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Support and the ¢y pseudonorm

Let n € N* be a natural number and

[0,n]={0,1,....n}, [L,n]={1,....n

For any vector x € R", we define
» its support by supp(x {J €[1,n |XJ % 0}
supp((O x,0,%,%,0)) ={2,4,5} C [1,6]

» its /y pseudonorm by

number of
nonzero entries

cardmahty

lo(x) = |Supp )| = Zl{x,;m}

£((0, %,0,%,%,0)) = [{2,4,5}| =3 € [0,6]



The ¢y pseudonorm is net a rerm

The function ¢y pseudonorm : R" — [0, n]
satisfies 3 out of 4 axioms of a norm

> eo(X)ZO v
><€0(x):0<:>x:0> v
> lo(x + x") < Llo(x) + Lo(X) v

> But... instead of absolute 1-homogeneity,
it is absolute 0-homogeneity that holds true

Eo(AX) = fo(X) y VA 75 0
supp(Ax) = supp(x), VA#0



The ¢y pseudonorm is used in
typical sparse optimization problems

» Spark of a matrix A
spark(A) = min {{o(x) | Ax =0, x #0}

» Compressed sensing: recovery of a sparse signal x € R”
from a measurement b = Ax

» Least squares sparse regression (best subset selection):

for k € [1, n] min || Ax — b||?
Z(j((i)gk

“explaining” the output b by at most k components of x



SNAPSHOTS OF OUR MAIN RESULTS



A menagerie of couplings (and two more)

Coupling ¢ c-convex functions

c(u,v)

fe<' = f

(u, v)

T
closed convex f** =f

u(v), u continuous

lower semicontinuous

log(u, V)

log o sublinear

—Nllu—v|* 0<a<1 | a-Holder continuous with constant N

min; v, >0 U;V; increasing and convex-along-rays

Capra ¢(u,v) = <”—ZH v) €g¢ =l

Ho convex o 0-homogeneous




Fenchel conjugacy (x) versus E-Capra conjugacy (¢)
for the ¢y pseudonorm

» Fenchel conjugacy (x)
(5" =0
» E-Capra conjugacy (¢)

&9 = 4,

[Chancelier and De Lara, 2021]



The ¢y pseudonorm coincides, on the unit sphere,
with the proper convex lower semicontinuous

lo-cup function Ly = ﬁg*l

lh=0



Variational formulas for the ¢y, pseudonorm

[Chancelier and De Lara, 2021]
to(x) =

1
[|x H 1)€R” o x@eRrn

E/ 1”X H <HX||2
Z/_lxl)_x

, Vx e R"

(x| y)
X) = sup |nf
o) = yeRn =1 d< [[x1>

—[Ivl3, = 1,) , vx €R"\ {0}
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Couplings



Motivation: Legendre transform and
Fenchel conjugacy in convex analysis

Definition

Two vector spaces X' and )/, paired by a bilinear form < ,>,
(in the sense of convex analysis [Rockafellar, 1974, p. 13]))
give rise to the classic Fenchel conjugacy

fFeRY = freR”
given by the Legendre transform

F(y)=sup (6 2) +(-1()) , Wy €y
coupling

u}
o)
I
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Coupling function between sets

> Let be given two sets ¢/ (“primal”) and V (“dual”)
not necessarily paired vector spaces (nodes and arcs, etc.)

» We consider a coupling function
c:UxV =R

We also use the notation I/ < V for a coupling
[Moreau, 1966-1967, 1970]



Ho-couplings



Background on homogeneous functions and mappings

Let X be a vector space
We denote Ry = [0, +o0[, R4 =]0, +o0]
Aset CCXisaconeif R, CCC

Definition
Let « € R and let C C X be a nonempty cone of X
We say that a function f: C — R or a mapping f: C = X is

1. (strictly positively) a-homogeneous (on the cone C) if
f(Ax) =A%f(x), VAeR4;, VxeC
2. absolutely a-homogeneous (on the cone C) if
f(Ax) = [\*f(x), YAeR\ {0}, ¥xe C

We use the convention A\ =1, YA€ R,



Examples of homogeneous functions

Examples

» The /y pseudonorm is absolutely 0-homogeneous on R”

