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Two international panels tackle
biodiversity (IPBES) and climate change (IPCC)
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Intergovernmental Panel on Climate Change (IPCC)
Climate Change 2022: Mitigation of Climate Change, WGIII AR6 assessment (2022)

WGIII

Mitigation of Climate Change

Climate Change 2022

Working Group III contribution to the
Sixth Assessment Report of the 

Intergovernmental Panel on Climate Change

Annex III: Scenarios and Modelling
Methods (p. 1841)

▶ Part I: Modelling Methods
(p. 1843–1847)
simulation models
optimisation models
perfect foresight
recursive-dynamic
general equilibrium
strategic interaction

▶ Part II: Scenarios (p. 1870)
Scenarios are descriptions of alternative
future developments
▶ A.III.II.2.2 Treatment of Scenario

Uncertainty (p. 1876)
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Intergovernmental Science-Policy Platform on Biodiversity
and Ecosystem Services (IPBES)
Methodological Assessment Report on Scenarios and Models of Biodiversity and Ecosystem
Services (2016)

The methodological assessment report on
SCENARIOS AND MODELS

OF BIODIVERSITY AND
ECOSYSTEM SERVICES

SUMMARY FOR POLICYMAKERS

Many words speak to
the stochastic optimization community

▶ scenarios

▶ models

▶ policy choices/targets/evaluation

▶ robustness
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Lack of robustness is identified as a weakness

▶ Decision makers in Governments, private sector and

civil society want more robust information

▶ [the impact of uncertainty on results is underlined]
Key finding 3.4: Uncertainty associated with models

is often poorly evaluated and reported in published

studies, which may lead to serious misconceptions --

both overly optimistic and overly pessimistic

▶ [out-of-sample assessment is poor]
most studies do not provide a critical evaluation of

the robustness of their findings by comparing their

projections to fully independent data sets (i.e., data

not used in model construction or calibration) or to

other types of models

Notational conventions

▶ teletypefont family: to denote excerpts from the reports

▶ [emphasize in brackets]: my comments
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Outline of the presentation

Sustainability: illustration in climate change economic models [10’]

Resilience: mathematical formalism and examples [25’]

Perspectives for stochastic optimization [15’]

“Self-promotion, nobody will do it for you” ;-) [2’]

6 / 144



Outline of the presentation

Sustainability: illustration in climate change economic models [10’]

Resilience: mathematical formalism and examples [25’]

Perspectives for stochastic optimization [15’]

“Self-promotion, nobody will do it for you” ;-) [2’]

7 / 144



A few words on the purpose of modelling
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We distinguish two polar classes of models:
knowledge models versus decision models

Knowledge models:
1/1 000 000 → 1/1 000 → 1/1
maps

Office of Oceanic and
Atmospheric Research (OAR)
climate model

Action/decision models:
economic models are fables
designed to provide insight

William Nordhaus
economic-climate model
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This talk is about
FRAMING DECISION PROBLEMS

(and not about crafting relevant models,
although this is crucial)

[Yodzis, 1994]1

(additional material in appendix)

1P. Yodzis. Predator-prey theory and management of multispecies fisheries.
Ecological Applications, 4(1):51–58, Feb. 1994
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Outline of the presentation

Sustainability: illustration in climate change economic models [10’]
A stylized decision model for climate change mitigation
Sustainability: hard versus soft? aggregating or not?

Resilience: mathematical formalism and examples [25’]
Climate resilient development (IPCC) and beyond
On the meaning of “scenarios” in biodiversity and climate change
Viable scenarios and stochastic/robust viability
Resilience as belonging to a viability kernel
Resilience as cost distance to a viability kernel

Perspectives for stochastic optimization [15’]
A digression on the mathematical handling of risk
Framing: axiomatics of acceptable “bioeconomics” sets
Solving: mixing multiple decompositions

“Self-promotion, nobody will do it for you” ;-) [2’]
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A carbon cycle model “à la Nordhaus”
is an example of decision model

▶ Time t in years (the tempo of decisions)
t ∈ {t0, t0 + 1, . . . ,T − 1,T} (T horizon)

▶ Two state variables
▶ Economic production Qt (gwp)

Qt+1 =

economic growth︷ ︸︸ ︷
(1 + g) Qt

▶ Environmental co2 concentration Mt

Mt+1 = Mt −δ(Mt −M−∞)︸ ︷︷ ︸
natural sinks

+α

emissions︷ ︸︸ ︷
Emiss

(
Qt

) (
1− ut

)︸ ︷︷ ︸
after

abatement

▶ Decision ut ∈ [0, 1] is the abatement rate of co2 emissions
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Mixing dynamics, optimization and constraints
yields a cost-effectiveness problem

▶ Minimize abatement costs

min
ut0 ,...,uT−1

T−1∑
t=t0

δt−t0 C
(
ut ,Qt

)︸ ︷︷ ︸
abatement costs

▶ under the gwp-co2 dynamics{
Qt+1 = (1 + g)Qt

Mt+1 = Mt − δ(Mt −M−∞) + αEmiss
(
Qt

)
(1− ut)

▶ and under target constraint policy target

MT ≤ M♯︸ ︷︷ ︸
CO2 concentration
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“We have entered the Climate Casino and are rolling the
global-warming dice”, warns economist William Nordhaus

▶ On top of time t come (contaminating) uncertainties,
also called states of Nature w = (wt)t=0,...,T−1 ∈ W

▶ Minimize stochastic? robust? abatement costs

min
over what?

how to get rid of w?
T−1∑
t=t0

δt−t0 C
(
ut(w),Qt(w),wt

)︸ ︷︷ ︸
abatement costs

▶ under the gwp-co2 dynamics

Qt+1(w) =
(
1 + g(wt)

)
Qt(w)

Mt+1(w) = Mt(w)− δ(Mt(w)−M−∞) + α
(
wt

)
Emiss

(
Qt ,wt

)
(1− ut)

▶ and under target constraint

how to handle w? MT (w) ≤ M♯︸ ︷︷ ︸
CO2 concentration
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Sustainable development in one slide:
a disaggregated perspective
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Sustainable development, goals, indicators:
a disaggregated “spiderweb” perspective

▶ Sustainable development
as development
▶ that meets the needs

of the present t
▶ without compromising

the ability of

future generations ∀t′ > t
to meet their own needs

▶ materialized with
goals and indicators
▶ the 17 goals of the UN

Sustainable Development Agenda
▶ and quantitative indicators

(metrics) together with targets

indicator ≥ target
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The standard economic risk analysis
is challenged by sustainability

Aggregating or not?
This is the question
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Regarding climate change economics,
the question of aggregation is raised
Weak versus strong sustainability

[Stern, 2006]2 raises the question of aggregation

▶ Are the services of
▶ consumption Ct(w)

(for instance, a fraction γQt(w) of gwp)
▶ environment Et(w)

(for instance, the opposite −Mt(w) of the co2 concentration)

aggregated or not?

▶ And then, how policy-makers aggregate over consequences
▶ (i) within generations
▶ (ii) over time (t)
▶ (iii) according to risk (states of Nature w)

will be crucial to policy design and choice

2Nicholas Stern. The Economics of Climate Change, Cambridge University Press,
2006
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The question of aggregation:
between economy (Ct(w)) and environment (Et(w))

standard economic analysis

utility L
(
Ct(w),Et(w)

)
∝

smooth utility︷ ︸︸ ︷
Ct(w)αEt(w)β︸ ︷︷ ︸

substitutable needs within generation

versus

sustainability

indicators ≥ thresholds︷ ︸︸ ︷
Ct(w) ≥ C ♭, Et(w) ≥ E ♭︸ ︷︷ ︸

separate needs within generation
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The question of aggregation:
between risks (w) and between times (t)

The standard economic risk analysis aims at maximizing
the expected intertemporal discounted utility

Ew︸︷︷︸
expected

[discounted︷ ︸︸ ︷
+∞∑
t=t0

δt−t0 Ct(w)αEt(w)β︸ ︷︷ ︸
smooth utility

]
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Expected intertemporal discounted utility
is grounded in smooth trade-offs

∑
w

trade-offs
between

states of Nature︷ ︸︸ ︷
π(w)︸ ︷︷ ︸

probability

+∞∑
t=t0

trade-offs
between times︷ ︸︸ ︷

δt−t0︸︷︷︸
discount

Ct(w)αEt(w)β

Expected intertemporal discounted utility
is built upon two well-known axiomatized theories,
where “continuity of preferences” plays a major role

▶ discounted intertemporal utility3

▶ expected utility4

3T. Koopmans. Representation of preference orderings over time. In C.B. McGuire
and R. Radner, editors, Decision and Organization, pages 79–100. North-Holland,
1972

4J. von Neuman and O. Morgenstern. Theory of games and economic behaviour.
Princeton University Press, Princeton, 1947
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Aggregating or not?

