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The ℓ0 pseudonorm is not a norm

The function ℓ0 pseudonorm : Rn → J0, nK
satisfies 3 out of 4 axioms of a norm

▶ ℓ0(x) ≥ 0 ✓

▶
(
ℓ0(x) = 0 ⇐⇒ x = 0

)
✓

▶ ℓ0(x + x ′) ≤ ℓ0(x) + ℓ0(x
′) ✓

▶ But... instead of absolute 1-homogeneity,
it is absolute 0-homogeneity that holds true

ℓ0(λx) = ℓ0(x) , ∀λ ̸= 0

supp(λx) = supp(x) , ∀λ ̸= 0



SNAPSHOTS OF OUR MAIN RESULTS



Fenchel conjugacy (⋆) versus E-Capra conjugacy (¢)
for the ℓ0 pseudonorm

▶ Fenchel conjugacy (⋆)

ℓ⋆⋆
′

0 = 0

▶ E-Capra conjugacy (¢)

ℓ
¢¢′

0 = ℓ0

[Chancelier and De Lara, 2021]



The ℓ0 pseudonorm coincides, on the unit sphere,
with the proper convex lower semicontinuous

ℓ0-cup function L0 = ℓ
¢⋆′
0

ℓ0 = 0

ℓ0 = 1

ℓ0 = 2



The ℓ0 pseudonorm is (almost)
a convex-composite function

▶ [Chancelier and De Lara, 2021]

ℓ0(x) = L0︸︷︷︸
proper convex lsc

( x

∥x∥
)

, ∀x ∈ Rn \ {0}

▶ As a consequence,
if C ⊂ Rn is a closed convex set with 0 ̸∈ C ,

min
x∈C

ℓ0(x) = min
x∈Rn

{
L0(

x

∥x∥) + ιC (x)
}

or if f : Rn → R is a proper convex lsc function,

min
x∈Rn, ℓ0(x)≤k

f (x) = min
x∈Rn

{
f (x) + ιB⊤⋆

(k)︸︷︷︸
(2,k)-support norm

unit ball

( x

∥x∥
)}



Variational formulas for the ℓ0 pseudonorm

Proposition

[Chancelier and De Lara, 2021]

ℓ0(x) =
1

∥x∥2
min

x(1)∈Rn,...,x(d)∈Rn∑d
l=1 ∥x(l)∥⊤⋆(l) ≤∥x∥2∑d

l=1 x
(l)=x

d∑
l=1

l
∥∥∥x (l)∥∥∥⊤⋆

(l)
, ∀x ∈ Rn

ℓ0(x) = sup
y∈Rn

inf
l=1,...,d

(⟨x | y⟩
∥x∥2

−
[
∥y∥⊤2,l − l

]
+

)
, ∀x ∈ Rn \ {0}
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Couplings



Motivation: Legendre transform and
Fenchel conjugacy in convex analysis

Definition

Two vector spaces X and Y, paired by a bilinear form
〈
,
〉
,

(in the sense of convex analysis [Rockafellar, 1974, p. 13]))
give rise to the classic Fenchel conjugacy

f ∈ RX 7→ f ⋆ ∈ RY

given by the Legendre transform

f ⋆(y) = sup
x∈X

(
⟨x , y⟩︸ ︷︷ ︸
coupling

+
(
−f (x)

))
, ∀y ∈ Y



Coupling function between sets

[Moreau, 1966-1967, 1970]

▶ Let be given two sets U (“primal”) and V (“dual”)
not necessarily paired vector spaces (nodes and arcs, etc.)

▶ We consider a coupling function

c : U × V → R

We also use the notation U c↔ V for a coupling

Coupling c c-convex functions

c(u, v) f cc
′
= f

⟨u, v⟩ closed convex f ⋆⋆
′
= f

u(v), u continuous lower semicontinuous
log⟨u, v⟩+ log ◦ sublinear

−N ∥u − v∥α, 0 < α ≤ 1 α-Hölder continuous with constant N
mini,vi>0 ui vi increasing and convex-along-rays

Capra ¢(u, v) = ⟨ u
∥u∥ , v⟩ ℓ

¢¢′
0 = ℓ0

H0 convex ◦ 0-homogeneous



Euclidean Constant Along Primal RAys (Capra) coupling

▶ On the Euclidean space Rn, the

Euclidean-Capra coupling (E-Capra) Rn ¢←→ Rn is given by

∀y ∈ Rn ,


¢(x , y) =

⟨x | y⟩
∥x∥2

=
⟨x | y⟩√
⟨x | x⟩

, ∀x ∈ Rn\{0}

¢(0, y) = 0

▶ The coupling E-Capra has the property of being
Constant Along Primal RAys (Capra)



Fenchel-Moreau conjugacies



Fenchel-Moreau conjugate of a function

f ∈ RX 7→ f c ∈ RY

Definition

The c-Fenchel-Moreau conjugate f c : Y → R
of a function f : X → R is defined by

f c(y) = sup
x∈X

(
c(x , y) ·+

(
−f (x)

))
, ∀y ∈ Y

We use the Moreau lower and upper additions on R
that extend the usual addition with

(+∞) ·+ (−∞) = (−∞) ·+ (+∞) = −∞
(+∞) ∔ (−∞) = (−∞) ∔ (+∞) = +∞



E-Capra-conjugate of the ℓ0 pseudonorm

ℓ
¢
0 (y) = sup

x∈Rn

{
¢(x , y) ·+

(
−ℓ0(x)

)}
= sup

{
0, sup

x ̸=0

{⟨x | y⟩
∥x∥2

− ℓ0(x)
}}

= sup
{
0, sup

s∈S2

{
⟨s | y⟩ − ℓ0(s)

