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Outline of the presentation

In decision-making, risk and time are bedfellows,
but for the fact that an uncertain outcome is revealed after the decision.

The talk moves along the number of decision stages: 1,2, more

Working out static examples

Two-stage stochastic programming problems
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Working out 
lassi
al examples

We will work out classical examples in Stochastic Optimization

◮ the blood-testing problem
static, only risk

◮ the newsvendor problem
static, only risk
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The blood-testing problem (R. Dorfman)

is a stati
 sto
hasti
 optimization problem

◮ Data:
◮

A large number N of individuals are subje
ted to a blood test

◮
The probability that the test is positive is p,

the same for all individuals

(a positive test means that the target individual has a spe
i�


disease; the prevalen
e of the disease in the population is p)
◮

Individuals are sto
hasti
ally independent

◮ Blood-testing method:
the blood samples of k individuals are pooled and analyzed together

◮
If the test is negative, this one test su�
es for the k individuals

◮
If the test is positive, ea
h of the k > 1 individuals must be tested

separately, and k + 1 tests are required, in all

◮ Optimization problem:
◮

Find the value of k whi
h minimizes the expe
ted number of tests

◮
Find the minimal expe
ted number of tests



What is the optimal number of individuals in a group

that minimizes the expe
ted number of tests?

◮ For the first pool {1, . . . , k}, the test is
◮

negative with probability (1 − p)k (by independen
e) → 1 test

◮
positive with probability 1 − (1 − p)k → k + 1 tests

◮ When the pool size k is small,
compared to the number N of individuals,
the blood samples {1, . . . ,N} are split in approximately N/k groups,
so that the expected number of tests is

J(k) ≈
N

k
[1 × (1 − p)k + (k + 1)× (1 − (1 − p)k )]



The expe
ted number of tests displays a marked hollow

0 20 40 60 80 100 120 140 160 180 200

100

200

300

400

500

600

700

800

900

1000

1100

Expected number of tests as a function of the number of people by group for N=1000 and p=0.01

number k of people by group

e
x
p

e
c
te

d
 n

u
m

b
e

r 
o

f 
te

s
ts



In army pra
ti
e, R. Dorfman a
hieved savings up to 80%

◮ The expected number of tests is

J(k) ≈
N

k
[1 × (1 − p)k + (k + 1)× (1 − (1 − p)k )]

◮ For small p,
J(k)/N ≈ 1/k + kp

◮
so that the optimal number of individuals per group is k⋆ ≈ 1/

√
p

◮
and the minimal expe
ted number of tests is about

J
⋆ ≈ J(k⋆) ≈ 2N

√
p < N

◮ William Feller reports that, in army practice,
R. Dorfman achieved savings up to 80%,
compared to making N tests (the worst case solution)
(take p = 1/100, giving k⋆ = 11 ≈ 1/

√

1/100 = 10 and J⋆ ≈ N/5)



The optimal number of tests is a random variable
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What about risk?

◮ The optimal number of individuals per group is 11
if one minimizes the mathematical expectation E

of the number of tests
(see also the top right histogram above)

◮ But if one minimizes the Tail Value at Risk at level λ = 5%
of the number of tests (more on TVaRλ later),
numerical calculation show that, in the range from 2 to 33,
the optimal number of individuals per group is 5
(see also the bottom left histogram above)

◮ The bottom left histogram is more tight (less spread)
than the top right histogram
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The �newsboy problem� is now 
oined

the �newsvendor problem� ;-)



The (single-period) newsvendor problem stands as

a 
lassi
 in sto
hasti
 optimization

◮ Each morning, the newsvendor must decide how many copies
u ∈ U = {0, 1, 2 . . .} of the day’s paper to order:
u is the decision variable

◮ The newsvendor will meet a demand w ∈ W = {0, 1, 2 . . .}:
the variable w is the uncertainty

◮ The newsvendor faces an economic tradeoff
◮

she pays the unitary pur
hasing 
ost c per 
opy

◮
she sells a 
opy at pri
e p

◮
if she remains with an unsold 
opy, it is worthless (perishable good)

◮ The newsvendor’s costs j(u,w) depend both
on the decision u and on the uncertainty w :

j(u,w) = cu
︸︷︷︸

pur
hasing

− pmin{u,w}
︸ ︷︷ ︸

selling

= max{cu − pu, cu − pw}



What is an �optimal� solution to the newsvendor problem?
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So, what do you suggest an “optimal” solution?