Economics of risk and time
versus

catastrophe insurance
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Consumption smoothing versus catastrophe insurance

[Weitzman, 2007]5 But I think progress begins by recognizing
that the hidden core meaning of Stern vs. Critics may be about (· · · )
▶ consumption smoothing

max
∑
w

π(w)
+∞∑
t=t0

δt−t0Ct(w)αEt(w)β

versus

▶ catastrophe insurance (a flavor of stochastic viability)

max Prob
{
w
∣∣ Ct(w) ≥ C ♭, Et(w) ≥ E ♭︸ ︷︷ ︸

indicators ≥ thresholds

, ∀t = t0, . . . ,+∞
}

5M. L. Weitzman. A review of the Stern review on the economics of climate
change. Journal of Economic Literature, 45(3):703–724, Sept. 2007
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Maximizing the probability of success may be an objective

How to gamble if you must,
L.E. Dubbins and
L.J. Savage, 1965

Imagine yourself at a casino with
$1,000. For some reason, you des-
perately need $10,000 by morning;
anything less is worth nothing for
your purpose.

The only thing possible is to gam-
ble away your last cent, if need be,
in an attempt to reach the target
sum of $10,000.

▶ The question is how to play,
not whether. What ought you do?
How should you play?
▶ Diversify, by playing 1 $ at a time?
▶ Play boldly and concentrate,

by playing 1,000 $ only one time?

▶ What is your decision criterion?
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What is hard and what is soft?
This is the question
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In optimization, the discussion above boils down to:
what is hard and what is soft?

▶ The modelling question of distinguishing hard versus soft

objective function inf

soft, trade-offs︷︸︸︷
f (u)

constraints u ∈ U︸ ︷︷ ︸
hard, thresholds

▶ becomes even more delicate with both time t
and uncertainty w (risk factor, state of Nature)

objective function inf

{∑
t

supt

{∑
w

supw
ft
(
ut(w)

)
constraints

{
???t

∀t

{
???w

∀w
ut(w) ∈???

27 / 144



A summary table of different aggregations/compensations
over time and risk factors

soft: possible aggregation⊥hard: no possible aggregation

time time
compensatory non-compensatory∑

t ∀t
risk expected stochastic viability

compensatory discounted utility (more on that later)∑
w

risk robust robust viability
non-compensatory discounted utility (more on that later)

∀w
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Where have we gone till now? And what comes next

▶ A glimpse at sustainability in climate change

▶ A first hint at the stochastic optimization community “know-how”
on proposing different aggregations over time and risk factors

▶ Now, we turn to resilience
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Outline of the presentation

Sustainability: illustration in climate change economic models [10’]

Resilience: mathematical formalism and examples [25’]

Perspectives for stochastic optimization [15’]

“Self-promotion, nobody will do it for you” ;-) [2’]
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Intergovernmental Panel on Climate Change (IPCC)
Climate Change 2022: Impacts, Adaptation and Vulnerability, WGII AR6 assessment (2022)

Climate Change 2022:

Impacts, Adaptation and Vulnerability 

Working Group II Contribution to the  
Sixth Assessment Report of the  

Intergovernmental Panel on Climate Change

Edited by

Hans-Otto Pörtner 
Working Group II Co-Chair

Debra C. Roberts 
Working Group II Co-Chair

Melinda M. B. Tignor  
Head of TSU

Elvira Poloczanska 
Science Advisor to the

WGII Co-Chairs and TSU 

Katja Mintenbeck 
Director of Science

Andrés Alegría 
Graphics Officer

Marlies Craig 
Science Officer

Stefanie Langsdorf 
Graphics Officer

 
Sina Löschke 

Communications Manager
Vincent Möller 
Science Officer

Andrew Okem 
Science Officer

Bardhyl Rama 
Director of Operations

With editorial assistance from Daniel Belling, Wolfgang Dieck, Sandra Götze, Tijama Kersher, Philisiwe Mangele, 
Bastian Maus, Anka Mühle, Komila Nabiyeva, Maike Nicolai, Almut Niebuhr, Jan Petzold, Esté Prentzler, Jussi 

Savolainen, Hanna Scheuffele, Stefan Weisfeld and Nora Weyer

Working Group II Technical Support Unit

▶ Technical Summary — Box TS.1
Core Concepts of the Report (p. 43)
▶ risk (and risk management)
▶ vulnerability (and exposure)
▶ adaptation, resilience

▶ Chapter 1: Point of Departure
and Key Concepts
▶ Executive Summary (p. 123–124)

Sustainable Development Goals (SDGs),
solution space

▶ Chapter 1 (p. 131)
▶ 1.2 (. . . ) Impacts, Adaptation and

Vulnerability (p. 131)
▶ 1.3 (. . . ) Climate Risks (p. 143)

▶ Chapter 17: Decision-Making Options for
Managing Risk (p. 2539)

▶ Chapter 18: (p. 2655)

Climate Resilient Development Pathways
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What is resilience?

[Holling, 1973]a

Resilience is the capacity of a
system to continually change and
adapt yet remain within critical
thresholds

(Stockholm Resilience Centre)

Tribute to
Jean-Pierre Aubin, Patrick Saint-Pierre,
Luc Doyen, Sophie Martin

From viability to
stochastic and robust viability

aC. S. Holling. Resilience and stability of
ecological systems. Annual Review of Ecology and
Systematics, 4:1–23, 1973
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Handling uncertainty in control theory
An example in fishery management

[De Lara and Martinet, 2009]6

6M. De Lara and V. Martinet. Multi-criteria dynamic decision under uncertainty: A
stochastic viability analysis and an application to sustainable fishery management.
Mathematical Biosciences, 217(2):118–124, February 2009

34 / 144



Here is a model of European Hake and Nephrops (lobsters)
in technical interaction (Bay of Biscay)

▶ The control u is the relative fishing effort multiplier
for the trawlers fleet targeting Nephrops

▶ The states N are abundances for age classes ranging from 1 to A = 9

Nh
1,t+1 = wh

t+1 uncertain hake recruitment
Nn

1,t+1 = wn
t+1 uncertain nephrops recruitment

Nh
a,t+1 = Nh

a−1,t

1−Mh
a−1 −

hake bycatch︷ ︸︸ ︷
utF

nh
a−1 −F hh

a−1


Nn

a,t+1 = Nn
a−1,t

1−Mn
a−1 −

nephrops fishing mortality︷ ︸︸ ︷
utF

nn
a−1


Nh

A,t+1 = Nh
A−1,t

(
1−Mh

A−1 − utF
nh
A−1 − F hh

A−1

)
+Nh

A,t

(
1−Mh

A − utF
nh
A − F hh

A

)
Nn

A,t+1 = Nn
A−1,t

(
1−Mn

A−1 − utF
nn
A−1

)
+Nn

A,t

(
1−Mn

A − utF
nn
A

)
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An example of “disaggregated” approach
for sustainable management

▶ Economic objective:
gross return is greater than a threshold

Payoff
(
Nn

t , ut
)
≥ Payoff♭︸ ︷︷ ︸

control constraint

▶ Ecological objective:
sufficient recruitment of mature hakes

Nh
4,t ≥ (Nh

4 )
♭︸ ︷︷ ︸

state constraint
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Discrete time nonlinear state-control system with uncertainties
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xt+1 =

dynamics︷︸︸︷
Ft

(
xt︸︷︷︸

state ∈X

, ut︸︷︷︸
control ∈U

,

uncertainty ∈W︷︸︸︷
wt+1

)
In discrete time t ∈ T =

{
t0, t0 + 1, . . . ,T − 1, T︸︷︷︸

horizon
(finite or infinite)

}

A (state) policy is a mapping π : (t, x) ∈ T × X︸ ︷︷ ︸
(time, state)

