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Outline of the presentation

In decision-making, risk and time are bedfellows,
but for the fact that an uncertain outcome is revealed after the decision.
The talk moves along the number of decision stages: 1,2, more

Working out static examples

Two-stage stochastic programming problems



Outline of the presentation

Working out static examples



Working out classical examples

We will work out classical examples in Stochastic Optimization

» the blood-testing problem
static, only risk

» the newsvendor problem
static, only risk



Outline of the presentation

Working out static examples
The blood-testing problem



The blood-testing problem (R. Dorfman)
is a static stochastic optimization problem

» Data:

> A large number N of individuals are subjected to a blood test
» The probability that the test is positive is p,

the same for all individuals

(a positive test means that the target individual has a specific

disease; the prevalence of the disease in the population is p)
> Individuals are stochastically independent

» Blood-testing method:
the blood samples of k individuals are pooled and analyzed together
> If the test is negative, this one test suffices for the k individuals
> If the test is positive, each of the k > 1 individuals must be tested
separately, and k + 1 tests are required, in all
» Optimization problem:

» Find the value of k which minimizes the expected number of tests
» Find the minimal expected number of tests



What is the optimal number of individuals in a group
that minimizes the expected number of tests?

» For the first pool {1,..., k}, the test is
> negative with probability (1 — p)* (by independence) — 1 test
> positive with probability 1 — (1 — p)¥ — k + 1 tests
» When the pool size k is small,
compared to the number N of individuals,
the blood samples {1,..., N} are split in approximately N/k groups,
so that the expected number of tests is

SRy & X (L p) o (k1) % (1= (1= p)¥)]



The expected number of tests displays a marked hollow

Expected number of tests as a function of the number of people by group for N=1000 and p=0.01
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In army practice, R. Dorfman achieved savings up to 80%

» The expected number of tests is
N k k
J(k) = L[ x (1= p)" + (k+1) x (1= (1= p))]

» For small p,
J(K)/N =~ 1/k+ kp

> so that the optimal number of individuals per group is k* ~ 1/,/p
» and the minimal expected number of tests is about

J ~ J(K) ~ 2N < N

» William Feller reports that, in army practice,
R. Dorfman achieved savings up to 80%,
compared to making N tests (the worst case solution)
(take p =1/100, giving k* =11~ 1/,/1/100 = 10 and J* ~ N/5)



The optimal number
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What about risk?

» The optimal number of individuals per group is 11
if one minimizes the mathematical expectation E
of the number of tests
(see also the top right histogram above)

» But if one minimizes the Tail Value at Risk at level A = 5%
of the number of tests (more on TVaR) later),
numerical calculation show that, in the range from 2 to 33,
the optimal number of individuals per group is 5
(see also the bottom left histogram above)

» The bottom left histogram is more tight (less spread)
than the top right histogram
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Working out static examples

The newsvendor problem



The “newsboy problem” is now coined
the “newsvendor problem” ;-)

Demand

dcDheN

Order
velUCN

e

Cost price Selling price




The (single-period) newsvendor problem stands as
a classic in stochastic optimization

» Each morning, the newsvendor must decide how many copies
uelU=1{0,1,2...} of the day's paper to order:
u is the decision variable

» The newsvendor will meet a demand w € W = {0,1,2...}:
the variable w is the uncertainty

» The newsvendor faces an economic tradeoff

> she pays the unitary purchasing cost ¢ per copy
> she sells a copy at price p
> if she remains with an unsold copy, it is worthless (perishable good)

» The newsvendor's costs j(u, w) depend both
on the decision v and on the uncertainty w:

Jju,w)= _cu—pmin{u,w} = max{cu — pu, cu — pw}

purchasing selling



What is an “optimal” solution to the newsvendor problem?

Examples of costs as funcion of the control

If you solve

min j(u, w
UEUJ( ’ )

the optimal solution is v* = w...
which depends on the unknown
quantity w!

So, what do you suggest an “optimal” solution?