For you, Nature is rather random or hostile?



The newsvendor reveals her attitude towards risk in how

she aggregates out
omes with respe
t to un
ertainty

◮ In the robust or pessimistic approach,
the (paranoid?) newsvendor minimizes the worst costs

min
u∈U

max
w∈W

j(u,w)

︸ ︷︷ ︸

worst 
osts J(u)

as if Nature were malevolent

◮ In the stochastic or expected approach, the newsvendor solves

min
u∈U

E
W

[j(u,W)]
︸ ︷︷ ︸

expe
ted 
osts J(u)

as if Nature played stochastically (casino)



If the newsvendor minimizes the worst 
osts

◮ We suppose that
◮

the demand w belongs to a set W = [[w♭,w♯]]
◮

the newsvendor knows the set [[w♭,w♯]]

◮ The worst costs are

J(u) = max
w∈W

j(u,w) = max
w∈[[w♭,w♯]]

[cu−pmin{u,w}] = cu−pmin{u,w ♭}

◮ Show that the order u⋆ = w ♭ minimizes the above expression J(u)

◮ Once the newsvendor makes the optimal order u⋆ = w ♭,
the optimal costs are

j(u⋆, ·) : w ∈ [[w ♭,w ♯]] 7→ −(p − c)w ♭

which, here, are no longer uncertain



Does it pay to be so pessimisti
?

Not if demands are drawn independently from a probability distribution
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If the newsvendor minimizes the expe
ted 
osts

◮ We suppose that
◮

the demand is a random variable, denoted W

◮
the newsvendor knows the probability distribution P

W

of the demand W

◮ The expected costs are

J(u) = E
W

[j(u,W)] = E
W

[cu − pmin{u,W}]

◮ Find an order u⋆ which minimizes the above expression J(u)
◮

by 
al
ulating J(u + 1)− J(u)
◮

then using the de
umulative distribution fun
tion u 7→ P(W > u)



Here is an example of probability distribution and

of de
umulative distribution for the demand
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Here stand some steps of the 
omputation

J(u) = cu − pE[min{u,W}]

min{u,W} = u1{u<W} + W1{u≥W}

min{u + 1,W} = (u + 1)1{u+1≤W} + W1{u+1>W}

= (u + 1)1{u<W} + W1{u≥W}

min{u + 1,W} − min{u,W} = 1{u<W}

J(u + 1)− J(u) = c − pE[1{u<W}] = c − pP(W > u) ↑ with u

◮ If P(W > 0) = 1, then J(1)− J(0) = c − p < 0

◮ J(u + 1)− J(u) →u→+∞ c > 0



Chara
terization of the optimal de
ision u
⋆

◮ Define the cut-off decisions u⋆♭ and u⋆♯ by

u⋆♭ =max{u , P(W > u) >
c

p
}

(

u ≤ u⋆♭ ⇐⇒ J(u + 1) < J(u)
)

u⋆♯ =min{u , P(W > u) <
c

p
}

(

u ≥ u⋆♯ ⇐⇒ J(u + 1) > J(u)
)

◮ An optimal decision u⋆ satisfies

u⋆ ∈ {u⋆♭ + 1, . . . , u⋆♯} and J(u⋆) = min{J(u⋆♭ + 1), J(u⋆♯)}

◮ The optimal decision u⋆ is unique if and only if u⋆♭ + 1 = u⋆♯,
that is, if and only if

P(W > u⋆ − 1) >
c

p
> P(W > u⋆)

◮ Once the newsvendor makes the optimal order u⋆,
the optimal costs are the random variable

j(u⋆,W) = cu⋆ − pmin{u⋆,W}



The distribution of the optimal 
osts displays lower 
osts

than with the naive deterministi
 solution u = E[W]
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The 
umulated pro�ts over 365 days reveal

that it pays to do sto
hasti
 optimization
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When deterministi
 optimization is (wrongly) optimisti