}}
where S2 ⊂ Rn is the Euclidean unit sphere

= sup
{
0, sup

i∈J1,dK

{
sup
s∈S2

ℓ0(s)=i

⟨s | y⟩

︸ ︷︷ ︸
top-(2,i) norm ∥y∥⊤2,i=

√∑k
l=1|yν(l)|2

−i
}}

= sup
i∈J1,dK

[
∥y∥⊤2,i − i

]
+



Biconjugates and duality



Motivation: duality in convex analysis



Reverse coupling and Fenchel-Moreau biconjugate

With the coupling c, we associate the reverse coupling c ′

c ′ : V × U → R , c ′(v , u) = c(u, v) , ∀(v , u) ∈ V × U

f ∈ RU 7→ f c ∈ RV

g ∈ RV 7→ g c ′ ∈ RU

g c ′(u) = sup
v∈V

(
c(u, v) ·+

(
−g(v)

))
, ∀u ∈ U

f cc
′
(u) =

(
f c
)c ′

(u) = sup
v∈V

(
c(u, v) ·+

(
−f c(v)

))
, ∀u ∈ U



Reverse coupling and Fenchel-Moreau biconjugate

With the coupling c, we associate the reverse coupling c ′

c ′ : V × U → R , c ′(v , u) = c(u, v) , ∀(v , u) ∈ V × U

f ∈ RU 7→ f c ∈ RV

g ∈ RV 7→ g c ′ ∈ RU

g c ′(u) = sup
v∈V

(
c(u, v) ·+

(
−g(v)

))
, ∀u ∈ U

f cc
′
(u) =

(
f c
)c ′

(u) = sup
v∈V

(
c(u, v) ·+

(
−f c(v)

))
, ∀u ∈ U



In generalized convexity,
one defines so-called c-convex functions

f ∈ RX 7→ f c ∈ RY 7→ f cc
′ ∈ RX

For any function f : X → R, one has that

f cc
′ ≤ f

Definition

The function f : X → R is said to be c-convex if

f cc
′
= f



c-convex functions have dual representations
as suprema of elementary functions
(abstract convexity)

If the function f : U → R is c-convex, we have that

f (u) = sup
v∈V

(
c(u, v) ·+

(
−f c(v)

))︸ ︷︷ ︸
elementary function of u

, ∀u ∈ U

Example: ⋆-convex functions
= closed convex functions

= proper convex lsc or ≡ −∞ or ≡ +∞
= suprema of affine functions



Subdifferential



Motivation: subgradients in convex analysis



Motivation: Rockafellar-Moreau subdifferential
in convex analysis

y ∈ ∂f (x)

⇐⇒ f (x) + f ⋆(y) = ⟨x , y⟩
⇐⇒ f ⋆(y) = ⟨x , y⟩ − f (x)

⇐⇒ x ∈ argmax
u∈X

[
⟨u, y⟩ − f (u)

]
⇐⇒ ⟨u, y⟩ − f (u) ≤ ⟨x , y⟩ − f (x)

∀u ∈ X



Subdifferentials of a conjugacy

For any function f : U → R and u ∈ U , v ∈ V
Definition

Upper subdifferential (following [Martinez-Legaz and Singer, 1995])

v ∈ ∂c f (u) ⇐⇒ f (u) = c(u, v) ·+
(
−f c(v)

)
The upper subdifferential ∂c f has the property that

∂c f (u) ̸= ∅ =⇒ f (u) = f cc
′
(u)︸ ︷︷ ︸

the function f is c-convex at u

Definition

Lower subdifferential

v ∈ ∂c f (u) ⇐⇒ f c(v) = c(u, v) ·+
(
−f (u)

)
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We introduce the coupling E-Capra between Rn and itself

Definition

The Euclidean-Capra coupling (E-Capra) Rn ¢←→ Rn is given by

∀y ∈ Rn ,


¢(x , y) =

⟨x | y⟩
∥x∥2

=
⟨x | y⟩√
⟨x | x⟩

, ∀x ∈ Rn\{0}

¢(0, y) = 0 = 0
0

The coupling E-Capra has the property of being
Constant Along Primal RAys (Capra)



E-Capra = Fenchel coupling after primal normalization

▶ We introduce the Euclidean unit sphere S2
and the pointed unit sphere S

(0)
2 by

S2 =
{
x ∈ Rn

∣∣ ∥x∥2 = 1
}
, S

(0)
2 = S2 ∪ {0}

▶ and we define the primal radial projection ϱ as

ϱ : Rn → S
(0)
2 , ϱ(x) =


x

∥x∥2
if x ̸= 0

0 = 0
0 if x = 0

▶ so that the coupling E-Capra

¢(x , y) = ⟨ϱ(x) | y⟩ , ∀x ∈ Rn , ∀y ∈ Rn

appears as the Fenchel coupling after primal normalization
(and the coupling E-Capra is one-sided linear)



The E-Capra conjugacy shares properties
with the Fenchel conjugacy

Proposition

For any function f : Rn → R,
the ¢-Fenchel-Moreau conjugate is given by

f ¢ =
(
inf

[
f | ϱ

])⋆
where

inf
[
f | ϱ

]
(x) =

{
infρ>0 f (ρx) if x ∈ S

(0)
2

+∞ if x ̸∈ S
(0)
2

For any function g : Rn → R,
the ¢′-Fenchel-Moreau conjugate is given by

g¢
′
= g⋆ ◦ ϱ



The E-Capra-convex functions are 0-homogeneous and
coincide, on the unit sphere, with a closed convex function

Proposition

¢-convexity of the function h : Rn → R

⇐⇒ h = h¢¢
′

⇐⇒ h =
(
h¢

)⋆′︸ ︷︷ ︸
convex lsc function

◦ ϱ

⇐⇒ hidden convexity in the function h : Rn → R
there exists a closed convex function f : Rn → R

such that h = f ◦ ϱ , that is, h(x) = f
( x

∥x∥2
)



The ℓ0 pseudonorm is E-Capra-convex



Notation

▶ The Euclidean top-(2,k) norm is also known as the
(2, k)-symmetric gauge norm, or Ky Fan vector norm

