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Here are the level sets
of the (highly nonconvex) ℓ0 pseudonorm in R2

ℓ0 = 0

ℓ0 = 1

ℓ0 = 2



The ℓ0 pseudonorm is not a norm

Let n ∈ N∗ be a fixed natural number

▶ For any vector x ∈ Rn, we define its ℓ0 pseudonorm(x) by

ℓ0(x) = number of nonzero components of x =
n∑

i=1

1{xi ̸=0}

▶ The function ℓ0 pseudonorm : Rn → J0, nK =
{
0, 1, . . . , n

}
satisfies 3 out of 4 axioms of a norm
▶ we have ℓ0(x) ≥ 0 ✓
▶ we have

(
ℓ0(x) = 0 ⇐⇒ x = 0

)
✓

▶ we have ℓ0(x + x ′) ≤ ℓ0(x) + ℓ0(x
′) ✓

▶ But... instead of 1-homogeneity,
it is 0-homogeneity that holds true

ℓ0(ρx) = ℓ0(x) , ∀ρ ̸= 0



WHY STUDY A FUNCTION
THAT IS

ALMOST SURELY CONSTANT?



The ℓ0 pseudonorm is used in
typical sparse optimization problems

▶ Spark of a matrix A

spark(A) = min
{
ℓ0(x)

∣∣Ax = 0 , x ̸= 0
}

▶ Compressed sensing: recovery of a sparse signal x ∈ Rn

from a measurement b = Ax

min
x∈Rn

Ax=b

ℓ0(x)

▶ Least squares sparse regression (best subset selection):

for k ∈ J1, nK min
x∈Rn

ℓ0(x)≤k

∥Ax − b∥2

“explaining” the output b by at most k components of x



Fenchel conjugacy (⋆) versus E-Capra conjugacy (¢)
for the ℓ0 pseudonorm

▶ Fenchel conjugacy (⋆)

ℓ⋆⋆
′

0 = 0

▶ E-Capra conjugacy (¢)

ℓ
¢¢′

0 = ℓ0

[Chancelier and De Lara, 2021]



The ℓ0 pseudonorm coincides, on the unit sphere,
with the proper convex lower semicontinuous

ℓ0-cup function L0 = ℓ
¢⋆′
0

ℓ0 = 0

ℓ0 = 1

ℓ0 = 2



Towards algorithms?

▶ As motivation, we consider the sparse optimization problem,
where C is a nonempty closed convex subset of Rn,

min
x∈C

ℓ0(x) = min
x∈Rn

{
ℓ0(x)︸ ︷︷ ︸

E-Capra convex

ℓ
¢¢′

0 =ℓ0

+

indicator
function︷ ︸︸ ︷
ιC (x)︸ ︷︷ ︸

proper convex lsc

ι⋆⋆
′

C =ιC

}

where ¢ is the so-called E-Capra coupling

▶ Can we design algorithms using the above property
that the pseudonorm ℓ0 is E-Capra convex?



END OF THE TEASER
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Motivation: Legendre transform and
Fenchel conjugacy in convex analysis

Definition

Two vector spaces X and Y, paired by a bilinear form
〈
,
〉
,

give rise to the classic Fenchel conjugacy

f ∈ RX 7→ f ⋆ ∈ RY

given by the Legendre transform

f ⋆(y) = sup
x∈X

(
⟨x , y⟩+

(
−f (x)

))
, ∀y ∈ Y



Coupling functions



Coupling function between sets

▶ Let be given two sets X (“primal”) and Y (“dual”)
not necessarily paired vector spaces (nodes and arcs, etc.)

▶ We consider a coupling function

c : X × Y → R

We also use the notation X c↔ Y for a coupling

[Moreau, 1966-1967, 1970]

In duality in convex analysis, one uses the bilinear coupling

c(x , y) = ⟨x , y⟩

and, on a Hilbert space, the scalar product

c(x , y) = ⟨x | y⟩



Euclidean Constant Along Primal RAys (Capra) coupling

▶ On the Euclidean space Rn, the

Euclidean-Capra coupling (E-Capra) Rn ¢←→ Rn is given by

∀y ∈ Rn ,


¢(x , y) =

⟨x | y⟩
∥x∥2

=
⟨x | y⟩√
⟨x | x⟩

, ∀x ∈ Rn\{0}

¢(0, y) = 0

▶ The coupling E-Capra has the property of being
Constant Along Primal RAys (Capra)



Fenchel-Moreau conjugacies



Fenchel-Moreau conjugate of a function

f ∈ RX 7→ f c ∈ RY

Definition

The c-Fenchel-Moreau conjugate f c : Y → R
of a function f : X → R is defined by

f c(y) = sup
x∈X

(
c(x , y) ·+

(
−f (x)

))
, ∀y ∈ Y

We use the Moreau lower and upper additions on R
that extend the usual addition with

(+∞) ·+ (−∞) = (−∞) ·+ (+∞) = −∞
(+∞) ∔ (−∞) = (−∞) ∔ (+∞) = +∞



E-Capra-conjugate of the ℓ0 pseudonorm

ℓ
¢
0 (y) = sup

x∈Rn

{
¢(x , y) ·+

(
−ℓ0(x)

)}
= sup

{
0, sup

x ̸=0

{⟨x | y⟩
∥x∥2

− ℓ0(x)
}}

= sup
{
0, sup

s∈S2

{
⟨s | y⟩ − ℓ0(s)

}}
where S2 ⊂ Rn is the Euclidean unit sphere

= sup
{
0, sup

j∈J1,dK

{
sup
s∈S2

ℓ0(s)=j

⟨s | y⟩

︸ ︷︷ ︸
top-(2,j) norm

∥y∥⊤2,j=
√∑k

l=1|yν(l)|2

−j
}}

= sup
j∈J1,dK

[
∥y∥⊤2,j − j

]
+



Biconjugates and duality



Motivation: duality in convex analysis



Reverse coupling and Fenchel-Moreau biconjugate

With the coupling c, we associate the reverse coupling c ′

c ′ : Y × X → R , c ′(y , x) = c(x , y) , ∀(y , x) ∈ Y × X

f ∈ RX 7→ f c ∈ RY

g ∈ RY 7→ g c ′ ∈ RX

g c ′(x) = sup
y∈Y

(
c(x , y) ·+

(
−g(y)

))
, ∀x ∈ X

f cc
′
(x) =

(
f c
)c ′

(x) = sup
y∈Y

(
c(x , y) ·+

(
−f c(y)

