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Outline of the presentation

Witsenhausen intrinsic model [15’]

Causality

2



Witsenhausen intrinsic model

[15’]



Witsenhausen intrinsic model

[15’]

Agents, actions, Nature, configuration

space, information σ-algebras



Agents, action spaces and Nature space

� Let A be a (finite or infinite) set,

whose elements are called agents (or decision-makers)

� With each agent a ∈ A is associated a measurable space

( Ua︸︷︷︸
set of
actions

for agent a

, Ua︸︷︷︸
σ-algebra

⊂2Ua

)

� With Nature is associated a measurable space

(Ω,F)

(at this stage of the presentation, we do not need to equip (Ω,F)

with a probability distribution, as we only focus on information)
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The configuration space is a product space

Configuration space

The configuration space is the product space

H =
∏
a∈A

Ua × Ω

equipped with the product σ-algebra, called configuration σ-algebra

H =
⊗
a∈A

Ua ⊗ F

so that (H,H) is a measurable space
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Example of configuration space

Ua = {Ta,Ba}, Ub = {Rb, Lb}, Ω = {ω+, ω−}
Ua = 2Ua , Ub = 2Ub , F = 2Ω

(Ta,Lb,ω
−) (Ba,Lb,ω

−)

(Ba,Lb,ω
+)(Ta,Lb,ω

+)

(Ta,Rb,ω
−) (Ba,Rb,ω

−)

(Ta,Rb,ω
+) (Ba,Rb,ω

+)
(H,H)

•

••

•

• •

• •

� product configuration space

H =
∏
a∈A

Ua × Ω

� product configuration σ-algebra

H =
⊗
a∈A

Ua ⊗ F

represented by

the partition of its atoms
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Information σ-algebras
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Information σ-algebras express dependencies

Information σ-algebra of an agent

The information σ-algebra of agent a ∈ A is a σ-field

Ia ⊂ H =
⊗
a∈A

Ua ⊗ F

which is a sub σ-algebra of the product configuration σ-algebra

� The sub σ-algebra Ia of the configuration σ-algebra H

represents the information available to agent a

when the agent chooses an action

� Therefore, the information of agent a may depend

� on the states of Nature

� and on other agents’ actions
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In the finite case, information σ-algebras

are represented by the partition of its atoms

The information σ-algebra of agent a ∈ A

is a sub σ-algebra Ia ⊂ H =
⊗

a∈A Ua ⊗ F

which can, in the finite case, be represented by the partition of its atoms

(Ta,Lb,ω
−) (Ba,Lb,ω

−)

(Ba,Lb,ω
+)(Ta,Lb,ω

+)

(Ta,Rb,ω
−) (Ba,Rb,ω

−)

(Ta,Rb,ω
+) (Ba,Rb,ω

+)
(H,H)

•

••

•

• •

• •

(Ta,Lb,ω
−) (Ba,Lb,ω

−)

(Ba,Lb,ω
+)(Ta,Lb,ω

+)

(Ta,Rb,ω
−) (Ba,Rb,ω

−)

(Ta,Rb,ω
+) (Ba,Rb,ω

+)
Ia ⊂ H

•

••

•

• •

• •

Elements of an atom cannot be distinguished by the agent a
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Definition of the W-model (2 basic objects, possibly 1 axiom)

W-model

A W-model
(
A, (Ω,F), (Ua,Ua)a∈A, (Ia)a∈A

)
consists of 2 basic objects

(W-BO1a) the sample space (Ω,F)