For you, Nature is rather random or hostile?




The newsvendor reveals her attitude towards risk in how
she aggregates outcomes with respect to uncertainty

» In the robust or pessimistic approach,
the (paranoid?) newsvendor minimizes the worst costs

min max j(u, w
uel WGWJ( ’ )
—_——

worst costs J(u)

as if Nature were malevolent

» In the stochastic or expected approach, the newsvendor solves
min  Ewl[j(u, W
min Ewlj(s, W]
expected costs J(u)

as if Nature played stochastically (casino)



If the newsvendor minimizes the worst costs

v

We suppose that

> the demand w belongs to a set W = [w’, w’]
> the newsvendor knows the set [w”, w']

The worst costs are
J(u) = maxj(u,w) = max [cu—pmin{u, w}] = cu—pmin{u,w’}
weW we[wh,wi]

Show that the order u* = w” minimizes the above expression J(u)

Once the newsvendor makes the optimal order uv* = w”,

the optimal costs are

J(u*, ) s we W, wf = —(p— c)w”

which, here, are no longer uncertain



Does it pay to be so pessimistic?

Not if demands are drawn independently from a probability distribution
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If the newsvendor minimizes the expected costs

» We suppose that

» the demand is a random variable, denoted W
> the newsvendor knows the probability distribution Py
of the demand W

» The expected costs are

J(u) = Ewlj(u,W)] = Ew[cu — pmin{u, W}]

» Find an order u* which minimizes the above expression J(u)
> by calculating J(u + 1) — J(u)
> then using the decumulative distribution function u +— P(W > u)



Here is an example of probability distribution and
of decumulative distribution for the demand
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Here stand some steps of the computation

J(u) = cu— pE[min{u, W}]
min{u, W} = ulgcwy + Wl swy
min{u+1,W} = (v+ 1)1 0<cwy + Wliswy
= (v+1)lewy + Wlsw,
min{u+ 1, W} —min{u, W} = 17w

J(u+1) = J(u) = c - pE[1ycwy] = ¢ — pP(W > u) T with u

» IfP(W >0)=1, then J(1)—J(0)=c—p<0
> J(u+1)— J(u) 2400 >0



Characterization of the optimal decision u*

» Define the cut-off decisions u*” and u** by
v =max{u, P(W > u) > %} (u <u? = Ju+1)< J(u))
vt =minfu, P(W > u) < %} (u >t = Ju+1) > J(u))
» An optimal decision u* satisfies
v e {u +1,... 0t and J(u*) = min{J(uv*” + 1), J(*)}

» The optimal decision u* is unique if and only if u** 4+ 1 = u*¥,
that is, if and only if

IP’(W>u*—1)>§>IP’(W>u*)

» Once the newsvendor makes the optimal order v*,
the optimal costs are the random variable

J(u*, W) = cu* — pmin{u*, W}



The distribution of the optimal costs displays lower costs
than with the naive deterministic solution u = E[W]

Histograms of the costs
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The cumulated profits over 365 days reveal
that it pays to do stochastic optimization

The cumulated payoffs as function of the number of days
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When deterministic optimization is (wrongly) optimistic
» If you plug the mean value W = Ew[W] in the criterion
J(u,w) = cu— pmin{u, w}

instead of the random variable W

» you obtain a deterministic optimization problem

min j(u, W) = j(W, W) = (c — p)W
uel
whose minimal value min,cy j(u, W)
is overly and wrongly optimistic
> because, on the proper stochastic benchmark Ew([j(-, W)],
the deterministic optimal solution @ = W = 50 produces
poorer results than the stochastic optimal solution u* = 82

(3, W) = min (0, W) < Ew[j(u", W)] = min Ew[j(s, W)] < Ewlj(a, W)
ue ue N——

—32.498824
—44.968856 —41.259519



When deterministic optimization is (wrongly) optimistic

Proposition
Let W be a random variable with mean W = Ew[W].
Suppose that w — j(u, w) is convex, for all decision u. Then,

Supposing that the infima are minima

(@) = min j(s, W) < Buw[j(u*, W)] = min Bw[j(u, W]

we have
overly optimistic

—
J(@W) < Ewl[j(v*, W)] <Ewlj(d, W)]
—_— ——

wrongly optimistic



Where do we stand after having worked out two examples?

