Causal Inference Theory with Information Algebras:
 Binary Relations, Alexandrov Topologies and Conditional Topological Separation

Benjamin Heymann, Michel De Lara, Jean-Philippe Chancelier
BH: Criteo AI Lab, Paris, France
MDL and JPC : Cermics, École des Ponts, Marne-la-Vallée, France

Outline of the presentation

Background on binary relations, graphs and Alexandrov topologies

Conditional relations on a graph

Conditional topological separation

Background on binary relations, graphs and
Alexandrov topologies

Background on binary relations, graphs and
 Alexandrov topologies

Binary relations

Binary relations (definition and exemples)

Let \mathcal{V} be a nonempty set (finite or not)

- We recall that a (binary) relation \mathcal{R} on \mathcal{V} is a subset

$$
\mathcal{R} \subset \mathcal{V} \times \mathcal{V}
$$

and that

$$
\gamma \mathcal{R} \lambda \Longleftrightarrow(\gamma, \lambda) \in \mathcal{R}
$$

- For any subset $\Gamma \subset \mathcal{V}$, the (sub)diagonal relation is

$$
\Delta_{\Gamma}=\{(\gamma, \lambda) \in \mathcal{V} \times \mathcal{V} \mid \gamma=\lambda \in \Gamma\}
$$

and the diagonal relation is $\Delta=\Delta_{\mathcal{V}}$

Binary relations (follow up)

- A foreset of a relation \mathcal{R} is any set of the form

$$
\mathcal{R} \lambda=\{\gamma \in \mathcal{V} \mid \gamma \mathcal{R} \lambda\}
$$

- An afterset of a relation \mathcal{R} is any set of the form

$$
\gamma \mathcal{R}=\{\lambda \in \mathcal{V} \mid \gamma \mathcal{R} \lambda\}
$$

- The opposite or complementary \mathcal{R}^{c} of a binary relation \mathcal{R} is the relation $\mathcal{R}^{c}=\mathcal{V} \times \mathcal{V} \backslash \mathcal{R}$, that is, defined by

$$
\gamma \mathcal{R}^{c} \lambda \Longleftrightarrow \neg(\gamma \mathcal{R} \lambda)
$$

- The converse \mathcal{R}^{-1} of a binary relation \mathcal{R} is defined by

$$
\gamma \mathcal{R}^{-1} \lambda \Longleftrightarrow \lambda \mathcal{R} \gamma
$$

and a relation \mathcal{R} is symmetric if $\mathcal{R}^{-1}=\mathcal{R}$

Binary relations (composition)

- The composition $\mathcal{R} \mathcal{R}^{\prime}$ of two binary relations $\mathcal{R}, \mathcal{R}^{\prime}$ on \mathcal{V} is the binary relation on \mathcal{V} defined by

$$
\gamma\left(\mathcal{R} \mathcal{R}^{\prime}\right) \lambda \Longleftrightarrow \exists \delta \in \mathcal{V}, \quad \gamma \mathcal{R} \delta \text { and } \delta \mathcal{R}^{\prime} \lambda
$$

By induction we define $\mathcal{R}^{n+1}=\mathcal{R} \mathcal{R}^{n}$ for $n \in \mathbb{N}$, with the convention $\mathcal{R}^{0}=\Delta$

- The transitive closure of a binary relation \mathcal{R} is

$$
\mathcal{R}^{+}=\bigcup_{k=1}^{\infty} \mathcal{R}^{k}
$$

and \mathcal{R} is transitive if $\mathcal{R}^{+}=\mathcal{R}$

- The reflexive and transitive closure is

$$
\mathcal{R}^{*}=\mathcal{R}^{+} \cup \Delta=\bigcup_{k=0}^{\infty} \mathcal{R}^{k}
$$