(W-BO1b) the collection (Ua,Ua)a∈A

of agents’ action spaces

(W-BO2) the collection (Ia)a∈A

of agents’ information sub σ-algebras

of H =
⊗

a∈A Ua ⊗ F

and (possibly) 1 axiom imposed on them

(W-Axiom1) for all agent a ∈ A, absence of self-information holds

Ia ⊂ {∅,Ua} ⊗
⊗

b∈A\{a}

Ub ⊗ F

9



To avoid paradoxes, we can consider W-models

that display absence of self-information

Absence of self-information

A W-model displays absence of self-information when

Ia ⊂ {∅,Ua}︸ ︷︷ ︸
not one’s own action

⊗
⊗

b∈A\{a}

Ub︸ ︷︷ ︸
other agents’ actions

⊗F , ∀a ∈ A

� Absence of self-information means that the information of agent a

can only depend on the states of Nature

and on all the other agents’ actions, but not on his own action

� Absence of self-information makes sense

as we have distinguished an individual from an agent

(else, it would lead to paradoxes)
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Examples



Alice and Bob
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”Alice and Bob” configuration space

Example

� no Nature

� two agents a (Alice) and b (Bob)

� two possible actions each Ua = {Ta,Ba}, Ub = {Rb, Lb}
� product configuration space (4 elements)

H = {Ta,Ba} × {Rb, Lb}

(Ba, Lb) (Ba,Rb)

(Ta,Rb)(Ta, Lb)

•

••

•

13



”Alice and Bob” information partitions

(Ba, Lb) (Ba,Rb)

(Ta,Rb)(Ta, Lb)

Ia

•

••

•
(Ba, Lb) (Ba,Rb)

(Ta,Rb)(Ta, Lb)

Ib

• •

••

� Ia = {∅, {Ta,Ba}} ⊗ {∅, {Rb, Lb}}
Alice knows nothing

� Ib = {∅, {Ta,Ba}} ⊗ {∅, {Rb, Lb}}
Bob knows nothing
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Alice knows Bob’s action
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”Alice and Bob” information partitions

(Ba, Lb) (Ba,Rb)

(Ta,Rb)(Ta, Lb)

Ia

•

••

•
(Ba, Lb) (Ba,Rb)

(Ta,Rb)(Ta, Lb)

Ib

• •

••

� Ib = {∅, {Ta,Ba}} ⊗ {∅, {Rb, Lb}}
Bob knows nothing

� Ia = {∅, {Ta,Ba}} ⊗ {∅, {Rb}, {Lb}, {Rb, Lb}}
Alice knows what Bob does

(as she can distinguish between Bob’s actions {Rb} and {Lb})
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Alice, Bob and a coin tossing
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”Alice, Bob and a coin tossing” configuration space

Example

� two states of Nature Ω = {ω+, ω−} (heads/tails)

� two agents a and b

� two possible actions each: Ua = {Ta,Ba}, Ub = {Rb, Lb}
� product configuration space (8 elements)

H = {Ta,Ba} × {Rb, Lb} × {ω+, ω−}

(Ta,Lb,ω
−) (Ba,Lb,ω

−)

(Ba,Lb,ω
+)(Ta,Lb,ω

+)

(Ta,Rb,ω
−) (Ba,Rb,ω

−)

(Ta,Rb,ω
+) (Ba,Rb,ω

+)

•

••

•

• •

• •
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”Alice, Bob and a coin tossing” information partitions

(Ta,Lb,ω
−) (Ba,Lb,ω

−)

(Ba,Lb,ω
+)(Ta,Lb,ω

+)

(Ta,Rb,ω
−) (Ba,Rb,ω

−)

(Ta,Rb,ω
+) (Ba,Rb,ω

+)
Ia

•

••

•

• •

• •

(Ta,Lb,ω
−) (Ba,Lb,ω

−)

(Ba,Lb,ω
+)(Ta,Lb,ω

+)

(Ta,Rb,ω
−) (Ba,Rb,ω

−)

(Ta,Rb,ω
+) (Ba,Rb,ω

+)
Ib

•

••

•

• •

• •

Ib =

Bob does not know what Alice does︷ ︸︸ ︷
{∅, {Ta,Ba}} ⊗{∅,Ub} ⊗

Bob knows Nature’s move︷ ︸︸ ︷
{∅, {ω+}, {ω−}, {ω+, ω−}}

Ia = {∅,Ua} ⊗ {∅, {Rb}, {Lb}, {Rb, Lb}}︸ ︷︷ ︸
Alice knows what Bob does

⊗{∅, {ω+}, {ω−}, {ω+, ω−}}︸ ︷︷ ︸
Alice knows Nature’s move
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Absent-minded driver
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Absent-minded driver

