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Framing stochastic optimization problems Working out a toy example

Let us work out a toy example of economic dispatch as a
cost-minimization problem under supply-demand balance

� Production: consider two energy production units

� a “cheap” limited one with which we can produce
quantity q0, with 0 ≤ q0 ≤ q]

0, at cost c0q0

� an “expensive” unlimited one with which we can produce
quantity q1, with 0 ≤ q1, at cost c1q1, with c1 > c0

� Consumption: the demand is D ≥ 0

� Balance: ensuring at least the demand

D ≤ q0 + q1

� Optimization: total costs minimization

min
q0,q1

c0q0 + c1q1︸ ︷︷ ︸
total costs

Michel DE LARA (Cermics, France) COPI-PGMO, Palaiseau, 29 October 2014 October 28, 2014 4 / 41



Framing stochastic optimization problems Working out a toy example

When the demand D is deterministic,
the optimization problem is well posed

� The deterministic demand D is a single number, and we minimize

min
q0,q1

c0q0 + c1q1

under the constraints
0 ≤ q0 ≤ q]0
0 ≤ q1

D ≤ q0 + q1

� The solution is q?0 = min{q]0,D} , q?1 = [D − q]0]+, that is,

� if the demand D is below the capacity q]
0 of the “cheap” energy source

D ≤ q]
0 ⇒ q?

0 = D , q?
1 = 0

� if the demand D is above the capacity q]
0 of the “cheap” energy source,

you have to have recourse to the “expensive” source

D > q]
0 ⇒ q?

0 = q]
0 , q?

1 = D − q]
0

� Now, what happens when the demand D is no longer deterministic?

Michel DE LARA (Cermics, France) COPI-PGMO, Palaiseau, 29 October 2014 October 28, 2014 5 / 41



Framing stochastic optimization problems Working out a toy example

What happens if we replace the uncertain value D of

the demand by its mean D in the deterministic solution?

� If we suppose that the demand D is a random variable D : Ω→ R+,
with mathematical expectation E(D) = D

� and that we propose the “deterministic solution”

q
(D)
0 = min{q]0,D} , q

(D)
1 = [D − q]0]+

� we cannot assure the inequality

D(ω)︸ ︷︷ ︸
uncertain

≤ q0 + q1︸ ︷︷ ︸
deterministic

, ∀ω ∈ Ω

because supω∈Ω D(ω) > D = q
(D)
0 + q

(D)
1

� Are there better solutions among the deterministic ones?
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Framing stochastic optimization problems Working out a toy example

When the demand D is bounded above,
the robust optimization problem has a solution

� In the robust optimization problem, we minimize

min
q0,q1

c0q0 + c1q1

under the constraints
0 ≤ q0 ≤ q]0
0 ≤ q1

D(ω) ≤ q0 + q1 ∀ω ∈ Ω

� When D] = supω∈Ω D(ω) < +∞, the solution is

q?0 = min{q]0,D]} , q?1 = [D] − q]0]+

� Now, the total cost c0q?0 + c1q?1 is an increasing function
of the upper bound D] of the demand

� Is it not too costly to optimize under the worst-case situation?
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Framing stochastic optimization problems Working out a toy example

What happens if we solve the problem
demand value by demand value?

� If we solve the problem for each possible value d = D(ω) of the random
variable D, when ω ∈ Ω, we obtain a collection of “solutions”

q
(d)
0 = min{q]0, d} , q

(d)
1 = [d − q]0]+

� Now, we face an informational issue

� if the demand D is observed before selecting the quantities q0 and q1, this
collection of “solutions” is optimal in many understandings

� whereas, on the contrary, how can we glue together those “solutions” to
cook up quantities q0 or q1 that do not depend upon the unknown
quantities d?

� When the demand D is not observed, we do not know :-(
and this is a big issue with that so-called scenarios method

� Therefore, we can remain with a feasability issue
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Framing stochastic optimization problems Working out a toy example

To overcome the above difficulties,
we turn to stochastic optimization

� We suppose that the demand D is a random variable, and minimize

min
q0,q1

E[c0q0 + c1q1]

under the constraints

0 ≤ q0 ≤ q]0
0 ≤ q1

D ≤ q0 + q1

q1 depends upon D

and we emphasize two issues, new with respect to the deterministic case

� expliciting online information issue:
the decision q1 depends upon the random variable D

� expliciting risk attitudes:
we aggregate the total costs with respect to all possible values
by taking the expectation E[c0q0 + c1q1]
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Framing stochastic optimization problems Working out a toy example

Turning to stochastic optimization
forces one to specify online information

� We suppose that the demand D is a random variable, and minimize

min
q0,q1

E[c0q0 + c1q1]

under the constraints

0 ≤ q0 ≤ q]0
0 ≤ q1

D ≤ q0 + q1

q1 depends upon D

� specifying that the decision q1 depends upon the random variable D,
whereas q0 does not, forces to consider two stages
and a so-called non-anticipativity constraint (more on that later)

� first stage: q0 does not depend upon the random variable D
� second stage: q1 depends upon the random variable D
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Framing stochastic optimization problems Working out a toy example

Turning to stochastic optimization
forces one to specify risk attitudes

� We suppose that the demand D is a random variable, and minimize

min
q0,q1

E[c0q0 + c1q1]

under the constraints

0 ≤ q0 ≤ q]0
0 ≤ q1

D ≤ q0 + q1

q1 depends upon D

� Now that q1 depends upon the random variable D,
it is also a random variable, and so is the total cost c0q0 + c1q1;
therefore, we have to aggregate the total costs with respect to all possible
values, and we chose to do it by taking the expectation E[c0q0 + c1q1]
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Framing stochastic optimization problems Working out a toy example

In the uncertain framework,
two additional questions must be answered
with respect to the deterministic case

Question (expliciting risk attitudes)

How are the uncertainties taken into account
in the payoff criterion and in the constraints?

Question (expliciting available online information)

Upon which online information are decisions made?
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Framing stochastic optimization problems Expliciting risk attitudes

The output of a stochastic optimization problem
is a random variable. How can we rank random variables?

100 000 200 000 300 000 400 000 500 000 600 000

2. ´ 10-6

4. ´ 10-6

6. ´ 10-6

8. ´ 10-6

0.00001

0.000012

0.000014

Michel DE LARA (Cermics, France) COPI-PGMO, Palaiseau, 29 October 2014 October 28, 2014 14 / 41



Framing stochastic optimization problems Expliciting risk attitudes

How are the uncertainties taken into account
in the payoff criterion and in the constraints?

In a probabilistic setting, where uncertainties are random variables,
a classical answer is

� to take the mathematical expectation of the payoff (risk-neutral approach)

E(payoff)

� and to satisfy all (physical) constrainsts almost surely that is, practically,
for all possible issues of the uncertainties (robust approach)

P(constrainsts) = 1

But there are many other ways to handle risk: robust, worst case, risk measures,
in probability, almost surely, by penalization, etc.
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Framing stochastic optimization problems Handling online information

Upon which online information
are decisions made?

We navigate between two stumbling blocks: rigidity and wizardry

� On the one hand, it is suboptimal to restrict oneself,
as in the deterministic case,
to open-loop controls depending only upon time, thereby
ignoring the available information at the moment of making a decision

� On the other hand, it is impossible to suppose that we know in advance
what will happen for all times:
clairvoyance is impossible as well as look-ahead solutions

The in-between is non-anticipativity constraint
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Framing stochastic optimization problems Handling online information

There are two ways to express
the non-anticipativity constraint

Denote the uncertainties at time t by wt , and the control by ut

� Functional approach
The control ut may be looked after under the form

ut = φt
(

wt0 , . . . ,wt−1︸ ︷︷ ︸
past

)
where φt is a function, called policy, strategy or decision rule

� Algebraic approach
When uncertainties are considered as random variables (measurable
mappings), the above formula for ut expresses the measurability of the
control variable ut with respect to the past uncertainties, also written as

σ(ut) ⊂ σ
(

wt0 , . . . ,wt−1︸ ︷︷ ︸
past

)
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Framing stochastic optimization problems Handling online information

What is a solution at time t?

� In deterministic control, the solution ut at time t is a single number

� In stochastic control, the solution ut at time t is a random variable expressed

� either as ut = φt

(
wt0 , . . . ,wt−1

)
, where φt : Wt−t0 → R

� or as ut : Ω→ R with measurability constraint σ(ut) ⊂ σ
(
wt0 , . . . ,wt−1

)
� Now, as time t goes on, the domain of the function φt expands,

and so do the conditions σ(ut) ⊂ σ
(
wt0 , . . . ,wt−1

)
� Therefore, for numerical reasons,

the information
(
wt0 , . . . ,wt−1

)
has to be compressed or approximated
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Framing stochastic optimization problems Handling online information

There are two classical ways to compress information

� State-based functional approach

In the special case of the Markovian framework with
(
wt0 , . . . ,wT

)
white noise, there is no loss of optimality to look for solutions as

ut = ψt

(
xt
)︸︷︷︸

state

where xt ∈ X︸ ︷︷ ︸
fixed space

, xt+1 = ft(xt , ut ,wt)︸ ︷︷ ︸
dynamical equation

� Scenario-based measurability approach

� Scenarios are approximated by a finite family
(
w s

t0 , . . . ,w
s
T

)
, s ∈ S

� Solutions qs
i,t are indexed by s ∈ S with the constraint that if two scenarios

coincide up to time t, so must do the controls at time t(
w s

t0 , . . . ,w
s
t−1

)
=

(
w s′

t0 , . . . ,w
s′
t−1

)
⇒ qs

i,t = qs′
i,t

� In the case of the scenario tree approach, the scenarios
(
w s

t0 , . . . ,w
s
T

)
, s ∈ S ,

are organized in a tree, and controls qn
i,t are indexed by nodes n on the tree
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Framing stochastic optimization problems Handling online information

More on what is a solution at time t
State-based approach ut = ψt(xt)

� The mapping ψt can be computed in advance (that is, at initial time t0)
and evaluated at time t on the available online information at that time t

� either exactly (for example, by dynamic programming)
� or approximately (for example, among linear decision rules) because the

computational burden of finding any function is heavy

� The value ut = ψt(xt) can be computed at time t

� either exactly by solving a proper optimization problem,
which raises issues of dynamic consistency

� or approximately
(for example, by assuming that controls from time t on are open-loop)
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Framing stochastic optimization problems Handling online information

More on what is a solution at time t
Scenario-based approach

� An optimal “solution” can be computed scenario by scenario,
with the problem that we obtain solutions such that(

w s
t0
, . . . ,w s

t−1

)
=
(
w s′

t0
, . . . ,w s′

t−1

)
and us

t 6= us′

t

� Optimal solutions can be computed scenario by scenario and then merged
(for example, by progressive hedging) to be forced to satisfy(

w s
t0
, . . . ,w s

t−1

)
=
(
w s′

t0
, . . . ,w s′

t−1

)
⇒ us

t = us′

t

� The value ut can be computed at time t depending on
(
w s
t0
, . . . ,w s

t−1

)
� either exactly by solving a proper optimization problem,

which raises issues of dynamic consistency
� or approximately (for example, by a sequence of two-stages problems)
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Solving stochastic optimization problems by decomposition methods

A long-term effort in our group

1976 A. Benveniste, P. Bernhard, G. Cohen, “On the decomposition of stochastic

control problems”, IRIA-Laboria research report, No. 187, 1976.

1996 P. Carpentier, G. Cohen, J.-C. Culioli, A. Renaud, “Stochastic

optimization of unit commitment: a new decomposition framework”, IEEE
Transactions on Power Systems, Vol. 11, No. 2, 1996.

2006 C. Strugarek, “Approches variationnelles et autres contributions en optimisation

stochastique”, Thèse de l’ENPC, mai 2006.

2010 K. Barty, P. Carpentier, P. Girardeau, “Decomposition of large-scale stochastic

optimal control problems”, RAIRO Operations Research, Vol. 44, No. 3, 2010.

2014 V. Leclère, “Contributions to decomposition methods in stochastic optimization”,
Thèse de l’Université Paris-Est, juin 2014.
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Solving stochastic optimization problems by decomposition methods A bird’s eye view of decomposition methods

Couplings for stochastic problems

unit

time

uncertainty

min
∑
ω

∑
i

∑
t

πωLi
t(xit ,u

i
t ,wt+1)

s.t. xit+1 = f i
t (xit ,u

i
t ,wt+1)

ui
t = E

(
ui
t

∣∣∣∣ w1, . . . ,wt

)
∑
i

θit(xit ,u
i
t) = 0
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Solving stochastic optimization problems by decomposition methods A bird’s eye view of decomposition methods

Couplings for stochastic problems: in time

unit

time

uncertainty

min
∑
ω

∑
i

∑
t
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i
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t (xit ,u

i
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ui
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Solving stochastic optimization problems by decomposition methods A bird’s eye view of decomposition methods

Couplings for stochastic problems: in uncertainty

unit

time

uncertainty

min
∑
ω

∑
i

∑
t

πωLi
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i
t ,wt+1)
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t (xit ,u

i
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i
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Solving stochastic optimization problems by decomposition methods A bird’s eye view of decomposition methods

Couplings for stochastic problems: in space

unit

time

uncertainty

min
∑
ω

∑
i

∑
t

πωLi
t(xit ,u

i
t ,wt+1)
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Solving stochastic optimization problems by decomposition methods A bird’s eye view of decomposition methods

Can we decouple stochastic problems?

unit

time

uncertainty

min
∑
ω

∑
i

∑
t

πωLi
t(xit ,u

i
t ,wt+1)

s.t. xit+1 = f i
t (xit ,u

i
t ,wt+1)

ui
t = E

(
ui
t

∣∣∣∣ w1, . . . ,wt

)
∑
i

θit(xit ,u
i
t) = 0
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Solving stochastic optimization problems by decomposition methods A bird’s eye view of decomposition methods

Decompositions for stochastic problems: in time

unit

time

uncertainty

min
∑
ω

∑
i

∑
t

πωLi
t(xit ,u

i
t ,wt+1)

s.t. xit+1 = f i
t (xit ,u

i
t ,wt+1)

ui
t = E

(
ui
t

∣∣∣∣ w1, . . . ,wt

)
∑
i

θit(xit ,u
i
t) = 0

Dynamic Programming
Bellman (56)
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Solving stochastic optimization problems by decomposition methods A bird’s eye view of decomposition methods

Decompositions for stochastic problems: in uncertainty

unit

time

uncertainty

min
∑
ω

∑
i

∑
t

πωLi
t(xit ,u

i
t ,wt+1)

s.t. xit+1 = f i
t (xit ,u

i
t ,wt+1)

ui
t = E

(
ui
t

∣∣∣∣ w1, . . . ,wt

)
∑
i

θit(xit ,u
i
t) = 0

Progressive Hedging
Rockafellar - Wets (91)
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Solving stochastic optimization problems by decomposition methods A bird’s eye view of decomposition methods

Decompositions for stochastic problems: in space

unit

time

uncertainty

min
∑
ω

∑
i

∑
t

πωLi
t(xit ,u

i
t ,wt+1)

s.t. xit+1 = f i
t (xit ,u

i
t ,wt+1)

ui
t = E

(
ui
t

∣∣∣∣ w1, . . . ,wt

)
∑
i

θit(xit ,u
i
t) = 0

Dual Approximate
Dynamic Programming
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Solving stochastic optimization problems by decomposition methods Spatial decomposition methods in the deterministic case

Decomposition and coordination

Unit 1 Unit N

Unit 2 Unit 3

Interconnected units

� The system to be optimized consists of
interconnected subsystems

� We want to use this structure
to formulate optimization subproblems
of reasonable complexity

� But the presence of interactions
requires a level of coordination

� Coordination iteratively provides
a local model of the interactions
for each subproblem

� We expect to obtain the solution of the overall
problem by concatenation of the solutions of the
subproblems
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Solving stochastic optimization problems by decomposition methods Spatial decomposition methods in the deterministic case

Example: the “flower model”

Unit 2

Unit 1 Unit N

Unit 3

Coupling

constraint

min
u

N∑
i=1

Ji (ui )

s.t.
N∑
i=1

θi (ui ) = θ

Unit Commitment Problem
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Solving stochastic optimization problems by decomposition methods Spatial decomposition methods in the deterministic case

Intuition of spatial decomposition

Unit
1

Unit
2

Unit
3

Coordinator

� Purpose: satisfy a demand
with N production units,
at minimal cost

� Price decomposition

� the coordinator sets a price λt

� the units send their production u(i)
t

� the coordinator compares total
production and demand, and then
updates the price

� and so on...
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Solving stochastic optimization problems by decomposition methods Spatial decomposition methods in the deterministic case

Intuition of spatial decomposition
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Intuition of spatial decomposition
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Solving stochastic optimization problems by decomposition methods Spatial decomposition methods in the deterministic case

Intuition of spatial decomposition
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� Purpose: satisfy a demand
with N production units,
at minimal cost

� Price decomposition

� the coordinator sets a price λt

� the units send their production u(i)
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updates the price
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Solving stochastic optimization problems by decomposition methods Spatial decomposition methods in the deterministic case

Price decomposition relies on dualization

min
u∈U

N∑
i=1

Ji (ui ) subject to
N∑
i=1

θi (ui )− θ = 0

1 Form the Lagrangian and assume that a saddle point exists

max
λ∈V

min
u∈U

N∑
i=1

(
Ji (ui ) +

〈
λ , θi (ui )

〉)
−
〈
λ , θ

〉
2 Solve this problem by the dual gradient algorithm “à la Uzawa”

u
(k+1)
i ∈ arg min

ui∈Ui
Ji (ui ) +

〈
λ(k) , θi (ui )

〉
, i = 1 . . . ,N

λ(k+1) = λ(k) + ρ

( N∑
i=1

θi

(
u

(k+1)
i

)
− θ
)
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u
(k+1)
i ∈ arg min

ui∈Ui
Ji (ui ) +

〈
λ(k) , θi (ui )

〉
, i = 1 . . . ,N

λ(k+1) = λ(k) + ρ

( N∑
i=1

θi

(
u

(k+1)
i

)
− θ
)

Michel DE LARA (Cermics, France) COPI-PGMO, Palaiseau, 29 October 2014 October 28, 2014 30 / 41



Solving stochastic optimization problems by decomposition methods Spatial decomposition methods in the deterministic case

Remarks on decomposition methods

� The theory is available for infinite dimensional Hilbert spaces,
and thus applies in the stochastic framework, that is,
when U is a space of random variables

� The minimization algorithm used for solving the subproblems
is not specified in the decomposition process

� New variables λ(k) appear in the subproblems
arising at iteration k of the optimization process

min
ui∈Ui

Ji (ui ) +
〈
λ(k) , θi (ui )

〉
� These variables are fixed when solving the subproblems,

and do not cause any difficulty, at least in the deterministic case
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Solving stochastic optimization problems by decomposition methods Spatial decomposition methods in the deterministic case

Price decomposition applies to various couplings

DECOMPOSITION
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Solving stochastic optimization problems by decomposition methods The stochastic case raises specific obstacles

1 Framing stochastic optimization problems
Working out a toy example
Expliciting risk attitudes
Handling online information

2 Solving stochastic optimization problems by decomposition methods
A bird’s eye view of decomposition methods
Spatial decomposition methods in the deterministic case
The stochastic case raises specific obstacles

3 Summary and research agenda
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Solving stochastic optimization problems by decomposition methods The stochastic case raises specific obstacles

Stochastic optimal control (SOC) problem formulation

Consider the following SOC problem

min
u,x

E
( N∑

i=1

( T−1∑
t=0

Li
t(xit ,u

i
t ,wt+1) + K i (xiT )

))
subject to the constraints

xi0 = f i
-1(w0) , i = 1 . . .N

xit+1 = f i
t (xit ,u

i
t ,wt+1) , t = 0 . . .T−1 , i = 1 . . .N

ui
t � Ft := σ(w0, . . . ,wt) , t = 0 . . .T−1 , i = 1 . . .N

N∑
i=1

θit(xit ,u
i
t) = 0 , t = 0 . . .T−1
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Solving stochastic optimization problems by decomposition methods The stochastic case raises specific obstacles

Dynamic Programming yields centralized controls

� As we want to solve this SOC problem using Dynamic Programming (DP),
we suppose to be in the Markovian setting

� The system is made of N interconnected subsystems,
with the control ui

t and the state xit of subsystem i at time t

� The optimal control ui
t of subsystem i is a function

of the whole system state
(
x1
t , . . . , x

N
t

)
ui
t = γ it

(
x1
t , . . . , x

N
t

)
Naive decomposition should lead to decentralized feedbacks

ui
t = γ̂ it(xit)

which are, in most cases, far from being optimal. . .
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Solving stochastic optimization problems by decomposition methods The stochastic case raises specific obstacles

Straightforward decomposition of Dynamic Programming?

The crucial point is that the optimal feedback of a subsystem a priori depends on
the state of all other subsystems, so that using a decomposition scheme by
subsystems is not obvious. . .

As far as we have to deal with Dynamic Programming, the central concern for
decomposition/coordination purpose boils down to

?

?

?

?

??

� how to decompose a feedback γt w.r.t.
its domain Xt rather than its range Ut?

And the answer is

� impossible in the general case!
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Solving stochastic optimization problems by decomposition methods The stochastic case raises specific obstacles

Price decomposition and Dynamic Programming

When applying price decomposition to the problem by dualizing the (almost sure)
coupling constraint

∑
i θ

i
t(xit ,u

i
t) = 0,

multipliers Λ
(k)
t appear in the subproblems arising at iteration k

min
ui ,xi

E
(∑

t

Li
t(xit ,u

i
t ,wt+1) + Λ

(k)
t · θit(xit ,u

i
t)
)

� The variables Λ
(k)
t ’s are fixed random variables, so that the random process

Λ(k) acts as an additional input noise in the subproblems

� But this process may be correlated in time, so that the white noise
assumption has no reason to be fulfilled

� Dynamic Programming cannot be applied in a straightforward manner!

Question: how to handle the coordination instruments Λ
(k)
t in order to obtain (an

approximation of) the overall optimum?
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Summary and research agenda

1 Framing stochastic optimization problems

2 Solving stochastic optimization problems by decomposition methods

3 Summary and research agenda
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Summary and research agenda

Framing, framing, framing

� Stochastic optimization requires to make risk attitudes explicit

� Stochastic dynamic requires to make online information explicit

� These explicitations raise a bunch of issues, because of the

� many ways to represent risk (criterion, constraints)
� many information structures
� tremendous numerical obstacles to overcome
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Summary and research agenda

Handling risk and online information

� Risk

� robust, worst case, risk measures, in probability, almost surely, by penalization

� Online information

� State-based functional approach
� Scenario-based measurability approach

Numerical walls

� in dynamic programming, the bottleneck is the dimension of the state
(no more than 3)

� in stochastic programming, the bottleneck is the number of stages
(no more than 2)
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Summary and research agenda

Decomposing and mixing different decompositions

� Decomposition with respect to

� time: dynamic programming
� scenario: progressive hedging
� space: dual approximate dynamic programming

� Research agenda

� designing risk criterion compatible with decomposition
� combining different decomposition methods
� mixing with analytical properties (convexity, linearity)
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