» Any norm ||-|| on X" is absolutely 1-homogeneous on X,
and the radial projection R|., defined by

RH,”: X =X, R”.H(X) = M

is a 0-homogeneous mapping



Definition of Hgy-couplings

Definition
Let two vector spaces X and ) be paired by a bilinear form < ,>,
and let C C X be a nonempty cone of X
A Ho-coupling? between C and Y
is a function c: C x Y — R which is
1. 0-homogeneous in the first variable
(on the cone C)
2. linear continuous in the second variable
(on the vector space ))

“We thank Prof. David L. Donoho for his suggestion to call such
couplings Ho, standing for homogeneous of degree 0



Ho-couplings are left-sided 0-homogeneous
and right-sided linear

The Hop-couplings are a special case of a one-sided linear couplings
[Chancelier and De Lara, 2021]

Proposition

Let two vector spaces X and ) be paired by a bilinear form < ,>,
and let C C X be a nonempty cone of X

The function c: C x )Y — R is a Hop-coupling
if and only if
there exists a 0-homogeneous mapping 0: C — X

such that ’c(x,y) = (o(x), y) ‘7 VxeC, Vye)y

and we denote
C =%,
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Capra C radial Ho < Ho
norms C 1-homogeneous functions




Examples of Hg-couplings:
Capra-couplings Chancelier and De Lara [2022a]



Constant Along Primal RAys (Capra) couplings
are JHy-couplings

[Chancelier and De Lara, 2022a, Definition 8]
Let ||-|| be a (source) norm on X
The Capra coupling (Capra) X <i> YV is given by
X7
(ry) =)
Vyel,

Ix]

=0

, Vx € x\{0}
¢(0,y)

The coupling Capra is a Hg-coupling between X and ) itself,
as ¢ = *Ry.y since

——

radial
projection

¢y)=(R(x),y), I xeX, Vye X



Examples of Hg-couplings:
radial Ho-couplings



For any function f: X — R, we introduce

the level sets fS':{XGX‘f(x)gr}, VreR
the strict level sets fr={xexXx ‘ f(x)<r}, VreR
and the level curves f~r={xexXx ‘ f(x)=r}, VreR



Radial JHy-couplings

Definition
We call normalization function a 1-homogeneous
nonnegative function v: X' — [0, +-oc] such that v~ # ()

With any normalization function v, we associate
the primal normalization mapping g0,: X \ v=0 — X

=0 o
defined by X\v™" 3 x| 0,(x) = —V(X)x

as well as the radial Ho-coupling *,,, between X' \ v=0 and ),

as the function *o, 1 (X VZO) xY—=R

defined by *0, (X, ) = V(lx)<x, y) = (ov(x), y)

VxeX\v=0, Vyey



Capra-couplings are radial Hy-couplings

Regarding classes of couplings, we have the following strict inclusions
Capra C radial Ho € Ho

For the proof that Capra C radial Hp, we will need the following
Definition

The Minkowski functional associated with the subset X C X is the
function mx: X — [0, +oc] defined by

(with the convention that inf () = +00)

mx(x) =inf {A>0|xeAX}, VxeX

The Minkowski functional mx is a
1-homogeneous (nonnegative) function

u}
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Proof that Capra-couplings are radial JHy-couplings

Proof.

» Let S denote the unit sphere of the norm ||-||

and let v = ms be the Minkowski functional of S
» Thus defined, v is a normalization function,

as an easy calculation shows that

v=ms =+, v =0

(Capra) ¢ = %, (radial Hp)

Notice that the norm |-|| is also a normalization function,

but that, as ||-|=° = {0}, ||-|| leads to the Ho-coupling between
X\ {0} and Y defined by %o (x,y) = (x, y)/|x|| when x # 0,
which is not a Capra-coupling — as Capra-couplings are defined
between X and Y — so that ¢ # *op.|
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Conjugacies and Hy-conjugacies



Fenchel-Moreau conjugate of a function

feR'— f R’
The c-Fenchel-Moreau conjugate f¢: V — R
of a function f: U — R is defined by

f(v) = sup

ueld

(c(u, v) + (—f(u))) , VveV

We use the Moreau lower and upper additions on R
that extend the usual addition with