∥y∥⊤2,k =

√√√√ k∑
l=1

|yν(l)|2 , |yν(1)| ≥ |yν(2)| ≥ · · · ≥ |yν(d)|

▶ We denote the level sets of the ℓ0 pseudonorm by

ℓ≤k
0 =

{
x ∈ Rn

∣∣ ℓ0(x) ≤ k
}
, ∀k ∈ J0, nK

and its elements are call k-sparse vectors

▶ For any subset W ⊂ Rn, its indicator function ιW is

ιW (w) =

{
0 if w ∈W

+∞ if w ̸∈W



The ℓ0 pseudonorm and the E-Capra-coupling

Theorem

The ℓ0 pseudonorm,
the indicator functions ι

ℓ≤k
0

of its level sets

and the Euclidean top-(2,k) norms ∥·∥⊤2,k are related by

ι
¢
ℓ≤k
0

= ∥·∥⊤2,k , k ∈ J0, nK

ℓ
¢
0 = sup

j∈J0,nK

[
∥·∥⊤2,j − j

]
ℓ
¢¢′

0 = ℓ0



The ℓ0 pseudonorm displays hidden convexity



The ℓ0 pseudonorm displays a convex factorization property

Theorem

As the ℓ0 pseudonorm is E-Capra-convex, we get that

ℓ0 = ℓ
¢¢′

0 = ℓ
¢⋆′
0 ◦ ϱ =

(
ℓ
¢
0

)⋆′︸ ︷︷ ︸
convex lsc function L0

◦
radial projection︷︸︸︷

ϱ

As a consequence, the ℓ0 pseudonorm coincides,
on the Euclidean unit sphere S2,
with a proper convex lsc function,

the Euclidean ℓ0-cup function L0 = ℓ
¢⋆′
0

ℓ0(x) = L0(x) , ∀x ∈ S2



Graph of the Euclidean ℓ0-cup function L0 = ℓ
¢⋆′
0



Best proper convex lsc lower approximation
of the ℓ0 pseudonorm on the Euclidean unit ball

Theorem

The Euclidean ℓ0-cup function L0 = ℓ
¢⋆′
0 is

the best convex lsc lower approximation of the ℓ0 pseudonorm
on the Euclidean unit ball B2

best convex lsc function L0(x) ≤ ℓ0(x) , ∀x ∈ B2

and, as seen above, coincides with the ℓ0 pseudonorm

on the Euclidean unit sphere S2

ℓ0(x) = L0(x) , ∀x ∈ S2



E-Capra subdifferential of the ℓ0 pseudonorm
(with Adrien Le Franc)



Capra-subdifferential of the ℓ0 pseudonorm on R2

Illustration at three points (black dots)

x1

x2

∂¢ℓ0(0, 0) , ∂¢ℓ0(1, 0) , ∂¢ℓ0(−
√
3
2 ,−1

2)



Capra-subdifferential of the ℓ0 pseudonorm on R2

x1

x2

∂¢ℓ0(0)
⋃{ ⋃

ℓ0(x)=1

∂¢ℓ0(x)
}⋃{ ⋃

ℓ0(x)=2

∂¢ℓ0(x)
}



Lower approximation of the ℓ0 pseudonorm
by a finite number of elementary E-Capra-functions

ℓ0 = 0

ℓ0 = 1

ℓ0 = 2



Variational formulas



We recall the Euclidean (2,k)-support norms ∥·∥⊤⋆2,k

▶ The dual norm of the top-(2,k) norm ∥·∥⊤2,k

∥·∥⊤⋆2,k =
(
∥·∥⊤2,k

)
⋆

is called the (Euclidean) (2,k)-support norm
[Argyriou, Foygel, and Srebro, 2012]

▶ We have the following inclusions between unit balls

B⊤⋆
(1) ⊂ · · · ⊂ B⊤⋆

(ℓ−1) ⊂ B⊤⋆
(ℓ) ⊂ · · · ⊂ B⊤⋆

(n) = B



The ℓ0-cup function as a convex envelope
Proposition

The proper convex lsc function L0 is the convex envelope
of the following piecewise constant function

L0(x) =


0 if x = 0,

ℓ if x ∈ B⊤⋆
(ℓ)\B⊤⋆

(ℓ−1) , ℓ ∈ J1, nK
+∞ if x ̸∈ B⊤⋆

(n) = B

x
y

z



Variational formulas for the ℓ0 pseudonorm

Proposition

ℓ0(x) =
1

∥x∥2
min

x(1)∈Rn,...,x(d)∈Rn∑d
ℓ=1 ∥x(ℓ)∥⊤⋆(ℓ)≤∥x∥2∑d

ℓ=1 x
(ℓ)=x

d∑
ℓ=1

ℓ
∥∥∥x (ℓ)∥∥∥⊤⋆

(ℓ)
, ∀x ∈ Rn

ℓ0(x) = sup
y∈Rn

inf
ℓ∈J1,nK

(⟨x | y⟩
∥x∥2

−
[
∥y∥⊤2,ℓ − ℓ

]
+

)
, ∀x ∈ Rn \ {0}
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Work has gone on along two paths

Norm Norm Norm 1-homogeneous
Euclidean orthant-strictly monotonic any nonnegative

function

ℓ0 pseudonorm ¢-convex (ℓ
¢¢′
0 = ℓ0) difference of norms

[Chancelier and De Lara, 2021] [Chancelier and De Lara, 2023]
hidden convexity

[Chancelier and De Lara, 2021]
variational formula

[Chancelier and De Lara, 2021]
subdifferential

[Le Franc et al., 2022]

φ ◦ ℓ0 ¢-convex ((φ ◦ ℓ0)
¢¢′ = φ ◦ ℓ0)

φ : N → R [Chancelier and De Lara, 2022b]
nondecreasing hidden convexity

[Chancelier and De Lara, 2022b]
variational formula

[Chancelier and De Lara, 2022b]
subdifferential

[Chancelier and De Lara, 2022b]

φ ◦ ℓ0 (φ ◦ ℓ0)
¢¢′

φ : N → R [Chancelier and De Lara, 2022a]
any variational inequality

[Chancelier and De Lara, 2022a]
subdifferential

[Chancelier and De Lara, 2022a]