))
, ∀x ∈ X



Reverse coupling and Fenchel-Moreau biconjugate

With the coupling c, we associate the reverse coupling c ′

c ′ : Y × X → R , c ′(y , x) = c(x , y) , ∀(y , x) ∈ Y × X

f ∈ RX 7→ f c ∈ RY

g ∈ RY 7→ g c ′ ∈ RX

g c ′(x) = sup
y∈Y

(
c(x , y) ·+

(
−g(y)

))
, ∀x ∈ X

f cc
′
(x) =

(
f c
)c ′

(x) = sup
y∈Y

(
c(x , y) ·+

(
−f c(y)

))
, ∀x ∈ X



In generalized convexity,
one defines so-called c-convex functions

f ∈ RX 7→ f c ∈ RY 7→ f cc
′ ∈ RX

For any function f : X → R, one has that

f cc
′ ≤ f

Definition

The function f : X → R is said to be c-convex if

f cc
′
= f



c-convex functions have dual representations
as suprema of elementary functions
(abstract convexity)

If the function f : X → R is c-convex, we have that

f (x) = sup
y∈Y

(
c(x , y) ·+

(
−f c(y)

))︸ ︷︷ ︸
elementary function of x

, ∀x ∈ X

Example: ⋆-convex functions
= closed convex functions

= proper convex lsc or ≡ −∞ or ≡ +∞
= suprema of affine functions



Subdifferential



Motivation: subgradients in convex analysis



(Upper) subdifferential ∂c f : X ⇒ Y of a conjugacy

For any function f : X → R and x ∈ X , y ∈ Y
Definition

Upper subdifferential (following [Martinez-Legaz and Singer, 1995])

y ∈ ∂c f (x) ⇐⇒ f (x) = c(x , y) ·+
(
−f c(y)

)
The upper subdifferential ∂c f has the property that

∂c f (x) ̸= ∅ =⇒ f (x) = max
y∈∂c f (x)

(
c(x , y) ·+

(
−f c(y)

))
=⇒ f (x) = f cc

′
(x)︸ ︷︷ ︸

the function f is c-convex at x



Wrap-up on generalized/abstract convexity

▶ Generalized convexity
▶ coupling function between two sets

c : X × Y → R
▶ conjugacy and biconjugacy

f ∈ RX 7→ f c ∈ RY 7→ f cc
′ ∈ RX

▶ generalized convex functions
f = f cc

′

▶ subdifferential
∂c f (x) ⊂ Y

▶ Abstract convexity
▶ set of elementary functions
▶ abstract convex envelope:

supremum of lower elementary functions
▶ abstract convex function:

equal to its abstract convex envelope
▶ subdifferential:

tight lower elementary functions
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We introduce the coupling E-Capra between Rn and itself

Definition

The Euclidean-Capra coupling (E-Capra) Rn ¢←→ Rn is given by

∀y ∈ Rn ,


¢(x , y) =

⟨x | y⟩
∥x∥2

=
⟨x | y⟩√
⟨x | x⟩

, ∀x ∈ Rn\{0}

¢(0, y) = 0 =
0

0

The coupling E-Capra has the property of being
Constant Along Primal RAys (Capra)



E-Capra = Fenchel coupling after primal normalization

▶ We define the primal radial projection ϱ as

ϱ : Rn → S2 ∪ {0} , ϱ(x) =


x

∥x∥2
if x ̸= 0

0

0
= 0 if x = 0

▶ so that the coupling E-Capra

¢(x , y) = ⟨ϱ(x) | y⟩ , ∀x ∈ Rn , ∀y ∈ Rn

appears as the Fenchel coupling after primal normalization
(and the coupling E-Capra is one-sided linear)



The E-Capra conjugacy shares properties
with the Fenchel conjugacy

Proposition

▶ For any function f : Rn → R,
the ¢-Fenchel-Moreau conjugate is given by

f ¢ =
(
inf

[
f | ϱ

])⋆
where

inf
[
f | ϱ

]
(x) =

{
infρ>0 f (ρx) if x ∈ S2 ∪ {0}
+∞ if x ̸∈ S2 ∪ {0}

▶ For any function g : Rn → R,
the ¢′-Fenchel-Moreau conjugate is given by

g¢
′
= g⋆ ◦ ϱ



The E-Capra-convex functions are 0-homogeneous and
coincide, on the unit sphere, with a closed convex function

Proposition

¢-convexity of the function h : Rn → R

⇐⇒ h = h¢¢
′

⇐⇒ h =
(
h¢

)⋆′︸ ︷︷ ︸
convex lsc function

◦ ϱ

⇐⇒ hidden convexity in the function h : Rn → R
there exists a closed convex function f : Rn → R

such that h = f ◦ ϱ , that is, h(x) = f
( x

∥x∥2
)



The ℓ0 pseudonorm is E-Capra-convex



Notation

▶ The Euclidean top-(2,k) norm is also known as the
(2, k)-symmetric gauge norm, or Ky Fan vector norm

∥y∥⊤2,k =

√√√√ k∑
l=1

|yν(l)|2 , |yν(1)| ≥ |yν(2)| ≥ · · · ≥ |yν(n)|

▶ We denote the level sets of the ℓ0 pseudonorm by

ℓ≤k
0 =

{
x ∈ Rn

∣∣ ℓ0(x) ≤ k
}
, ∀k ∈ J0, nK

and its elements are call k-sparse vectors

▶ For any subset W ⊂ Rn, its indicator function ιW is

ιW (w) =

{
0 if w ∈W

+∞ if w ̸∈W



The ℓ0 pseudonorm and the E-Capra-coupling

Theorem

The ℓ0 pseudonorm,
the indicator functions ι

ℓ≤k
0

of its level sets

and the Euclidean top-(2,k) norms ∥·∥⊤2,k are related by

ι
¢
ℓ≤k
0

= ∥·∥⊤2,k , k ∈ J0, nK

ℓ
¢
0 = sup

j∈J0,nK

[
∥·∥⊤2,j − j

]
ℓ
¢¢′

0 = ℓ0



The ℓ0 pseudonorm displays hidden convexity



The ℓ0 pseudonorm displays a convex factorization property

Theorem

As the ℓ0 pseudonorm is E-Capra-convex, we get that

ℓ0 = ℓ
¢¢′

0 = ℓ
¢⋆′
0 ◦ ϱ =

(
ℓ
¢
0

)⋆′︸ ︷︷ ︸
convex lsc function L0

◦
radial projection︷︸︸︷

ϱ

As a consequence, the ℓ0 pseudonorm coincides,
on the Euclidean unit sphere S2,
with a proper convex lsc function,

the Euclidean ℓ0-cup function L0 = ℓ
¢⋆′
0

ℓ0(x) = L0(x) , ∀x ∈ S2



Graph of the Euclidean ℓ0-cup function L0 = ℓ
¢⋆′
0



Best proper convex lsc lower approximation
of the ℓ0 pseudonorm on the Euclidean unit ball