(+00) + (~00) = (=00) + (+0) = —o0
(+00) 4 (~0) = (~00) + (+00) = +00



Blanket assumptions

1. Let two vector spaces X and ) be paired by a bilinear form
(,), and let C C X be a nonempty cone of X

2. Let %, be a Hop-coupling
with associated 0-homogeneous mapping ¢: C — X,
satisfying
imp = o(C) C C

3. Let f: C — R be a function satisfying
foo=f

(hence, necessarily, f: C — R is 0-homogeneous)



Ho-conjugates of 0-homogeneous functions

Under the blanket assumptions, we have that

fre
~—

. *
= (f ar Limg)
. SN——
*p—conjugate

Fenchel conjugate




Capra-conjugate of the ¢y pseudonorm

S C R" unit sphere, v = ms, ¢ = *,,, 0,(x) = ﬁx, Vx € R”,
imp, = SU{0} (1/v(0) =0), C =R", f = {

§(y) = 057 (v) = (o + timg,)”
= (to+ tsuq)”
= sup {0 SUP{ | y) - éo(S)}}

coordinate-i norm

/—/%
:sup{O, sup { sup (s| y) —i}}

i€[1,n]
0(5) i
—_————
I

R .
= sup ||yl —1
i€[1,n] [H H() L

[Chancelier and De Lara, 2021, 2022a]
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Biconjugates and duality, Hy-biconjugates



Motivation: duality in convex analysis

=] 5 = = E DA



Reverse coupling and Fenchel-Moreau biconjugate
With the coupling ¢, we associate the reverse coupling ¢’

:VxU—-R, d(v,u)=c(uv), Y(v,u) eV xU

fFeRY 5 e erY

geR g e R



Reverse coupling and Fenchel-Moreau biconjugate

With the coupling ¢, we associate the reverse coupling ¢’

:VxU—-R, (v,u)=cluv), Y(v,u) eV xU

fFeRY 5 e erY

gecR g e’

/

g€ (u) = sup (c(u, v) + (—g(v))> , Yuel
vey

£ (u) = (F9)° (u) = sup (c(u, v) + (ffc(v))) , Yuel



Ho-biconjugates of 0-homogeneous functions

Under the blanket assumptions, we have that

convex lsc

oo = £ op=(f+umg)™ 00




In generalized convexity,

one defines so-called c-convex functions

fFeRY = freR e eRY

For any function f: U — R, one has that

fee < f
The function f: U/ — R is said to be c-convex if

!

fe<' = f



c-convex functions have dual representations
as suprema of elementary functions
(abstract convexity)

If the function f: U — R is c-convex, we have that

f(u) = sup (c(u, v) + (—fc(v))) , Yuel

vey

elementary function of u

Example: x-convex functions
= closed convex functions
= proper convex Isc or = —o0 or = +00
= suprema of affine functions



*,-convex functions

If the function f: C — R is x,-convex, we have that

) = sup (o). v) + (7)) |, WxeC

affine function of p(x)
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Subdifferentials and Hy-subdifferentials



Motivation:

subgradients in convex analysis

DA



Subdifferentials of a conjugacy

For any function f: i = Randucl,vey

Upper subdifferential (following [Martinez-Legaz and Singer, 1995])

v EOf(u) < f(u)=c(u,v) + (—F(v))

The upper subdifferential 9¢f has the property that
Of(u) #0 =

f(u) = £ (u)

—_——

the function f is c-convex at u
Definition
Lower subdifferential

v EOf(u) = °(v)=c(u,v)+ (—f(u))



Ho-subdifferential of 0-homogeneous functions

Under the blanket assumptions, we have that

6*gf = 8(f‘|‘ Limg) Y
~— —_———
*o—subdifferential Moreau-Rockafellar
subdifferential




Roadmap: convex factorization of the /3 pseudonorm

Find
» a normalization function v: R"” — [0, +00]
» a nonempty cone C C R\ v=0

such that

a*Qu (60 + LC)(X) - 3(50 + Limgy)(Qy(X)) # 0 , Vxe C

convex lsc

Hox!