Child

bad
neighbourhood

(0)

T S

AM-driver

sweet
home
(4)

T

expensive
hotel
(1)

S

� S=Stay, T=Turn

� “paradox” that raised a

problem in game theory

� the player looses public time,

as plays “SS” “ST”

cross the information set twice

� cannot be modelled per se

in tree models

(violates “no-AM” axiom)
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A W-model for the absent-minded driver

(ωb,Ta,Tb) (ωb,Sa,Tb)

(ωa,Sa,Tb)(ωa,Ta,Tb)

(ωb,Ta,Sb) (ωb,Sa,Sb)

(ωa,Ta,Sb) (ωa,Sa,Sb)
Ia

•

••

•

• •

• •

(ωb,Ta,Tb) (ωb,Sa,Tb)

(ωa,Sa,Tb)(ωa,Ta,Tb)

(ωb,Ta,Sb) (ωb,Sa,Sb)

(ωa,Ta,Sb) (ωa,Sa,Sb)
Ib

•

••

•

• •

• •

Ia = {∅,

agent a makes a move︷ ︸︸ ︷
Ua × Ub × {ωa}︸ ︷︷ ︸
agent a is whether
the first one to act

∪{Sb} × Ua × {ωb}︸ ︷︷ ︸
or he acts second after
agent b has chosen S

,

agent a doesn’t make a move︷ ︸︸ ︷
{Tb} × Ua × {ωb}︸ ︷︷ ︸

agent b chose T
and finished the game

,H}

Ib = {∅,Ua × Ub × {ωb} ∪ {Sa} × Ub × {ωa}, {Ta} × Ub × {ωa},H} 22



What land have we covered?

What comes next?

� The stage is in place; so are the actors

� agents

� Nature

� information

� How can actors play?

� strategies

� solvability
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Strategies and solvability property



Information is the fuel of W-strategies

W-strategy of an agent

A (pure) W-strategy of agent a is a mapping

λa : (H,H) → (Ua,Ua)

which is measurable w.r.t. the information σ-algebra Ia, that is,

λ−1
a (Ua)︸ ︷︷ ︸

σ-algebra
generated by
W-strategy λa

⊂ Ia︸︷︷︸
information
σ-algebra
of agent a

This condition expresses the property that

a W-strategy λa : (H,H) → (Ua,Ua) for agent a

can only depend on the information Ia available to the agent

For instance, λ−1
a (Ua) ⊂ {∅,H}︸ ︷︷ ︸

no information

⇐⇒ λa is constant on H
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Examples of W-strategies

Consider a W-model with two agents a and b,

and suppose that the σ-algebras Ua, Ub and F contain the singletons

� Absence of self-information

Ia ⊂ {∅,Ua} ⊗ Ub ⊗ F , Ib ⊂ Ua ⊗ {∅,Ub} ⊗ F

Then, W-strategies λa and λb have the form

λa(��ua , ub, ω) = λ̃a(ub, ω) , λb(ua,��ub , ω) = λ̃b(ua, ω)

� Sequential W-model

Ia = {∅,Ua} ⊗ Ub ⊗ F , Ib = {∅,Ua} ⊗ {∅,Ub} ⊗ F

Then, W-strategies λa and λb have the form

λa(��ua , ub, ω) = λ̃a(ub, ω) , λb(��ua ,��ub , ω) = λ̃b(ω)
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Set of W-strategies

Set of W-strategies of an agent

We denote the set of (pure) W-strategies of agent a by

Λa =
{
λa : (H,H) → (Ua,Ua)

