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Tradeoffs between health and economic activity

hospitalized patients

closed restaurants



Questions about epidemic control

◮ Possibly conflicting objectives
◮ maintaining the population of hospitalized individuals

below a critical threshold
◮ avoiding virulent mutations of the infectious agent
◮ ensuring economic activity, controlling costs, etc.

◮ Menu of possible decisions
◮ quarantine, lockdown
◮ screening tests
◮ opening of new medical units, etc.

◮ What is at stake?
◮ timing and amplitude of decisions
◮ design of strategies (that are robust w.r.t.uncertainties)
◮ role of models

(uncertainties within models, discrepancies between models)
◮ assessment of strategies under uncertainty
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What is “optimization”?

Optimizing is obtaining the best compromise between needs and resources
Marcel Boiteux (président d’honneur d’Électricité de France)

◮ Resources: portfolio of assets, menu of possible decisions
◮ quarantine, lockdown
◮ screening tests
◮ medical units (and opening of new medical units), etc.

◮ Needs: health (but not only)
◮ maintaining the population of hospitalized individuals

below a critical threshold
◮ avoiding virulent mutations of the infectious agent
◮ ensuring economic activity, etc.

◮ Best compromise: Pareto optimum, minimize socio-economic costs
(including externalities)
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Decision variables

◮ Decision variables u, belonging to a decision set U

u ∈ U

◮ U may encompass scalar R, vectorial Rd , integer Z variables
◮ ut may be possibly indexed by time
◮ uω may be possibly indexed by randomness/uncertainty
◮ ui may be possibly indexed by agents/units/nodes

◮ Constraints restrict the wiggle room of decision variables

u ∈ U
ad ⊂ U

◮ bounds constraints (capacities) u ≤ u ≤ u

◮ dynamic relations between successive times (stocks evolution)
◮ information relations (who knows what)
◮ relations between agents/units/nodes



Here are the ingredients for

a multicriteria optimization problem

◮ A set Uad ⊂ U comprising decisions
(over which there will be bargaining)

◮ A finite set A (stakeholders, viewpoints, multiple selves)

◮ Each stakeholder expresses her/his objective, need, preference
by means of an indicator, criterion, objective function

U ∋ u 7→ Ja(u) ∈ R , ∀a ∈ A

◮ Each criterion Ja : U → R(∪{+∞}) takes (possibly extended)
real numerical values, but expressed in its own unit

◮ A large value is bad

Blanket assumption: when needed, the set Uad is a convex subset of Rd ,
all functions Ja are convex and qualification of constraints holds true



The economic posture: defining a social optimum

respecting that you and I do not have the same tastes

Martin L. Weitzman

An enormously important
part of the “discipline” of
economics is supposed to
be that economists
understand the difference
between their own personal
preferences for apples over
oranges and the
preferences of others for
apples over oranges



The space of outcomes

◮ In multicriteria optimization, stakeholders a ∈ A

bargain over a common decision u ∈ U

◮ For this purpose, they consider the image of the mapping

{Ja}a∈A
: Uad → R

A

in the space RA of joint outcomes



Tradeoffs between budget and prevalence constraints

Possible joint values

prevalence [%]

budget [$]
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In a multicriteria optimization problem,

a solution is a Pareto optimum

Efficiency=Pareto optimum= you cannot rob Peter to pay Paul

◮ A decision u♭ ∈ U is dominated by a decision u♯ ∈ U if
◮ all stakeholders prefer u♯ to u

♭, that is,

Ja(u
♯) ≤ Ja(u

♭) , ∀a ∈ A

◮ at least one stakeholder strictly prefers u♯ to u
♭, that is,

∃a ∈ A , Ja(u
♯) < Ja(u

♭)

◮ A decision is a Pareto optimum
if it is not dominated by any other decision
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Pareto optima can be obtained

by (monocriterion) optimization in two ways

◮ Weights (prices)
Pick a family {λa}a∈A

∈ RA
+ of weights,

and then solve the optimization problem

min
u∈Uad

∑

a∈A

λaJa(u)

◮ Focal agent and thresholds (quantities)