◮ If you plug the mean value W = E
W

[W] in the criterion

j(u,w) = cu − pmin{u,w}

instead of the random variable W

◮ you obtain a deterministic optimization problem

min
u∈U

j(u,W) = j(W,W) = (c − p)W

whose minimal value minu∈U j(u,W)
is overly and wrongly optimistic

◮ because, on the proper stochastic benchmark E
W

[j(·,W)],
the deterministic optimal solution u = W = 50 produces
poorer results than the stochastic optimal solution u⋆ = 82

j(u,W) = min
u∈U

j(u,W)
︸ ︷︷ ︸

−44.968856

≤ E
W

[j(u⋆,W)] = min
u∈U

E
W

[j(u,W)]
︸ ︷︷ ︸

−41.259519

≤ E
W

[j(u,W)]
︸ ︷︷ ︸

−32.498824



When deterministi
 optimization is (wrongly) optimisti


Proposition

Let W be a random variable with mean W = E
W

[W].
Suppose that w 7→ j(u,w) is convex, for all decision u. Then,

inf
u∈U

j(u,E
W

[W]) ≤ inf
u∈U

E
W

[j(u,W)]

Supposing that the infima are minima

j(u,W) = min
u∈U

j(u,W) ≤ E
W

[j(u⋆,W)] = min
u∈U

E
W

[j(u,W)]

we have
overly optimisti


︷ ︸︸ ︷

j(u,W) ≤ E
W

[j(u⋆,W)] ≤ E
W

[j(u,W)]
︸ ︷︷ ︸

wrongly optimisti




Where do we stand after having worked out two examples?

◮ When you move from deterministic optimization to optimization
under uncertainty, you come accross the issue of risk attitudes

◮ Risk is in the eyes of the beholder ;-)
and materializes in the a priori knowledge on the uncertainties

◮
either probabilisti
/sto
hasti


◮
independen
e and Bernoulli distributions in the blood test example

◮
un
ertain demand fa
ed by the newsvendor

modeled as a random variable

◮
or set-membership

◮
un
ertain demand fa
ed by the newsvendor modeled by a set



Where have we gone till now? And what 
omes next

◮ We have seen two examples of optimization problems
with a single deterministic decision variable,
and with a criterion including a random variable

◮ Now, we will turn to optimization problems
with two decision variables,
the first one deterministic and the second one random
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What awaits us

◮ We lay out two ways to move
from one-stage deterministic optimization problems
to two-stage stochastic linear programs

◮
in one, we start from a deterministi
 
onvex pie
ewise linear program

(without 
onstraints)

◮
in the other, we start from a deterministi
 linear program

with 
onstraints

◮ We show how we can also obtain two-stage risk-averse programs,
when we handle risk by means of the Tail Value at Risk

◮ We show a scenario decomposition resolution method
adapted to two-stage stochastic programs that are strongly convex

◮ We outline the Progressive Hedging resolution method,
adapted to two-stage stochastic linear programs
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We revisit the newsvendor problem



Writing the newsvendor problem

as a linear program, in three steps

We consider the stochastic optimization problem

min
u∈U

J(u) = EP[j(u,W)]

where
j(u,w) = cu − pmin{u,w}

and we show in three steps how to rewrite this problem
as a linear program



Step 1: exploiting 
onvex pie
ewise linearity of the 
riterion

First, we write:

j(u,w) =cu − pmin{u,w}

=max{cu − pu, cu − pw}

=min
v∈R

{v | v ≥ cu − pu , v ≥ cu − pw}



Step 2: exploiting 
onvexity

of the mathemati
al expe
tation

◮ We suppose that the demand W
can take a finite number S of possible values ws , s ∈ S

◮ where s denotes a scenario in the finite set S (S=card(S))

◮ and we denote πs the probability of scenario s, with

∑

s∈S

πs = 1 and πs ≥ 0 , ∀s ∈ S



Step 2: exploiting 
onvexity

of the mathemati
al expe
tation

Second, we deduce

J(u) =EP[j(u,W)]

=
∑

s∈S

πs j(u,ws)

=
∑

s∈S

πs min
vs∈R

{vs | vs ≥ cu − pu , vs ≥ cu − pws}

= min
(vs )s∈S∈RS

∑

s∈S

πsvs

under the constraints

vs ≥ cu − pu , vs ≥ cu − pws , ∀s ∈ S



Step 3: exploiting minmin = min

Third, we minimize with respect to the original decision u ∈ U

min
u∈U

J(u) = min
u∈U,(vs)s∈S∈RS

∑

s∈S

πsvs

vs ≥ cu − pu , ∀s ∈ S

vs ≥ cu − pws , ∀s ∈ S

This is a linear program,
especially when we consider that the decision can take continuous values:
u ∈ U = [0, u♯]