7→ u = πt(x) ∈ U︸ ︷︷ ︸
control

(a specific way to handle nonanticipativity constraints)
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Outline of the presentation
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Scenarios: same word, different meanings
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In STOCHASTIC OPTIMIZATION,
decisions and scenarios are ”orthogonal”

in the decision-maker’s hands︷ ︸︸ ︷
decisions ⊥

out of the decision-maker’s hands︷ ︸︸ ︷
scenarios︸ ︷︷ ︸

EXOGENEOUS

Time t ∈ {t0, t0 + 1, . . . ,T − 1,T} (T horizon)

(ut0 , ut0+1, . . . , uT−1)︸ ︷︷ ︸
sequence of decisions/controls

⊥ (wt0 ,wt0+1, . . . ,wT−1,wT )︸ ︷︷ ︸
sequence of uncertainties=scenario

The letter u stands for the Russian word for control: upravlenie
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But IPCC “scenarios” are the outputs of policies!
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“Scenarios” and models in the IPBES and IPCC jargon

Scenarios and models play complementary roles, with

xt+1 =

dynamics︷︸︸︷
Ft ( xt︸︷︷︸

state

,

IPBES/IPCC ”scenario”︷ ︸︸ ︷
ut︸︷︷︸

control

, wt+1︸︷︷︸
uncertainty

) , ut = πt︸︷︷︸
policy

(xt)

▶ scenarios describing possible futures for
▶ drivers of change

[uncertainties wt+1?]
▶ or policy interventions

[controls/decisions ut , policies ut = πt(xt)]

▶ and models

[dynamical system Ft ]
translating those scenarios into

projected consequences

43 / 144



The confusion goes on with three types of scenarios

within the policy cycle
(i) "exploratory scenarios", which represent

different plausible futures, often based on storylines

”exploratory scenario” = ((xt , ut ,wt+1))t=t0,t0+1,...,T−1

(ii) "target-seeking scenarios", also known as "normative

scenarios", which represent an agreed-upon future target

and scenarios that provide alternative pathways for

reaching this target

”target-seeking scenarios” =
{
((xt , ut ,wt+1))t=t0,t0+1,...,T−1

∣∣ xT ∈ target
}

(iii) "policy screening scenarios", also known as

"ex-ante scenarios", which represent various policy

options under consideration

”policy screening scenarios” = {policies} , ut = πt︸︷︷︸
policy

(xt)
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Scenarios and optimization:

In theory, theory and practice are the same.
In practice, they are not.
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What does one know when making a decision?

perfect foresight

optimization Eω
[
minu0,u1

f (u0, u1, ω)
]

dynamic stochastic

optimization minu0
Eω

[
minu1

f (u0, u1, ω)
]

open loop
optimization minu0,u1

Eω
[
f (u0, u1, ω)

]
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Call to the stochastic optimization community
Alternatives to the word scenario? (event/contingency tree?)

Find ways to carry and promote — to biased minds7 ;-) —
the notion of nonanticipative solution

because, in many “scenario” constructions,
decisions are anticipative (perfect foresight) :-(

7J. Boutang and M. De Lara. The Biased Mind. How Evolution Shaped our
Psychology, Including Anecdotes and Tips for Making Sound Decisions.
Springer-Verlag, Berlin, 2015
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How to mix (mathematically) sustainability and uncertainty
to achieve resilience?

▶ On the one hand,
we have multiple objectives to be sustained over time

▶ On the other hand,
uncertainties make it impossible
to achieve all these objectives all the time

We propose the notion of viable scenarios

49 / 144



Sustainability in a decision setting

We mathematically express the objectives pursued
as control and state constraints

sustainability = “disaggregated ′′ hard constraints
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Sustainability as “indicator ≥ threshold”
(the higher, the better)

Indicators Ik
t : X × U → R

and thresholds τ kt ∈ R,
k = 1, . . . ,K c + K s

▶ control constraints

I1
t (x , u) ≥ τ 1t

· · · ≥ · · ·
IK c

t (x , u) ≥ τK
c

t

 u ∈ Bt(x)

▶ state constraints

IK c+1
t (x , �u) ≥ τK

c+1
t

· · · ≥ · · ·
IK c+K s

t (x , �u) ≥ τK
c+K s

t

 x ∈ At
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Constraints may be explicit on the control variable
and are rather easily handled by reducing the decision set

Examples of control constraints

▶ Physical bounds
�

0 ≤ ut ≤ 1

▶ Payoff
(
Nn

t , ut
)
≥ Payoff♭

Control constraints / admissible decisions

ut︸︷︷︸
control

∈ Bt

(
xt
)︸ ︷︷ ︸

admissible set

, t = t0, . . . ,T − 1
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Meeting constraints bearing on the state variable is delicate
due to the dynamics pipeline between controls and state

State constraints / admissible states

xt︸︷︷︸
state

∈ At︸︷︷︸
admissible set

, t = t0, . . . ,T

Examples (“tipping points”)

▶ co2 concentration Mt ≤ M♯

▶ sustainability Ct ≥ C ♭ , Et ≥ E ♭

▶ Nh
4,t ≥ (Nh

4 )
♭

State constraints are mathematically difficult because of “inertia”

xt = function︸ ︷︷ ︸
iterated dynamics

(
xt0 , ut0 , . . . , ut−1︸ ︷︷ ︸

past controls

, wt0 , . . . ,wt︸ ︷︷ ︸
past uncertainies

)
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Can we solve the compatibility puzzle between dynamics
and objectives by means of suitable controls?
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A formal definition of scenarios
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Following usage in stochastic optimization,
we call scenario a temporal sequence of uncertainties

Definition

A scenario is a temporal sequence of uncertainties

w(·) =
(
wt0 , . . . ,wT−1

)
∈ S = WT−t0

HH

HM

HL

MH

MM

ML

LH

LM

LL

El tiempo se bifurca perpetuamente hacia innumerables futuros
(Jorge Luis Borges, El jard́ın de senderos que se bifurcan)

Choosing a set of scenarios is excluding
“things we don’t know we don’t know” (Donald Rumsfeld)
(additional material in appendix)
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Viable scenarios
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We propose the notion of
viable scenario under a given policy
as a step to formalize resilience

Definition

A scenario w(·) ∈ S is said to be viable under policy π : T × X → U
if the trajectories x(·) =

(
xt0 , . . . , xT

)
and u(·) =

(
ut0 , . . . , uT−1

)
generated by the dynamics

xt+1 = Ft

(
xt , ut ,wt+1

)
, t = t0, . . . ,T − 1

driven by the policy
ut = πt

(
xt
)

satisfy the state and control constraints

ut ∈ Bt

(
xt
)︸ ︷︷ ︸

control constraints

and xt ∈ At︸ ︷︷ ︸
state constraints

, ∀t = t0, . . . ,T
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We look after policies that make
the corresponding set of viable scenarios “large”

Definition

The set of viable scenarios — under policy π : T × X → U , and starting
from initial state x0 at initial time t0 — is denoted by

Sπ
t0,x0 = {w(·) ∈ S | the state constraints

xt ∈ At

and the control constraints

ut = πt

(
xt
)
∈ Bt

(
xt
)

are satisfied for all times t = t0, . . . ,T}

▶ The larger set Sπ
t0,x0 of viable scenarios, the better,

because the policy π is able to maintain the system
within constraints for a large “number” of scenarios

▶ But “large” in what sense? Probabilistic (stochastic)? Robust?

59 / 144



To measure subsets of scenarios,
we equip scenarios with an a priori structure:

stochastic versus robust
(or casino versus parano)
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In the stochastic approach, the set S of scenarios
is equipped with a known probability P
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Equipping the set S of scenarios with a probability P
is a delicate issue!

