influenced by controls.
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Subproblem approximation

Following this idea, we replace subproblem i in Uzawa algorithm by:

min
U i ,X i

E
( T−1∑

t=0

(
Lit(X

i
t ,U

i
t ,W t+1)+E(Λ

(k)
t | Y t)·Θi

t(X
i
t ,U

i
t)
)

+K i (X i
T )

)
,

subject to X i
t+1 = f it (X i

t ,U
i
t ,W t+1) ,

U i
t � σ(W 0, . . . ,W t) .

The conditional expectation E(Λ
(k)
t | Y t) corresponds to a given

function µt of the variable Y t , so that subproblem i now involves
the white noise process W and the information process Y . If the
process Y follows a Markovian dynamics, e.g.

Y t+1 = ht
(
Y t ,W t+1

)
,

then
(
X i

t ,Y t

)
is a valid state for subproblem i and DP applies.
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Possible choices for the information process

1 Perfect memory: Y t =
(
W 0, . . . ,W t

)
.

E(Λ
(k)
t | Y t) = Λ

(k)
t : no approximation!

A valid state for each subproblem is
(
W 0, . . . ,W t

)
.

2 Minimal information: Y t ≡ cste.

Λ
(k)
t is approximated by its expectation E(Λ

(k)
t ).

The information variable does not deliver online information.
A valid state for subproblem i is X i

t .

3 Static information: Y t = ht
(
W t

)
.

A part of W t mostly “explains” the optimal multiplier.
A valid state for subproblem i is X i

t .

4 Dynamic information: Y t+1 = ht
(
Y t ,W t+1

)
.

A number of possibilities: mimicking the state of another unit,
adding a hidden dynamics. . .
A valid state for subproblem i is

(
X i

t ,Y t

)
.
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Dynamic programming equation

In the case of dynamic information, the DP equation associated to
subproblem i writes:

V i
T (x , y) = K i (x) ,

V i
t (x , y) = min

u
E
((

Lit(x , u,W t+1)

+ E(Λ
(k)
t | Y t = y) ·Θi

t(x , u)

+ V i
t+1

(
X i

t+1,Y t+1

)))
,

subject to the dynamics:

X i
t+1 = f it (x , u,W t+1) ,

Y t+1 = ht(y ,W t+1) .
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About the coordination: standard way I

The task of coordination is performed thanks to scenarios.

A set of noise scenarios is drawn once for all. Trajectories of
the information process Y are simulated along the scenarios.

At iteration k, the optimal trajectories of the state process
X i ,(k+1) and of the control process U i ,(k+1) are simulated
along the noise scenarios, for all subsystems.

The dual multipliers are updated along the noise scenarios
according to the formula:

Λ
(k+1)
t = Λ

(k)
t + ρt

( N∑

i=1

Θi
t

(
X i ,(k+1)

t ,U i ,(k+1)
t

))
.

The conditional expectations E(Λ
(k+1)
t | Y t) are obtained by

regression of the trajectories of Λ
(k+1)
t on those of Y t .
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About the coordination: information based way II

One may perform the coordination by dealing with functions of Y t .

Compute the optimal trajectories of the state process X i ,(k+1)

and of the control process U i ,(k+1) along the noise scenarios.
Compute the conditional expectation of the gradient:

E
( N∑

i=1

Θi
t

(
X i,(k+1)

t ,U i,(k+1)
t

) ∣∣∣∣ Y t

)
.

Update the conditional expectation of the multipliers:

E(Λ
(k+1)
t | Y t) = E(Λ

(k)
t | Y t)

+ ρt E
( N∑

i=1

Θi
t

(
X i,(k+1)

t ,U i,(k+1)
t

) ∣∣∣∣ Y t

)
.

Many numerical advantages if the support of Y t is finite.
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DADP flowchart

initialisation

solve the

subproblems

simulate the

trajectories

estimate the

constraint gradient

update the conditional expectations estimation

of the multipliers w.r.t. the information variable

E
( ΛΛ Λ

(k
)

t

∣ ∣ ∣Y
t

)

U
i ,(k+1)
t

(
X

i ,(k+1)
t , U

i ,(k+1)
t , Wt , Yt

)
`

(∑
i Θi

t(X
i ,(k+1)
t , U

i ,(k+1)
t )

)
`
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Multiplier

function µ
(k)
t (y)

· · ·
Solving

subproblem 1:
DP on

(X 1
t ,Y t)

Solving
subproblem N:

DP on
(XN

t ,Y t)

E
( N∑

i=1

Θi
t

(
·
)∣∣∣∣Y t = y

)

︸ ︷︷ ︸
∆

(k+1)
t (y)

= 0 ?