◮ Pick a focal agent ā ∈ A (whatever)
◮ Pick a family θ−ā = {θa}a∈A\{ā} ∈ R

A\{ā} of thresholds
(each in its own unit)

and then solve the optimization problem

J∗ā (θ−ā) = minu∈Uad Jā(u)
under the constraints Ja(u) ≤ θa , ∀a ∈ A \ {ā}



From thresholds to weights

◮ Solving the optimization problem (cost-effectiveness)

J∗ā (θ−ā) = minu∈Uad Jā(u)
Ja(u) ≤ θa , ∀a ∈ A \ {ā}

one obtains
◮ an optimal solution u

∗ ∈ U

◮ a family λ∗
−ā = {λ∗

a}a∈A\{ā} ∈ R
A\{ā}
+ of Lagrange multipliers

(provided as multipliers of the constraints)

◮ The optimal solution u∗ ∈ U also solves

min
u∈Uad

1× Jā(u) +
∑

a 6=ā

λ∗
a × Ja(u)

︸ ︷︷ ︸

socio-economic costs



Weights are (shadow) prices

◮ Starting from thresholds expressed in their own units,
we obtain Lagrange multipliers, that is, dual variables
in the duality between quantities and prices

◮ Historically, dual variables have moved
from geometric (Lagrange) to economic (Kantorovich) flavor

◮ Lagrange multipliers of inequality constraints
are geometric dual variables

◮ Kantorovich “resolving multipliers” of constrained primal quantities
(or “objectively determined estimators”)
are economic dual variables

◮ The price of a resource is the sensitivity of the optimal payoff
with respect to marginal changes θa → θa + ǫa

λ∗
a =

∂J∗ā (θ−ā)

∂θa
, ∀a ∈ A \ {ā}
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Tradeoffs between deaths and time spent on the roads

Possible joint values

N

T

•

number of deaths

time [hours]



La “valeur” de la vie humaine

◮ La “valeur” de la vie humaine =
coût d’évitement d’une
mort (statistique) supplémentaire

◮ Cette valeur est révélée par les actions
entreprises dans différents secteurs

◮ route (carrefour giratoire)
◮ sûreté nucléaire
◮ hôpital

◮ Si ce coût d’évitement n’est pas le
même sur la route, dans les hôpitaux
et au voisinage d’une centrale,
alors, à dépense égale pour la
collectivité, on pourrait sauver
beaucoup plus de gens =⇒

égalisation marginale des coûts d’évitement



Décider c’est choisir, choisir c’est pondérer et pondérer

c’est donner des prix à toute chose (Marcel Boiteux)

◮ Décider c’est choisir

◮ choisir c’est pondérer

◮ et pondérer c’est donner des
prix à toute chose,

◮ matérielle ou immatérielle,
◮ marchande ou non

marchande

“Pondération de chacune des raretés
primaires dans leur infinie diversité,
bilan consolidé de tous les
cheminements, les uns dans les
autres imbriqués, jusqu’à remonter à
chacune de ces ressources rares, cela
parait a priori tout à fait
inextricable”



Un vieux “truc” qui ne marche pas si mal (Marcel Boiteux)

◮ “Et pourtant, il y a, pour ce faire, un vieux ’truc’ que l’on utilise
depuis des siècles et qui ne marche pas si mal.

◮ Cela consiste à affecter à chaque ressource élémentaire un coefficient
plus ou moins élevé suivant sa rareté. . . coefficient que l’on appelle
un prix.

◮ En multipliant par ce coefficient-prix la quantité de telle ressource
rare que l’on mobilise, on obtient un coût ;

◮ ces coûts se cumulent tout le long des processus de fabrication pour
aboutir au prix de revient du produit final. . .

◮ et la solution la meilleure, celle qui épargne au mieux les raretés
élémentaires pondérées par leur importance relative, c’est celle qui
coûte le moins cher !”

◮ “Je suis un peu confus d’avoir retenu votre attention jusqu’à
maintenant pour en arriver à une telle banalité”.

Marcel Boiteux, Du Culte de l’énergie, Foi et Vie, n. 23, avril 1977, 76e
année



Brûler du pétrole, c’est comme

brûler sa commode Louis XV (Marcel Boiteux)

“Les prix qui règnent dans nos économies traduisent-ils correctement, et
durablement, tous les aspects des raretés dont la menace pèse sur
l’humanité ?” (Marcel Boiteux)



Wrapping up

How do you find a compromise between possibly conflicting objectives?

