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Support and the ¢y pseudonorm
Let d € N* be a fixed natural number and

[0,d] ={0,1,...,d}, [1,d]={1,...,d}

For any vector x € R, we define

P its support by

supp(x {16[1 d] ‘XJ 0}

supp((0, *,0, x,*,0)) = {2,4,5} C [1,6]

» its /o pseudonorm(x) by

number of
nonzero entries

cardmahty

lo(x) = \bupp )= Zl{x,géo}

£o((0,%,0,%,%,0)) = |{2,4,5}| =3 € [0,6]



The ¢y pseudonorm is net a rerm

The function ¢y pseudonorm : RY — [0, d]
satisfies 3 out of 4 axioms of a norm

> we have {p(x) >0 v
>wehave<€o(x):0(:>x:0) v

> we have {o(x + x") < £o(x) + o(x") v

> But... instead of 1-homogeneity,
it is 0-homogeneity that holds true

lo(px) = lo(x) , Vp#0
supp(px) = supp(x) , Vp #0

The £y pseudonorm maps continuous onto discrete.
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Design of sparsity-inducing unit balls [10 min]
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Design of sparsity-inducing unit balls [10 min]



Outline of the presentation

Design of sparsity-inducing unit balls [10 min]
What are sparsity-inducing norms/balls?



Archetypal sparse optimization problems
» (Pure sparse) For X € R? a nonempty set

minimal ¢y pseudonorm min £o(x)
xeX

is an optimization problem for which any point in X
is a local minimizer Jean-Baptiste Hiriart-Urruty and Hai Le. A variational approach of the
rank function. TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, 21
(2):207-240, 2013.

» (Sparsity constraint) For k € [1,d] and a function

f:RY =R
optimal k-sparse vector min  f(x)
lo(x) < k
——

k-sparse vectors
> (Sparsity penalty) For v > 0 and a function f : RY = R

min (f(x)+ ~lo(x) )
——

x€Rd

sparse penalty



The intuition behind Lasso

Comments of

(f(x) +7HXH1) [Tibshirani, 1996, Figu.re 21
“The lasso solution is the
first place that the contours
touch the square, and this
will sometimes occur at a
corner, corresponding to a
zero coefficient. The pic-
ture for ridge regression is
" " shown in Fig. 2(b): there
are no corners for the con-
) tours to hit and hence zero
Xng]'lgd (f(X) +7 HXHZ) solutions will rarely result.”

min
x€ERY

%

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series

B (Methodological), 58(1):267-288, 1996



Here are other examples of balls
with kinks sitting at 2-sparse points

z3

T1+ 22+ T3

DA



Geometric (alignment) expression of optimality condition
» We consider an optimal solution x* # 0 of
in (f(x)+
min (£(x) +lx)

where f : R? — R is a smooth convex function,
v >0 and ||-|| is a norm with unit ball B

0-homogeneity

~ =

*

0 € VF(x") + 10 (x") = H%H

~
Fermat rule

€ Fi(B,—Vf(x"))

face of the unit ball B
exposed by —Vf(x*)

> We expect that the support of x*
can be recovered from the dual information —Vf(x*)



Outline of the presentation

Design of sparsity-inducing unit balls [10 min]

Exposed faces of unit balls with k-sparse extreme points



We reformulate sparsity in terms of coordinate subspaces

» For any K C [1,d], we introduce the (coordinate) subspace
Rk={yeRY|y;=0, Vj¢ K} CR?
» The connection with the level sets of the ¢y pseudonorm is

7" = {xeRI|t(x) <k} = |J Rk, Vke[0,d]
IKI<k

k-sparse vectors

» We denote by mx : RY — Rk the orthogonal projection
y = (*7 *y K, kK, *) - 7T{2,4,5}(Y) = (07 *, 0, %, *, O) € R{2,4,5}



Design of unit ball
with k-sparse extreme points

(for example, 2-sparse points in R3)



Design of unit ball with k-sparse extreme points

For given sparsity threshold k € [1,d] (or sparsity budget)
we consider a source norm |-||, with unit ball B