- A partial equivalence relation is
a symmetric and transitive binary relation

Background on binary relations, graphs and Alexandrov topologies

Graphs defined by a binary relation

Graphs defined by a binary relation

- Let \mathcal{V} be a nonempty set (finite or not), whose elements are called vertices
- Let $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$ be a relation on \mathcal{V}, whose elements are ordered pairs (that is, couples) of vertices called edges
- the first element of an edge is the tail of the edge
- whereas the second one is the head of the edge
- both tail and head are called endpoints of the edge, and we say that the edge connects its endpoints
- We define a loop as an element of $\Delta \cap \mathcal{E}$, that is, a loop is an edge that connects a vertex to itself

Definition

A graph, as we use it, is a couple $(\mathcal{V}, \mathcal{E})$ where $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$

Graphs (comments)

As we define a graph,

- it may hold a finite or infinite number of vertices
- there is at most one edge that has a couple of ordered vertices as single endpoints, hence a graph (in our sense) is not a multigraph (in graph theory)
- loops are not excluded (since we do not impose $\Delta \cap \mathcal{E}=\emptyset$)

Hence, what we call a graph would be called, in graph theory,
a directed simple graph permitting loops

Background on binary relations,

 graphs andAlexandrov topologies
Alexandrov topology induced by a binary relation

Let $(\mathcal{V}, \mathcal{E})$ be a graph, that is, \mathcal{V} is a set and $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$

Proposition

The following set

$$
\mathcal{T}_{\mathcal{E}}=\{O \subset \mathcal{V} \mid O \mathcal{E} \subset O\}
$$

is an Alexandrov topology on \mathcal{V}, with the property that open subsets are characterized by
$O \in \mathcal{T}_{\mathcal{E}} \Longleftrightarrow O \mathcal{E} \subset O \Longleftrightarrow O \mathcal{E}^{+} \subset O \Longleftrightarrow O \mathcal{E}^{*} \subset O \Longleftrightarrow O \mathcal{E}^{*}=O$
In the Alexandrov topology $\mathcal{T}_{\mathcal{E}}$, the topological closure $\bar{\Gamma}^{\varepsilon}$ of a subset $\Gamma \subset \mathcal{V}$ is given by

$$
\bar{\Gamma}^{\varepsilon}=\mathcal{E}^{*} \Gamma, \forall \Gamma \subset \mathcal{V}
$$

that is, is the \mathcal{E}^{*}-foreset of Γ

Conditional relations on a graph

Conditional parental relation

Let $(\mathcal{V}, \mathcal{E})$ be a graph, that is, \mathcal{V} is a set and $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$, and let $W \subset \mathcal{V}$ be a subset of (conditioning) vertices

Definition

We define the conditional parental relation \mathcal{E}^{w} as
$\mathcal{E}^{W}=\Delta_{W} \mathcal{E}$, that is, $\gamma \mathcal{E}^{W} \lambda \Longleftrightarrow \gamma \in W^{c}$ and $\gamma \mathcal{E} \lambda \quad(\forall \gamma, \lambda \in \mathcal{V})$
and the conditional ascendent relation \mathcal{B}^{W} as

$$
\mathcal{B}^{W}=\mathcal{E}\left(\Delta_{W^{c}} \mathcal{E}\right)^{*}=\mathcal{E} \mathcal{E}^{W *} \text { where } \mathcal{E}^{W_{*}}=\left(\mathcal{E}^{W}\right)^{*}
$$

which relates descendent with ascendent by means of elements in W^{c}

We define their converses \mathcal{E}^{-W} and \mathcal{B}^{-W} as

$$
\begin{aligned}
& \mathcal{E}^{-w}=\left(\mathcal{E}^{w}\right)^{-1}=\mathcal{E}^{-1} \Delta_{W^{c}} \\
& \mathcal{B}^{-w}=\left(\mathcal{B}^{w}\right)^{-1}=\left(\mathcal{E}^{-1} \Delta_{W^{c}}\right)^{*} \mathcal{E}^{-1}=\mathcal{E}^{-W_{*}} \mathcal{E}^{-1} \text { where } \mathcal{E}^{-W_{*}}=\left(\mathcal{E}^{-w}\right)^{*}
\end{aligned}
$$