◮ Efficiency = Pareto optimum among conflicting objectives
each expressed in its own unit

◮ Cost-efficiency = minimizing costs under “physical” constraints
each expressed in its own unit

◮ Efficiency and cost-efficiency = more or less equivalent
as making decisions reveals implicit prices and values,
unveiling numerical values in the trade-offs
achieved through decision-making
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When time is of the essence

◮ What is the proper timing of decisions? Bold play or smoothing?

◮ When the notion of “solution” moves from decisions to strategies

◮ Why do we discount (utility or cost) over time?
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Discrete-time nonlinear state-control system

xt+1 = ft(xt , ut) , t ∈ T = {t0, t0 + 1, . . . ,T − 1}

◮ the time t ∈ T = {t0, t0 + 1, . . . ,T − 1,T} ⊂ N is discrete
with initial time t0 and horizon T (T < +∞ or T = +∞)
(the time period [t, t + 1[ may be a year, a month, a day, etc.)

◮ the state variable xt belongs to the state space Xt = RnXt

(stocks, biomasses, abundances, capital)

◮ the control variable ut is an element of the control space Ut = RnUt

(inflows, outflows, catches, harvesting effort, investment)

◮ the dynamics ft maps Xt × Ut into Xt+1

(storage, age-class model, population dynamics, economic model)



Stages and controls

◮ We use a discrete (sequential) time index (stage)
that corresponds to the timing of decisions:
the time index can represent a day, or a week,
depending at what rythm decisions are made

◮ Controls can take continuous or discrete values when they represent
the amplitude of different measures:
number of screening tests,
number of openings of new medical units,

◮ Controls can take binary values — lauching of lockdown, etc.

◮ In practice, some parameters of a model will become functions of
new control variables;
for instance, contact parameters between compartments in a SIR
model can become functions of the severity of lockdown measures



States

In so-called SIR models, the state is usually made of

◮ the abundances of individuals in different age classes and in different
health states — like susceptible, infected (hospitalized or not),
recovered

◮ In the simplest SIR model, the state is (S , I ,R)

◮ In a SIR model with age classes, the state is
({Sa}a∈AS

, {I a}a∈AI
, {Ra}a∈AR

)

◮ The state can also include the abundances of infectious agents and
their vectors, the number of beds in specialized medical units, etc.

◮ In joint economics-epidemics models,
the state could include economic compartments



State feedback strategies

A state feedback strategy (policy) is a sequence

λ = {λt}t=t0,...,T−1

of mappings, each of them being a strategy at time t

λt : Xt → Ut

By this definition, we encapsulate the notion that a strategy can adapt to
the current state,
as a the decision ut furnished by the strategy λt at time t is

ut = λt(xt)



◮ Among the strategies, we distinguish the open loop strategies
made of {λt}t=t0,...,T−1 such that each λt takes a constant value
(hence generally nonstationary)

◮ In epidemics control, an elementary example of strategy at time t
would be the number of new hospital beds
as a function of the value of the number of infected individuals

◮ It can also be a binary variable correponding to the opening or
closure of schools as a function of the whole state and of the past
value of epidemiological uncertain variables
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Desirable sets (indicators and thresholds)

◮ Goals can be formulated as a sequence of subsets

Dt ⊂ Xt × Ut , t = t0, . . . ,T − 1

called desirable sets, that capture “effectiveness” in that
states and controls are constrained by

(xt , ut) ∈ Dt , t = t0, . . . ,T − 1

◮ Desirable sets are usually defined as

Dt =
{

(x , u) ∈ Xt × Ut

∣
∣
∣ I j(x , u)
︸ ︷︷ ︸

indicator

≤ θj
︸︷︷︸

threshold

, j = 1, 2, . . . , p
}



Capping the epidemic peak for Ross-Macdonald Model

◮ The dynamics of the system is given by

infected mosquito proportion
dm

dt
= Amht(1−mt)− utmt

infected human proportion
dh

dt
= Ahmt(1− ht)− γht

◮ Determine, if it exists, a piecewise continuous function
(fumigation policy rate) u(·) ,

u(·) : t 7→ ut , u ≤ ut ≤ u , ∀t ≥ 0 ,

such that the following so-called viability constraint is satisfied

ht ≤ H , ∀t ≥ 0



◮ For instance, in the simplest SIR model, a stationary desirable set

D =
{(

(S , I ,R), u
)
∈ X× U

∣
∣αI ≤ b

}

represents the state constraint αIt ≤ b, for all times t, that is, make
in sort that the fraction α of those infected It (corresponding to
those requiring hospitalization) be less than the number b of beds