µ
(k+1)
t (·) = µ

(k)
t (·) + ρ∆

(k+1)
t (·)

Θi
t

(
X i ,(k+1)

t ,U i ,(k+1)
t

)

Information Process
Y t+1 = ht(Y t ,W t+1)

DADP core idea:
Λt  µt := E

(
Λt

∣∣Y t

)
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Interpretation of DADP I

The approximation made on the dual process gives us a tractable
way of computing strategies for the subsystems. Let us examine
precisely the consequences in terms of constraints.

Consider a relaxed problem derived from (1):

min
U,X

E
( N∑

i=1

( T−1∑

t=0

Lit(X
i
t ,U

i
t ,W t+1) + K i (X i

T )
))

, (2a)

subject to the modified coupling constraints:

E
( N∑

i=1

Θi
t(X

i
t ,U

i
t)
∣∣∣ Y t

)
= 0 . (2b)
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Interpretations of DADP II

Proposition 1

Suppose the Lagrangian associated with Problem (2) has a saddle
point. Then the DADP algorithm can be interpreted as the Uzawa
algorithm applied to Problem (2).

Proof. Since the duality term E
(
E(Λ(k)

t | Y t) ·Θi
t(X i

t ,U i
t)
)

which appears in
the cost function of subproblem i in DADP can be written:

E
(
E(Λ(k)

t | Y t) ·Θi
t(X

i
t ,U

i
t)
)

= E
(
Λ(k)

t · E(Θi
t(X

i
t ,U

i
t) | Y t)

)
,

the global constraint really handled by DADP is:

E
( N∑

i=1

Θi
t(X

i
t ,U

i
t)
∣∣∣ Y t

)
= 0 . 2

DADP thus consists in replacing an almost-sure constraint by
its conditional expectation w.r.t. the information variable Y t .
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Interpretations of DADP III

DADP as an approximation of the optimal multiplier

Λt  E
(
Λt

∣∣ Y t

)
.

DADP as a decision-rule approach for the dual problem

max
Λ

min
U,X
L
(
X ,U ,Λ

)
 max

Λt�Y t

min
U,X
L
(
X ,U ,λ

)
.

DADP as a constraint relaxation for the primal problem

N∑

i=1

Θi
t

(
X i

t ,U
i
t

)
= 0  E

( N∑

i=1

Θi
t

(
X i

t ,U
i
t

) ∣∣∣ Y t

)
= 0 .

Thanks to the last interpretation, the optimal value given by
DADP is a guaranteed lower bound for the original problem value.
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Summary

To summarize, DADP leads to solve the approximated problem

min
U,X

E
( N∑

i=1

T−1∑
t=0

(
Li
t(X

i
t ,U

i
t ,W t)+K i (X i

T )
))

s.t. E
( N∑

i=1

Θi
t(X

i
t ,U

i
t)
∣∣∣ Y t

)
= 0 ,

whereas the true problem is

min
U,X

E
( N∑

i=1

T−1∑

t=0

(
Lit(X

i
t ,U

i
t ,W t)+K i (X i

T )
))

s.t.
N∑

i=1

Θi
t(X

i
t ,U

i
t) = 0 .

Questions:
? What is the suitable theoretical framework of the algorithm?

� Existence of a multiplier ?

� Convergence of the algorithm ?

? Does the approximate solution converge to the true solution?
? How to obtain a feasible solution from the approximate solution?
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Some questions

? What is the suitable theoretical framework of the algorithm?

The convergence of Uzawa’s algorithm is granted provided that:

the problem is posed in Hilbert spaces,
and a saddle point exists.

It thus seems natural to place ourselves in a Hilbert space. But it is
known (works by Rockafellar and Wets) that a saddle point doesn’t
exist in Hilbert spaces for such problems. . . (See V. Leclère thesis.)

? Does the approximate solution converge to the true solution?

Epiconvergence results are available w.r.t. the information given by
Y t . But epiconvergence raises technical problems when addressed
to stochastic optimization problems. (See V. Leclère thesis.)

? How to obtain a feasible solution from the approximate solution?