» When you move from deterministic optimization to optimization
under uncertainty, you come accross the issue of risk attitudes
» Risk is in the eyes of the beholder ;-)
and materializes in the a priori knowledge on the uncertainties
> either probabilistic/stochastic

> independence and Bernoulli distributions in the blood test example
> uncertain demand faced by the newsvendor
modeled as a random variable

> or set-membership

> uncertain demand faced by the newsvendor modeled by a set



Where have we gone till now? And what comes next

» We have seen two examples of optimization problems
with a single deterministic decision variable,
and with a criterion including a random variable

» Now, we will turn to optimization problems
with two decision variables,
the first one deterministic and the second one random



Outline of the presentation

Two-stage stochastic programming problems



What awaits us

» We lay out two ways to move
from one-stage deterministic optimization problems
to two-stage stochastic linear programs
> in one, we start from a deterministic convex piecewise linear program
(without constraints)
> in the other, we start from a deterministic linear program
with constraints
» We show how we can also obtain two-stage risk-averse programs,
when we handle risk by means of the Tail Value at Risk

» We show a scenario decomposition resolution method
adapted to two-stage stochastic programs that are strongly convex

» We outline the Progressive Hedging resolution method,
adapted to two-stage stochastic linear programs



Outline of the presentation

Two-stage stochastic programming problems
Moving from deterministic convex piecewise linear programs



We revisit the newsvendor problem



Writing the newsvendor problem
as a linear program, in three steps

We consider the stochastic optimization problem

min J(u) = Ep[j(u, W)]

where
J(u,w) = cu — pmin{u, w}

and we show in three steps how to rewrite this problem
as a linear program



Step 1: exploiting convex piecewise linearity of the criterion

First, we write:

J(u, w) =cu— pmin{u, w}
=max{cu — pu,cu — pw}

=min{v|v>cu—pu, v>cu—pw}
veR



Step 2: exploiting convexity
of the mathematical expectation

» We suppose that the demand W
can take a finite number S of possible values ws, s € S

» where s denotes a scenario in the finite set S (S=card(S))

» and we denote 75 the probability of scenario s, with

ZFSZIandﬂ'SZO, VseS
seS



Step 2: exploiting convexity
of the mathematical expectation

Second, we deduce
J(u) =Ep[j(u, W)]
3 e me)
seS

:E msmin{vs | ve > cu—pu, vs> cu— pws}
s R
S

=  min SE Ts Vs
€s

(Vs )SES eR s

under the constraints

Ve > CU—pU, Vs> cCU—pws, VsES



Step 3: exploiting min min = min

Third, we minimize with respect to the original decision v € U

min J(u) = min ZTFSVS

uelU U sesE€RS
u€U,(vs)ses € €S

Ve >cu—pu, VsE€S
Ve > CcuU— pws, Vs €S
This is a linear program,

especially when we consider that the decision can take continuous values:
uelU=[0,u]



The newsvendor problem example
is a special case of a general mechanism



From convex piecewise linear to linear programming

» The convex piecewise linear program

min max (c’,x)+ b’
x€R" i=1,....,m

> can be written as the linear program

min min v
xeR" veR

v2<c",x>—}—b"7 i=1....m



From stochastic convex piecewise linear programming
to stochastic linear programming

» The stochastic convex piecewise linear program

min E e max {(c x)+ b
x€ER? Si:1,...,m< s > s
seS

» can be written as the stochastic linear program

min  min . E T Vs
x€eR" sER
(vs)ses€ scs

VSZ<C£,X>+b£, i=1,....m, s€§



What happens if we want to minimize risk,
not mathematical expectation?