F◦ support (F ◦ support)¢¢
′

F : 2J1,dK → R [preprint]
any variational inequality

[preprint]
subdifferential

[preprint]
0-homogeneous best lower

function approximation
[preprint]



We introduce the coupling Capra

▶ Let be given X and Y, two vector spaces
paired by a bilinear form ⟨·, ·⟩

▶ Suppose that X is equipped with a (source) norm ||·||
Definition

[Chancelier and De Lara, 2022a]

The coupling Capra X ¢←→ Y is given by

∀y ∈ Y ,


¢(x , y) =

⟨x , y⟩
||x || , ∀x ∈ X\{0}

¢(0, y) = 0

In what follows, X = Y = Rn

with norm ||·|| having unit ball B and unit sphere S



Orthant-strictly monotonic norms



Orthant-strictly monotonic norms

For any x ∈ Rn, we denote by |x |
the vector of Rn with components |xi |, i ∈ J1, nK
Definition

A norm ||·|| on the space Rn is called

▶ orthant-monotonic [Gries, 1967]
if, for all x , x ′ in Rn, we have(
|x | ≤ |x ′| and x ◦ x ′ ≥ 0⇒ ||x || ≤ ||x ′||

)
,

where x ◦ x ′ = (x1x
′
1, . . . , xdx

′
d)

is the Hadamard (entrywise) product

▶ orthant-strictly monotonic [Chancelier and De Lara, 2023]
if, for all x , x ′ in Rn, we have(
|x | < |x ′| and x ◦ x ′ ≥ 0⇒ ||x || < ||x ′||

)
,

where |x | < |x ′| means that there exists j ∈ J1, nK
such that |xj | < |x

′
j |



Example of unit sphere of a non orthant-monotonic norm

In the bottom right orthant,
consider

|(0,−1)| ≤ |(0.5,−1)|

and

(0,−1) ◦ (0.5,−1) ≥ (0, 0)

but

1 = ||(0,−1)|| > ||(0.5,−1)||



Examples of orthant-strictly monotonic norms

∥x∥∞ = sup
i∈J1,nK

|xi | and ∥x∥p =
( d∑
i=1

|xi |p
)1/p

for p ∈ [1,∞[

▶ All the ℓp-norms ∥·∥p on the space Rn, for p ∈ [1,∞],
are monotonic, hence orthant-monotonic

ℓ1, ℓ2, ℓ∞

▶ All the ℓp-norms ∥·∥p on the space Rn, for p ∈ [1,∞[,
are orthant-strictly monotonic

ℓ1, ℓ2

▶ The ℓ1-norm ∥·∥1 is orthant-strictly monotonic,
whereas its dual norm, the ℓ∞-norm ∥·∥∞,
is orthant-monotonic, but is not orthant-strictly monotonic



Orthant-strictly monotonic norms and Capra-convexity



Capra-subdifferentiability properties of the ℓ0 pseudonorm

[Chancelier and De Lara, 2022b]

Proposition

If both the norm ||·|| and the dual norm ||·||⋆
are orthant-strictly monotonic, we have that

∂¢ℓ0(x) ̸= ∅ , ∀x ∈ Rn ,

that is, the pseudonorm ℓ0 is Capra-subdifferentiable on Rn

and, as a consequence,

ℓ
¢¢′

0 = ℓ0



Best convex lower approximation of the ℓ0 pseudonorm
on the ℓp-unit balls, p ∈ [1,∞]

Theorem

The function L0 is the best convex lsc lower approximation of ℓ0

best convex lsc function L0(x) ≤ ℓ0(x) , ∀x ∈ Bp

on the unit ball Bp, and coincides with the ℓ0 pseudonorm

ℓ0(x) = L0(x) , ∀x ∈ Sp

on the unit sphere Sp



Tightest closed convex function below the ℓ0 pseudonorm
on the ℓp-unit balls on R2 for p ∈ {1, 1.1, 2, 4, 300,∞}



Where do we stand?

▶ We have Capra couplings ¢
for which the pseudonorm ℓ0
▶ has nonempty Capra-subdifferential

∂¢ℓ0 ̸= ∅

▶ hence is Capra-convex (equal to its Capra-biconjugate)

ℓ
¢¢′

0 = ℓ0

▶ This looks promising to study sparse optimization problems

But. . .
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Archetypal sparse optimization problems
▶ For X ⊂ Rd a nonempty set,

minimal ℓ0 pseudonorm min
x∈X

ℓ0(x)

is an optimization problem for which any point in X
is a local minimizer Jean-Baptiste Hiriart-Urruty and Hai Le. A variational approach of the

rank function. TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, 21

(2):207–240, 2013.

▶ For k ∈ J1, nK and a function f : Rd → R,

optimal k-sparse vector min
ℓ0(x) ≤ k︸ ︷︷ ︸

k-sparse vectors

f (x)

▶ For γ > 0 and a function f : Rd → R,

min
x∈Rd

(
f (x) + γℓ0(x)︸ ︷︷ ︸

sparse penalty

)
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Good news :-)
the Fermat rule holds true for the Capra coupling

x∗ ∈ argmin f ⇐⇒ 0 ∈ ∂¢f (x
∗)

As an application, we get that

x∗ ∈ argmin
x∈X

ℓ0(x) ⇐⇒ 0 ∈ ∂¢
(
ℓ0 + ιX

)
(x∗)

But. . .
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Bad news :-(
when zero is in the subdifferential of the sum. . .

u1

u2

x∗ = (1, 0)

x∗ ∈ argmin
X

ℓ0 ⇐⇒ 0 ∈ ∂¢
(
ℓ0 + ιX

)
(x∗)︸ ︷︷ ︸

subdifferential of the sum



... but zero is not in the sum of the subdifferentials

∂¢ℓ0(x
∗) + ∂¢ιX (x

∗)︸ ︷︷ ︸
0/∈

⊊ ∂¢
(
ℓ0 + ιX

)
(x∗)︸ ︷︷ ︸

0∈

∂¢ℓ0(x
∗)

x1

x2

∂¢ιX (x∗) = N
(
co(ϱ(X )), x∗

)

x1

x2



Where do we stand?