Theorem

The Euclidean ℓ0-cup function L0 = ℓ
¢⋆′
0 is

the best convex lsc lower approximation of the ℓ0 pseudonorm
on the Euclidean unit ball B2

best convex lsc function L0(x) ≤ ℓ0(x) , ∀x ∈ B2

and, as seen above, coincides with the ℓ0 pseudonorm

on the Euclidean unit sphere S2

ℓ0(x) = L0(x) , ∀x ∈ S2



E-Capra subdifferential of the ℓ0 pseudonorm
(with Adrien Le Franc)



Capra-subdifferential of the ℓ0 pseudonorm on R2

Illustration at three points (black dots)

x1

x2

∂¢ℓ0(0, 0) , ∂¢ℓ0(1, 0) , ∂¢ℓ0(−
√
3
2 ,−1

2)



Capra-subdifferential of the ℓ0 pseudonorm on R2

x1

x2

∂¢ℓ0(0)
⋃{ ⋃

ℓ0(x)=1

∂¢ℓ0(x)
}⋃{ ⋃

ℓ0(x)=2

∂¢ℓ0(x)
}



Lower approximation of the ℓ0 pseudonorm
by a finite number of elementary E-Capra-functions

ℓ0 = 0

ℓ0 = 1

ℓ0 = 2



Variational formulas



We recall the Euclidean (2,k)-support norms ∥·∥⊤⋆2,k

▶ The dual norm of the top-(2,k) norm ∥·∥⊤2,k

∥·∥⊤⋆2,k =
(
∥·∥⊤2,k

)
⋆

is called the (Euclidean) (2,k)-support norm
[Argyriou, Foygel, and Srebro, 2012]

▶ We have the following inclusions between unit balls

B⊤⋆
(1) ⊂ · · · ⊂ B⊤⋆

(ℓ−1) ⊂ B⊤⋆
(ℓ) ⊂ · · · ⊂ B⊤⋆

(n) = B



Proposition

The proper convex lsc function L0 is the convex envelope
of the following piecewise constant function

L0(x) =


0 if x = 0,

ℓ if x ∈ B⊤⋆
(ℓ)\B⊤⋆

(ℓ−1) , ℓ ∈ J1, nK
+∞ if x ̸∈ B⊤⋆

(n) = B

x
y

z



Variational formulas for the ℓ0 pseudonorm

Proposition

ℓ0(x) =
1

∥x∥2
min

x(1)∈Rn,...,x(n)∈Rn∑n
ℓ=1∥x(ℓ)∥⊤⋆2,ℓ≤∥x∥2∑n

ℓ=1 x
(ℓ)=x

n∑
ℓ=1

ℓ
∥∥∥x (ℓ)∥∥∥⊤⋆

2,ℓ
, ∀x ∈ Rn

ℓ0(x) = sup
y∈Rn

inf
ℓ∈J1,nK

(⟨x | y⟩
∥x∥2

−
[
∥y∥⊤2,ℓ − ℓ

]
+

)
, ∀x ∈ Rn \ {0}
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Work has gone on along two paths

Norm Norm Norm 1-homogeneous
Euclidean orthant-strictly monotonic any nonnegative

function

ℓ0 pseudonorm ¢-convex (ℓ
¢¢′
0 = ℓ0) difference of norms

hidden convexity [Chancelier and De Lara, 2022b]
variational formula

[Chancelier and De Lara, 2021]
subdifferential

[Le Franc et al., 2022]

φ ◦ ℓ0 ¢-convex ((φ ◦ ℓ0)
¢¢′ = φ ◦ ℓ0)

φ : N → R hidden convexity
nondecreasing variational formula

subdifferential
[Chancelier and De Lara, 2022c]

φ ◦ ℓ0 (φ ◦ ℓ0)
¢¢′

φ : N → R variational inequality
any subdifferential

[Chancelier and De Lara, 2022a]

F◦ support (F ◦ support)¢¢
′

F : 2J1,dK → R variational inequality
any subdifferential

[preprint]
0-homogeneous best lower

function approximation
[preprint]



We introduce the coupling Capra

▶ Let be given X and Y, two vector spaces
paired by a bilinear form ⟨·, ·⟩

▶ Suppose that X is equipped with a (source) norm ||·||
Definition

[Chancelier and De Lara, 2022a]

The coupling Capra X ¢←→ Y is given by

∀y ∈ Y ,


¢(x , y) =

⟨x , y⟩
||x || , ∀x ∈ X\{0}

¢(0, y) = 0

In what follows, X = Y = Rn

with norm ||·|| having unit ball B and unit sphere S



Orthant-monotonic and orthant-strictly monotonic norms



Orthant-monotonic norms

For any x ∈ Rn, we denote by |x |
the vector of Rn with components |xi |, i ∈ J1, nK

Definition

A norm ||·|| on the space Rn is called orthant-monotonic [Gries, 1967]
if, for all x , x ′ in Rn, we have

|x | ≤ |x ′| and x ◦ x ′ ≥ 0 =⇒ ||x || ≤ ||x ′||

where x ◦ x ′ = (x1x
′
1, . . . , xnx

′
n)

is the Hadamard (entrywise) product

|x1| ≤ |x ′1| , . . . , |xn| ≤ |x ′n|
and

x1x
′
1 ≥ 0 , . . . , xnx

′
n ≥ 0

 =⇒ ||x || ≤ ||x ′||



Example of unit sphere of a non orthant-monotonic norm

|(0,−1)| ≤ |(0.5,−1)|
and

(0,−1) ◦ (0.5,−1) ≥ (0, 0)

but

1 = ||(0,−1)|| > ||(0.5,−1)||



Orthant-strictly monotonic norms

[Chancelier and De Lara, 2022b]