▶ The probabilistic distribution of the climate sensitivity parameter
in climate models differs according to authors

▶ Call to the stochastic optimization community:
promote distributionaly robust optimization
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In the set-membership approach,

only a subset S of the set S of scenarios is known

Selected scenarios belong to a known subset S

w(·) ∈ S ⊂ S

Historical water inflows
scenarios in a dam
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Parallel between robust and stochastic
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Probability versus plausibility

(+,×) algebras (max,+)

(Ω,F) measurable space (Ω,F)
probability measuring sets plausibility

P : F → [0, 1] K : F → [−∞, 0]
P(
⋃

n∈N An) countable disjoint K(
⋃

n∈N An)
=

∑
n∈N P(An) union axiom = supn∈N K(An)

P(∅) = 0 normalization K(∅) = −∞
bottom ⊥ (lower) bottom ⊥
+-neutral max-neutral

×-absorbing +-absorbing
P(Ω) = 1 normalization K(Ω) = 0
top ⊤ (upper) top ⊤

×-neutral +-neutral

P(A) ≈ 0 unlikely K(A) ≈ −∞
P(A) ≈ 1 likely K(A) ≈ 0
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Expectation versus fear8 operators

χA =

{
1

0
indicator function χA =

{
0

−∞
χ⋂

n∈N An
countable χ⋂

n∈N An

=
∏

n∈N χAn intersection =
∑

n∈N χAn

expectation operator action on fear operator
E[χA] = P(A) indicator F[χA] = K(A)

P(A) =
∫
A
p(ω)dω density K(A) = supω∈A κ(ω)

p = χA/P(A) uniform κ = −χA

Lebesgue integral idempotent integral
expectation operator action on fear operator F[X] =

E[X] =
∫
Ω
X(ω)p(ω)dω functions supω∈Ω

[
X(ω) ·+ κ(ω)

]
E[X+ Y] “linearity” F[max{X,Y}]

= E[X] + E[Y] = max{F[X],F[Y]}
E[X× Y] = E[X]× E[Y] independence F[X+ Y] = F[X] + F[Y]

8P. Bernhard. A separation theorem for expected value and feared value discrete
time control. Technical report, INRIA, Projet Miaou, Sophia Antipolis, Décembre 1995
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Outline of the presentation

Sustainability: illustration in climate change economic models [10’]
A stylized decision model for climate change mitigation
Sustainability: hard versus soft? aggregating or not?

Resilience: mathematical formalism and examples [25’]
Climate resilient development (IPCC) and beyond
On the meaning of “scenarios” in biodiversity and climate change
Viable scenarios and stochastic/robust viability
Resilience as belonging to a viability kernel
Resilience as cost distance to a viability kernel

Perspectives for stochastic optimization [15’]
A digression on the mathematical handling of risk
Framing: axiomatics of acceptable “bioeconomics” sets
Solving: mixing multiple decompositions

“Self-promotion, nobody will do it for you” ;-) [2’]
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Stochastic viability kernels
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Stochastic viability kernels

[De Lara and Doyen, 2008]9

Definition

The stochastic viability kernel at confidence level β ∈ [0, 1] is

Viabβt0 =

{
x0 ∈ X

∣∣∣∣∣ there exists a policy π such that

P
(
S \ Sπ

t0,x0

)
≤ 1− β

}

x0 ∈ Viabβt0
⇐⇒ there exists a policy π : T × X → U such that

P
(
w(·) ∈ S | xt ∈ At , ut = πt

(
xt
)
∈ Bt

(
xt
)
for t = t0, . . . ,T

)
≥ β

9M. De Lara and L. Doyen. Sustainable Management of Natural Resources.
Mathematical Models and Methods. Springer-Verlag, Berlin, 2008
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Stochastic viability kernels Viabβt0
for a hake-anchovy fisheries model

[De Lara, Martinet, and Doyen, 2015]10
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10M. De Lara, V. Martinet, and L. Doyen. Satisficing versus optimality: Criteria for
sustainability. Bulletin of Mathematical Biology, 77(2):281–297, 2015
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The stochastic viability value function satisfies
a (multiplicative) dynamic programming equation

For ant time t, define the probability-to-go as the function
Vt : X → [0, 1] such that [Doyen and De Lara, 2010]11

Vt(x) = sup
π

P
(
Sπ
t,x

)
, ∀x ∈ X

Proposition

If the primitive random variables
(
wt0 ,wt0+1, . . . ,wT−2,wT−1

)
are independent under the probability P, we have that

VT (x) = 1AT
(x)

Vt(x) = 1At (x) max
u∈Bt(x)

Ewt+1

[
Vt+1

(
Ft

(
x , u,wt+1

))]
for all x ∈ X , and where t runs from T − 1 down to t0

11L. Doyen and M. De Lara. Stochastic viability and dynamic programming.
Systems and Control Letters, 59(10):629–634, Oct. 2010
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Robust viability kernels
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Robust viability kernels

Definition

The robust viability kernel at implausibility level η ∈ [−∞, 0] is

Viabηt0 =

{
x0 ∈ X

∣∣∣∣∣ there exists a policy π such that

K
(
S \ Sπ

t0,x0

)
≤ η

}

x0 ∈ Viabηt0
⇐⇒ there exists a policy π : T × X → U such that

K
(
w(·) ∈ S | xt ∈ At , ut = πt

(
xt
)
∈ Bt

(
xt
)
for t = t0, . . . ,T

)
≤ η
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Robust viable epidemics control
[Sepulveda Salcedo and De Lara, 2019]12

12L. S. Sepulveda Salcedo and M. De Lara. Robust viability analysis of a controlled
epidemiological model. Theoretical Population Biology, 126:51–58, 2019
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“Canal Endémico” stands as the reference
to control dengue

Figure: Cases of dengue between 2009 and
2014. Source: Secretaŕıa Municipal de Salud de
Cali.

Program ”Dengue Control” of SMS

Control mosquito breeding sites
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Capping the human infected population with the
Ross-Macdonald model
[De Lara and Sepulveda, 2016]

▶ The dynamics of the system is given by

infected mosquito proportion
dm

dt
= Amh(t)(1−m(t))− u(t)m(t)

infected human proportion
dh

dt
= Ahm(t)(1− h(t))− γh(t)

▶ Determine, if it exists, a piecewise continuous function
(fumigation policy rates) u(·) ,

u(·) : t 7→ u(t) , u ≤ u(t) ≤ u , ∀t ≥ 0

such that the following so-called viability constraint is satisfied

h(t) ≤ H , ∀t ≥ 0
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Capping the human infected population with the
Ross-Macdonald model: viability kernels
[De Lara and Sepulveda, 2016]

m

h h

m
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In epidemics transmission, sources of uncertainty abound

Uncertainties are captured by

{
mosquitoes transmission rate AM

t

human transmission rate AH
t

in the forthcoming model
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New variables

▶ Time
▶ Discrete-time t = 0, 1, . . . ,T

with interval [t, t + 1[ representing one day

▶ State variables
▶ Mt denotes the proportion of infected mosquitoes

at the beginning of the interval [t, t + 1[
▶ Ht denotes the proportion of infected humans

at the beginning of the interval [t, t + 1[

▶ Control variable
▶ Ut denotes the mosquito mortality due to fumigation

during the interval [t, t + 1[
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Discrete-time dynamic control model with uncertainties

▶ Let us denote by F (M,H,U,AM ,AH) the solution, at time s = 1,
of the deterministic differential system
with initial condition

(
m0, h0

)
= (M,H)

and stationary control U

▶ We obtain the sampled and controlled Ross–Macdonald model(
Mt+1,Ht+1

)
= F

(
Mt ,Ht ,Ut ,A

M
t ,AH

t

)
▶ The control constraints capture limited fumigation resources

U ≤ Ut ≤ U , ∀t = 0, . . . ,T − 1

during a day
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Robust viability problem statement

The robust viability kernel is the set of initial conditions
(
M0,H0

)
from which at least one admissible policy Λ : T × [0, 1] → R+ is such that

( proportion of
infected mosquitoes︷ ︸︸ ︷

Mt+1 ,

proportion of
infected humans︷︸︸︷

Ht+1

)
= F︸︷︷︸

dynamics

(
Mt ,Ht ,

fumigation︷︸︸︷
Ut ,AM

t+1,A
H
t+1︸ ︷︷ ︸

uncertainties

)

with Ut =

policy︷︸︸︷
Λt

(
Mt ,Ht

)
so that

infected humans Ht ≤ H , ∀t = 0, . . . ,T

for all the scenarios
((

AM
1 ,AH

1

)
, . . . ,

(
AM
T ,AH

T

))
∈ S ⊂ (R2)T

Uncertainties are

{
mosquitoes transmission rate AM

t

human transmission rate AH
t
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We make a strong assumption on the set of scenarios

scenario
(
AM(·),AH(·)

)
=

((
AM
1 ,AH

1

)
, . . . ,

(
AM
T ,AH

T

))
▶ We make the strong independence assumption that(

AM(·),AH(·)
)
∈ S = S1 × S2 × · · · × ST︸ ︷︷ ︸

product ≡ independence

Therefore, from one time t to the next t + 1,
uncertainties can be drastically different since
(AM

t ,AH
t ) is not related to (AM

t+1,A
H
t+1)

▶ Such an assumption makes it possible to write
a dynamic programming equation with (M,H) as state variable

▶ For the sake of simplicity, we take S1 = S2 = · · · = ST = S
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Robust viability kernels shrink when uncertainties expand
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Outline of the presentation

Sustainability: illustration in climate change economic models [10’]
A stylized decision model for climate change mitigation
Sustainability: hard versus soft? aggregating or not?