▶ We had good hope to handle sparse optimization problems
with the E-Capra coupling
that makes the pseudonorm ℓ0 E-Capra convex

▶ But, in a simple sparse optimization problem, it is not true
that the subdifferential of the sum
is equal to the sum of the subdifferentials

▶ And not having practical qualification conditions
is an obstacle to many numerical methods
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Fenchel-Moreau theorem

f (x) = x2 , ∀x ∈ R

=⇒ f (x) = max
y∈R

(
xy − 1

4
y2︸ ︷︷ ︸

affine function of x

)
, ∀x ∈ R



Illustration of the (Kelley) cutting plane method
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Illustration of the (Kelley) cutting plane method



Generalized convexity of the ℓ0 pseudonorm

[Chancelier and De Lara, 2022b]

Theorem

Let ∥·∥ =
√
⟨· | ·⟩ be the source norm for the Capra coupling ¢

∂¢ℓ0(x) ̸= ∅ , ∀x ∈ Rn

Thus, ℓ0(x) = max
y∈Rn

¢(x , y)− ℓ
¢
0 (y)︸ ︷︷ ︸

Capra affine functions of x



Minimization of ℓ0 under constraints

▶ Let X ⊂ Rn \ {0} be a compact set the problem

min
x∈X

ℓ0(x)

▶ Idea: using a finite number of Capra cuts Y︸︷︷︸
finite

⊂ Rn

min
x∈X

ℓ0(x) = min
x∈X

max
y∈Rn

¢(x , y)− ℓ
¢
0 (y)

≥ min
x∈X

max
y∈Y

¢(x , y)− ℓ
¢
0 (y)

▶ Cutting plane method:
alternatively minimizing and improving lower approximations



Capra “polyhedral” lower approximation of ℓ0

ℓ0 = 0

ℓ0 = 1

ℓ0 = 2



Presentation of the abstract cutting plane method



Diagram of the abstract cutting plane method

c-subgradient selection (dual)

Solving subproblem (primal)

Stop condition STOP

x0

y i

x i , z i

YESNO

x i



Abstract cutting plane method

We say {x i}i≥0︸ ︷︷ ︸
primal iterates

⊂ X , {y i}i≥0︸ ︷︷ ︸
dual iterates

⊂ Y and {z i}i≥1︸ ︷︷ ︸
lower bounds

⊂ R

are generated by CP(X , x0, f , c ,Y ,E ), if

1. Initialization
x0 ∈ X︸︷︷︸

optimization set

⊂ X

2. c-subgradient selection
y i = Y (x i ), where Y : X → Y s.t. Y (x) ∈ ∂c f (x)︸ ︷︷ ︸

c-subgradient selector

3. i-th primal subproblem

(x i , z i ) ∈ argmin
(x ,z)∈X×R

z s.t.


x ∈ X , (x , z) ∈

additional constraints︷ ︸︸ ︷
E ⊂ X × R

z ≥ f (x j) + c(x , y j)− c(x j , y j)

∀j ∈ J0, i − 1K

4. Stop condition: if not satisfied i := i + 1. Go to Step 2



Convergence result



Convergence result for c-cutting plane method

Theorem

Let CP(X , x0, f , c ,Y ,E ) be a cutting plane method
generating {x i}i≥0 ⊂ X , {y i}i≥0 ⊂ Y and {z i}i≥1 ⊂ R
If

▶ (X , d) metric space, X ⊂ X compact, f : X → R l.s.c. on X

▶ ∂c f (x) ̸= ∅ , ∀x ∈ X (so f (x) = f cc
′
(x) , ∀x ∈ X )

▶
(
argminX f

)
× {minX f } ⊂ E ⊂ X × R

▶ there exists M > 0 such that

|c(x , y)− c(x ′, y)| ≤ Md(x , x ′) , ∀x , x ′ ∈ X
∀y ∈ ⋃

i∈N Y (X ∩ PX
(
E
)
)

Then

▶ z i ↗ minX f

▶ {x i}i≥0 has a subsequence {xν(i)}i≥0 −−−−→
i→+∞

x∗ ∈ argminX f



Capra cutting plane (primal) subproblem



Capra cutting plane (primal) subproblem

min
z∈R
x∈Rn

z s.t.


x ∈ X

(x , z) ∈ E

z ≥ ⟨x | y
j⟩

∥x∥ + f (x j)− ¢(x j , y j)

∀j ∈ J0, i − 1K



Capra cutting plane (primal) subproblem

Proposition

▶ Let X ⊂ Rn \ {0} be a set and S be the Euclidean unit sphere

▶ let f : Rn → R be a function

▶ let E ⊂ Rn × R be such that
(
argminX f

)
× {minX f } ⊂ E

Then, given {x j}1≤j≤i−1, {y j}1≤j≤i−1 ⊂ Rn the i-th primal sub-
problem of a Capra cutting plane method is

min
z∈R
s ∈ S︸ ︷︷ ︸

sphere constraint

z s.t.



s ∈ cone(X )

(s, z) ∈ E

z ≥
〈
s | y j

〉
+ f (x j)− ¢(x j , y j)︸ ︷︷ ︸

linear constraint
∀j ∈ J0, i − 1K



Capra subproblem is a linear program on the sphere



Capra cutting plane subproblem: LP on sphere

When X and E are polyhedral (e.g. X = {x : Ax = 0})

min
z∈R
s ∈ S︸ ︷︷ ︸

sphere constraint

z s.t.



s ∈ cone(X )︸ ︷︷ ︸
linear constraint

(s, z) ∈ E︸ ︷︷ ︸
linear constraint
z ≥

〈
s | y j

〉
+ f (x j)− ¢(x j , y j)︸ ︷︷ ︸

linear constraint
∀j ∈ J0, i − 1K

How to solve a LP on the unit sphere?