Use an appropriate heuristic! (See J.-C. Alais thesis.)
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Some French hydro valleys
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Motivation

Electricity production management for large hydro valleys

1 year time horizon:
compute each month

the “values of water”

(cost-to-go functions)

stochastic framework:
rain, market prices

large-scale valley:
4 dams and more
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Operating scheme

x3t

Dam 1

Dam 2

Dam 3

a1t

x1t
u1t a2t

u2tx2t a3t

u3t

uit : water turbinated by dam i at time t,
x it : water volume of dam i at time t,
ait : water inflow at dam i at time t,
pit : water price at dam i at time t,

Randomness: w i
t = (ait , p

i
t) , wt = (w1

t , . . . ,w
N
t ).
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Dynamics and cost functions

Dam i

xit

ait

sit

zit

uit

⊕ zi+1t

Dam dynamics

x it+1 = f it (x it , u
i
t ,w

i
t , z

i
t) ,

= x it−uit+ait+z it−s it ,
z i+1
t being the outflow of dam i :

z i+1
t = g i

t (x it , u
i
t ,w

i
t , z

i
t) ,

= uit+ max
{

0,x it−uit+ait+z it−x i
}

︸ ︷︷ ︸
s it

.

We assume that uit is chosen once w i
t is observed (HD information

structure), so that ui ≤ uit ≤ min
{
ui , x it + ait + z it − x i

}
.

Gain at time t < T : Lit(x
i
t , u

i
t ,w

i
t , z

i
t) = pitu

i
t−ε(uit)2.

Final gain at time T : K i
(
x iT
)

= −ai min{0,x iT−x̂
i}2.
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Stochastic optimization problem

The global optimization problem reads:

max
(X ,U,Z)

E
( N∑

i=1

( T−1∑

t=0

Lit
(
X i

t ,U
i
t ,W

i
t ,Z

i
t

)
+ K i

(
X i

T

)))
,

subject to:

X i
t+1 = f it (X i

t ,U
i
t ,W

i
t ,Z

i
t) , ∀i , ∀t ,

U i
t � σ

(
W 0, . . . ,W t

)
, ∀i , ∀t ,

Z i+1
t = g i

t (X i
t ,U

i
t ,W

i
t ,Z

i
t) , ∀i , ∀t .

 Additive structure (“cascade” model).

Assumption. Noises W 0, . . . ,W T−1 are independent over time.
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Price decomposition

Dualize the coupling constraints Z i+1
t = g i

t (X i
t ,U

i
t ,W

i
t ,Z

i
t).

Denote by Λi+1
t the associated multiplier (random variable).

Minimize the dual problem (using a gradient-like algorithm).

Dam i

xit

ait

sit

zit

uit

zi+1t

Dam i + 1

At iteration k , the duality term:

Λ
i+1,(k)
t ·

(
Z i+1

t −g i
t (X i

t ,U
i
t ,W

i
t ,Z

i
t)
)
,

is the difference of two terms:

Λi+1,(k)
t · Z i+1

t  dam i+1,
Λi+1,(k)

t · g i
t

(
· · ·
)
 dam i .

Dam by dam decomposition for
the maximization in (X ,U ,Z )

at Λ
i+1,(k)
t fixed.
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DADP implementation

DADP approximation:

replace the constraint Z i+1
t − g i

t (X i
t ,U

i
t ,W

i
t ,Z

i
t) = 0 by its

conditional expectation with respect to Y i
t :

E
(
Z i+1

t − g i
t (X i

t ,U
i
t ,W

i
t ,Z

i
t)
∣∣ Y i

t

)
= 0 ,

where (Y i
0, . . . ,Y

i
T−1) is a “well-chosen” information process.

The expression of the i-th subproblem becomes:

max
U i ,Z i ,X i

E
( T−1∑

t=0

(
Lit
(
X i

t ,U
i
t ,W

i
t ,Z

i
t

)
+ E

(
Λ
i,(k)
t

∣∣ Y i−1
t

)
· Z i

t

− E
(
Λ
i+1,(k)
t

∣∣ Y i
t

)
· g i

t

(
X i

t ,U
i
t ,W

i
t ,Z

i
t

))

+ K i
(
X i

T

))
.
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A crude relaxation: Y i
t ≡ cste

1 The multipliers Λ
i ,(k)
t appear only in the subproblems by

means of their expectations E
(
Λ
i ,(k)
t

)
, so that each

subproblem involves the 1-dimensional state variable X i
t .

2 For the gradient algorithm, the coordination task reduces to:

E
(
Λ
i,(k+1)
t

)
= E

(
Λ
i,(k)
t

)

− ρt E
(
Z i+1,(k)

t − g i
t

(
X i,(k)

t ,U i,(k)
t ,W i

t ,Z
i,(k)
t

))
.

3 The constraints taken into account by DADP are in fact

E
(
Z i+1

t − g i
t

(
X i

t ,U
i
t ,W

i
t ,Z

i
t

))
= 0 .

The solutions do not satisfy the initial almost sure constraints:
need to use a heuristic method to regain admissibility.
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How to regain admissible policies?

We have computed N local Bellman functions V i
t at each time t,

each depending on a single state variable x i , whereas we want
a unique global Bellman function Vt depending on

(
x1, . . . , xN

)
.

Value function approximation: form the following functions:

V̂t

(
x1, . . . , xN

)
=

N∑

i=1

V i
t

(
x i
)
.

For any
(
xt ,wt

)
at time t, solve the one-step DP problem:

max
u,z

N∑

i=1

Lit
(
x it , u

i ,w i
t , z

i
)

+ V̂t+1

(
x1
t+1, . . . , x

N
t+1

)
,

s.t. x it+1 = f it
(
x it , u

i ,w i
t , z

i
)

and z i+1 = g i
t (x it , u

i ,w i
t , z

i ) .

 control value u]t =
(
u1,]
t , . . . , uN,]t

)
to be used at

(
xt ,wt

)
.
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Full optimization and simulation process

Optimization
Apply DADP and compute the cost-to-go functions V i

t .

Form the approximated global Bellman functions V̂t .

Simulation
Draw a large number of noise scenarios.
Compute the control values along each scenario by solving
the one-step DP problems involving the V̂t ’s, thus satisfying
all the constraints of the initial problem:
 payoff value for each scenario,
 state and control trajectories.
Evaluate the quality of the solution: mean payoff,. . .
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Academic case studies of increasing complexity

dam 2

dam 1

dam 3

dam 4

Discretization

T  12

X  41

U  6

W  10

4-Dams

dam 1

dam 2 dam 3

dam 5

dam 6

dam 4

6-Dams

dam 5

dam 3 dam 4

dam 2

dam 6

dam 7

dam 8

dam 5

dam 3dam 1

8-Dams

dam 5

dam 3 dam 4

dam 2

dam 6

dam 5

dam 3

dam 7

dam 1

dam 8

dam 9

dam 10

10-Dams
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Optimal values and computational times

Valley 4-Dams 6-Dams 8-Dams 10-Dams

DP CPU time 1 .6 10 3 ’ ∼ 10 8 ’ ∼ ∞ ∼ ∞
DP value 3743 N.A. N.A. N.A.

SDDPc value 3742 7026 11834 17069
SDDPc CPU time 5 ’ 7 ’ 9 ’ 50 ’

Valley 4-Dams 6-Dams 8-Dams 10-Dams

Table: Results obtained by DP and SDDPc
4

Valley 4-Dams 6-Dams 8-Dams 10-Dams

DADP CPU time 7 ’ 12 ’ 17 ’ 24 ’
DADP value 3667 6816 11573 16760
Gap with SDDPc −2.0% −3.0% −2.2% −1.8%

Table: Results obtained by DADP “Expectation”

4The SDDP method will be explained in detail next Monday.
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CPU time summary
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4-Dams in detail: DADP convergence

Multipliers convergence (dam1↔dam2 and dam2↔dam3)
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4-Dams in detail: control trajectories

DP: dam 1 trajectories DADP: dam 1 trajectories
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4-Dams in detail: payoff distributions

DP payoff distribution DADP payoff distribution
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10-Dams in detail: payoff distribution

SDDP payoff distribution DADP payoff distribution
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Two “true” valleys

SoulcemGnioure Izourt

Auzat

Sabart

Discretization

T  12, W  10

realistic grids for U and X

Vicdessos

Chastang

Bort

Mareges

Aigle

Sablier

Dordogne
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Results

Valley Vicdessos Dordogne

SDDPc CPU time 9 ’ 17 ’
SDDPc value 2244 22145

Table: Results obtained by SDDPc

Valley Vicdessos Dordogne

DADP CPU time 9 ’ 210 ’
DADP value 2237 21652
Gap with SDDPc −0.3% −2.2%

Table: Results obtained by DADP “Expectation”
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Conclusions and perspectives

Conclusions for DADP

Fast numerical convergence of the method.

Near-optimal results even when using a “crude” relaxation.

Method that can be used for very large valleys

General perspectives

Apply to more complex topologies (smart grids).

Connection with other decomposition methods.

Theoretical study.
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Thèse de doctorat, Ecole Nationale des Ponts et Chausées, 2006.

P. Girardeau.
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