—_——~
hence that /p + 1c = (fo + LC)*QV* 00, = (fo + Limgy) 00y
and, in particular, when C = R",

bo = ESQV* OOy = (EO =+ Limgy)** © Qv
——

convex lIsc Ly
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Outline of the presentation

Orthant-strict monotonicity and Hp-convexity of £y [10 min]
Orthant-strict monotonicity and Hp-convexity of ¢



Polar transform of a function

The polar set X® of the subset X C R" is the closed convex set

XO={yeR"| (x| y)<1, ¥Vxe X}

The bipolar theorem states that X®® = co(X U {0})

Definition

For any function f : R" — R,, we introduce the polar transform
f°:R" — R, defined by

fo(y) = sup <<X, Y)y X (f(x))_l) , Vy eR"

where 0 x (+00) = +00




Polar transform of Minkowski and support functions

If v: R" — [0, 4+00] is 1-homogeneous, we have that

V=m,
0 = M(,<1y® = 0(,<1y00 convex lsc
o0 — M(,<1y00 = 0(,<1y0 convex lsc
Example
When |-|| is norm on R”, with unit sphere S,

unit ball B and dual norm |||

v=ms = || + ta\{0}
v<L=B\{0}, (V)T =87, (V)7 =B
v =mgo =0 = |||«

v =mpg=ogo = |-



Convex factorization of the ¢y pseudonorm

Theorem

Let Y C R" be a compact subset such that Y®© = Y
and that the sets Y and Y© are orthant-strictly monotonic
Let us define

the function vV = Myo\ {0}
the cone  C={0}UR"\ Y®

Then, v is a normalization function, and

8*gu(€0 -+ Lc)(X) = 0 , Vxe C
hence
convex lsc
/U\ X
EO(X) = ‘CO (m) 9 Vx € C
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Orthant-strict monotonicity and Capra-convexity of £



Graph of the Euclidean fy-cup function £




Orthant-strictly monotonic norms
and hidden convexity in the ¢y pseudonorm

[Chancelier and De Lara, 2022b]
Theorem

If both the norm |-|| and the dual norm |-||.

are orthant-strictly monotonic,

there exists a proper convex Isc function Ly,

the fp-cup function, with domain the unit ball B, such that

X
eo(X) = EO (M N VX (S Rn \ {0}
c?nvetx Isc

and, as a consequence, the /gy pseudonorm coincides,
on the unit sphere S, with the proper convex Isc function Ly

lo(x) = Lo(x), Vx€S



The ¢y-cup function as a convex envelope
Proposition

The proper convex Isc function Ly is the convex envelope
of the following piecewise constant function

0
L

|fXEB \B(£1 e [1,n]
~+o00 |fx§ZB(n)—B

< 9

Lo(X) =

if x =20,




The fy-cup function as best proper convex Isc lower
approximation of the ¢y pseudonorm on the unit ball

Theorem

The £y-cup function Ly is
the best convex Isc lower approximation of the £y pseudonorm
on the unit ball B

best convex Isc function  Lo(x) < {p(x), Vx € B

and, as seen above, coincides with the ¢y pseudonorm

on the unit sphere S

Eo(X) = ,CQ(X) , Vx € S



Tightest closed convex function below the ¢y pseudonorm
on the £,-unit balls on R? for p € {1,1.1,2,4,300, 00}

-— -
S vvwv

- \
—A



The Capra-convex functions are 0-homogeneous and

coincide, on the unit sphere, with a closed convex function

¢-convexity of the function h: R” — R
e h=h

— h= (h¢)*'

o Ry

convex lsc function

<= hidden convexity in the function h: R" = R

there exists a closed convex function f : R” — R

such that h=fo Ry, thatis, h(x) = f(Hi_H)



[Chancelier and De Lara, 2022b]
Theorem

If both the norm |-|| and the dual norm |-||.
are orthant-strictly monotonic, we have that

a¢€0(X) == 0 , Vx € R" 5

and, as a consequence,

&9 = 4

and thus

radial

projection

_ 8¢ — (S o
lo=t" =15 o Ry= (&) o Ry

convex lsc
function Lo

u}
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Variational formulas for the ¢y pseudonorm

[Chancelier and De Lara, 2022b]

If both the norm |-|| and the dual norm |-||.
are orthant-strictly monotonic, we have that