The newsvendor problem example
is a special case of a general mechanism



From 
onvex pie
ewise linear to linear programming

◮ The convex piecewise linear program

min
x∈Rn

max
i=1,...,m

〈
c i , x

〉
+ bi

◮ can be written as the linear program

min
x∈Rn

min
v∈R

v

v ≥
〈
c i , x

〉
+ bi , i = 1, . . . ,m



From sto
hasti
 
onvex pie
ewise linear programming

to sto
hasti
 linear programming

◮ The stochastic convex piecewise linear program

min
x∈Rn

∑

s∈S

πs max
i=1,...,m

〈
c is , x

〉
+ bis

◮ can be written as the stochastic linear program

min
x∈Rn

min
(vs)s∈S∈RS

∑

s∈S

πsvs

vs ≥
〈
c is , x

〉
+ bis , i = 1, . . . ,m , s ∈ S



What happens if we want to minimize risk,

not mathemati
al expe
tation?

◮ Instead of minimizing the mathematical expectation

E[C] (=
∑

s∈S

πsCs)

◮ we want to minimize the Tail Value at Risk (at level λ ∈ [0, 1[),
given by the Rockafellar-Uryasev formula

TVaRλ[C] = inf
r∈R

{
E[(C − r)+]

1 − λ
+ r

}

◮ whose limit cases are mean and worst case

TVaR
0

[C] = E[C]

TVaR
1

[C] = lim
λ→1

TVaRλ[C] = sup
ω∈Ω

C(ω)



Minimizing the Tail Value at Risk of 
osts:


onvex pie
ewise linear programming formulation

◮ The risk-averse stochastic convex piecewise linear program

min
x∈Rn

min
r∈R

{

r +
1

1 − λ

∑

s∈S

πs

(

max
i=1,...,m

〈
c is , x

〉
+ bis − r

)

+

}

◮ can be written as the convex piecewise linear program

min
x∈Rn

min
r∈R

min
(us)s∈S∈RS

r +
1

1 − λ

∑

s∈S

πs(us − r)+

us ≥
〈
c1s , x

〉
+ b1s , ∀s ∈ S

...
us ≥ 〈cms , x〉+ bms , ∀s ∈ S



Minimizing the Tail Value at Risk of 
osts:

linear programming formulation

◮ The risk-averse stochastic convex piecewise linear program

min
x∈Rn

min
r∈R

{

r +
1

1 − λ

∑

s∈S

πs

(

max
i=1,...,m

〈
c is , x

〉
+ bis − r

)

+

}

◮ can be written as the linear program

min
x∈Rn

min
r∈R

min
(vs )s∈S∈RS

r +
1

1 − λ

∑

s∈S

πsvs

vs ≥
〈
c1s , x

〉
+ b1s − r , ∀s ∈ S

...
vs ≥ 〈cms , x〉+ bms − r , ∀s ∈ S

vs ≥ 0 , ∀s ∈ S



How to use risk-averse sto
hasti
 programming in pra
ti
e?

◮ Denote by x⋆λ the (supposed unique) solution
◮ As 1 − λ measures the upper probability of risky events,

start with λ = 0 and display, to the decision-maker,
the risk-neutral solution x⋆

0

and the probability distribution
(histogram) of the random costs

s 7→ max
i=1,...,m

〈
c is , x

⋆
0

〉
+ bis

◮ Then move to the confidence level λ = 0.99 (only events with
probability less than 1% are considered), and do the same

◮ For a range of possible values for λ, display, to the decision-maker,
the solution x⋆λ and the histogram of the random costs

s 7→ max
i=1,...,m

〈
c is , x

⋆
λ

〉
+ bis

◮ The decision-maker should choose his confidence level λ



We 
an also minimize the mean 
osts,

while 
ontrolling for large 
osts

◮ Instead of only minimizing the mathematical expectation

E[C] (=
∑

s∈S

πsCs)

◮ we add the constraint that the Tail Value at Risk (at level λ ∈ [0, 1[)
is not too large

TVaRλ[C] = inf
r∈R

{
E[(C − r)+]

1 − λ
+ r

}

≤ C ♯

◮ We can also choose to minimize a mixture

θE[C]+(1−θ)TVaRλ[C] = inf
r∈R

{

θE[C] + (1 − θ)
E[(C − r)+]

1 − λ
+ (1 − θ)r

}



Minimizing a mixture:


onvex pie
ewise linear programming formulation

◮ The risk-averse stochastic convex piecewise linear program

min
x∈Rn

min
r∈R

{

θ
∑

s∈S

πs max
i=1,...,m

〈
c is , x

〉
+ bis

+(1 − θ)r +
1 − θ

1 − λ

∑

s∈S

πs

(

max
i=1,...,m

〈
c is , x

〉
+ bis − r

)