◮ In a more elaborate model, the number bt of beds would be part of
the state, together with a new control variable ubt corresponding to
the opening/closing of beds at time t, giving an expression like

D =
{(

(S , I ,R , b), (u, ub)
)
∈ X× U

∣
∣αI ≤ b

}



Costs

Costs are represented by functions

◮ called instantaneous costs

Lt : Xt × Ut → R , t = t0, . . . ,T − 1

◮ and by a final cost
K : XT → R

The total costs over the whole time span are given by

j
(
x(·), u(·)

)

︸ ︷︷ ︸

trajectory

=

T−1∑

t=t0

Lt(xt , ut) + K (xT )



The optimal control problem

Minimize intertemporal costs

min
(x(·),u(·))

T−1∑

t=t0

Lt(xt , ut) + K (xT )

under dynamical constraints

xt+1 = ft(xt , ut) , t = t0, . . . ,T − 1

over strategies

ut = λt(xt ) , t = t0, . . . ,T − 1

under constraints (effectiveness)

(xt , ut) ∈ Dt , t = t0, . . . ,T − 1
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Discounting erases the future

T−1∑

t=t0

(
1

1 + re
)tL(xt , ut) + K (xT )

The French public discount rate
En France, le rapport Révision du taux d’actualisation des
investissements publics (Commissariat général du Plan, groupe d’experts
présidé par Daniel Lebègue, janvier 2005) a conduit à diviser par deux (de
8% à 4%) le taux d’actualisation à retenir pour évaluer la rentabilité des
choix d’investissements publics

1

1 + re
=

1

1 + 0.04
≈ 0.96

The future in one hundred years is valued, seen from today, 2%

(
1

1 + 0.04
)10 ≈ 0.68 , (

1

1 + 0.04
)50 ≈ 0.14 , (

1

1 + 0.04
)100 ≈ 0.02



The discount rate is not necessarily an interest rate

M. Boiteux, À propos de la “critique de la théorie de l’actualisation telle
qu’employée en France”, Revue d’Économie Politique, 1976.

◮ “Le taux d’actualisation optimal pour orienter les choix d’intérêt
général” n’est pas “nécessairement égal dans la réalité au taux
d’intérêt d’un quelconque marché monétaire et financier”

◮ “l’actualisation, instrument de cohérence des choix”



Discounting may be related to random final time

◮ Nicholas Stern. The Economics of Climate Change.
Cambridge University Press, 2006.
(. . . ) following distinguished economists from Frank Ramsey in the 1920s

to Amartya Sen and Robert Solow more recently, the only sound ethical

basis for placing less value on the utility (as opposed to consumption) of

future generations was the uncertainty over whether or not the world will

exist, or whether those generations will all be present

◮ The discounted utility criterion can be written without discounting
as a mathematical expectation

∫ ∞

0

L(c(t))e−δtdt = E

[∫ τ

0

L(c(t))
︸ ︷︷ ︸

utility

dt

]

where the random final time τ follows a memoryless exponential
distribution with mean duration time 1/δ



“The pure time discount rate” and chance of extinction

Nicholas Stern. The Economics of Climate Change.
Cambridge University Press, 2006.
(. . . ) we should interpret the factor e−δt in W =

∫∞

0 L(c(t))e−δtdt as
the probability that the world exists at that time

Pure time Probability of human race Probability of human race
preference δ not surviving 10 years not surviving 100 years
0,1 0,010 0,095
0,5 0,049 0,393
1,0 0,095 0,632
1,5 0,139 0,777



“Self-promotion, nobody will do it for you” ;-)

Lilian Sofia Sepulveda Salcedo, Michel De Lara,
Robust Viability Analysis of a Controlled Epidemiological Model,
Theoretical Population Biology, Volume 126, pp 51–58, April 2019