Resilience: mathematical formalism and examples [25’]
Climate resilient development (IPCC) and beyond
On the meaning of “scenarios” in biodiversity and climate change
Viable scenarios and stochastic/robust viability
Resilience as belonging to a viability kernel
Resilience as cost distance to a viability kernel

Perspectives for stochastic optimization [15’]
A digression on the mathematical handling of risk
Framing: axiomatics of acceptable “bioeconomics” sets
Solving: mixing multiple decompositions

“Self-promotion, nobody will do it for you” ;-) [2’]
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The minimum time of crisis and recovery measures
the distance to a viability kernel in terms of time units

Minimum time of crisis
[Doyen and Saint-Pierre, 1997]a

Relaxing some constraints
to try and enter into
the viability kernel
in minimum time

Example of fishery closureb

aL. Doyen and P. Saint-Pierre.
Scale of viability and minimum time of
crisis. Set-valued Analysis, 5:227–246,
1997

bV. Martinet, L. Doyen, and
O. Thébaud. Defining viable recovery
paths toward sustainable fisheries.
Ecological Economics, 64(2):411–422,
2007
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From time units to cost units

▶ La résilience est définie comme
l’inverse du coût des perturbations envisagées13

▶ Resilience as the inverse of minimal expected or robust costs
to reach a stochastic or robust viability kernel

13S. Martin. La résilience dans les modèles de systèmes écologiques et sociaux.
Thèse École normale supérieure de Cachan - ENS Cachan, Juin 2005
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Where have we gone till now? And what comes next

▶ We have developed — and illustrated with examples —
a possible theory for resilience,
that draws upon tools from control theory
and robust/stochastic multistage stochastic optimization

▶ We now discuss perspectives for these fields
regarding climate and biodiversity issues
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Outline of the presentation

Sustainability: illustration in climate change economic models [10’]

Resilience: mathematical formalism and examples [25’]

Perspectives for stochastic optimization [15’]

“Self-promotion, nobody will do it for you” ;-) [2’]
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Many possible extensions

▶ Imperfect/partial observation of the state

▶ Not only stochastic optimization,
but bargaining14, equilibrium and game theory
(conflicting stakeholders)

▶ Value of information – cost of gathering information15 –
exploration/exploitation

▶ etc.

I will focus on

▶ framing sustainability and resilience problems

▶ solving
▶ cope with non independent noises
▶ cope with high dimensional states

14V. Martinet, P. Gajardo, and M. De Lara. Bargaining on monotonic economic
environments. Theory and Decision, 2023

15L. E. Dee, M. De Lara, C. Costello, and S. D. Gaines. To what extent can
ecosystem services motivate protecting biodiversity? Ecology Letters, 20(8):935–946,
2017
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Risk is about asymmetry
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Better treat a stick as a snake than the reverse!
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Variance and standart deviation fail the test as risk
measures: they are measures of dispersion and variability

▶ The variance var
(
X
)
= E

[(
X− E[X]

)2]
is not measured in the same units than X, since
var

(
θX

)
= θ2 var

(
X
)
, but this can be corrected by using the

standart deviation σ(X) =
√
var

(
X
)

▶ The variance is not monotonous: X ≥ Y ̸⇒ var
(
X
)
≤ var

(
Y
)

(take Y = 0 and any X ≥ 0 which is not constant)

▶ The variance weighs symmetrically
what is above and what is below the mean, whereas
the essence of risk is asymmetry between bad and good odds:∑

s∈S
πs [x s − x̄ ]2︸ ︷︷ ︸
symetry

variability ,dispersion

versus
∑
s∈S

∑
x s≥x̄

πs [x s − x̄ ]︸ ︷︷ ︸
asymmetry

risk
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An anecdote on the difficulty in risk handling
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Tourism issues impose constraints upon traditional
economic management of a hydro-electric dam

▶ Maximizing the revenue
from turbinated water

▶ under a tourism constraint
of having enough water
in July and August
90% of the years
(chance constraint)

[Alais, Carpentier, and De Lara,
2017]a

aJ.-C. Alais, P. Carpentier, and M. De
Lara. Multi-usage hydropower single dam
management: chance-constrained
optimization and stochastic viability.
Energy Systems, 8(1):7–30, Feb. 2017
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We formulated the management problem as
chance-constrained multistage stochastic optimization

We found solutions where 90% of the stock trajectories
meet the tourism constraint in July and August
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But this was not what was really wanted
(Did they want a conditional value-at-risk?)

So we had to change solutions
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Measuring risk as a gauge
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Going from home to the airport with a safety margin

▶ When you go from home to the airport, you consider
possible transportation delay (road accident, bus delay),
represented by a (stochastic) transport time X

▶ You take a safety margin,
and add some (deterministic) extra time ρ(X)

▶ This extra time ρ(X) depends
▶ on the randomness (X) that affects transportation
▶ on how you perceive (ρ) the importance of being “just in time”

▶ This deterministic extra time is an example of (gauge) risk measure
deterministic extra time︷︸︸︷

ρ(X) +

stochastic transportation time︷︸︸︷
X︸ ︷︷ ︸

acceptable stochastic time from home to airport

∈ A
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Risk measures as capital requirement

A measure of risk associates to each cost X

▶ the minimum extra capital ρ(X), a deterministic number,

▶ required to make it “acceptable” to a regulator

▶ that is, such that when you substract ρ(X) from the cost X,
the shifted cost X− ρ(X) becomes acceptable

The lower ρ(X), the better (the less risk)
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Interpreting the mathematical expectation
as a gauge risk measure

▶ Define the following set of acceptable random variables

A = {Z ∈ L(Ω,F ,R) | E[Z] ≤ 0}

When the random variable Z is interpreted as a cost,
a cost with negative mean is acceptable

▶ The mathematical expectation E[X] of a random cost X is the
smallest amount x you can substract to X to make X− x acceptable

E[X] = inf{x ∈ R | X− x ∈ A} = inf{x ∈ R | E[X− x ] ≤ 0}
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Risk in practice
violation, Value at Risk, quantile
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Eurocode/1990/Method of partial coefficients

The EN Eurocodes are a series of 10 European Standards, EN
1990 - EN 1999, providing a common approach for the design
of buildings and other civil engineering works and construction
products.

For a mechanical structure, the (reliability) condition

Probability
(
sollicitation E ≤ resistance R

)
is high

between the random variables E (sollicitation, action) and R (resistance)
— that are uncertain values due to numerous approximations —
is replaced by a deterministic relation of the form

partial coefficient × E ≤ R/partial coefficient

between the outputs E and R of codes of calculation for structures
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Eurocode/1990/Method of partial coefficients

Table: Coefficients pour les matériaux en béton et en acier

Matériau Durable et Transitoire Accidentel

Béton (sauf pieux) γC = 1, 50 γC = 1, 20
Béton pour pieux γC = 1, 65 γC = 1, 32
Acier de béton armé γS = 1, 15 γS = 1, 00
Acier de précontrainte γS = 1, 15 γS = 1, 00
Module d’Young de l’acier de béton armé γcE = 1, 20 γcE = 1, 20
Accroissement de contrainte ∆σp γ∆P,sup = 1, 20 et γ∆P,inf = 0, 80

ou γ∆P,sup = γ∆P,inf = 1, 00 (non fissuré)

Accroissement de contrainte ∆σp (version française) γ∆P,sup = γ∆P,inf = 1, 00
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Nuclear accidents prevention

▶ Three Mile Island accident:
before the fact, the core meltdown was considered as excluded

▶ Nuclear accidents with probability per reactor per year
▶ between 10−6 and 10−4 are considered as hypothetical,
▶ whereas below 10−6 they are not envisaged

▶ Fukushima nuclear plants had a 10−9 nuclear accident probability
per reactor per year
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Transmission System Operator’s (N-1) criterion

▶ “(N-1) criterion” is the rule according to which the elements
remaining in operation within a Transmission System Operator’s
(TSO’s) control area after occurrence of a contingency are capable
of accommodating the new operational situation without violating
operational security limits (Article 3(2)(14) of the Network Code on
System Operation)

▶ Each TSO shall assess the risks associated with the contingencies
after simulating each contingency from its contingency list and after
assessing whether it can maintain its transmission system within the
operational security limits in the (N-1) situation

▶ In case of an (N-1) situation caused by a disturbance, each TSO
shall activate a remedial action in order to ensure that the
transmission system is restored to a normal state as soon as possible
and that this (N-1) situation becomes the new N-Situation
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Danish Transmission System Operator’s P10 rule

▶ Requirements for the prognosis at the time of bidding for reserves (Ex-ante) Energinet
requires that there must at maximum be bid in capacity corresponding to the 10%
percentile with delivery of capacity reserves from fluctuating renewables and flexible
consumption. This means, that the participant’s prognosis, which must be approved by
Energinet, evaluates that the probability is 10% that the sold capacity is not available. This
entails that there is a 90% chance that the sold capacity or more is available. This is when
the prognosis is assumed to be correct.