Definition

A norm ||·|| on the space Rn is called orthant-strictly monotonic if,
for all x , x ′ in Rn, we have

|x | < |x ′| and x ◦ x ′ ≥ 0 =⇒ ||x || < ||x ′||

where |x | < |x ′| means that
there exists j ∈ J1, nK such that |xj | < |x

′
j |

Intuition: ϵ ̸= 0 =⇒ ||(0, ∗, 0, ∗, ∗, 0)|| < ||(0, ∗, ϵ, ∗, ∗, 0)||



Examples of orthant-strictly monotonic norms

∥x∥∞ = sup
i∈J1,nK

|xi | and ∥x∥p =
( n∑
i=1

|xi |p
)1/p

for p ∈ [1,∞[

with unit ball Bp and unit sphere Sp

▶ All the ℓp-norms ∥·∥p on the space Rn, for p ∈ [1,∞],
are monotonic, hence orthant-monotonic

ℓ1, ℓ2, ℓ∞

▶ All the ℓp-norms ∥·∥p on the space Rn, for p ∈ [1,∞[,
are orthant-strictly monotonic

ℓ1, ℓ2,��ℓ∞

|ϵ| < 1 =⇒ ∥(1, 0)∥∞ = 1 = ∥(1, ϵ)∥∞



Orthant-strictly monotonic norms and Capra-convexity



Capra-subdifferentiability properties of the ℓ0 pseudonorm

[Chancelier and De Lara, 2022c]

Proposition

If both the norm ||·|| and the dual norm ||·||⋆
are orthant-strictly monotonic, we have that

∂¢ℓ0(x) ̸= ∅ , ∀x ∈ Rn ,

that is, the pseudonorm ℓ0 is Capra-subdifferentiable on Rn

and, as a consequence,

ℓ
¢¢′

0 = ℓ0



Best convex lower approximation of the ℓ0 pseudonorm
on the ℓp-unit balls, p ∈ [1,∞]

Theorem

The best convex lsc lower approximation L0 of ℓ0

best convex lsc function L0(x) ≤ ℓ0(x) , ∀x ∈ Bp

on the unit ball Bp is ℓ
¢⋆′
0 , and coincides with the ℓ0 pseudonorm

ℓ0(x) = L0(x) , ∀x ∈ Sp

on the unit sphere Sp



Tightest closed convex function below the ℓ0 pseudonorm
on the ℓp-unit balls on R2 for p ∈ {1.1, 2, 4, 300}



Capra-subdifferential of the ℓ0 pseudonorm



Exposed faces and normal cones

For any nonempty closed convex subset C ⊂ X ,
where X = Y = Rn,

▶ the exposed face F⊥(C , y) of C by any dual vector y ∈ Y is

F⊥(C , y) = argmax
x∈C

⟨x | y⟩

▶ the normal cone N(C , x) of C at any primal vector x ∈ C
is defined by the conjugacy relation

x ∈ C and y ∈ N(C , x) ⇐⇒ x ∈ F⊥(C , y)

The family of all normal cones is the normal fan N (C )



Capra-subdifferential of the ℓ0 pseudonorm

▶ {||·||R(j)}j∈J1,nK and {||·||R(j),⋆}j∈J1,nK,
associated coordinate-k and dual coordinate-k norms

▶ {BR
(j)}j∈J1,nK and {BR

(j),⋆}j∈J1,nK, corresponding unit balls

Proposition

[Chancelier and De Lara, 2022a]
The Capra-subdifferential of the ℓ0 pseudonorm is given by

if x = 0, ∂¢ℓ0(0) =
⋂

j∈J1,nK

jBR
(j),⋆

if x ̸= 0 and ℓ0(x) = ℓ, ∂¢ℓ0(x) = N
(
BR
(ℓ),

x

||x ||R(ℓ)
)
∩ Yℓ

where Yℓ =
{
y ∈ Y

∣∣ ℓ ∈ argmax
j∈J0,nK

(
||y ||R(j),⋆ − j

)}
, ∀ℓ ∈ J0, nK



Coordinate-k norms and their dual norms



Courtesy of Basile and Lionel Pournin

Figure: Unit ball co
(
ℓ≤2
0 ∩ S1

)
when n = 3



Extreme points of the coordinate-k norm unit ball
are k-sparse

For any source norm ||·|| on Rn, and for k ∈ J1, dK,
▶ the coordinate-k norm ||·||R(k) has unit ball

BR
(k) = co

(
ℓ≤k
0 ∩ S

)︸ ︷︷ ︸
closed convex hull

= co
(
ℓ≤k
0 ∩ S

)︸ ︷︷ ︸
convex hull

▶ hence the extreme points of BR
(k) belong to ℓ≤k

0 ∩ S ⊂ ℓ≤k
0 ,

hence are k-sparse vectors

This is how we define

▶ a sequence
{
||·||R(k)

}
k∈J1,nK

of coordinate-k norms

▶ a sequence
{
||·||R(k),⋆

}
k∈J1,nK

of dual coordinate-k norms



Extreme points of the coordinate-k norm unit ball
are k-sparse

For any source norm ||·|| on Rn, and for k ∈ J1, dK,
▶ the coordinate-k norm ||·||R(k) has unit ball

BR
(k) = co

(
ℓ≤k
0 ∩ S

)︸ ︷︷ ︸
closed convex hull

= co
(
ℓ≤k
0 ∩ S

)︸ ︷︷ ︸
convex hull

▶ hence the extreme points of BR
(k) belong to ℓ≤k

0 ∩ S ⊂ ℓ≤k
0 ,

hence are k-sparse vectors

This is how we define

▶ a sequence
{
||·||R(k)

}
k∈J1,nK

of coordinate-k norms

▶ a sequence
{
||·||R(k),⋆

}
k∈J1,nK

of dual coordinate-k norms



Courtesy of Basile and Lionel Pournin

(a) Unit ball co
(
ℓ≤2
0 ∩ S1

)
when n = 3

(b) Unit ball co
(
ℓ≤2
0 ∩ S2

)
when n = 3



Coordinate and dual coordinate norms
induced by the ℓp-norms ∥·∥p

For y ∈ Rn, ν is a permutation of J1, nK such that |yν(1)| ≥ |yν(2)| ≥ · · · ≥ |yν(n)|

||·|| ||·||R(k) ||·||R(k),⋆
∥·∥p top-(p,k) norm (q,k)-support norm

∥x∥⊤p,k ∥y∥⊤⋆q,k
=

(∑k
j=1|xν(j)|p

)1/p
1/p + 1/q = 1

∥·∥1 top-(1,k) norm (∞,k)-support norm

∥x∥⊤1,k =
∑k

l=1|xν(l)| ∥y∥⊤⋆∞,k = max{∥y∥1 /k, ∥y∥∞}
∥·∥2 top-(2,k) norm (2,k)-support norm

∥x∥⊤2,k =
√∑k

l=1|xν(l)|2 ∥y∥⊤⋆2,k no analytic expression

(computation in [Argyriou et al., 2012, Prop. 2.1])
∥·∥∞ top-(∞,k) norm (1,k)-support norm

ℓ∞-norm ℓ1-norm

∥x∥⊤∞,k = |xν(1)| = ∥x∥∞ ∥y∥⊤⋆1,k = ∥y∥1

Why do top-k and k-support norms pop up?