Michel De Lara, Lilian Sofia Sepulveda Salcedo,
Viable Control of an Epidemiological Model,
Mathematical Biosciences, Volume 280, pp 24–37, 2016

M. De Lara, L. Doyen, Sustainable Management of Natural Resources.
Mathematical Models and Methods, Springer, 2008
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Perspectives

◮ Sensitivity analysis versus stochastic and robust optimization

◮ Strategies are the proper concept of solution
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Discrete-time nonlinear state-control system

xt+1 = ft(xt , ut ,wt+1) , t ∈ T = {t0, t0 + 1, . . . ,T − 1}

◮ the time t ∈ T = {t0, t0 + 1, . . . ,T − 1,T} ⊂ N is discrete
with initial time t0 and horizon T (T < +∞ or T = +∞)
(the time period [t, t + 1[ may be a year, a month, a day, etc.)

◮ the state variable xt belongs to the state space Xt = RnXt

(stocks, biomasses, abundances, capital)

◮ the control variable ut is an element of the control space Ut = RnUt

(inflows, outflows, catches, harvesting effort, investment)

◮ the uncertainty wt ∈ Wt = R
nWt

(recruitment or mortality uncertainties, climate fluctuations)

◮ the dynamics ft maps Xt × Ut ×Wt+1 into Xt+1

(storage, age-class model, population dynamics, economic model)



Uncertainties and scenarios

In practice, some parameters of a model will become functions of new
uncertain variables, hence will become time-varying

◮ rates of contact of different compartments of a population model
(young infected individuals with older hospitalized ones, for instance)

◮ Unknown factors in the evolution of the infectious agents,
in its transmission, etc.

A scenario (pathway, chronicle) is a sequence of uncertainties

w(·) =
(
wt0+1,wt0+2, . . . ,wT

)
∈ W

T−t0



Beware! Scenario holds a different meaning

in other scientific communities

◮ In practice, what modelers call
a “scenario” is a mixture of

◮ a sequence of uncertain
variables (also called a
pathway, a chronicle)

◮ a policy Pol

◮ and even a static or
dynamical model

◮ In what follows

scenario = pathway = chronicle



Strategies

A strategy is a sequence

λ = {λt}t=t0,...,T−1

of mappings, each of them being a strategy at time t

λt : Xt0 ×

T∏

s=t0+1

Ws × Xt → Ut

By this definition, we encapsulate the notion that a strategy can adapt to
the current state and to the current cumulated knowledge about
uncertain variables,
as a the decision ut furnished by the strategy λt at time t is

ut = λt(xt0 ,wt0+1, . . . ,wt , xt)
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Costs

Costs are represented by functions,

◮ called instantaneous costs,

Lt : Xt × Ut ×Wt+1 → R , t = t0, . . . ,T − 1

◮ and by a final cost
K : XT → R

The total costs over the whole time span is given by

j
(
x(·), u(·),w(·)

)

︸ ︷︷ ︸

trajectory

=

T−1∑

t=t0

Lt(xt , ut ,wt+1) + K (xT )



Minimizing worst costs under robust constraints

Minimize worst intertemporal costs

min
{λt}t=t0,...,T−1

sup
{wt}t=t0+1,...,T

T−1∑

t=t0

Lt(xt , ut ,wt+1) + K (xT )

under dynamical constraints

xt+1 = ft(xt , ut ,wt+1) , t = t0, . . . ,T − 1

over strategies

ut = λt(xt0 ,wt0+1, . . . ,wt , xt) , t = t0, . . . ,T − 1

under robust constraints

(xt , ut) ∈ Dt , t = t0, . . . ,T − 1

for all uncertainty chronicle w(·) = (wt0+1,wt0+2, . . . ,wT ) ∈
∏T

t=t0+1 Wt



Minimizing expected costs under chance constraints

min
{λt}t=t0,...,T−1

E
[
T−1∑

t=t0

Lt(xt , ut ,wt+1) + K (xT )
]

under dynamical constraints

xt+1 = ft(xt , ut ,wt+1) , t = t0, . . . ,T − 1

over strategies

ut = λt(xt0 ,wt0+1, . . . ,wt , xt) , t = t0, . . . ,T − 1

under chance constraints

P

(

(xt , ut) ∈ Dt , t = t0, . . . ,T − 1
)