▶ The probability is then also 10%, that the entire sold capacity is not available. If this were
to happen, it does not entail that the sold capacity is not available at all, however just that
a part of the total capacity is not available. The available part will with high probability be
close to the sold capacity. Because of this Energinet uses the 10% percentile and not the
e.g., 5% or 1% percentiles. Energinet will continuously evaluate the determined percentile
based on experience.

▶ If a market participant repeatedly, in good faith, does not deliver the sold reserve-capacity,
then the participant will be excluded from participating in the market, until an approved
prognosis can be approved by Energinet. If a participant can not deliver the sold capacity
because of a bid based on a capacity lower than the 10% percentile, the participant will be
excluded instantly for an undetermined time. This will happen as part of Energinet’items
regular monitoring. If a participant, in good faith, is not able to deliver the sold capacity,
the payment will be repaid after the rules for the different ancillary service productions
according to the “Ancillary services to be delivered in Denmark - Tender conditions”.
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Value at Risk
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The Value at Risk (quantile)

Let λ ∈]0, 1[, that plays the role of a risk level

Value at Risk

The Value at Risk of the cost X at level λ ∈]0, 1[ is

VaRλ(X) = inf{x ∈ R | P(X > x) < λ}

with acceptance set

A = {Z ∈ L(Ω,F ,R) | P(Z ≥ 0) < λ}

▶ Intuitively, saying that the VaR5% of a portfolio is 100 means that
the loss will be more than 100 with probability at most 5%

▶ VaR5% is the maximum loss in the 95% of the cases

▶ However, VaR5% does not inform on the size of the loss
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Value at Risk and diversification

Beware: here X and Y are minus costs!

ω X P
1 -100 4%
2 0 4%
3 0 4%
...

...
...

25 0 4%

ω Y P
1 0 4%
2 -100 4%
3 0 4%
...

...
...

25 0 4%

ω 0.5X+ 0.5Y P
1 -50 4%
2 -50 4%
3 0 4%
...

...
...

25 0 4%

▶ The minimum m to be added to X in such a way that
P(X+m < 0) ≤ 5% is m = 0
since P(X− ϵ < 0) = 100% > 5% for all ϵ > 0.

▶ Hence VaR5%(X) = VaR5%(Y) = 0.

▶ And. . .

VaR5%(X) = VaR5%(Y) = 0 < 50 = VaR5%(0.5X+ 0.5Y)
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How to gamble if you must,
L.E. Dubbins and
L.J. Savage, 1965

Imagine yourself at a casino with
$1,000. For some reason, you des-
perately need $10,000 by morning;
anything less is worth nothing for
your purpose.

The only thing possible is to gam-
ble away your last cent, if need be,
in an attempt to reach the target
sum of $10,000.

▶ The question is how to play,
not whether. What ought you do?
How should you play?
▶ Diversify, by playing 1 $ at a time?
▶ Play boldly and concentrate,

by playing 1,000 $ only one time?

▶ What is your decision criterion?
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Moving from violation (Value at Risk [quantile])
to severity (Conditional Value at Risk [superquantile])
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The Tail Value at Risk (superquantile)

Let λ ∈]0, 1[, that plays the role of a risk level

Tail Value at Risk

The Tail Value at Risk of the cost X at level λ ∈]0, 1[ is

TVaRλ(X) =
1

1− λ

∫ 1

λ

VaRλ′(X)dλ′

[Rockafellar and Uryasev, 2000]

TVaRλ[X] = inf
s∈R

{
E[(X− s)+]

1− λ
+ s

}
, λ ∈ [0, 1[

Limit cases

TVaR0[X] = E[X]
TVaR1[X] = lim

λ→1
TVaRλ[X] = sup

ω∈Ω
X(ω)
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VaR CVaR=
∫∞
VaR

xf (x)dx

x

f (x)
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More on the Tail Value at Risk

▶ The Average Value at Risk or Tail Value at Risk

TVaRλ(X) =
1

λ

∫ λ

0

VaRλ′(X)dλ′

▶ The Worst Conditional Expectation

sup{E[X | A] , A ∈ F , P(A) < λ}

are the worst costs conditioned over events
of probability less than the risk level λ ∈]0, 1[

▶ If P
{
X ≤ Q−

1−λ(X)
}
= λ,

TVaRλ(X) = E[X |
costs greater than VaR︷ ︸︸ ︷

X ≥ VaRλ(X) ]

is the average of costs greater than the Value at Risk (severity)
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Properties of the Tail Value at Risk

The Tail Value at Risk of a cost X is measured in the same units than X,
and is

▶ invariant by translation

TVaRλ(X+ x) = TVaRλ(X) + x , ∀x ∈ R

▶ monotonous
X ≥ Y ⇒ TVaRλ(X) ≥ TVaRλ(Y)

▶ positively homogeneous

TVaRλ(θX) = θTVaRλ(X) , ∀θ > 0

▶ convex, hence favors diversification :-)
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Illustration: the financial director gasp!
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Management of a hydro-electric dam: random profits
risk neutral (upper row) versus risk averse (lower row)
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Convex risk measures
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Axiomatics of risk measures

A risk measure is a mapping ρ : L(Ω,F ,R) → R (or R ∪ {−∞})

Risk measures

A risk measure ρ is

(T) invariant by translation if ρ(X+ x) = ρ(X) + x ,
for all x ∈ R

(M) monotonous whenever X ≥ Y ⇒ ρ(X) ≥ ρ(Y)

(C) convex if ρ(θX+ (1− θ)Y) ≤ θρ(X) + (1− θ)ρ(Y)

(PH) positively homogeneous if ρ(θX) = θρ(X) when θ > 0

(S) subadditive if ρ(X+ Y) ≤ ρ(X) + ρ(Y)

One says that ρ is a monetary risk measure if it is
monotonous (M) and invariant by translation (T)
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Affine risk measures

The cost average under probability Q is

ρ(X) = EQ(X)

whereas the shifted cost average under probability Q is

ρ(X) = EQ(X)− γ
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Convex risk measures

Given

▶ a subset Q of probabilities on Ω,
representing different priors about the randomness

▶ a function γ : Q → R, with supQ∈Q γ(Q) < +∞,
representing cost shifts

we define
ρ(X) = sup

Q∈Q

(
EQ(X)− γ(Q)

)
which expresses

▶ first, an average of the cost X over different outcomes ponderations
Q ∈ Q, each being penalized by γ(Q)

▶ second, a conservative attitude by taking the largest with the sup
operation over priors
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Outline of the presentation

Sustainability: illustration in climate change economic models [10’]
A stylized decision model for climate change mitigation
Sustainability: hard versus soft? aggregating or not?