Generalized top and support norms



We reformulate sparsity in terms of coordinate subspaces

▶ For any K ⊂ J1, nK, we introduce the (coordinate) subspace

RK =
{
y ∈ Rn

∣∣ yj = 0 , ∀j ̸∈ K
}
⊂ Rn

▶ The connection with the level sets of the ℓ0 pseudonorm is

ℓ≤k
0 =

⋃
|K |≤k

RK , ∀k ∈ J0, nK

▶ We denote by πK : Rn → RK the orthogonal projection

▶ For any vector y ∈ Rn, πK (y) ∈ Rn is the vector
whose components coincide with those of y ,
except for those outside of K that vanish

y = (∗, ∗, ∗, ∗, ∗, ∗)→ π{2,4,5}(y) = (0, ∗, 0, ∗, ∗, 0)



We define generalized top-k and k-support dual norms

Definition

For any source norm ||·|| on Rn, for any k ∈ J1, nK, we call

▶ generalized top-k dual norm the norm

||y ||⊤⋆,(k) = sup
|K |≤k

||

k-sparse
projection
on RK︷ ︸︸ ︷
πK (y) ||⋆︸ ︷︷ ︸

exploring all k-sparse projections

, ∀y ∈ Rn

▶ generalized k-support dual norm the dual norm

||·||⊤⋆⋆,(k) =
(
||·||⊤⋆,(k)

)
⋆



Coordinate norms and dual norms versus
generalized top-k and k-support dual norms

Proposition

If the source norm ||·|| is orthant monotonic,
for all k ∈ J1, nK,

k-coordinate norm k-support dual norm

||·||R(k) = ||·||⊤⋆⋆,(k)
dual k-coordinate norm top-k dual norm

||·||R(k),⋆ = ||·||⊤⋆,(k)

so that, if S is the unit sphere of the source norm ||·||,

BR
(k) = co

(
ℓ≤k
0 ∩ S

)
= B⊤⋆

⋆,(k)



Where do we stand?

▶ We have Capra couplings ¢
for which the pseudonorm ℓ0
▶ has nonempty Capra-subdifferential

∂¢ℓ0 ̸= ∅

▶ hence is Capra-convex (equal to its Capra-biconjugate)

ℓ
¢¢′

0 = ℓ0

▶ This looks promising to study sparse optimization problems

But. . .
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Archetypal sparse optimization problems

▶ For X ⊂ Rn a nonempty set,

min
x∈X

ℓ0(x)

is an optimization problem for which any point in X
is a local minimizer! Jean-Baptiste Hiriart-Urruty and Hai Le. A variational approach of the

rank function. TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, 21

(2):207–240, 2013.

▶ For k ∈ J1, nK and a function f : Rn → R,

min
ℓ0(x)≤k

f (x)

▶ For γ > 0 and a function f : Rn → R,

min
x∈Rn

(
f (x) + γℓ0(x)

)
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Good news :-)
the Fermat rule holds true for the Capra coupling

x∗ ∈ argmin f ⇐⇒ 0 ∈ ∂¢f (x
∗)

As an application, we get that

x∗ ∈ argmin
x∈X

ℓ0(x) ⇐⇒ 0 ∈ ∂¢
(
ℓ0 + ιX

)
(x∗)

But. . .



Good news :-)
the Fermat rule holds true for the Capra coupling

x∗ ∈ argmin f ⇐⇒ 0 ∈ ∂¢f (x
∗)

As an application, we get that

x∗ ∈ argmin
x∈X

ℓ0(x) ⇐⇒ 0 ∈ ∂¢
(
ℓ0 + ιX

)
(x∗)

But. . .



Bad news :-(
when zero is in the subdifferential of the sum. . .

u1

u2

x∗ = (1, 0)

x∗ ∈ argmin
X

ℓ0 ⇐⇒ 0 ∈ ∂¢
(
ℓ0 + ιX

)
(x∗)︸ ︷︷ ︸

subdifferential of the sum



... but zero is not in the sum of the subdifferentials

∂¢ℓ0(x
∗) + ∂¢ιX (x

∗)︸ ︷︷ ︸
0/∈

⊊ ∂¢
(
ℓ0 + ιX

)
(x∗)︸ ︷︷ ︸

0∈

∂¢ℓ0(x
∗)

x1

x2

∂¢ιX (x∗) = N
(
co(ϱ(X )), x∗

)

x1

x2



Who is to blame? Capra or ℓ0?
(with Seta Rakotomandimby)



Primal-dual pair
in the Capra-subdifferential of an absolute function

Proposition

Let f : Rn → R be an absolute function
and ||·|| : Rn → R+ be an absolute norm, meaning that

f (x) = f (|x |) , ∀x ∈ Rn

||x || = |||x ||| , ∀x ∈ Rn

Then, we have that

y ∈ ∂¢f (x) =⇒ x ◦ y ≥ 0

where x ◦ y = (x1y1, . . . , xnyn)

NB: this property also holds true with the classic
Rockafellar-Moreau subdifferential in convex analysis



Illustration of x ◦ y ≥ 0



Capra-subdifferential of an indicator function

Proposition

Let X ⊂ Rn be a nonempty set. Then, for any x ∈ Rn

∂¢ιX (x) =


normal cone︷ ︸︸ ︷

N
(
co
(
ϱ(X )

)
, ϱ(x)

)
if x ∈ X

∅ if x /∈ X

∂¢ιX (x∗) = N
(
co

(
ϱ(X )

)
, ϱ(x∗)

)

x1

x2 ▶ The Capra-subdifferential of ιX
at x∗ is the normal cone of the
convex subset co

(
ϱ(X )

)
⊂ B

at ϱ(x∗) ∈ S , hence points outward

▶ The Rockafellar-Moreau
subdifferential of ιX at x∗ is the
normal cone of X at x∗



0 ∈ ∂¢f (x) + ∂¢ιX (x) is much too strong a condition

Under the previous assumptions, we get that

0 ∈ ∂¢f (x) + ∂¢ιX (x) =⇒ 0 =

∂¢f (x)︷ ︸︸ ︷
y ′︸︷︷︸

x◦y ′≥0

+

∂¢ιX (x)︷︸︸︷
y ′′

=⇒ y ′′ ∈ N
(
co
(
ϱ(X )

)
, ϱ(x)

)
︸ ︷︷ ︸

y ′′ is outward

and x ◦ y ′′ ≤ 0︸ ︷︷ ︸
y ′′ is inward

▶ In general, this will give y ′′ = 0, that is, 0 ∈ ∂¢f (x)
▶ Thus, necessarily, x ∈ X must be

a global minimum of f over all Rn,
which is much too strong. . .