Conditional common cause, cousinhood and active relations

With these elementary binary relations, we define the conditional common cause relation \mathcal{K}^{w} as the symmetric relation

$$
\mathcal{K}^{W}=\mathcal{B}^{-w} \Delta_{W^{c}} \mathcal{B}^{W}=\mathcal{E}^{-W+} \mathcal{E}^{W+}
$$

the conditional cousinhood relation \mathcal{C}^{W} as the partial equivalence relation

$$
\mathcal{C}^{w}=\left(\Delta_{W} \mathcal{K}^{w} \Delta_{W}\right)^{+} \cup \Delta_{W}
$$

and the conditional active relation \mathcal{A}^{w} as the symmetric relation

$$
\mathcal{A}^{w}=\Delta \cup \mathcal{B}^{w} \cup \mathcal{B}^{-w} \cup \mathcal{K}^{w} \cup\left(\mathcal{B}^{w} \cup \mathcal{K}^{w}\right) \mathcal{C}^{w}\left(\mathcal{B}^{-w} \cup \mathcal{K}^{w}\right)
$$

Conditional topological separation

Conditional topological separation

Definitions of d- and t-separation as binary relations

d-separation between vertices

Let $(\mathcal{V}, \mathcal{E})$ be a graph, that is, \mathcal{V} is a set and $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$, and let $W \subset \mathcal{V}$ be a subset of (conditioning) vertices

Definition ("a la Pearl")

The vertices γ and λ are (conditionally) directionally separated (w.r.t. the subset W)

$$
\left.\gamma \frac{\|}{d} \lambda \right\rvert\, W \Longleftrightarrow \underbrace{D_{U}[\{(\gamma, \lambda)\} \mid \mathcal{V}, \mathcal{E}]}_{\text {all "paths" }} \subset \underbrace{U_{b}^{W}(\mathcal{V}, \mathcal{E})}_{\text {blocked "paths" }} \quad(\forall \gamma, \lambda \in \mathcal{V})
$$

- The vertices γ and λ are (conditionally) directionally separated if and only if all the extended-oriented paths, having them as endpoints, are blocked
- This definition mimics Pearl's d-separation, but the separation is between vertices and not between disjoint subsets

d-separation as a binary relation

Theorem (d-separation as a binary relation)
For any vertices $\gamma, \lambda \in \mathcal{V}$,

$$
\left.\gamma \frac{\|}{d} \lambda \right\rvert\, W \Longleftrightarrow \neg\left(\gamma \mathcal{A}^{w} \lambda\right)
$$

- The proof of this theorem (d-separation as a binary relation) is quite technical, but involving simple mathematical objects, like paths in graphs and relations
- Pearl's d-separation between disjoint subsets is now expressed as

$$
\left\ulcorner\left.\frac{\|}{d} \Lambda \right\rvert\, W \Longleftrightarrow \forall \gamma \in \Gamma, \forall \lambda \in \Lambda, \neg\left(\gamma \mathcal{A}^{w} \lambda\right)\right.
$$

Conditional topological separation between vertices, t-separation

We recall that $\bar{\Gamma}^{\mathcal{E}^{W}}=\mathcal{E}^{W *} \Gamma$ denotes the $\mathcal{T}_{\mathcal{E}^{W}}$-topological closure of a subset $\Gamma \subset W$

Definition

We set

$$
\mathfrak{S}^{w}=\Delta \cup \mathcal{C}^{w}\left(\mathcal{B}^{-w} \cup \mathcal{K}^{w}\right)
$$