≤ 1− ǫ



With risk measures G, G1,. . . , GT

min
{λt}t=t0,...,T−1

G
[
T−1∑

t=t0

Lt(xt , ut ,wt+1) + K (xT )
]

under dynamical constraints

xt+1 = ft(xt , ut ,wt+1) , t = t0, . . . ,T − 1

over strategies

ut = λt(xt0 ,wt0+1, . . . ,wt , xt) , t = t0, . . . ,T − 1

under constraints

Gt

(

I j(xt , ut)
)

≤ θj , t = t0, . . . ,T − 1
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First, we start by laying out
a far-reaching distinction between

knowledge/assessment/simulation models
versus

decision models
(for control/optimization problems)



We distinguish two polar classes of models:

knowledge models versus decision models

Knowledge models:
1/1 000 000 → 1/1 000 → 1/1
maps

Office of Oceanic and
Atmospheric Research (OAR)
climate model



We distinguish two polar classes of models:

knowledge models versus decision models

Knowledge models:
1/1 000 000 → 1/1 000 → 1/1
maps

Office of Oceanic and
Atmospheric Research (OAR)
climate model

Action/decision models:
economic models are fables
designed to provide insight

William Nordhaus
economic-climate model



This talk is not about crafting dynamical models

Elaborating a dynamical model is a delicate venture

◮ Peter Yodzis, Predator-Prey Theory and Management of
Multispecies Fisheries, Ecological Applications 4:51–58, 1994

In population modelling the functional forms of models are
at least as important as are parameter values in expressing
the underlying biology and in determining the outcome.
(. . . ) For instance, May et al. (1979) assumed, without
comment, a particular form of predator-prey interaction;
and this particular form was carried over, again without
comment, by Flaaten. It turns out that this ”invisible” but
powerful assumption is responsible in large part for the
conclusion reached by Flaaten (1988). (. . . ) Flaaten’s
work is controversial because of his conclusion that ”sea
mammals should be heavily depleted to increase the surplus
production of fish resources for man” (Flaaten 1988:114).

◮ Carlos Castillo Chavez
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Ingredients

◮ Assessment scenarios consist of a finite set S of scenarios and
◮ a family π = {πs}

s∈S
of nonnegative numbers summing up to one,

(might be πs = 1/|S|)
◮ a family

{

(x s
t0
,w s(·))

}

s∈S
of uncertainty chronicles

◮ With any policy λ = {λt}t=t0,...,T−1 and any s ∈ S, we associate the

state trajectory xλ,s(·) and the control history uλ,s(·), given by the
following so-called closed loop system

xλ,st+1 = ft(x
λ,s
t , uλ,st ,w s

t+1) , t = t0, . . . ,T − 1 ,

xt0 = x st0 ,

uλ,st = λt(x
s
t0
,w s

t0+1, . . . ,w
s
t , x

λ,s
t ) , t = t0, . . . ,T − 1 .



Assessing the effectiveness of a given strategy

The critical scenarios (or critical uncertainty chronicles)
associated with the strategy λ = {λt}t=t0,...,T−1 are the

{
s ∈ S

∣
∣∃t ∈ {t0, . . . ,T − 1} , (xλ,st , uλst ) 6∈ Dt

}

◮ Such scenarios are critical because there exists at least one time t
for which at least one constraint in Dt is violated

◮ A strategy is “effective” when it passes the test
to display no critical scenarios



Assessing the costs of a given strategy

Assessing the costs of a given strategy λ = {λt}t=t0,...,T−1

amounts to assessing the probability distribution of the random variable

s ∈ S 7→ j
(
xλ,s(·), uλ,s(·),w s(·)

)

that is, in practice, its histogram
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Perspectives

◮ Use decision models to propose and design strategies

◮ Use simulation models to assess strategies

◮ Use risk measures (conditional value at risk)
and tune parameters (by trials and errors)
to capture the risk aversion of decision-makers

◮ Add new recourse variables to overcome hard constraints
so as to ensure effectiveness

◮ Provide graphical outputs: histograms, sustainable thresholds



Thank you :-)
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