Resilience: mathematical formalism and examples [25’]
Climate resilient development (IPCC) and beyond
On the meaning of “scenarios” in biodiversity and climate change
Viable scenarios and stochastic/robust viability
Resilience as belonging to a viability kernel
Resilience as cost distance to a viability kernel

Perspectives for stochastic optimization [15’]
A digression on the mathematical handling of risk
Framing: axiomatics of acceptable “bioeconomics” sets
Solving: mixing multiple decompositions

“Self-promotion, nobody will do it for you” ;-) [2’]

122 / 144



Axiomatics for robust sustainability
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A battery of assessment frameworks
▶ Integrated Ecosystem Assessment (IEA)
▶ Ecological Risk Assessment
▶ Ecosystem-based Management (EBM)
▶ Ecosystem Approach to Management
▶ Driver Pressure State Impact Response (DPSIR) Approach
▶ Management strategy evaluation (MSE)

[De Lara and Martinet, 2009]a

[Martinet, Peña-Torres, De Lara, and
Raḿırez, 2016]b

aM. De Lara and V. Martinet. Multi-criteria
dynamic decision under uncertainty: A
stochastic viability analysis and an application
to sustainable fishery management.
Mathematical Biosciences, 217(2):118–124,
February 2009

bV. Martinet, J. Peña-Torres, M. De Lara,
and H. Raḿırez. Risk and sustainability:
Assessing fishery management strategies.
Environmental and Resource Economics, 64(9):
683–707, Aug. 2016
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Policies shape state-control random processes

▶ With a given policy π, we induce (shape) a random process

(scenarios)
uncertainty trajectories︷ ︸︸ ︷

S = WT−t0 →

state trajectories︷ ︸︸ ︷
XT−t0+1 ×

control trajectories︷ ︸︸ ︷
UT−t0

w(·) 7→
(
x(·), u(·)

)
π
[w(·)]

by means of the closed-loop dynamics

xt+1 = Ft

(
xt , πt

(
xt
)
,wt+1

)
, ut = πt

(
xt
)
, t = t0, . . . ,T − 1

▶ Stochastic and robust viability correspond to

{
w(·)

∣∣∣∣ (x(·), u(·))π[w(·)] ̸∈

product set expresses robustness w.r.t. time︷ ︸︸ ︷
T−1∏
t=t0

{(
xt , ut

) ∣∣ ut ∈ Bt

(
xt
)
and xt ∈ At

}
×AT

}
︸ ︷︷ ︸

”small” (probabilistically or robustly)
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Extension to more general
acceptable sets of random processes

▶ Acceptable sets of random processes [De Lara, 2018]16

A ⊂
(
XT−t0+1 × UT−t0

)S

like
A =

{
(x(·), u(·))

∣∣ −Rk
t︸ ︷︷ ︸

risk measure

(
−Ik

t (xt , ut)︸ ︷︷ ︸
indicator

)
≥ τ kt︸︷︷︸

threshold

, ∀k , ∀t
}

▶ Axiomatics for bioeconomics acceptable sets?
Inspired by mathematical finance and the role of convexity,
but with the difficulty that the state space X
is a mix of physics, biology, society —
hence not naturally equipped with convexity structure

16M. De Lara. A mathematical framework for resilience: Dynamics, uncertainties,
strategies, and recovery regimes. Environmental Modeling & Assessment, 23(6):
703–712, Dec. 2018
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Example: precautionary conditional expectation
(the lower, the better)

As in fishery management, we consider — for each indicator
Ik
t : X × U → R — corresponding reference points

τ k♭︸︷︷︸
limit reference point

≤ τ k♯︸︷︷︸
precautionary reference point

The condition of sustainability is that, when Ik
t

(
Xt ,Ut

)
≤ τ k♯ ,

then we need to ensure that τ k♭ ≤ Ik
t

(
Xt ,Ut

)
▶ We define the precautionary conditional expectation by

EP
[
Ik
t

(
Xt ,Ut

)
|

precautionary zone︷ ︸︸ ︷
Ik
t

(
Xt ,Ut

)
≤ τ k♯

]
▶ We translate the condition of sustainability into

τ k♭ ≤ EP
[
Ik
t

(
Xt ,Ut

)
| Ik

t

(
Xt ,Ut

)
≤ τ k♯

]︸ ︷︷ ︸
amplitude of the indicator in the precautionary zone

, ∀t , ∀k
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Axiomatics for robust sustainability

▶ sustainability = “disaggregation” w.r.t.
▶ time (generations)
▶ indicators (stakeholders)

▶ robustness = reflecting risk preferences

Acceptable set of random processes

A =
{
(x(·), u(·))

∣∣ robustness︷ ︸︸ ︷
−Rk

t︸ ︷︷ ︸
risk measure

sustainability︷ ︸︸ ︷(
−Ik

t (xt , ut)︸ ︷︷ ︸
indicator

)
≥ τ kt︸︷︷︸

threshold

, ∀k , ∀t
}

⊂
(
XT−t0+1 × UT−t0

)S
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Outline of the presentation

Sustainability: illustration in climate change economic models [10’]
A stylized decision model for climate change mitigation
Sustainability: hard versus soft? aggregating or not?

Resilience: mathematical formalism and examples [25’]
Climate resilient development (IPCC) and beyond
On the meaning of “scenarios” in biodiversity and climate change
Viable scenarios and stochastic/robust viability
Resilience as belonging to a viability kernel
Resilience as cost distance to a viability kernel

Perspectives for stochastic optimization [15’]
A digression on the mathematical handling of risk
Framing: axiomatics of acceptable “bioeconomics” sets
Solving: mixing multiple decompositions

“Self-promotion, nobody will do it for you” ;-) [2’]
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A bird’s eye view of decomposition methods

Tribute to
Guy Cohen, Pierre Carpentier, Jean-Philippe Chancelier

and ex-PhD students
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Couplings for stochastic problems

unit

time

uncertainty

min E
∑
i

∑
t

Lit
(
Hi

t ,U
i
t ,Wt+1

)

s.t. Hi
t+1 =

(
Hi

t ,U
i
t ,Wt+1

)
Ui

t = E
[
Ui

t

∣∣W0, . . . ,Wt

]
∑
i

Θi
t(H

i
t ,U

i
t ,Wt+1) = 0
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Couplings for stochastic problems: in time

unit

time

uncertainty

min E
∑
i

∑
t

Lit
(
Hi

t ,U
i
t ,Wt+1

)

s.t. Hi
t+1 = (Hi

t ,U
i
t ,Wt+1)

Ui
t = E

[
Ui

t

∣∣W0, . . . ,Wt

]
∑
i

Θi
t(H

i
t ,U

i
t ,Wt+1) = 0
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Couplings for stochastic problems: in uncertainty

unit

time

uncertainty

min E
∑
i

∑
t

Lit
(
Hi

t ,U
i
t ,Wt+1

)

s.t. Hi
t+1 = (Hi

t ,U
i
t ,Wt+1)

Ui
t = E

[
Ui

t

∣∣W0, . . . ,Wt

]
∑
i

Θi
t(H

i
t ,U

i
t ,Wt+1) = 0
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Couplings for stochastic problems: in space

unit

time

uncertainty

min E
∑
i

∑
t

Lit
(
Hi

t ,U
i
t ,Wt+1

)

s.t. Hi
t+1 = (Hi

t ,U
i
t ,Wt+1)

Ui
t = E

[
Ui

t

∣∣W0, . . . ,Wt

]
∑
i

Θi
t(H

i
t ,U

i
t ,Wt+1) = 0
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Can we decouple stochastic optimization problems?

unit

time

uncertainty

min E
∑
i

∑
t

Lit
(
Hi

t ,U
i
t ,Wt+1

)

s.t. Hi
t+1 = (Hi

t ,U
i
t ,Wt+1)

Ui
t = E

[
Ui

t

∣∣W0, . . . ,Wt

]
∑
i

Θi
t(H

i
t ,U

i
t ,Wt+1) = 0
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Decomposition-coordination: divide and conquer
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Sequential decomposition in time

unit

time

uncertainty

min E
∑
i

∑
t

Lit
(
Hi

t ,U
i
t ,Wt+1

)

s.t. Hi
t+1 = (Hi

t ,U
i
t ,Wt+1)

Ui
t = E

[
Ui

t

∣∣W0, . . . ,Wt

]
∑
i

Θi
t(H

i
t ,U

i
t ,Wt+1) = 0

Dynamic Programming
Bellman (1956)a

aR. E. Bellman. Dynamic Programming.
Princeton University Press, Princeton, N.J.,
1957
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Parallel decomposition in uncertainty/scenarios

unit

time

uncertainty

min E
∑
i

∑
t

Lit
(
Hi

t ,U
i
t ,Wt+1

)

s.t. Hi
t+1 = (Hi

t ,U
i
t ,Wt+1)