> Instead of minimizing the mathematical expectation

E[C] (= Z 7sCs)

seS

> we want to minimize the Tail Value at Risk (at level A € [0,1]),
given by the Rockafellar-Uryasev formula

TVaR,\[C] = f&‘;{w + r}

» whose limit cases are mean and worst case

TVaRo[C] = E[C]

TVaRy[C] = >|\[>n1 TVaR,\[C] = SlégC(w)



Minimizing the Tail Value at Risk of costs:
convex piecewise linear programming formulation

» The risk-averse stochastic convex piecewise linear program

X"éié’n?;iﬁ{r+ xS, (60 +oh r)+}

» can be written as the convex piecewise linear program
min min  min r4+ — g ms(u
xER" rER (u,),;c5ERS 1— /\ =
S

us > (ct,x)+bl, VseS

us > (c" ,x)+ b, ¥s €S



Minimizing the Tail Value at Risk of costs:
linear programming formulation

» The risk-averse stochastic convex piecewise linear program

)[Te\&rrrgﬂg{r—i—mZﬂs(_max ,X>+bs—r)+}

> can be written as the linear program

. . . 1
min min . min r+ —— E Ts Vs
XERM reR (vg)ses€RS 11—

vs > (ct x)+bl—r, VseS
Vs > (el x) + bl —r, VsE€S

ve >0, VseS



How to use risk-averse stochastic programming in practice?

» Denote by x3 the (supposed unique) solution

» As 1 — X\ measures the upper probability of risky events,
start with A = 0 and display, to the decision-maker,
the risk-neutral solution x5 and the probability distribution
(histogram) of the random costs

s— max {(c/,x§)+ b,
i=1,....m

» Then move to the confidence level A = 0.99 (only events with
probability less than 1% are considered), and do the same

» For a range of possible values for A, display, to the decision-maker,
the solution x3 and the histogram of the random costs

s max {(cl,x})+ b,
i=1,....m

» The decision-maker should choose his confidence level \



We can also minimize the mean costs,
while controlling for large costs

> Instead of only minimizing the mathematical expectation

E[C] (=Y mC.)

seS

» we add the constraint that the Tail Value at Risk (at level X € [0, 1])
is not too large

E[(C = r)+]

(el = g {

+r}§cLt

» We can also choose to minimize a mixture

OE[C]+(1-0) TVaR,[C] = inf {GE[C] +(1- 0)@ +(1- a)r}



Minimizing a mixture:
convex piecewise linear programming formulation

» The risk-averse stochastic convex piecewise linear program
min min < 6 E ms max (cl,x)+ b}
xER" reR s i=1,....m
S

+(1-6 r—l—meS(.max ,x>+b£—r)+}

» can be written as the convex piecewise linear program

o 1-6
XCRP TER (1) 105 RS gﬁs {9”5 =0+ (e - r)+}

us > (¢t ,x)+bl, VseS

us > (e, x)+bI", VseS



Minimizing a mixture:
linear programming formulation

» The risk-averse stochastic convex piecewise linear program
min min < 6 ms max (cl,x)+ b
xER" reR { Z si=1,...,m< 21 %)+ b,
seS
+(1—-46 r+— 7r( max X—l—bi—r)
( S ) b))

SES

» can be written as the linear program

L . . 1-6
XCRP ER (1) 0 €RS (1)ocs €RS > s {9”5 FA=0r+ 37— Vs}
us > (cl,x)+bl, VseS
us > (cl' ,x)+ b, ¥se€S

Ve > us—r, Vse€S
vs >0, Vse€S



How to use risk-averse stochastic programming in practice?

> Denote by x} , the (supposed unique) solution

» As 1 — X\ measures the upper probability of risky events,
let the decision-maker choose a confidence level A
— A =0.99 (only events with probability less than 1% are
considered), A = 0.95, A\ = 0.90, for instance

» Start with & = 0 and display, to the decision-maker,
the risk-neutral solution x3 ; (which does not depend on \)
and the probability distribution (histogram) of the random costs

S Tax <c;,x§’0>+b;
I

» Increase 6 from 0 to 1, and display, to the decision-maker,
the solution x3 4 and the histogram of the random costs

s— max {(cl,x,)+ bl
i=1,....,m ?