Where do we stand?

▶ We had good hope to handle sparse optimization problems
with the Capra coupling
that makes the pseudonorm ℓ0 Capra convex

▶ But, in a simple sparse optimization problem, it is not true
that the subdifferential of the sum
is equal to the sum of the subdifferentials

▶ And not having practical qualification conditions
is an obstacle to many numerical methods
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Minimization problems from compressed sensing

▶ Goal: recovery of a sparse signal x ∈ Rn

from a measurement b ∈ Rm \ {0}, where m < n

▶ Measurements are modeled by A ∈ Rm×n such that

Ax = b

▶ Minimization approach for the recovery

min
x∈Rn

Ax=b

ℓ0(x)



Using a Capra-polyhedral approximation for ℓ0

▶ For a suitable (infinite) subset Y ⊂ ⋃
x ′ ∂¢ℓ0(x

′) of
Capra-subgradients of ℓ0, we have that

ℓ0(x) = sup
y∈Y
⟨ϱ(x), y⟩ − ℓ

¢
0 (y) , ∀x ∈ Rn

▶ Idea: using a Capra-”polyhedral” approximation f of ℓ0
in the minimization problem

f (x) = max
y∈Ỹ
⟨ϱ(x), y⟩ − ℓ

¢
0 (y)

where Ỹ ⊂ Y and Ỹ finite ; cutting plane-like method



Illustration of a Capra-polyhedral approximation for ℓ0



Abstract cutting plane method

[Rubinov, 2000, §9.2.3]

Definition

Let W be a set, H ⊂ RW
be a set of elementary functions, and

f :W → R be a H-convex function

1. Set k := 0. Choose an arbitrary initial point w0 ∈ W
2. Find an abstract subgradient hk ∈ ∂Hf (wk)

Let f−1 = −∞ and set

fk = max{fk−1, hk︸︷︷︸
new cut

in ∂Hf (wk )

}

3. Find an optimal solution ŵ ∈ argminw∈W fk(w)

4. Set k := k + 1, wk = ŵ
Repeat from Step 2 until a stop condition is satisfied



Still problems with ℓ0

▶ The pseudonorm ℓ0 is abstract Capra-convex

▶ . . . but ℓ0 is not continuous and its abstract
Capra-subgradients{

x 7→ ⟨ϱ(x), y⟩ − ℓ
¢
0 (y)

}
y∈∪x′∂¢ℓ0(x

′)

are not uniformly continuous

▶ So the pseudonorm ℓ0 does not satisfy any assumptions
of established theoretical convergence results
[Pallaschke and Rolewicz, 1997, Theorem 9.1.1]

▶ Also, numerically, we observe
no convergence for simple examples in dimension n = 3



However for ℓ1/ℓ2 !

▶ ℓ1/ℓ2 is a surrogate function for ℓ0 in compressed sensing

▶ ℓ1/ℓ2 is Capra-convex
(and an absolute function so Fermat rule is no help)

▶ and ℓ1/ℓ2 is continuous
and the following Capra-abstract subgradients{

x 7→ ⟨ϱ(x), y⟩ − ℓ
¢
0 (y)

}
y∈{−1,0,1}n

are uniformly continuous

▶ Most assumptions of theoretical convergence results
[Pallaschke and Rolewicz, 1997, Theorem 9.1.1] are satisfied



Solving time for the ratio of two norms



Work needs to be done for theoretical guarantees

▶ Convergence results
[Pallaschke and Rolewicz, 1997, Theorem 9.1.1]
[Rubinov, 2000, Proposition 9.2]

▶ But the assumptions do not fit our case:
need to be adapted
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The intuition behind lasso

min
x∈Rn

(
f (x) + γ ∥x∥1

)

min
x∈Rn

(
f (x) + γ ∥x∥2

)

Comments of
[Tibshirani, 1996, Figure 2]

“The lasso solution is the
first place that the contours
touch the square, and this
will sometimes occur at a
corner, corresponding to a
zero coefficient. The pic-
ture for ridge regression is
shown in Fig. 2(b): there
are no corners for the con-
tours to hit and hence zero
solutions will rarely result.”



Geometric (alignment) expression of optimality condition
▶ We consider an optimal solution x∗ of

min
x∈Rn

(
f (x) + γ||x ||

)
where f : Rn → R is a smooth convex function,
γ > 0 and ||·|| is a norm with unit ball B

▶ By the Fermat rule, when x∗ ̸= 0,

0 ∈ ∇f (x∗) + γ∂||·||(x∗) ⇐⇒ x∗

||x∗|| ∈ F⊥(B,−∇f (x∗))︸ ︷︷ ︸
face of the unit ball B
exposed by −∇f (x∗)

▶ The norm ||·|| may be qualified as sparsity-inducing if
information about the support of x∗ and the exposed faces of
the unit ball B can be recovered from one another
[Fan, Jeong, Sun, and Friedlander, 2020]



Design of sparsity inducing norms/balls



Courtesy of Basile and Lionel Pournin

Figure: Unit ball co
(
ℓ≤2
0 ∩ S1

)
when n = 3



How to design a sparsity inducing unit ball?

For k ∈ J1, dK
▶ consider the k-sparse vectors in ℓ≤k

0

▶ as they do not form a compact set,
intersect ℓ≤k

0 with a unit sphere S (or a unit ball B)

▶ form the convex hull and obtain a new

unit ball BR
(k) = co

(
ℓ≤k
0 ∩ S

)
whose extreme points belong to ℓ≤k

0 ∩ S ⊂ ℓ≤k
0 ,

hence are k-sparse vectors

Does this procedure induces sparsity? If yes, in what sense?