∣∣λ−1
a (Ua) ⊂ Ia

}
and the set of W-strategies of all agents is

Λ = ΛA =
∏
a∈A

Λa
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Structural causal and Witsenhausen intrinsic models

Structural causal model Witsenhausen intrinsic model

exogeneous variables Nature ω ∈ Ω (meas. space (Ω,F))

exogeneous distribution

index of endogeneous variables agent a ∈ A

domain of endogeneous variables action set Ua (meas. space (Ua,Ua))

configuration space

H =
∏

a∈A Ua × Ω, H =
⊗

a∈A Ua ⊗ F

information σ-algebras {Ia}a∈A ⊂ H

functional relation W-strategy λa : (H,H) → (Ua,Ua)

λ−1
a (Ua) ⊂ Ia, ∀a ∈ A

causal mechanism W-strategy profile {λa}a∈A

27



Solvability
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Solvability

� In the Witsenhausen’s intrinsic model,

agents make actions in an order which is not fixed in advance

� Briefly speaking, solvability

is the property that, for each state of Nature,

the agents’ actions are uniquely determined by their W-strategies

29



Solvability problem

The solvability problem consists in finding

� for any collection λ = {λa}a∈A ∈ ΛA of W-strategies

� for any state of Nature ω ∈ Ω

actions u ∈ UA satisfying

the implicit (“closed loop”) equation

u = λ(u, ω)

or, equivalently, the family of “closed loop” equations

ua = λa({ub}b∈A , ω) , ∀a ∈ A
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Solvability property

Solvability property

A W-model displays the solvability property when

∀λ = (λa)a∈A ∈ ΛA , ∀ω ∈ Ω , ∃!u ∈ UA , u = λ(u, ω)

or, equivalently,

∀λ = (λa)a∈A ∈ ΛA , ∀ω ∈ Ω , ∃!u ∈ UA

ua = λa({ub}b∈A , ω) , ∀a ∈ A
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Solvability is a property of the information structure

(Ba, Lb) (Ba, Rb)

(Ta, Rb)(Ta, Lb)

Ia

•

••

•
(Ba, Lb) (Ba, Rb)

(Ta, Rb)(Ta, Lb)

Ib

• •

••

Sequential W-model

Ia = {∅,Ua} ⊗ Ub ⊗ F , Ib = {∅,Ua} ⊗ {∅,Ub} ⊗ F

The closed-loop equations

ua = λa(��ua , ub, ω) = λ̃a(ub, ω) , ub = λb(��ua ,��ub , ω) = λ̃b(ω)

always displays a unique solution (ua, ub),

whatever ω ∈ Ω and W-strategies λa and λb
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Solvability is a property of the information structure

(u−
a , u

−
b ) (u−

a , u
+
b )

(u+
a , u

+
b )(u+

a , u
−
b )

Ia

•

••

•
(u−

a , u
−
b ) (u−

a , u
+
b )

(u+
a , u

+
b )(u+

a , u
−
b )

Ib

• •

••

W-model with deadlock

Ia = {∅,Ua} ⊗ Ub , Ib = Ua ⊗ {∅,Ub}

The closed-loop equations

ua = λa(��ua , ub) = λ̃a(ub) , ub = λb(ua,��ub ) = λ̃b(ua)

may display zero solutions, one solution or multiple solutions,

depending on the W-strategies λa and λb
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Solvability makes it possible to define a solution map

from states of Nature towards configurations

Suppose that the solvability property holds true

Solution map

We define the solution map

Sλ : Ω → H

that maps states of Nature towards configurations, by

(u, ω) = Sλ(ω) ⇐⇒ u = λ(u, ω) , ∀(u, ω) ∈ UA × Ω

We include the state of Nature ω in the image of Sλ(ω), so that we map

the set Ω towards the configuration space H, making it possible to

interpret Sλ(ω) as a configuration driven by the W-strategy λ

(in classical control theory, a state trajectory is produced by a policy)