» 1) project B onto ﬁgk 2) form the convex hull

Lo <k
projection onto £

Bl* . = B
*,(k) CO( U T« (B) )
|K|<k

convex hull

> and we get the unit ball of the
generalized k-support dual norm HHI*(,()
[Chancelier and De Lara, 2022b]

» the extreme points of ijk) belong to U|K|<k Rk = ﬁgk,
hence are k-sparse vectors



Generalized top-k and k-support dual norms

[Chancelier and De Lara, 2022b]
For any source norm |-| on RY, for any k € [1,d],

» the generalized k-support dual norm ”“I}k)

I(k))*

» of the generalized top-k dual norm ”'”I(k) defined by

is the dual norm HHI*(;() = (”

k-sparse
projection
on Rk
T d
Iyl ey = sup | 7k(y) I, Vy €R
|K|<k
—_——

exploring all
k-sparse projections



Characterization of the exposed faces
of the new unit ball



Characterization of the exposed faces of the new unit ball

Theorem
Let k € [1,d]
Then, for any nonzero dual vector y € R9\ {0},

the exposed face of the unit ball B;'—fk) is given by

projection on Rk=
N

FL(B*T’Ek),y) = @{WK*(FJ_(B,TFK*)/)) - K* e all"gqrgiwaKyH*}

exposed face
of the original
unit ball




Characterization of the exposed faces of the new unit ball

Let k € [1,d]
Suppose that the source norm |-|| is orthant-strictly monotonic

Then, for any nonzero dual vector y € R?\ {0},
the exposed face of the unit ball B;rfk) is given by

no

projection
T __( needed ] "
Fi(B,(k,y)=C { ~~ F.(B,mk+y): K* € aT;qu?X”ﬂKy”*}
— <

exposed face
of the original
unit ball
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Design of sparsity-inducing unit balls [10 min]

Support identification using k-sparsity inducing norms



Support identification: main result

Theorem

Let f : RY — R be a smooth convex function, and v > 0

For given sparsity threshold k € [1, d],
an optimal solution x* of

generalized
k-support
dual norm

) £ Tx
min (FO) + Ixliny )

has support
supp(x*) C U K*

K* earg max k<
Ik (=V £

u}
o)
I
i
it




Sparse support identification: corollary

Corollary
Let f : R — R be a smooth convex function and v > 0

For given sparsity threshold k € [1, d], if an optimal solution x* of

n;m (F() + X1, )
dual
information
—
is such that argmax||7tx(— VI (x") )|, = K*
|KI<k
then it has support

is unique

supp(x*

) C K* with |[K*| < k
so that the optimal solution x* is k-sparse




Support identification: Lasso

Corollary

Let f : RY — R be a smooth convex function,
v >0 and ||-||; be the ¢; norm

An optimal solution x* of
min (f(x) + v|x
XERd( ( ) ” Hl)

has support
supp(x™) C arg max|V;f(x)|
Jjelt,d]

u}

o)
I
i

it



Outline of the presentation

Geometry of sparsity-inducing balls [6 min]



The case of {,-norms ||| ,

d 1/p
I¥le = sup x| and x|, = (D Jxil?) " for p e [1,00]

ie[1,d]
[ source norm [-] ]| 117 g & € I, d] \ 1% & € [, 4]
-1, top-(q,k) norm (p.k)-support norm
T T
Iyl 1 Il 7%
Hqu = (Zle\yu(,)w)ﬁ no analytic expression
[I-1]1 top-(oo,k) norm (1,k)-support norm
£o5o-norm £1-norm
Il o s = Wllog. Yk € 11,1 | lIxlliT; = lixlly, ¥k € [1,d]
[I-1l5 top-(2,k) norm (2,k)-support norm
HY“;k = \/Z l\yuu HXH;Z no analytic expression
T
Iyllzs = Iyl oo lIxll21 = lIxlly
'l o top-(1,k) norm (o0, k)- support norm
T k T IIx
Iy, = S by 1 22 4 = max{ 200 gy
Iy ls = lIylloo X175 = lixly