Support identification of a k-sparse vector in the
exposed face of a generalized k-support dual norm (1/2)

Theorem

Let k ∈ J1, nK. If the source norm ||·|| is orthant-monotonic, then

BR
(k) = co

(
ℓ≤k
0 ∩ S

)
= B⊤⋆

⋆,(k)

and, for any nonzero dual vector y ∈ Y \ {0},
the two following statements are equivalent

(i) x ∈ ℓ≤k
0 ∩ F⊥(B

⊤⋆
⋆,(k), y)

(ii) there exists K ∗ ∈ argmax|K |≤k ||πK (y)||⋆
such that x ∈ πK∗

(
B ∩ F⊥(B, πK∗(y))

)
⊂ RK∗

As a consequence, we get that

supp(x) ⊂ K ∗



Support identification of a k-sparse vector in the
exposed face of a generalized k-support dual norm (2/2)

Consider a vector x ∈
k-sparse︷︸︸︷
ℓ≤k
0 ∩

exposed face︷ ︸︸ ︷
F⊥(B

⊤⋆
⋆,(k), y)

1. From x ∈ ℓ≤k
0 , we only know that

there exists K ⊂ J1, nK with |K | ≤ k such that

supp(x) ⊂ K

2. From x ∈ F⊥(B
⊤⋆
⋆,(k), y), we add information and obtain that

there exists K ∗ ∈ argmax
|K |≤k

||πK (y)||⋆ such that

supp(x) ⊂ K ∗



Support identification

Corollary

Let f : Rn → R be a smooth convex function,
γ > 0 and ||·|| be a norm

Then, an optimal solution x∗ of

min
x∈Rn

(
f (x) + γ||x ||⊤⋆⋆,(k)

)
has support

supp(x∗) ⊂
⋃

K∗∈argmax|K |≤k

||πK (−∇f (x∗))||⋆

K ∗

Especially interesting when the argmax|K |≤k is unique,
because then the optimal solution x∗ is k-sparse



Geometry of sparsity inducing balls



(a) Unit ball B⊤⋆
∞,2 when n = 3 (b) Unit ball B⊤⋆

2,2 when n = 3

(c) Unit ball B⊤
1,2 when n = 3 (d) Unit ball B⊤

2,2 when n = 3

Figure: Four top (6c and 6d) and support (7a and 7b) unit balls, either
obtained from the ℓ1 source norm (7a and 6c) or from the ℓ2 source norm
(7b and 6d)



Additional geometric properties

Proposition

For any k ∈ J1, nK, all the proper faces of B⊤⋆
2,k are hypersimplices,

and the normal fan of B⊤⋆
2,k refines the normal fan of B⊤⋆

∞,k

(a) Unit ball B⊤⋆
∞,2 when n = 3 (b) Unit ball B⊤⋆

2,2 when n = 3

Figure: Two support norm unit balls, either obtained from the ℓ1 source
norm (7a) or from the ℓ2 source norm (7b)
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▶ So-called generalized convexity and Fenchel-Moreau conjugacy
are extensions of duality beyond convex analysis

▶ The Capra-coupling ¢ and induced Capra-conjugacy
seem promising to handle sparsity in optimization
as the pseudonorm ℓ0 satisfies

∂¢ℓ0 ̸= ∅ hence ℓ
¢¢′

0 = ℓ0

but we have problems handling sums like ℓ0 + ιX :-(
▶ So, our working program is now to study

▶ the ℓ0-cup function L0 = ℓ
¢⋆′

0
▶ the geometry of unit balls of norms related

to the Capra-coupling ¢ and to the pseudonorm ℓ0
▶ lower bound convex programs
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The ℓ0 pseudonorm is (almost)
a convex-composite function

▶ [Chancelier and De Lara, 2021]

ℓ0(x) = L0︸︷︷︸
proper convex lsc

( x

∥x∥
)

, ∀x ∈ Rn \ {0}

▶ As a consequence,
if C ⊂ Rn is a closed convex set with 0 ̸∈ C ,

min
x∈C

ℓ0(x) = min
x∈Rn

{
L0(

x

∥x∥) + ιC (x)
}

or if f : Rn → R is a proper convex lsc function,

min
x∈Rn, ℓ0(x)≤k

f (x) = min
x∈Rn

{
f (x) + ιB⊤⋆

(k)︸︷︷︸
(2,k)-support norm

unit ball

( x

∥x∥
)}



Graded sequence of norms



We define graded sequence of norms
A graded sequence of norms detects the number of nonzero components of a vector in Rn

when the sequence becomes stationary

Definition

We say that a sequence {||·||k}k∈J1,nK of norms is
(increasingly) graded with respect to the ℓ0 pseudonorm if,
for any y ∈ Rn and l ∈ J1, nK, we have

ℓ0(y) = ℓ ⇐⇒ ||y ||1 ≤ · · · ≤ ||y ||ℓ−1 < ||y ||ℓ = · · · = ||y ||n

or, equivalently, k ∈ J1, nK 7→ ||y ||k is nondecreasing and

ℓ0(y) ≤ ℓ ⇐⇒ ||y ||ℓ = ||y ||n

Graded sequences are suitable for so-called
“difference of convex” (DC) optimization methods

to tackle sparse ℓ0(y) ≤ l constraints



Orthant-strictly monotonic dual norms
produce graded sequences of norms

Proposition

If the dual norm ||·||⋆ of the source norm ||·||
is orthant-strictly monotonic, then the sequence

{
||·||⊤⋆,(k)

}
k∈J1,nK︸ ︷︷ ︸

generalized top-k dual norm

=
{
||·||R(k),⋆

}
k∈J1,nK︸ ︷︷ ︸

dual-k coordinate norm

is graded with respect to the ℓ0 pseudonorm

Thus, we can produce families of graded sequences of norms
suitable for “difference of convex” (DC) optimization methods

to tackle sparse constraints



Fenchel versus Capra conjugacies for ℓ0

[Chancelier and De Lara, 2022a], [Chancelier and De Lara, 2022c]
If both the source norm and its dual are orthant-strictly monotonic

Fenchel conjugacy Capra conjugacy

ι⋆
ℓ≤k
0

= ι{0}, k ̸= 0 ι
¢
ℓ≤k
0

= ||·||R(k),⋆ = ||·||⊤⋆,(k)
ℓ⋆0 = ι{0} ℓ

¢
0 = supℓ∈J0,nK

[
||·||R(ℓ),⋆ − ℓ

]
= supℓ∈J0,nK

[
||·||⊤⋆⋆,(ℓ) − ℓ

]
ι⋆⋆

′

ℓ≤k
0

= 0 ι
¢¢′

ℓ≤k
0

= ι
ℓ≤k
0

ℓ⋆⋆
′

0 = 0 ℓ
¢¢′

0 = ℓ0



Lower bounds for the pseudonorm ℓ0



Best ratio of norms [Chancelier and De Lara, 2022a]
▶ For any φ : J0, dK→ [0,+∞[, such that φ(j) > φ(0) = 0 for

all j ∈ J1, dK, there exists a norm ||·||R(φ) such that

||x ||R(φ)
||x || ≤ φ

(
ℓ0(x)