+

}

◮ can be written as the convex piecewise linear program

min
x∈Rn

min
r∈R

min
(us)s∈S∈RS

∑

s∈S

πs

{

θus + (1 − θ)r +
1 − θ

1 − λ
(us − r)+

}

us ≥
〈
c1s , x

〉
+ b1s , ∀s ∈ S

...
us ≥ 〈cms , x〉+ bms , ∀s ∈ S



Minimizing a mixture:

linear programming formulation

◮ The risk-averse stochastic convex piecewise linear program

min
x∈Rn

min
r∈R

{

θ
∑

s∈S

πs max
i=1,...,m

〈
c is , x

〉
+ bis

+(1 − θ)r +
1 − θ

1 − λ

∑

s∈S

πs

(

max
i=1,...,m

〈
c is , x

〉
+ bis − r

)

+

}

◮ can be written as the linear program

min
x∈Rn

min
r∈R

min
(us)s∈S∈RS

min
(vs)s∈S∈RS

∑

s∈S

πs

{

θus + (1 − θ)r +
1 − θ

1 − λ
vs

}

us ≥
〈
c1s , x

〉
+ b1s , ∀s ∈ S

...
us ≥ 〈cms , x〉+ bms , ∀s ∈ S

vs ≥ us − r , ∀s ∈ S

vs ≥ 0 , ∀s ∈ S



How to use risk-averse sto
hasti
 programming in pra
ti
e?

◮ Denote by x⋆λ,θ the (supposed unique) solution
◮ As 1 − λ measures the upper probability of risky events,

let the decision-maker choose a confidence level λ
— λ = 0.99 (only events with probability less than 1% are
considered), λ = 0.95, λ = 0.90, for instance

◮ Start with θ = 0 and display, to the decision-maker,
the risk-neutral solution x⋆λ,0 (which does not depend on λ)
and the probability distribution (histogram) of the random costs

s 7→ max
i=1,...,m

〈
c is , x

⋆
λ,0

〉
+ bis

◮ Increase θ from 0 to 1, and display, to the decision-maker,
the solution x⋆λ,θ and the histogram of the random costs

s 7→ max
i=1,...,m

〈
c is , x

⋆
λ,θ

〉
+ bis

◮ The decision-maker reveals his confidence level λ
and his mixture (θ, 1 − θ) as he selects his prefered histogram
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Suppose you had to manage a day-ahead energy market
You would have to fix reserves by night

and adjust in the morning with recourse energies



From linear to sto
hasti
 programming

◮ The linear program

min
x∈Rn

〈c , x〉

Ax + b ≥ 0 (∈ Rm)

◮ becomes a stochastic program

min
x∈Rn

∑

s∈S

πs 〈cs , x〉

Asx + bs ≥ 0 , ∀s ∈ S

◮ We observe that there are as many (vector) inequalities
as there are possible scenarios s ∈ S

Asx + bs ≥ 0 , ∀s ∈ S

and these inequality constraints can delineate
an empty domain for optimization



Re
ourse variables need be introdu
ed for feasability issues

◮ We denote by s ∈ S any possible value of the random variable ξ,
with corresponding probability πs

◮ and we introduce a recourse variable y = (ys)s∈S and the program

min
x,(ys )s∈S

∑

s∈S

πs

(

〈cs , x〉+ 〈ps , ys〉
)

ys ≥ 0 , ∀s ∈ S

Asx + bs + ys ≥ 0 , ∀s ∈ S

◮ so that the inequality Asx + bs + ys ≥ 0 is now possible,
at (unitary recourse) price vector p = (ps , s ∈ S)

◮ Observe that such stochastic programs are huge problems,
with solution

(
x , (ys)s∈S

)
, but remain linear



Minimizing the Tail Value at Risk of 
osts:

linear programming formulation

◮ The risk-averse stochastic linear program with recourse

min
x,(ys )s∈S

min
r∈R

{

r +
1

1 − λ

∑

s∈S

πs

(

〈cs , x〉+ 〈ps , ys〉
)

+

}

◮ can be written as the linear program

min
x,(ys )s∈S

min
r

min
(vs )s∈S

r +
1

1 − λ

∑

s∈S

πsvs

vs − 〈cs , x〉 − 〈ps , ys〉 ≥ 0 , ∀s ∈ S

vs ≥ 0 , ∀s ