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Motivation

We consider a peer-to-peer urban microgrid where houses exchange energy

We formulate it as a optimization problem

Question: how to manage it in an (sub)optimal manner? 2z



We will see that, for large district microgid, e.g.

e 48 buildings
e 16 batteries

e 30 edges network

methods mixing spatial and temporal decomposition (price and resource)
give better results than the standard SDDP algorithm

e in terms of CPU time: x3 faster

e in terms of cost gap: 1.5% better

Network SDDP CPU time Price CPU time | SDDP cost value

Price cost value
48-Nodes 453’ 128’

3550 + 2.3 3490 + 2.3
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Lecture outline

Optimization upper and lower bounds by decomposition
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Optimization upper and lower
bounds by decomposition



Abstract problem

We consider the following optimization problem

N
t_ i
V= 15 T
st. vely, i=1,...,N
(©'(u'), -, eNwN)) es

coupling constraint

with
e u' €U’ be a local decision variable
e J:U' = R, i€ [1,N] be a local objective
e U’ be a subset of U’
e O : U — C' be a local constraint mapping
e Sbeasubset of C=C!x---xCV

We denote by S° the polar cone of S
Se={pecC*|{(p,r)<0 VreS} 5/23



Price and resource value functions

For each i € [1, N], we define

e the
Vilpl] =inf Ji(u) + (5, /() , ¥ € (CT)"
e the
V'r]l=inf Ji(d') st. ©'(u)y=r, Vel
Theorem
For any
. p=(p* - ,pY)eSs°
o r=(rt,--,rMes
N N
VT < VB < Y V]
i=1 i=1
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Application to multistage stochastic optimization

We consider a large scale stochastic optimal control problem

N T-1
Vi(xo) = inf B D> L(X], U, W,py) + K'(X7)
’ i=1 t=0
s.t. Xti+1 = glf(xtf’ UZa Wt+1) ) X(; = Xé

a(U)) Co(Wp, -, W,)

with
o W = (W,,---,Wy): global white noise process
o X' = (X}, ,XE5): i-th local state process
o U'= (U}, - ,U} ,): i-th local control process

o gl :XixU, x Wy — X‘;H: i-th local dynamics

e Ol :XixUi— C": i-th local coupling function

o Li: Xl xUilxW,;— R: i-th local instantaneous cost

o Ki: XiT — R: i-th local final cost 7/23



Application to multistage stochastic optimization

We consider a large scale stochastic optimal control problem

N T-1

Vi) = jof B 30 3 LKL UL W)+ KI(XD)
’ i=1 t=0
s.t. Xti+1 = gti(xti’ UZ’ Wt+1) ) X(; = Xé

o(Up) Co(Wy, -, W,)
(©:(x1, U, 0f (X, Ul")) € 5,
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Bounds for the global problem by spatial decomposition

Theorem
For any P=(P,...,PN)ese
and any R=(R',--- ,RV)es

i=1

SValP10d) < Vi(o) < D VolR1(x)

with, for each i € [1, N, the
T-—1
VIIP() = mf ]E[ZL X[, U, W)+ (P, 0/(X,,U)) + K xT)}
t=0
s.t. Xz+1 =g/(X,, U, W) X = =5f
U(Uz) (W, -+, W,)
and the

T—1
ViR(x) = |nf ]E[ZL (X, Ut,Wt+1)+K(XT)]
t=0

s.t. Xr+1 = gr(xl U W1 é = Xo
o(U;) Co(W, -+, W,)
0l(x. U)) = R .



Mix of spatial and temporal decompositions

1. To obtain bounds of the optimal value Vg(xo), we have performed
two spatial decompositions to compute

e a collection {%[Pi](xé)}ie[u M of price local value functions

e a collection {VS[R"](X(’;)}[E[[LN]] of resource local value functions

The computation of these local values can be performed in parallel

2. To compute each local value, we perform temporal decomposition
based on Dynamic Programming (DP). For each i, we will obtain

e asequence {Vi[P']} of price local value functions

te[0,T]
7" . .
e a sequence {Vt[RI]}tE[IO 77 of resource local value functions

The computation of these local values functions is done sequentially

To be able to use Dynamic Programming, we need to carefully choose
the coordination processes P and R so that the dimension of the state
in the local price and resource sub-problems remains tractable for DP.
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Computing local value functions by time decomposition

’We only deal with deterministic price and resource processes

No additional state variables in the sub-problems
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Computing local value functions by time decomposi

’We only deal with deterministic price and resource processes

No additional state variables in the sub-problems

Price decomposition

e Fix a deterministic admissible price
p=(pt - ,pN)eS°

e For each i, compute VA[p'](x})
by Dynamic Programming (state x})

ViIP1(x) = inf E[Le(x;, uf, Wiy)
Ut
+ (Pt > O 0x 1))

+ M;+1[pf](gtf(xtfa Ui, Wt+1))}

e Return the sequence {M’;[p"]},-e[[l,,\,ﬂ

Resource decomposition

e Fix a deterministic resource
r=(t,---,rMes

e For each i, compute Vo[ri](x})
by Dynamic Programming (state x{)

ViIrl(x) = inf E[Le(x}, uf, Wes)
Ut

F V18l ul, Way))]

st Ol (xi,u) =+
e Return the sequence {Vlt[ri]}ieﬂl,N]]
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Bounds improvement by optimization

For any admissible deterministic price process p € 5° and resource
process r € S, we have computed lower and upper bounds for the
problem optimal value:

IA

D Valpl66) < Vo) < Vol 104)
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Bounds improvement by optimization

For any admissible deterministic price process p € 5° and resource
process r € S, we have computed lower and upper bounds for the
problem optimal value:

SValpld) < Vi) < Do Valrl()

i=1

To obtain tighter bounds, we maximise the lower bound w.r.t. the price
and minimise the upper bound w.r.t. the resource:

N N
sup S VAP < Vi) < inf Y Volrld)
PES® iy =

Being deterministic variables, the optimal price and resource processes
p and 7 can be computed using gradient-like algorithms.
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Admissible co | policies

Once the “best” value functions Vi[p'] and % .[7'] have been obtained,

it becomes possible to devise global admissible policies

e global price policy {m,}+cfo,7-1]

Et(xtlf" 2% ) € argmln E{ZL Xtruh Wii1) +Z Vt+1 P ](le-*-l)}
Uty"v“z i=1 i=1

s.t. xt’+1 = gtf(X£7 uév H~1) Vi € II]' N]]
( (Xtvut) t(Xt ) Ut )) € St

e global resource policy {Tt}:efo, T—1]

N N
ft(xtlﬂ"' Xt ) € 3rgmm E|:ZL Xt?”tv t11) Z tl+1)i|
upuf Loy i=1
s.t. Xt_{-f—l = glf(xtl;v U;, t+1) Vi € |I1 N]]
(et(xtlvug.)v" f(Xt ) Up )) € St
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Progress status

e First, we have obtained lower and upper bounds
for a global optimization problem with coupling constraints
thanks to two spatial decomposition schemes

— price decomposition
— resource decomposition

e Second, we have computed the lower and upper bounds
by dynamic programming (temporal decomposition)

e Using the price and resource Bellman value functions,
we have devised two online policies for the global system

e Now, we apply these decomposition schemes to

a large-scale network problem
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Nodal decomposition of a
network optimization problem




Network and flows

Directed graph G = (V, €)

Each node corresponds to a
building with its own devices
(battery, solar panel...)

At each time t € [0, T — 1],
the Kirchhoff current law

couples node and edge flows
o Qf flow through edge e,

o F| flow imported at node i AQt + Ft =0

Let A be the node-edge incidence matrix
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Optimization problem at a given node

At each node i € V, given a node flow process F', we minimize the cost
Fo(F)) = min E[Z LXE, UL W) + KE(XE)
xLu =0

subject to, for all t € [0, T — 1]

i) nodal dynamics constraints (for battery and hot water tank)
ri+1 = gti(xti> ;7 L'i+1)
ii) non-anticipativity constraints (future remains unknown)
o(U;) C o(Wo, -+, Wisn)

iii) nodal load balance equations (production + import = demand)

ALX{, UL FL W) =0

Some differences with the previous stochastic optimization problem
e Hasard-Decision setting
e local noise W, in the formulation of problem at node i/,

o Global noise W, = (thﬂ, ey Wt’il) in the non -anticipativity constraint /23
15



Transportation cost and global optimization problem

We define the as the sum over time and edge of the costs of
flows Qf through the edges of the network

(@) =E(TZ_12/5<05))

t=0 ec&
This transportation cost is in space and in time!
The global is obtained by gathering all costs
. i (pi
Vo = min :é;; J(F')+ Je(Q)
1

st. AQ+F =0
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Price and resource decompositions

° problem:
Volp] = min > (F) + Je(Q) + (p, AQ + F)
T iev
:;(ngn K(F)+ (P F)) + (min Je(@)+(ATp, Q)
° problem:
Vo[r] = min S M(F)+Je(Q) st. Ar+F=0, Q=r
ey

:Z (rr}__i.n J,(F) st. F' = —(Ar)i> + (moin Je(Q) st. Q = r)

ey !