Diagram of the abstract cutting plane method

¢-subgradient selection (dual)

Solving subproblem with
Gurobi norm constraint model (primal)

Stop condition STOP

x0

y i

x i , z i

YESNO

x i



An abstract cutting “plane” method for ℓ0
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What are sparsity-inducing norms/balls?



The intuition behind lasso

min
x∈Rd

(
f (x) + γ ∥x∥1

)

min
x∈Rd

(
f (x) + γ ∥x∥2

)

Comments of
[Tibshirani, 1996, Figure 2]

“The lasso solution is the
first place that the contours
touch the square, and this
will sometimes occur at a
corner, corresponding to a
zero coefficient. The pic-
ture for ridge regression is
shown in Fig. 2(b): there
are no corners for the con-
tours to hit and hence zero
solutions will rarely result.”

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series

B (Methodological), 58(1):267–288, 1996



Kinks stand at sparse points

x3
x3

x2 x2x1

x1

x1 + x2 + x3



Exposed faces and normal cones

For any nonempty closed convex subset C ⊂ X ,
where X = Y = Rn,

▶ the exposed face F⊥(C , y) of C by any dual vector y ∈ Y is

F⊥(C , y) = argmax
x∈C

⟨x | y⟩

▶ the normal cone N(C , x) of C at any primal vector x ∈ C
is defined by the conjugacy relation

x ∈ C and y ∈ N(C , x) ⇐⇒ x ∈ F⊥(C , y)

The family of all normal cones is the normal fan N (C )



Geometric (alignment) expression of optimality condition

▶ We consider an optimal solution x∗ ̸= 0 of

min
x∈Rd

(
f (x) + γ||x ||

)
where f : Rd → R is a smooth convex function,
γ > 0 and ||·|| is a norm with unit ball B

0 ∈ ∇f (x∗) + γ∂||·||(x∗)︸ ︷︷ ︸
Fermat rule

=⇒

0-homogeneity︷ ︸︸ ︷
x∗

||x∗|| ∈ F⊥(B,−∇f (x∗))︸ ︷︷ ︸
face of the unit ball B
exposed by −∇f (x∗)

▶ We expect that the support of x∗

can be recovered from dual information −∇f (x∗)



Exposed faces of unit balls with k-sparse extreme points



We reformulate sparsity in terms of coordinate subspaces

y = (∗, ∗, ∗, ∗, ∗, ∗)→ π{2,4,5}(y) = (0, ∗, 0, ∗, ∗, 0) ∈ R{2,4,5}

▶ For any subset K ⊂ J1, nK of indices, we set

RK =
{
y ∈ Rn

∣∣ yj = 0 , ∀j ̸∈ K
}
⊂ Rn

▶ The connection with the level sets of the ℓ0 pseudonorm is

ℓ≤k
0 =

{
x ∈ Rn

∣∣ ℓ0(x) ≤ k
}︸ ︷︷ ︸

k-sparse vectors

=
⋃

|K |≤k

RK , ∀k ∈ J0, nK

▶ We denote by πK : Rn → RK the orthogonal projection

For any vector y ∈ Rn, πK (y) = yK ∈ RK ⊂ Rn is the vector
whose entries coincide with those of y ,
except for those outside of K that vanish



Design of unit ball
with k-sparse extreme points

(for example, 2-sparse points in R3)



Design of unit ball with k-sparse extreme points

For given sparsity threshold k ∈ J1, dK,
we consider a source norm ||·||, with unit ball B, and we

▶ project B onto ℓ≤k
0 ,

form the convex hull and get

B⊤⋆
⋆,(k) = co

( ⋃
|K |≤k

πK (B)
)

unit ball of the generalized k-support dual norm ||·||⊤⋆⋆,(k)
[Chancelier and De Lara, 2022b]

▶ the extreme points belong to
⋃

|K |≤k RK = ℓ≤k
0 ,

hence are k-sparse vectors



Generalized top-k and k-support dual norms

Chancelier and De Lara [2022b].

Definition

For any source norm ||·|| on Rd , for any k ∈ J1, nK,
▶ the generalized k-support dual norm ||·||⊤⋆⋆,(k)

is the dual norm ||·||⊤⋆⋆,(k) =
(
||·||⊤⋆,(k)

)
⋆

▶ of the generalized top-k dual norm ||·||⊤⋆,(k) defined by

||y ||⊤⋆,(k) = sup
|K |≤k

||

k-sparse
projection
on RK︷ ︸︸ ︷
πK (y) ||⋆︸ ︷︷ ︸

exploring all
k-sparse projections

, ∀y ∈ Rd



Exposed faces characterization



Exposed faces characterization

Theorem

Let k ∈ J1, nK
Then, for any nonzero dual vector y ∈ Rd \ {0},
the exposed face of the unit ball B⊤⋆

⋆,(k) is given by

F⊥(B
⊤⋆
⋆,(k), y) = co

{ projection on RK∗︷ ︸︸ ︷
πK∗

(
F⊥(B, πK∗y)︸ ︷︷ ︸
exposed face
of the original

unit ball

)
: K ∗ ∈ argmax

|K |≤k
|||πKy |||⋆

}



Exposed faces characterization

Theorem

Let k ∈ J1, nK
Suppose that the source norm |||·||| is orthant-strictly monotonic

Then, for any nonzero dual vector y ∈ Rd \ {0},
the exposed face of the unit ball B⊤⋆

⋆,(k) is given by

F⊥(B
⊤⋆
⋆,(k), y) = co

{
F⊥(B, πK∗y)︸ ︷︷ ︸
exposed face
of the original

unit ball

: K ∗ ∈ argmax
|K |≤k

|||πKy |||⋆
}



Support identification using k-sparsity inducing norms



Support identification: main result

Theorem

Let f : Rd → R be a smooth convex function, and γ > 0

For given sparsity threshold k ∈ J1, dK,
an optimal solution x∗ of

min
x∈Rd

(
f (x) + γ

generalized
k-support
dual norm︷ ︸︸ ︷
||x ||⊤⋆⋆,(k)