> The decision-maker reveals his confidence level A
and his mixture (0,1 — 0) as he selects his prefered histogram



Outline of the presentation

Two-stage stochastic programming problems

Moving from linear programs with constraints



Suppose you had to manage a day-ahead energy market
You would have to fix reserves by night
and adjust in the morning with recourse energies



From linear to stochastic programming

» The linear program

min (c , x)
xER"
Ax+b >0 (eR™)

» becomes a stochastic program

Ax+bs >0, ¥s€S

> We observe that there are as many (vector) inequalities
as there are possible scenarios s € S

Asx+bs >0, VseS

and these inequality constraints can delineate
an empty domain for optimization



Recourse variables need be introduced for feasability issues

» We denote by s € S any possible value of the random variable ¢,
with corresponding probability 74

» and we introduce a recourse variable y = (ys)scs and the program

min Zm((cs ,X) + <ps>)/s>)

X:(YS)SES p
seS

yvs >0, VseS

Asx+bs+ys >0, VseS

> so that the inequality Asx 4 bs + ys > 0 is now possible,
at (unitary recourse) price vector p = (ps, s € S)

» Observe that such stochastic programs are huge problems,
with solution (x, (ys)seg), but remain linear



Minimizing the Tail Value at Risk of costs:
linear programming formulation

» The risk-averse stochastic linear program with recourse

X,&sls?“e'ﬂ%‘{’*ﬁz”s( <”“y$>>+}

seS

» can be written as the linear program

min  min min r+— v
X,(ys)ses T (vs)ses g svs
Vs — (s, x) — (ps,ys) >0, Vs€S
ve >0, VseS
Vs ZO, Vs €S
Ax+bs+ys >0, Vse€S



Minimizing a mixture:

linear programming formulation

» The risk-averse stochastic linear program with recourse

S

seS

1-9 il
+( r+1_)\

> can be written as the linear program

min  min  min
X,(¥s)ses T (Us,vs)ses

Uus — <Cs 7X> - <ps 7y5>
Vs — Us + r

Vs

Vs

Asx + bs + ys

S

seS

Z 0 3
Z 0 3
Z 0 3
Z 0 )
Z 0 )

{QUS +(1-0r+

Vs €S
Vs €S
Vs €S
VseS
VseS

( Cs . X <p57}/s>>+}

1-9
12"



Roger Wets example

http://cermics.enpc.fr/~delara/TEACHING/

CEA-EDF-INRIA_2012/Roger_Wetsl.pdf



Two-step stochastic programs with recourse can
become deterministic non-smooth convex problems
> Define
Qs(x) = min{(ps ,y),Asx + bs +y > 0}
N——
value function

which is a convex function of x, non-smooth
> so that the original two-step stochastic program with recourse

min 7T5[<C5,X>+<p57YS>}
x,(¥s)ses ses

ys >0, Vs €S
Asx+bs+ys >0, VseS

» now becomes the deterministic non-smooth convex problem

min 37 e x) + Q)]

seS

» An optimal solution is now more likely to be an inner solution
(more robust)



A quadratic toy problem

Letc >0, dty >0, db >0
» Show that the (worst case) optimization problem

min = cx?
xER
X > dy

XZdQ

has (worst case) solution
X = max{dy, do}

» What happens if we allow room for recourse?



A quadratic toy problem with recourse

Letc>0, d1 >0, >0, p1 >0, pp>0
» Show that the (stochastic) optimization problem

min l(cxz +puyi + P2Y22)
(%,y1,y2)ER3 2

X+y=d
X—|—y2:d2

has a solution x* given by

c
* = PL di + P2 dr +
c+pr+p2 c+pr+p2 c+pr+p2

» Therefore, x* belongs to the convex generated by {0, d, d»}, that is,
x* € [0, max{dl, dg}]

» Compare with the (worst case) solution X = max{di, d»}



Where have we gone till now? And what comes next

» We have arrived at optimization problems
with two decision variables
> a first one deterministic
> a second one random (as it is indexed by the scenarios)
» We have handled the risk neutral case, but also the risk averse case,

with risk measures displaying good mathematical properties
(like the Tail Value at Risk)

» We will now present resolution methods that, somehow surprisingly,
relax the assumption that the first decision variable is deterministic



Outline of the presentation

Two-stage stochastic programming problems

Scenario decomposition resolution methods



We start with a two-stage stochastic optimization problem
formulated on a tree

recourse

variable
. . . /\
Criterion j: X x Y x S —R
~— ~—
initial scenario
decision
and set-valued mapping V : X x S — 2V

» Stochastic optimization problem

min Zﬂ's_/s X ys

x:(ys)se ¥ ses
x eX

¥s €Vs(x), Vs€S

> Solutions (x, (ys)ses) are naturally indexed by a tree

» with one root
» and S = card S leaves



We transform the two-stage stochastic optimization problem
by extending the solution space

» We consider initial decisions (xs)ses and the problem

E Tsjs X57}/s
X (Xs sess (ys s€s

xs € X, VSES

Vs € Vs(xs), Vse€S
Xs=x, Vse€S§

x € X

» This problem has the same solutions (x, (ys)ses)
as the original one



Scenarios can be organized like a fan or like a tree

A

A

- 00000000000 00000 -

t=0 t=1 =2 t=3 =T =0 t=1 t=2 t=3

N scenarios Scenarios tree




We transform the two-stage stochastic optimization problem
from a tree to a fan

» We consider initial decisions (xs)ses and the problem

min E 7T5_/5 XSa_ys
(xs)ses,(¥s)ses scS

xs€X, Vse§
Vs € Vs(xs), VseS
Xs = ) g TMs'Xs , VS ES

» Solutions (xs, ¥s)ses are naturally indexed by a fan



Primal and dual problems

» The primal problem is

O DA CCHORENCEPILED)

xs € X, VseS
Vs € Vs(xs), Vs €S

» The dual problem is

max min Zws (js(xs,ys) + /\s(xs — Z ws/xs/))

(As)ses (Xs,¥5)ses seS s'eS
xs € X, VseS
Vs € ys(xs) , VseS



We can translate the multipliers As in the dual problem

» Denote by X : S — X the random variable X(s) = x;, s € S
» Denote by A : S — R the random variable A(s) = A, s € S

S s = e

seS s’eS
=E[A(X — E[X])]
=E[AX] — E[N]E[X]
—E[(A ~ E[A])X]

:ZTI‘S ()\s — ZTI‘S/)\S/) Xs

seS s’'eS

projected multiplier As



Restricting the multiplier

Then the dual problem is

max min 3" (J (e e) + (e = 3w )

(As)ses (Xsw}’S)seS ses s’eS
xs € X, VseS
Ys € ys(Xs) s Vs €S



The dual problem can be decomposed scenario by scenario

» The dual problem

max min Zws<js(xs,ys) + (As — Z 7Ts//\s/)Xs)

(As)ses (Xs,¥5)ses ses s'€S
xs €X, VseS
Ys € ys(Xs) 5 Vs €S

> is equivalent to

ot S i () 0 )

ses Xs:Ys s'eS
xs €X, VseS
¥s € Vs(xs), Vs €S



Under proper assumptions
— to be seen later, as they require recalls in duality theory —
the dual problem can be solved by an algorithm “a la Uzawa"
yielding the following
scenario decomposition algorithm



Scheme of the scenario decomposition algorithm

Data: step p > 0, initial multipliers {)\go)}ses and mean first decision
7(0);
Result: optimal first decision x;
repeat
forall scenarios s € S do
Solve the deterministic minimization problem for scenario s,
with a penalization +)\£k) (xgkﬂ) — x(k) ,

and obtain optimal first decision xgkﬂ);