When the source norm is the £,,-norm



Case of sparsity threshold k = 2 in R3
with source norm the ¢..-norm

(a) Unit ball B,
(support norm)

(b) Unit ball B/,
(top norm)

DA



When the source norm is the #5-norm



Case of sparsity threshold k = 2 in R3
with source norm the ¢>-norm

(a) Unit ball B3 (b) Unit ball B,
(support norm) (top norm)



An allegory of DOxML

Kinks sting where polytopes connect with curved smooth surfaces'



Geometric description

For any k € [1,d], all the proper faces of B,% are hypersimplices,

2,
and the normal fan of B2T’[( refines the normal fan of BT*k

T3

T+ 22+ T3

z3

Hypersimplex Ay 4: the convex hull of the d-dimensional vectors
whose coefficients consist of k ones and d — k zeros

m]

=



When the source norm is the #1-norm



Case of sparsity threshold k = 2 in R3
with source norm the ¢;-norm

(2) Unit ball B3 (b) Unit ball BJ, ,
(support norm) (top norm)



What comes next?

» What are orthant-strictly monotonic norms?

» In what are they related to the /g pseudonorm?

Background on the original motivation
Jean-Philippe Chancelier, Michel De Lara
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Outline of the presentation

Orthant-strictly monotonicity and Capra-convexity of ¢y [9 min]
Orthant-strictly monotonic (OSM) norms



Orthant-monotonic norms

For any x € RY, we denote by |x]|

the vector of RY with components |x;|, i € [1, d]

A norm |-|| on the space R is called orthant-monotonic [Gries, 1967]
if, for all x, x’ in RY, we have

Ix| < |x|and xox' >0 = |x|| < |X|
where x o x’ = (x1x{, ..., Xqx}) is the Hadamard product
al < xgls - Ixal < Ixgl
and
X]_X],_ Z 0 )

, Xaxy >0
x, x' belong to the same orthant

=[xl < I¥]




Example of unit sphere of a non orthant-monotonic norm

-

In the bottom right orthant,
consider

(0, =1)] < (0.5, ~1)]

Lo

\

{z:a}+23 +22,=1} 3

and
but

1=(0,-1)] > [|(0.5, = 1)]



Orthant-strictly monotonic norms
[Chancelier and De Lara, 2023]

A norm ||-|| on the space RY is called
orthant-strictly monotonic (OSM) if, for all x, x’ in R, we have

Ix| < |x'| and xox' >0 = |x| < |X|
where |x| < |x’| means that
there exists j € [1,d] such that |xj| < |XJ/|

Intuition: € #0 = |(0,*,0,*,x,0)| < [(0,*,e,x*,x,0)|




Examples of orthant-strictly monotonic norms

d
1/p
Ixllos = sup_|xil and xll, = (Y IxilP) " for p e 1, o]

i€l,d i—1
> All the £p-norms ||-|| , on the space R, for p € [1,00],
are monotonic, hence orthant-monotonic
gla 627 eoo

> All the /,-norms |[|-[| , on the space R, for p € [1, 00,
are orthant-strictly monotonic, but /., is not

01,02, 05

el <1 = [[(1,0)[[c = 1= [I(1, 6l



Outline of the presentation

Orthant-strictly monotonicity and Capra-convexity of ¢y [9 min]

OSM norms and hidden convexity in the o pseudonorm



Graph of the Euclidean fy-cup function £




Orthant-strictly monotonic norms
and hidden convexity in the ¢y pseudonorm

[Chancelier and De Lara, 2022b]

If both the norm ||-|| and the dual norm ||-||, are OSM,
there exists a proper convex Isc function Lo such that

X
lo(x) = Lo (M) , Vx e RY\ {0}
Pnction.

and, as a consequence, the /y pseudonorm coincides,
on the unit sphere S, with the proper convex Isc function £

fo(X) = ,Co(X) , Vx € S




The fy-cup function as a convex envelope

The proper convex Isc function Ly is the convex envelope
of the following piecewise constant function