)
has support

supp(x∗) ⊂
⋃

K∗∈argmax|K |≤k

||πK (−∇f (x∗))||⋆

K ∗



Sparse support identification: corollary

Corollary

Let f : Rd → R be a smooth convex function and γ > 0

For given sparsity threshold k ∈ J1, dK, if an optimal solution x∗ of

min
x∈Rd

(
f (x) + γ||x ||⊤⋆⋆,(k)

)
satisfies

argmax
|K |≤k

||πK (−∇f (x∗))||⋆ = K ∗ is unique

then it has support

supp(x∗) ⊂ K ∗ with |K ∗| ≤ k

so that the optimal solution x∗ is k-sparse



Support identification: Lasso

Corollary

Let f : Rd → R be a smooth convex function,
γ > 0 and ||·||1 be the ℓ1 norm

An optimal solution x∗ of

min
x∈Rd

(
f (x) + γ||x ||1

)
has support

supp(x∗) ⊂ argmax
j∈J1,dK

|∇j f (x
∗)|



Geometry of sparsity-inducing balls



source norm |||·||| |||·|||⊤⋆,(k), k ∈ J1, dK |||·|||⊤⋆
⋆,(k), k ∈ J1, dK

∥·∥p top-(q,k) norm (p,k)-support norm

∥y∥⊤q,k ∥x∥⊤⋆
p,k

∥y∥⊤q,k =
(∑k

l=1|yν(l)|
q) 1

q no analytic expression

∥·∥1 top-(∞,k) norm (1,k)-support norm
ℓ∞-norm ℓ1-norm

∥y∥⊤∞,k = ∥y∥∞, ∀k ∈ J1, dK ∥x∥⊤⋆
1,k = ∥x∥1, ∀k ∈ J1, dK

∥·∥2 top-(2,k) norm (2,k)-support norm

∥y∥⊤2,k =
√∑k

l=1
|yν(l)|2 ∥x∥⊤⋆

2,k no analytic expression

∥y∥⊤2,1 = ∥y∥∞ ∥x∥⊤⋆
2,1 = ∥x∥1

∥·∥∞ top-(1,k) norm (∞,k)-support norm

∥y∥⊤1,k =
∑k

l=1|yν(l)| ∥x∥⊤⋆
∞,k = max{ ∥x∥1

k
, ∥x∥∞}

∥y∥⊤1,1 = ∥y∥∞ ∥x∥⊤⋆
1,1 = ∥x∥1

Table: Examples of generalized top-k and k-support dual norms
generated by the ℓp source norms |||·||| = ∥·∥p for p ∈ [1,∞], where
1/p + 1/q = 1. For y ∈ Rn, ν denotes a permutation of {1, . . . , d} such
that |yν(1)| ≥ |yν(2)| ≥ · · · ≥ |yν(d)|.



When the source norm is the ℓ∞-norm



Case k = 2 in R3 with source norm the ℓ∞-norm

(a) Unit ball B⊤⋆
∞,2

(support norm)
(b) Unit ball B⊤

1,2

(top norm)



When the source norm is the ℓ2-norm



Case k = 2 in R3 with source norm the ℓ2-norm

(a) Unit ball B⊤⋆
2,2

(support norm)

(b) Unit ball B⊤
2,2

(top norm)



When the source norm is the ℓ1-norm



Case k = 2 in R3 with source norm the ℓ1-norm

(a) Unit ball B⊤⋆
1,2

(support norm)
(b) Unit ball B⊤

∞,2

(top norm)
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▶ So-called generalized convexity and Fenchel-Moreau conjugacy
are extensions of duality beyond convex analysis

▶ The Capra-coupling ¢ and induced Capra-conjugacy
seem promising to handle sparsity in optimization

as the pseudonorm ℓ0 satisfies ∂¢ℓ0 ̸= ∅, hence ℓ
¢¢′

0 = ℓ0
but we have problems handling sums like ℓ0 + ιX :-(

▶ So, our working program is now to study

▶ the ℓ0-cup function L0 = ℓ
¢⋆′

0
▶ Capra-cuts based algorithms
▶ lower bound convex programs
▶ H0-couplings to go beyond Capra-couplings
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Graded sequence of norms



We define graded sequence of norms
A graded sequence of norms detects the number of nonzero components of a vector in Rn

when the sequence becomes stationary

Definition

We say that a sequence {||·||k}k∈J1,nK of norms is
(increasingly) graded with respect to the ℓ0 pseudonorm if,
for any y ∈ Rn and l ∈ J1, nK, we have

ℓ0(y) = ℓ ⇐⇒ ||y ||1 ≤ · · · ≤ ||y ||ℓ−1 < ||y ||ℓ = · · · = ||y ||n

or, equivalently, k ∈ J1, nK 7→ ||y ||k is nondecreasing and

ℓ0(y) ≤ ℓ ⇐⇒ ||y ||ℓ = ||y ||n

Graded sequences are suitable for so-called
“difference of convex” (DC) optimization methods

to tackle sparse ℓ0(y) ≤ l constraints



Orthant-strictly monotonic dual norms
produce graded sequences of norms

Proposition

If the dual norm ||·||⋆ of the source norm ||·||
is orthant-strictly monotonic, then the sequence

{
||·||⊤⋆,(k)

}
k∈J1,nK︸ ︷︷ ︸

generalized top-k dual norm

=
{
||·||R(k),⋆

}
k∈J1,nK︸ ︷︷ ︸

dual-k coordinate norm

is graded with respect to the ℓ0 pseudonorm

Thus, we can produce families of graded sequences of norms
suitable for “difference of convex” (DC) optimization methods

to tackle sparse constraints



Fenchel versus Capra conjugacies for ℓ0

[Chancelier and De Lara, 2022a], [Chancelier and De Lara, 2022b]
If both the source norm and its dual are orthant-strictly monotonic