Update the mean first decisions

x(k1) = Zﬂsxgk“) ;
seS

Update the multiplier by

AUHD — AR 4 (kD) _ x| ys e s

until x* -y rxY =0 vses;




Outline of the presentation

Two-stage stochastic programming problems

Recalls on duality and Lagrangian decomposition



Recalls and exercises on continuous optimization

http://cermics.enpc.fr/“delara/TEACHING/slides_optimization.pdf



Thanks to Pierre Carpentier (ENSTA ParisTech),
we provide a geometric interpretation of Uzawa's algorithm



Uzawa's geometric interpretation I

For the sake of simplicity, we consider here equality constraints:

€ argmin J(u) + (A Y (w)),
uelyd

)\(k+1) — )\(k) +pe(u(k+1)) .

S(k+D)

The minimization step in v is equivalent to:

Al t Y(u)—v=0.
Vmelg urgllln J(u) + V) s (u)—v=0

Introducing the perturbation function G given by

G(v) = min J(u) st. Y(u)—v=0,
ueld

the minimization step writes equivalently:

' (k)
min G(v)+ (A9 vy



Uzawa's geometric interpretation [l

Recall that the initial problem consists in obtaining G(0). ..
With the help of the function G, Uzawa's algorithm writes:
v ¢ argmin G(v) + <)\(k) V)
veVv
A(k+1) _ A(k) +pv(k+1) ]

From a (conceptual) geometric point of view, it amounts to:

> Step (a): minimize the gap between G(-) and { — A\ ).
» Step (b): adjust the slope —\(¥) if v(k+1) £ 0.
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Uzawa's geometric interpretation 1V

V<

~

S I R

Even if {\(X)},cn converges towards \*, the constraint level v(¥)
oscillates between v and Vv, but the value v* = 0 is never reached



Uzawa's geometric interpretation

AR

G()

V<




Uzawa's geometric interpretation V

AR

G()

In the non convex case, use an augmented Lagrangian. ..
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Progressive Hedging

Rockafellar, R.T., Wets R. J-B.
Scenario and policy aggregation in optimization under uncertainty,
Mathematics of Operations Research, 16, pp. 119-147, 1991

http://cermics.enpc.fr/“delara/TEACHING/

CEA-EDF-INRIA_2012/Roger_Wets4.pdf



The “plus” of Progressive Hedging

» In addition to the variables xs, we introduce a new variable X,
so that the non-anticipativity constraint becomes x; = X

» We dualize this constraint with an augmented Lagrangian term,
yielding to an optimization problem with variables x., x, A

» When the multiplier A is fixed,
we minimize the primal problem which, unfortunately,
is not separable with respect to scenarios s

» Luckily, we recover separability by solving sequentially
“a la Gauss-Seidel”

min, E(x.,i(k), A(K)
ming C(X.(kH),Y, A(K)

because the first problem is separable with respect to scenarios s



Scheme of the Progressive Hedging algorithm

Data: penalty r > 0, initial multipliers {Aﬁ")}seg and mean first decision
7(0);

Result: optimal first decision x;

repeat

forall scenarios s € S do
Solve the deterministic minimization problem for scenario s, with

2

penalization +)\§k) (xgkﬂ) — Y(k)) + g xgkﬂ) — Y(k)H ,

and obtain optimal first decision xng);

Update the mean first decisions

x(k1) = Zﬂsxgk“) ;
seS

Update the multiplier by

A = AR p(xkH) _ x4 D) s e s

until x¢ - raxUt =0, vses;




What land have we covered?

» We have introduced one and two-stage optimization problems
under uncertainty

» Thanks to a general framework, using risk measures,
stochastic and robust optimization
appear as (important) special cases

» We have presented resolution methods by scenario decomposition
for two-stage optimization problems

» Dealing with multi-stage optimization problems
requires specific tools, as is the notion of state



“Self-promotion, nobody will do it for you" ;-)
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