)
, ∀x ∈ Rn\{0}

where ||·||R(φ) is characterized by its dual norm

||y ||R(φ),⋆ = sup
j∈J1,dK

||y ||R(j),⋆
φ(j)

, ∀y ∈ Rn

▶ For ||·|| = ∥·∥p with p > 1, and φα(j) = j1/α for α > 0,

((
∥x∥p

)R
(φα)

∥x∥p

)α

≤ ℓ0(x) , ∀x ∈ Rn\{0}(∥x∥1
∥x∥p

)p

≤ ℓ0(x) , ∀x ∈ Rn\{0}



Lower bound convex programs for exact sparse optimization



Concave dual problem for exact sparse optimization

From sup
y∈Y

((
−f ¢(y)

)
·+
(
−ι−¢X (y)

))
≤ inf

x∈X

(
f (x)∔ ιX (x)

)
we deduce that

sup
y∈Rn

(
−
(
inf

[
f | ϱ

])⋆
(y) ·+

(
− ι

−¢
ℓ≤k
0

(y)︸ ︷︷ ︸
∥y∥⊤2,k

))
≤ inf

ℓ0(x)≤k
f (x)

Proposition

For any function f : Rn → R, we have the following lower bound

sup
y∈Rn

concave usc function︷ ︸︸ ︷(
−
(
inf

[
f | ϱ

])⋆
(y)− ∥y∥⊤2,k

)
≤ inf

ℓ0(x)≤k
f (x)

= inf
ℓ0(x)≤k

inf
[
f | ϱ

]
(x)



Convex primal problem for exact sparse optimization

Proposition

Under a mild technical assumption (“à la” Fenchel-Rockafellar),
namely if

(
inf

[
f | ϱ

])⋆
is a proper function,

we have the following lower bound

min
∥x∥⊤⋆2,k≤1

(
inf

[
f | ϱ

])⋆⋆′
(x) ≤ inf

ℓ0(x)≤k
f (x) = inf

ℓ0(x)≤k
inf

[
f | ϱ

]
(x)

The primal problem is the minimization of a closed convex function
on the unit ball of the (2,k)-support norm ∥·∥⊤⋆2,k
(introduced in [Argyriou, Foygel, and Srebro, 2012])



Duality



Perturbation scheme

▶ Functions k : Rn → R, φ : J0, nK→ R nondecreasing
(ex: identity, ιJ0,kK) and original minimization problem

inf
w∈Rn

{
k(w)∔ φ

(
ℓ0(w)

)}
= inf

w∈Rn

{
k(w)∔

(
φ ◦ ℓ0

)¢⋆′(
ϱ(w)

)}
because φ ◦ ℓ0 =

(
φ ◦ ℓ0

)¢¢′

=
(
φ ◦ ℓ0

)¢⋆′ ◦ ϱ
[Chancelier and De Lara, 2022c]

▶ Rockafellian (perturbation scheme) R : Rn × Rn → R

R(w , x) = k(w)∔
(
φ ◦ ℓ0

)¢⋆′(
ϱ(w) + x

)
, ∀(w , x) ∈ Rn×Rn

▶ Value function

φ(x) = inf
w∈Rn

{
k(w)∔

(
φ ◦ ℓ0

)¢⋆′(
ϱ(w) + x

)}
, ∀x ∈ Rn



Lagrangian and dual problem

▶ Fenchel coupling Rn ⟨·| ·⟩↔ Rn, and Lagrangian
L : Rn × Rn → R given, for any (w , y) ∈ Rn × Rn, by

L(w , y) = inf
x∈Rn

{
k(w)∔

(
φ ◦ ℓ0

)¢⋆′(
ϱ(w) + x

)
− ⟨x , y⟩

}
= k(w)∔

(
⟨ϱ(w), y⟩ −

(
φ ◦ ℓ0

)¢
(y)

)
▶ Dual maximization problem

φ⋆⋆′(0) = sup
y∈Rn

inf
w∈Rn

L(w , y) = sup
y∈Rn

{(
−k−¢(y)

)
·+
(
−
(
φ ◦ ℓ0

)¢
(y)

)}
▶ Original minimization problem (case “∔ = +” when k proper)

φ(0) = inf
w∈Rn

sup
y∈Rn

L(w , y) = inf
w∈Rn

{
k(w)∔ φ

(
ℓ0(w)

)}



Numerics



A toy example

min
w∈R2

k(w)︷ ︸︸ ︷(
(w1 − b1)

2 + (w2 − b2)
2
)
+ℓ0(w)

with b = (0.8, 1.1)

We have that {(0, b2)} = {(0, 1.1)} = argmin
w∈R2

{
k(w) + ℓ0(w)

}

0

1

2

0
1

2

2

4



The toy example as a min-max problem

As ℓ0(w) = maxy∈R2

{
¢(w , y)− ℓ

¢
0 (y)

}
, we obtain that

min
w∈R2

{
k(w) + ℓ0(w)

}
= min

w∈R2
max
y∈R2

{
k(w) + ¢(w , y)− ℓ

¢
0 (y)

}
with

ℓ
¢
0 (y) = sup

k∈J1,nK

[
∥y∥⊤2,k − k

]
+



Generalized primal-dual proximal splitting

GPDPS Algorithm Christian Clason, Stanislav Mazurenko, and Tuomo Valkonen. Primal–dual

proximal splitting and generalized conjugation in non-smooth non-convex optimization. Applied Mathematics and

Optimization, 84(2):1239–1284, apr 2020.

Given a starting point (w0, y0) and step lengths τi , ωi , σi > 0,
iterate

w (i+1) := proxτik
(
w (i) − ¢w (w

(i), y (i))
)

w (i+1) := w (i+1) + ωi (w
(i+1) − w (i))

y (i+1) := prox
σi ℓ
¢
0

(
y (i) + σi¢y (w

(i+1), y (i))
)

The prox of k is analytically computed (quadratic function),

whereas the prox of ℓ
¢
0 is numerically computed with

the optimization algorithm newuoa by M.J.D. Powell



GPDPS convergence, varying the starting point
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