Objective

Find processes p and 7 with a
max V[p] < Vg < min Vg[r]
p r
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Numerical results on urban
microgrids of increasing size




Different urban configurations

24-Nodes 48-Nodes
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Problem settings

e One day horizon with a 15mn time step: T = 96
e Weather corresponds to a sunny day in Paris (June 28th, 2015)

e We mix three kinds of buildings

1. battery + electrical hot water tank
2. solar panel + electrical hot water tank

3. electrical hot water tank

and suppose that all consumers are commoners sharing their devices
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Algorithms inventory

Price decomposition: maximization w.r.t. a
e Each nodal subproblem solved by SDDP (quick convergence)
e Maximisation w.r.t. p by Quasi-Newton (BFGS) method
pktD) = pk) 1 k) g7 v/ (k)

e Oracle VV/(p) estimated by Monte Carlo (N**" = 1, 000)

Similar to price decomposition

We use the SDDP algorithm as

e Noises W}, -, WtN are independent node by node:
total support size is [supp(W;)|V.
e Convergence once gap between UB and LB is lower than 1%
20/23



Exact upper and lower bounds on the global problem

Network | 3-Nodes  6-Nodes 12-Nodes 24-Nodes 48-Nodes
State dim. IX| 4 8 16 32 64
Global SDDP  time 1 3 10’ 79’ 453’
Global SDDP LB 225.2 455.9 889.7 1752.8 3310.3
Price time 6’ 14’ 29’ 41’ 128’
Price LB 213.7 447.3 896.7 1787.0 3396.4
Resource time 3’ 7 22’ 49’ 91’
Resource UB 253.9 527.3 1053.7 2105.4 4016.6
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Exact upper and lower bounds on the global problem

Network | 3-Nodes  6-Nodes 12-Nodes  24-Nodes  48-Nodes
State dim. 1X] 4 8 16 32 64
Global SDDP  time 1 3 10’ 79’ 453’
Global SDDP LB 225.2 455.9 889.7 1752.8 3310.3
Price time 6’ 14’ 29’ 41’ 128’
Price LB 213.7 447.3 896.7 1787.0 3396.4
Resource time 3’ 7 22’ 49’ 91’
Resource UB 253.9 527.3 1053.7 2105.4 4016.6

For the 48-Nodes microgrid,
e price decomposition gives a better exact lower bound than global SDDP

vi
vi

Vo[resource]
4016.6

Vylsddp] < Vlprice]

< <
3310.3 < 3396.4 <

<
<

e price decomposition is more than 3 times faster than global SDDP
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Policy evaluation by Monte Carlo simulation (1,000 scenarios)

\ [ 3-Nodes  6-Nodes  12-Nodes  24-Nodes  48-Nodes

[ SDDP policy [ 226 £ 0.6 471 £08 936 £ 1.1 1859 &= 1.6 3550 &+ 2.3 |
Price policy 228 £06 464 £08 923 +£12 1839+ 16 3490 + 23
Gap +0.9 % -1.5% -1.4% -1.1% -1.7%
Resource policy | 229 + 0.6 471 £0.8 931 £ 1.1 1856 + 1.6 3503 + 2.2
Gap +1.3 % 0.0% -0.5% -0.2% -1.2%

All the cost values above are statistical upper bounds of V*
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Resource policy | 229 + 0.6 471 4+ 0.8 931+ 1.1 1856 + 1.6 3503 £ 2.2
Gap +1.3 % 0.0% -0.5% -0.2% -1.2%

All the cost values above are statistical upper bounds of V*

For the 48-Nodes microgrid,
e price policy beats global SDDP policy and resource policy

V8 < Clprice] < Clresource] < C[sddp]
Vi < 3490 < 3503 < 3550

e the exact upper bound given by resource decomposition is not so tight

Vlprice] < V* < Clprice] < V[resource]
33964 < VP < 3490 < 4016.6
gap <3% >18%
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Conclusion




Conclusion

e We have two algorithms that decompose spatially and temporally
a large-scale optimization problem under coupling constraints

e On this case study, price decomposition beats global SDDP
for large instances (> 24 nodes)
— in time (more than twice faster)
— in precision (more than 1% better)

e Can we obtain tighter bounds? (especially for resource decomposition. . . )
If we select properly price P and resource R processes among the
class of Markovian processes (instead of deterministic ones) we can
obtain “better” nodal value functions (with an extended local state)

Further details in

Francois Pacaud (2018). “Decentralized Optimization Methods for Efficient Energy
Management under Stochasticity”. PhD Thesis, Université Paris Est.
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