Ui
t = E

[
Ui

t

∣∣W0, . . . ,Wt

]
∑
i

Θi
t(H

i
t ,U

i
t ,Wt+1) = 0

Progressive Hedging
Rockafellar - Wets (1991)a

aR. Rockafellar and R. J.-B. Wets.
Scenarios and policy aggregation in
optimization under uncertainty. Mathematics
of operations research, 16(1):119–147, 1991
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Parallel decomposition in space/units

unit

time

uncertainty

min E
∑
i

∑
t

Lit
(
Hi

t ,U
i
t ,Wt+1

)

s.t. Hi
t+1 = (Hi

t ,U
i
t ,Wt+1)

Ui
t = E

[
Ui

t

∣∣W0, . . . ,Wt

]
∑
i

Θi
t(H

i
t ,U

i
t ,Wt+1) = 0

Price/ Resource
decompositionsa

aP. Carpentier, G. Cohen, and J.-C. Culioli.
Stochastic optimal control and
decomposition-coordination methods In:
Recent Developments in Optimization, Roland
Durier and Christian Michelot (Eds.),
Springer-Verlag, Berlin, 1995
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Combining sequential and parallel decomposition methods

▶ Combining the three “pure” decomposition methods
▶ time: Dynamic Programming

and its variant by time block decomposition

[Carpentier, Chancelier, De Lara, Martin, and Rigaut, 2023]17

▶ scenario: Progressive Hedging
▶ space: decomposition by prices or by resources

▶ to produce blends and tackle large scale applications
▶ time blocks + prices/resources

▶ dynamic programming across time blocks
+ prices/resources decomposition by time block
(application to two time scales battery management)

▶ time + space
▶ nodal decomposition by prices or by resources

+ dynamic programming within node
(application to large scale microgrid management)

17P. Carpentier, J.-P. Chancelier, M. De Lara, T. Martin, and T. Rigaut. Time
Block Decomposition of Multistage Stochastic Optimization Problems. Journal of
Convex Analysis, 30(2), 2023
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Mix of spatial and temporal decompositions

[Carpentier, Chancelier, De Lara, and Pacaud, 2020]18

[Pacaud, De Lara, Chancelier, and Carpentier, 2022]19

HOUSE 

SOLAR PANEL

HOUSE 

HOUSE 

HOUSE 

BATTERY

HOUSE 

BATTERY

HOUSE 

SOLAR PANEL

V 1
0 V 1

1 V 1
2 V 1

T

V 2
0 V 2

1 V 2
2 V 2

T

V N
0 V N

1 V N
2 V N

T

time

space

p1

p2

pN

18P. Carpentier, J.-P. Chancelier, M. De Lara, and F. Pacaud. Mixed spatial and
temporal decompositions for large-scale multistage stochastic optimization problems.
Journal of Optimization Theory and Applications, 186(3):985–1005, 2020

19F. Pacaud, M. De Lara, J.-P. Chancelier, and P. Carpentier. Distributed
multistage optimization of large-scale microgrids under stochasticity. IEEE
Transactions on Power Systems, 37(1):204–211, 2022
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Outline of the presentation

Sustainability: illustration in climate change economic models [10’]
A stylized decision model for climate change mitigation
Sustainability: hard versus soft? aggregating or not?

Resilience: mathematical formalism and examples [25’]
Climate resilient development (IPCC) and beyond
On the meaning of “scenarios” in biodiversity and climate change
Viable scenarios and stochastic/robust viability
Resilience as belonging to a viability kernel
Resilience as cost distance to a viability kernel

Perspectives for stochastic optimization [15’]
A digression on the mathematical handling of risk
Framing: axiomatics of acceptable “bioeconomics” sets
Solving: mixing multiple decompositions

“Self-promotion, nobody will do it for you” ;-) [2’]
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“Nul n’est mieux servi que par soi-même”
“Self-promotion, nobody will do it for you” ;-)

M. De Lara, L. Doyen, Sustainable Management of Natural Resources.
Mathematical Models and Methods, Springer, 2008.
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A wrap-up call to the stochastic optimization community

Maybe the stochastic optimization community could help by

▶ proposing various mathematical formalisms
(robust, stochastic, distributionally robust, risk measures, etc.)
to model hard (non aggregation) and soft (aggregation) constraints,
especially in the presence of risk factors

▶ smoothing/softening the hard
▶ computing Lagrange multipliers

that turn hard constraints into soft ones (smooth trade-offs)
▶ using plausability functions in robust optimization
▶ promoting the use of suitable risk measures

that play the role of “softeners” of almost sure constraints20

▶ developing axiomatics for risk in bioeconomics

20R. T. Rockafellar. Coherent approaches to risk in optimization under uncertainty.
INFORMS TutORials in Operations Research, null(null):38–61, 2014
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THANK YOU!
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Caveat: this talk is not about crafting dynamical models
[Yodzis, 1994]21 In population modelling the functional forms
of models are at least as important as are parameter values in
expressing the underlying biology and in determining the out-
come. (. . . ) For instance, May et al. (1979) assumed, with-
out comment, a particular form of predator-prey interaction; and
this particular form was carried over, again without comment, by
Flaaten.

Leslie/May et al./Flaaten predator dynamics
dP

dt
= r

(
1− P

hN

)
It turns out that this ”invisible” but powerful assumption is re-
sponsible in large part for the conclusion reached by Flaaten
(1988). (. . . ) Flaaten’s work is controversial because of his
conclusion that ”sea mammals should be heavily depleted to in-
crease the surplus production of fish resources for man”

Yodzis predator dynamics
dP

dt
= P

(
−d + eF (N)− cP

)
21P. Yodzis. Predator-prey theory and management of multispecies fisheries.

Ecological Applications, 4(1):51–58, Feb. 1994
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To make a long story short. . .
Mathematical control theory, viability and stochastic optimization
offer material for an operational definition of resilience

Theory. Mathematics provides concepts, tools and methods

▶ states, controls, uncertainties, dynamics
(control theory)

▶ scenarios, policies, constraints (critical thresholds)
▶ (stochastic, robust) viability kernel = viable states
▶ minimal time of crisis, cost-efficiency (optimization)

Answers. Geometry + Optimization

▶ Resilient states = viable states
▶ Measuring resilience as the inverse of the minimal cost

(expected, robust) to reach a viability kernel

Tribute to
Jean-Pierre Aubin, Patrick Saint-Pierre, Luc Doyen, Sophie Martin

Our emphasis is on the treatment of uncertainties:
stochastic and robust viability, and possible extensions
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Caveat: this talk is not about crafting scenarios
Choosing a set of scenarios is excluding “things we don’t know we don’t know”

Reports that say that something hasn’t happened are always in-
teresting to me, because as we know, there are known knowns;
there are things we know we know. We also know there are
known unknowns; that is to say we know there are some things
we do not know. But there are also unknown unknowns – the
ones we don’t know we don’t know. And if one looks throughout
the history of our country and other free countries, it is the latter
category that tend to be the difficult ones.

Donald Rumsfeld, former United States Secretary of Defense.
From Department of Defense news briefing, February 12, 2002
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Can we formalize resilience? adaptive capacity?

▶ Being resilient: belonging to a viability kernel
that captures compatibility between
▶ controlled dynamics
▶ acceptable set/viability constraints: possible values for output

variables + critical thresholds (the spiderweb of sustainability)
▶ tolerable risk (few nonviable scenarios)

▶ Adaptive capacity: set of viable policies?
▶ = policies and enabling the system to remain within the acceptable

set for a certain number of scenarios (expressing the level of risk
tolerated)

▶ exist only in a viable state

▶ Measuring resilience:
▶ the more resilient, the lower the costs to reach a viable state
▶ the less resilient, the higher the costs to reach a viable state
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The three Rs of resilience

The ’3Rs’ of resilience22

▶ resistance

▶ recovery

▶ robustness/reliability

22R. Q. Grafton, L. Doyen, C. Béné, E. Borgomeo, K. Brooks, L. Chu, G. S.
Cumming, J. Dixon, S. Dovers, D. Garrick, A. Helfgott, Q. Jiang, P. Katic,
T. Kompas, L. R. Little, N. Matthews, C. Ringler, D. Squires, S. I. Steinshamn,
S. Villasante, S. Wheeler, J. Williams, and P. R. Wyrwoll. Realizing resilience for
decision-making. Nature Sustainability, 2(10):907–913, oct. 2019
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