For any vertices $\gamma, \lambda \in \mathcal{V}$, we denote

$$
\left.\gamma \frac{\|_{t}}{} \lambda \right\rvert\, W \Longleftrightarrow{\overline{\mathfrak{S}^{W} \gamma}}^{\varepsilon^{W}} \cap{\overline{\mathfrak{S}^{W} \lambda}}^{\varepsilon^{W}}=\emptyset
$$

and we say that the vertices γ and λ are conditionally topologically separated (w.r.t. W) or, shortly, t-separated

Conditional topological separation

Properties of d- and t-separation

Topological separation is equivalent to d-separation

Theorem

We have the equivalence

$$
\gamma \frac{\|}{t} \lambda\left|W \Longleftrightarrow \gamma \frac{\|}{d} \lambda\right| W \quad\left(\forall \gamma, \lambda \in W^{c}\right)
$$

Proof We have that

$$
\cup \Delta_{W^{c}}\left(\mathcal{B}^{W} \cup \mathcal{K}^{W}\right) \mathcal{C}^{W}\left(\mathcal{B}^{-W} \cup \mathcal{K}^{W}\right) \Delta_{W^{c}}
$$

$$
=\Delta_{W c}\left(\mathcal{B}^{W} \cup \mathcal{K}^{W}\right) \mathcal{C}^{W}\left(\mathcal{B}^{-W} \cup \mathcal{K}^{W}\right) \Delta_{W c}
$$

This ends the proof.

- We have started to check all the mathematical results

$$
\begin{aligned}
& \Delta_{W^{c}}\left(\Delta \cup\left(\mathcal{B}^{W} \cup \mathcal{K}^{W}\right) \mathcal{C}^{W}\right) \mathcal{E}^{-W *} \mathcal{E}^{W *} \mathcal{C}^{W} \mathcal{E}^{-W \cdot} \mathcal{E}^{W \cdot}\left(\Delta \cup \mathcal{C}^{W}\left(\mathcal{B}^{-W} \cup \mathcal{K}^{W}\right)\right) \Delta_{W^{c}} \\
& =\Delta_{W^{c}} \mathcal{E}^{-W *} \mathcal{E}^{W *} \mathcal{C}^{W} \mathcal{E}^{-W \cdot} \mathcal{E}^{W \cdot} \Delta_{W^{c}} \quad \text { (by developing) } \\
& \cup \Delta_{W^{*}} \mathcal{E}^{-W *} \mathcal{E}^{W *} \mathcal{C}^{W} \mathcal{E}^{-W *} \mathcal{E}^{W *}\left(\mathcal{C}^{W}\left(\mathcal{B}^{-W} \cup \mathcal{K}^{W}\right)\right) \Delta_{W^{c}} \\
& \cup \Delta_{W^{c}}\left(\left(\mathcal{B}^{W} \cup \mathcal{K}^{W}\right) \mathcal{C}^{W}\right) \mathcal{E}^{-W \cdot} \mathcal{E}^{W \cdot} \mathcal{C}^{W} \mathcal{E}^{-W \cdot} \cdot \mathcal{E}^{W *} \Delta_{W^{c}} \\
& \cup \Delta_{W^{c}}\left(\left(\mathcal{B}^{W} \cup \mathcal{K}^{W}\right) \mathcal{C}^{W}\right) \mathcal{E}^{-w \cdot} \mathcal{E}^{W \cdot} \mathcal{C}^{W} \mathcal{E}^{-W *} \mathcal{E}^{W *}\left(\mathcal{C}^{W}\left(\mathcal{B}^{-W} \cup \mathcal{K}^{W}\right)\right) \Delta_{W^{c}} \\
& =\Delta_{W^{c}} \mathcal{E}^{-W \cdot} \mathcal{E}^{W \cdot} \mathcal{C}^{W} \mathcal{E}^{-W \cdot} \cdot \mathcal{E}^{W *} \Delta_{W^{c}} \\
& \cup \Delta_{W^{c}} \mathcal{E}^{-W \cdot} \cdot \mathcal{E}^{W \cdot} \cdot \mathcal{C}^{W}\left(\mathcal{B}^{-W} \cup \mathcal{K}^{W}\right) \Delta_{W^{c}} \quad\left(\text { as } \mathcal{C}^{W} \mathcal{E}^{-W \cdot} \cdot \mathcal{E}^{W} \cdot \mathcal{C}^{W}=\mathcal{C}^{W}\right. \text { by (34c)) } \\
& \cup \Delta_{W^{c}}\left(\mathcal{B}^{W} \cup \mathcal{K}^{W}\right) \mathcal{C}^{W} \mathcal{E}^{-W *} \mathcal{E}^{W *} \Delta_{W^{c}} \\
& \cup \Delta_{W^{c}}\left(\mathcal{B}^{W} \cup \mathcal{K}^{W}\right) \mathcal{C}^{W}\left(\mathcal{B}^{-W} \cup \mathcal{K}^{W}\right) \Delta_{W^{c}} \\
& =\Delta_{W^{c}}\left(\mathcal{B}^{W} \cup \mathcal{K}^{W}\right) \mathcal{C}^{W}\left(\mathcal{B}^{-W} \cup \mathcal{K}^{W}\right) \Delta_{W^{c}} \\
& \cup \Delta_{W^{c}}\left(\mathcal{B}^{W} \cup \mathcal{K}^{W}\right)\left(\mathcal{B}^{-W} \cup \mathcal{K}^{W}\right) \Delta_{W^{c}} \\
& \cup \Delta_{W^{c}}\left(\mathcal{B}^{W} \cup \mathcal{K}^{W}\right) \mathcal{C}^{W}\left(\mathcal{B}^{-W} \cup \mathcal{K}^{W}\right) \Delta_{W^{c}}
\end{aligned}
$$