0 if x=0
if x € B(l)\{O}
2 ifxeBR\Bj
L)
oPI=1,  ifxe BU\B, » €€ [L,d]
d if x € B \B(d 1)
| e

|fx¢B = /5






The fy-cup function as best proper convex Isc lower
approximation of the ¢y pseudonorm on the unit ball

Theorem

The £g-cup function Ly is
the best convex Isc lower approximation of the £y pseudonorm
on the unit ball B

best convex Isc function  Lo(x) < lo(x), Vx € B
and coincides with the ¢y pseudonorm on the unit sphere S

Eo(X) = £0(X) , Vxe S

u}
o)
I
i
it




Tightest closed convex function below the ¢y pseudonorm
on the £,-unit balls on R? for p € {1,1.1,2,4,300, 00}

-— -
S vvwv

- \
—A



Outline of the presentation

Orthant-strictly monotonicity and Capra-convexity of ¢y [9 min]

Crash course on generalized convexity



Motivation: Legendre transform and

Fenchel conjugacy in convex analysis

Two vector spaces X and ), paired by a bilinear form ( . ),
give rise to the classic Fenchel conjugacy

feR Y —» fFeR”
given by the Legendre transform
f*(y) = sup

XEX

((x, y) + (—f(x))) , Yy ey



Coupling function between sets

» Let be given two sets X' (“primal”) and ) (“dual”)
not necessarily paired vector spaces (nodes and arcs, etc.)

» We consider a coupling function
c:Xx)Y—->R

We also use the notation X' <> ) for a coupling
[Moreau, 1966-1967, 1970]

In duality in convex analysis, one uses the bilinear coupling
c(x,y)=(x,y)
and, on a Hilbert space, the scalar product

c(x,y) = (x| y)



Constant Along Primal RAys (Capra) coupling

[Chancelier and De Lara, 2021, 2022a]
On the vector space RY, equipped with a (source) norm |-/, the
Capra coupling (Capra) R? <i> R is given by

s |0

_xly)
I

=0

, Vx € RY\{0}
¢(0,y)

The coupling Capra has the property of being
Constant Along Primal RAys (Capra)




Fenchel-Moreau conjugate of a function

feRY — fecR”
The c-Fenchel-Moreau conjugate f€:) — R
of a function f : X — R is defined by

) = sup (clxx) + (-F(9)) , Wy €

We use the Moreau lower and upper additions on R
that extend the usual addition with

(+00) + (~00) = (=00) + (+0) = —o0
(+00) 4 (~0) = (~00) + (+00) = +00



Capra-conjugate of the ¢y pseudonorm

[Chancelier and De Lara, 2021, 2022a]

65(y) = sup {e(xy) + (~4o(x)) }

x€eR?
= sup{O,)S(ip{<X”L”y> —fo(X)}}
_sup{Osup{ \y _60( )}}

where S € R? is the unit sphere

- 0, —

et g )
S)=1
-

coordinate-i norm HyHZ,z)

= sup [Ivlth —il,

e|l,



Wrap-up on generalized /abstract convexity

» Generalized convexity
» coupling function between two sets
c:XxY—=R
» conjugacy and biconjugacy
feR e eR” s f< eRY
» generalized convex functions
f = fec
» subdifferential
o°f(x) C Y
> Abstract convexity
> set of elementary functions
» abstract convex envelope:
supremum of lower elementary functions
» abstract convex function:
equal to its abstract convex envelope
» subdifferential:
tight lower elementary functions



Outline of the presentation

Orthant-strictly monotonicity and Capra-convexity of ¢y [9 min]

OSM norms, Capra conjugacies and the £y pseudonorm



Capra = Fenchel coupling after primal normalization

» We define the primal radial projection o as

X i x#£0
x|
0:R? = SU{0}, ofx) =
g =0 ifx=0
» so that the coupling Capra
¢(x,y)=(e(x)| y) , xR, Vy e R

appears as the Fenchel coupling after primal normalization
(and the coupling Capra is one-sided linear)



The Capra conjugacy shares properties
with the Fenchel conjugacy

» For any function f : RY — R,
the ¢-Fenchel-Moreau conjugate is given by

¢ = (inf [f | o])*

where
inf,~of if
inf [F | g](x) = { "ol () TxE SUAO)
+00 if x¢Z SU{0}
» For any function g : R - R,

the ¢/-Fenchel-Moreau conjugate is given by

g% =g o0




The Capra-convex functions are 0-homogeneous and

coincide, on the unit sphere, with a closed convex function

¢-convexity of the function h: R — R
> h=h¢

— h= (h¢)*'

cQ
~——

convex lsc function

<= hidden convexity in the function h: RY — R

there exists a closed convex function f : R — R

such that h = f o o, that is, h(x) = f(”i—“)




[Chancelier and De Lara, 2022b]
Theorem

If both the norm |-|| and the dual norm |-||.
are orthant-strictly monotonic, we have that

delo(x) #0, Vx € RY |

and, as a consequence,

6§° =44
and thus
radial
¢¢, ¢ , ¢ ) projection
bo=1Ly" =45 opo= (KO) o 0
——

convex lsc
function Lo

u}
o)
I
i
it




Variational formulas for the ¢y pseudonorm

bo(x) =

min
||X I x®ere,.

?||x Vx € RY

<d>eRd¥ Ix¢ II e) ;

S X ||(e <Ixl
Ze_l xO=x

lo(x) = sup inf (—<X| y)
yERd GII d]

2= [y -1, )  wxer\ (0}



Conclusion

>

2

We have proposed systematic ways to design
unit balls that enhance sparsity at a given threshold

The corresponding norms originally appeared related to
Capra-convexity of the £y pseudonorm,
as well as the property of orthant-strict monotonicity

For classic /., /> and /1 source norms,
we have a complete description of
the corresponding sparsity-inducing unit balls



Jean-Philippe Chancelier and Michel De Lara. Hidden convexity in the £y pseudonorm. Journal of Convex Analysis,
28(1):203-236, 2021.

Jean-Philippe Chancelier and Michel De Lara. Constant along primal rays conjugacies and the £y pseudonorm.
Optimization, 71(2):355-386, 2022a. doi: 10.1080/02331934.2020.1822836.

Jean-Philippe Chancelier and Michel De Lara. Capra-convexity, convex factorization and variational formulations
for the £y pseudonorm. Set-Valued and Variational Analysis, 30:597-619, 2022b.

Jean-Philippe Chancelier and Michel De Lara. Orthant-strictly monotonic norms, generalized top-k and k-support
norms and the £y pseudonorm. Journal of Convex Analysis, 30(3):743-769, 2023.

Jean-Philippe Chancelier, Michel De Lara, Antoine Deza, and Lionel Pournin. Geometry of sparsity-inducing norms,
2025. URL https://arxiv.org/abs/2501.08651.

D. Gries. Characterization of certain classes of norms. Numerische Mathematik, 10:30-41, 1967.
J. J. Moreau. Fonctionnelles convexes. Séminaire Jean Leray, 2:1-108, 1966-1967.

Jean Jacques Moreau. Inf-convolution, sous-additivité, convexité des fonctions numériques. J. Math.
Pures Appl. (9), 49:109-154, 1970.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series
B (Methodological), 58(1):267-288, 1996. ISSN 00359246. URL http://www.jstor.org/stable/2346178.


https://arxiv.org/abs/2501.08651
http://www.jstor.org/stable/2346178




	Design of sparsity-inducing unit balls [10 min]
	What are sparsity-inducing norms/balls?
	Exposed faces of unit balls with k-sparse extreme points
	Support identification using k-sparsity inducing norms

	Geometry of sparsity-inducing balls [6 min]
	Orthant-strictly monotonicity and Capra-convexity of 0 [9 min]
	Orthant-strictly monotonic (OSM) norms
	OSM norms and hidden convexity in the 0 pseudonorm
	Crash course on generalized convexity
	OSM norms, Capra conjugacies and the 0 pseudonorm

	Conclusion
	References