34



In the sequential case, the solution map

is given by iterated composition

� In the sequential case

Ia = {∅,Ua} ⊗ Ub ⊗ F , Ib = {∅,Ua} ⊗ {∅,Ub} ⊗ F

� W-strategies λa and λb have the form

λa(��ua , ub, ω) = λ̃a(ub, ω) , λb(��ua ,��ub , ω) = λ̃b(ω)

� so that the solution map is

Sλ(ω) =
(
λ̃a

(
λ̃b(ω), ω

)
, λ̃b(ω), ω

)
� because the system of equations u = λ(ω, u) here writes

ua = λa(��ua , ub, ω) = λ̃a(ub, ω) , ub = λb(��ua ,��ub , ω) = λ̃b(ω)

35



Solvable noncausal example Witsenhausen [1971]

� No Nature, A = {a, b, c}, Ua = Ub = Uc = {0, 1}
� Set of configurations H = {0, 1}3, and information fields

Ia = σ(ub(1− uc)) , Ib = σ(uc(1− ua)) , Ic = σ(ua(1− ub))

� The “game” can be played but. . . cannot be started (no first agent)

(1,0,0) (1,0,1)

(1,1,1)(1,1,0)

(0,0,0) (0,0,1)

(0,1,0) (0,1,1)

Ia

•

••

•

• •

• •

(1,0,0) (1,0,1)

(1,1,1)(1,1,0)

(0,0,0) (0,0,1)

(0,1,0) (0,1,1)

Ib

•

••

•

• •

• •

(1,0,0) (1,0,1)

(1,1,1)(1,1,0)

(0,0,0) (0,0,1)

(0,1,0) (0,1,1)

Ic

•

••

•

• •

• •
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What comes next?

� Causality (as an ingredient for solvability)

� Classification of information structures
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Causality



Causal configuration orderings: ”Alice and Bob”

� no Nature, two agents a (Alice) and b (Bob)

� two possible actions each Ua = {u+a , u−a }, Ub = {u+b , u
−
b }

� configuration space H = {u+a , u−a } × {u+b , u
−
b } (4 elements)

� set of total orderings (2 elements: a plays first or b plays first)

Σ2 =

{
(ab) =

(
σ:{1,2}→{a,b}

σ(1)=a
σ(2)=b

)
, (ba) =

(
σ:{1,2}→{a,b}

σ(1)=b
σ(2)=a

)}
Consider the following information structure:

� Ib = {∅, {u+a , u−a }} ⊗ {∅, {u+b , u
−
b }}

Bob knows nothing

� Ia = {∅, {u+a , u−a }} ⊗ {∅, {u+b }, {u
−
b }, {u+b , u

−
b }}

Alice knows what Bob does

We say that the constant configuration-ordering

� φ(h) = (ab), for all h ∈ H (a plays first) is noncausal

� φ(h) = (ba), for all h ∈ H (b plays first) is causal
38



Partial orderings

We denote J1, kK = {1, . . . , k} for k ∈ N∗

Partial orderings

The sets of (partial) orderings of order k are the

Σk =
{
κ : J1, kK → A

∣∣κ is an injection
}
, ∀k ∈ N∗

The set of finite orderings is

Σ =
⋃

k∈N∗

Σk

39



Range, cardinality, last element, first elements

For any partial ordering κ ∈ Σ, we define

the range ∥κ∥ of the ordering κ as the subset of agents

∥κ∥ =
{
κ(1), . . . , κ(k)

}
⊂ A , ∀κ ∈ Σk

the cardinality |κ| of the ordering κ as the integer

|κ| = k ∈ J1, |A|K , ∀κ ∈ Σk

the last element κ⋆ of the ordering κ as the agent

κ⋆ = κ(k) ∈ A , ∀κ ∈ Σk

the first elements κ− of the ordering κ to the first k−1 elements

κ− = κ|{1,...,k−1} ∈ Σk−1 , ∀κ ∈ Σk

40



The tree of partial orderings

There is a natural order on the set Σ =
⋃

k∈N∗ Σk of partial orderings

(∅) ⪰ (a) ⪰ (ab) ⪰ (abc)