)= 1

min )| x©) Vx € R"
DeRn,...,x (")ER”; ” ”(6)’
31 ||><(e)||(z)<”><||
1 X

€°(X)_fé‘u§’nee'ﬂfnu<<x|||x|\y> Iy =1, B\ (0



Outline of the presentation

Orthant-strict monotonicity and Hy-convexity of £y [10 min]

Orthant-strict monotonicity



We reformulate sparsity in terms of coordinate subspaces

y = (k% %%, 0%, %) = o451 (y) = (0,%,0,%,%,0) € Reo45)

» For any subset K C [1, n| of indices, we set
Rk={yeR"|yj=0, V¢ K} CR"

» The connection with the level sets of the ¢y pseudonorm is

5= {xeR"|lo(x) <k} = | Rk, Vke[0,n]
|K|<k

k-sparse vectors

> We denote by mx : R" — Ry the orthogonal projection

For any vector y € R”, mx(y) = yx € Rk C R" is the vector
whose entries coincide with those of y,
except for those outside of K that vanish



Orthant-monotonic norms and sets



Orthant-monotonic norms

For any x € R”, we denote by |x]|
the vector of R” with components |x;|, i € [1, n]

Definition

A norm |-|| on the space R" is called orthant-monotonic [Gries, 1967]
if, for all x, x’ in R”, we have

Ix| < |x']and xox' >0 = |x|| < |X|

where x o x" = (x1x1, ..., XnX},)
is the Hadamard (entrywise) product

|X1| < |X{‘ P |Xn| < ’XI/‘I
and = x| < I¥]l
x1x1 >0, ..., xpx, >0

u}
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Example of unit sphere of a non orthant-monotonic norm

-

In the bottom right orthant,
consider

(0, =1)] < (0.5, ~1)]

Lo

\

{z:a}+23 +22,=1} 3

and
but

1=(0,-1)] > [|(0.5, = 1)]



We define orthant-monotonic sets

Definition

The closed convex subset X C R” is said to be orthant-monotonic
if it satisfies any one of the equivalent conditions

1. ox ok < o, for all K C [1, n]

2. (X)) C X, forall K C [1,n]

3. mk(X) C XN Rk, for all K C [1,n]
4. r(X) = XNRg, forall K C [1,n]

[Chancelier and De Lara, 2023]

u}
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Orthant-strictly monotonic (OSM) norms and sets



Orthant-strictly monotonic norms

[Chancelier and De Lara, 2023]

Definition

A norm ||-|| on the space R" is called orthant-strictly monotonic if,
for all x, x' in R"”, we have

x| < || and xox' >0 = |x|| < ||X|
where |x| < |x/| means that
there exists j € [1, n] such that |x;| < |XJ/|
Intuition: € # 0 == [|(0, ,0,,%,0)| < [(0,*,¢,x,*,0)]

An orthant-strictly monotonic norm is orthant-monotonic



Examples of orthant-strictly monotonic norms

“ 1/p
Ixle = sup il and IIx]l, = (D xit?) " for p e [1, o0
i=1

i€[1,n]

with unit ball B, and unit sphere S,

> All the {p-norms |- , on the space R”, for p € [1, o],
are monotonic, hence orthant-monotonic

617627600

> All the /,-norms |[|-[| , on the space R”, for p € [1, 0],
are orthant-strictly monotonic

01,02, 05

el <1 = [[(1,0)[[c = 1= [I(1,6)ll



We define orthant-strictly monotonic sets

Definition

The closed convex subset X C R”
is said to be orthant-strictly monotonic (OSM)
if it satisfies

ox(y) < +ooand y # mky = ox(mky) < ox(y)

An orthant-strictly monotonic set is orthant-monotonic

u}
o)
I

i
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Conclusion

» We have introduced Hy-couplings,
and indicated in what they are suitable tool
for convex factorization of 0-homogeneous functions

» We have recalled Capra-couplings, induced by a norm,
and how they reveal convex factorization
of the {y pseudonorm on the unit ball,
when both the norm and the dual norm
are orthant-strictly monotonic (OSM)

» We have generalized the notion of OSM and,
using radial J{p-couplings, we expect to display
convex factorization of £y on bipolar subsets
(closed convex sets that contain 0)
that are more general than unit balls
(not necessarily symmetric, 0 is not necessarily in the interior)
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