Fenchel conjugacy Capra conjugacy

ι⋆
ℓ≤k
0

= ι{0}, k ̸= 0 ι
¢
ℓ≤k
0

= ||·||R(k),⋆ = ||·||⊤⋆,(k)
ℓ⋆0 = ι{0} ℓ

¢
0 = supℓ∈J0,nK

[
||·||R(ℓ),⋆ − ℓ

]
= supℓ∈J0,nK

[
||·||⊤⋆⋆,(ℓ) − ℓ

]
ι⋆⋆

′

ℓ≤k
0

= 0 ι
¢¢′

ℓ≤k
0

= ι
ℓ≤k
0

ℓ⋆⋆
′

0 = 0 ℓ
¢¢′

0 = ℓ0



Lower bound convex programs for exact sparse optimization



Concave dual problem for exact sparse optimization

From sup
y∈Y

((
−f ¢(y)

)
·+
(
−ι−¢X (y)

))
≤ inf

x∈X

(
f (x)∔ ιX (x)

)
we deduce that

sup
y∈Rn

(
−
(
inf

[
f | ϱ

])⋆
(y) ·+

(
− ι

−¢
ℓ≤k
0

(y)︸ ︷︷ ︸
∥y∥⊤2,k

))
≤ inf

ℓ0(x)≤k
f (x)

Proposition

For any function f : Rn → R, we have the following lower bound

sup
y∈Rn

concave usc function︷ ︸︸ ︷(
−
(
inf

[
f | ϱ

])⋆
(y)− ∥y∥⊤2,k

)
≤ inf

ℓ0(x)≤k
f (x)

= inf
ℓ0(x)≤k

inf
[
f | ϱ

]
(x)



Convex primal problem for exact sparse optimization

Proposition

Under a mild technical assumption (“à la” Fenchel-Rockafellar),
namely if

(
inf

[
f | ϱ

])⋆
is a proper function,

we have the following lower bound

min
∥x∥⊤⋆2,k≤1

(
inf

[
f | ϱ

])⋆⋆′
(x) ≤ inf

ℓ0(x)≤k
f (x) = inf

ℓ0(x)≤k
inf

[
f | ϱ

]
(x)

The primal problem is the minimization of a closed convex function
on the unit ball of the (2,k)-support norm ∥·∥⊤⋆2,k
(introduced in [Argyriou, Foygel, and Srebro, 2012])



Duality



Perturbation scheme

▶ Functions l : Rn → R, φ : J0, nK→ R nondecreasing
(ex: identity, ι{0,1,...,k}) and original minimization problem

inf
w∈Rn

{
l(w)∔ φ

(
ℓ0(w)

)}
= inf

w∈Rn

{
l(w)∔

(
φ ◦ ℓ0

)¢⋆′(
ϱ(w)

)}
because φ ◦ ℓ0 =

(
φ ◦ ℓ0

)¢¢′

=
(
φ ◦ ℓ0

)¢⋆′ ◦ ϱ
[Chancelier and De Lara, 2022b]

▶ Rockafellian (perturbation scheme) R : Rn × Rn → R

R(w , x) = l(w)∔
(
φ ◦ ℓ0

)¢⋆′(
ϱ(w) + x

)
, ∀(w , x) ∈ Rn×Rn

▶ Value function

φ(x) = inf
w∈Rn

{
l(w)∔

(
φ ◦ ℓ0

)¢⋆′(
ϱ(w) + x

)}
, ∀x ∈ Rn



Lagrangian and dual problem

▶ Fenchel coupling Rn ⟨·| ·⟩↔ Rn, and Lagrangian
L : Rn × Rn → R given, for any (w , y) ∈ Rn × Rn, by

L(w , y) = inf
x∈Rn

{
l(w)∔

(
φ ◦ ℓ0

)¢⋆′(
ϱ(w) + x

)
− ⟨x , y⟩

}
= l(w)∔

(
⟨ϱ(w), y⟩ −

(
φ ◦ ℓ0

)¢
(y)

)
▶ Dual maximization problem

φ⋆⋆′(0) = sup
y∈Rn

inf
w∈Rn

L(w , y) = sup
y∈Rn

{(
−l−¢(y)

)
·+
(
−
(
φ ◦ ℓ0

)¢
(y)

)}
▶ Original minimization problem (case “∔ = +” when l proper)

φ(0) = inf
w∈Rn

sup
y∈Rn

L(w , y) = inf
w∈Rn

{
l(w)∔ φ

(
ℓ0(w)

)}



Numerics



A toy example

min
w∈R2

l(w)︷ ︸︸ ︷(
(w1 − b1)

2 + (w2 − b2)
2
)
+ℓ0(w)

with b = (0.8, 1.1)

We have that {(0, b2)} = {(0, 1.1)} = argmin
w∈R2

{
l(w) + ℓ0(w)

}

0

1

2

0
1

2

2

4



The toy example as a min-max problem

As ℓ0(w) = maxy∈R2

{
¢(w , y)− ℓ

¢
0 (y)

}
, we obtain that

min
w∈R2

{
l(w) + ℓ0(w)

}
= min

w∈R2
max
y∈R2

{
l(w) + ¢(w , y)− ℓ

¢
0 (y)

}
with

ℓ
¢
0 (y) = sup

k∈J1,nK

[
∥y∥⊤2,k − k

]
+



Generalized primal-dual proximal splitting

GPDPS Algorithm [Clason, Mazurenko, and Valkonen, 2020]

Given a starting point (w0, y0) and step lengths τi , ωi , σi > 0,
iterate

w (i+1) := proxτi l
(
w (i) − ¢w (w

(i), y (i))
)

w (i+1) := w (i+1) + ωi (w
(i+1) − w (i))

y (i+1) := prox
σi ℓ
¢
0

(
y (i) + σi¢y (w

(i+1), y (i))
)

The prox of l is analytically computed (quadratic function),

whereas the prox of ℓ
¢
0 is numerically computed with

the optimization algorithm newuoa by M.J.D. Powell



GPDPS convergence, varying the starting point
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