(∅)

(a)

(ab)

(abc)

(ac)

(acb)

(b)

(ba)

(bac)

(bc)

(bca)

(c)

(cb)

(cba)

(ca)

(cab)

41



Configuration-orderings

When there is a finite or countable number |A| of agents,
the set of total orderings is

Σ|A| =
{
κ : J1, |A|K → A

∣∣κ is a bijection
}

Configuration-ordering

A configuration-ordering is a mapping

φ : H︸︷︷︸
configurations

→ Σ|A|︸︷︷︸
total orderings

The configurations h ∈ H
that are compatible with a partial ordering κ ∈ Σ belong to

Hφ
κ =

{
h ∈ H

∣∣ φ(h)|J1,|κ|K︸ ︷︷ ︸
partial ordering of
the first |κ| agents

= κ
}

42



Causality

Causal W-model

A W-model is causal if there exists (at least one) configuration-ordering

φ : H → Σ|A| with the property that, for any κ = (κ−, κ⋆) ∈ Σ

information
of the last agent κ⋆︷ ︸︸ ︷

Hφ
κ︸︷︷︸

agents
ordered by κ

∩G ∈

depends at most on actions
of agents having lower order rank︷ ︸︸ ︷( ⊗

c ̸∈∥κ−∥

{∅,Uc} ⊗
⊗

b∈∥κ−∥

Ub ⊗ F

)
, ∀G ∈ Iκ⋆

We also say that φ : H → Σ|A| is a causal configuration-ordering

Information comes first,

(possible) causal ordering comes second

If a W-model has no nonempty static team, it cannot be causal
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A causal but nonsequential system

� We consider a set of agents A = {a, b} with

Ua = {u1a , u2a} , Ub = {u1b, u2b} , Ω = {ω1, ω2}

� The agents’ information fields are given by

Ia = σ({u1a , u2a} × {u1b, u2b} × {ω2}, {u1a , u2a} × {u1b} × {ω1})
Ib = σ({u1a , u2a} × {u1b, u2b} × {ω1}, {u1a} × {u1b, u2b} × {ω2})

� When the state of Nature is ω2, agent a only sees ω2, whereas

agent b sees ω2 and the action of a: thus a acts first, then b

� The reverse holds true when the state of Nature is ω1

� A non constant configuration-ordering mapping

φ : H → {(a, b), (b, a)} is defined by (for any couple (ua, ub))

φ
(
(ua, ub, ω

2)
)
= (a, b) and φ

(
(ua, ub, ω

1)
)
= (b, a)

� The system is causal but not sequential
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Causality implies solvability

Proposition Witsenhausen [1971]

Causality implies (recursive) solvability

with a measurable solution map

Sλ = S̃
(|A|)
λ ◦ · · · ◦ S̃ (1)

λ ◦ S (0)
λ

Kuhn’s extensive form of a game encapsulates causality in the tree
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Solvable noncausal example Witsenhausen [1971]

� No Nature, A = {a, b, c}, Ua = Ub = Uc = {0, 1}
� Set of configurations H = {0, 1}3, and information fields

Ia = σ(ub(1− uc)) , Ib = σ(uc(1− ua)) , Ic = σ(ua(1− ub))

� The “game” can be played but. . . cannot be started (no first agent)

(1,0,0) (1,0,1)

(1,1,1)(1,1,0)

(0,0,0) (0,0,1)

(0,1,0) (0,1,1)

Ia

•

••

•

• •

• •

(1,0,0) (1,0,1)

(1,1,1)(1,1,0)

(0,0,0) (0,0,1)

(0,1,0) (0,1,1)

Ib

•

••

•

• •

• •

(1,0,0) (1,0,1)

(1,1,1)(1,1,0)

(0,0,0) (0,0,1)

(0,1,0) (0,1,1)

Ic

•

••

•

• •

• •
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