Topological separation (t-separation) between subsets

Definition

We define t-separation between subsets $\Gamma, \Lambda \subset W$ by

$$
\Gamma \frac{\|}{t} \Lambda\left|W \Longleftrightarrow \gamma \underset{t}{\frac{\|}{t}} \lambda\right| W, \forall \gamma \in \Gamma, \forall \lambda \in \Lambda
$$

and we say that Γ and Λ are (conditionally) topologically separated (w.r.t.W)

Theorem

The disjoint subsets $\Gamma, \Lambda \subset W$ are (conditionally) topologically separated (w.r.t.W) if and only if there exists $W_{\Gamma}, W_{\wedge} \subset W$ such that

$$
W_{\Gamma} \sqcup W_{\Lambda}=W \text { and } \underbrace{\overline{\Gamma \cup W_{\Gamma}}{ }^{\varepsilon W}}_{\tau_{\varepsilon} W} \text { topological closure }^{\Gamma_{\Lambda} \cup W_{\Lambda}{ }^{\varepsilon W}}=\emptyset
$$

Conditional topological separation

Examples

$$
\text { Prove that } \left.Y_{1} \frac{\|}{t} Y_{2} \right\rvert\, W \text { using } W=W_{Y_{1}} \sqcup \emptyset
$$

Figure 1: The split of W is a piece of information that can be insightful

Figure 2: Topological separation is easy to check: nonrecursive system

Figure 3: X_{3} and X_{4} are independent conditioned on (X_{0}, X_{1}, X_{2}) but not independent if we only condition on $\left(X_{0}, X_{1}\right)$. The visual proof of topological separation is obtained by considering the splitting $W_{X_{4}}=\left\{X_{1}, X_{2}\right\}$ and $W_{X_{3}}=\left\{X_{0}\right\}$ and observing that the topological closure of $X_{3} \cup W_{X_{3}}$ in blue does not intersect the topological closure of $X_{4} \cup W_{X_{4}}$ in red

References

Jean-Philippe Chancelier, Michel De Lara, and Benjamin Heymann, Conditional separation as a binary relation, 2021, Preprint.
國 Michel De Lara, Jean-Philippe Chancelier, and Benjamin Heymann, Topological conditional separation, 2021, Preprint.

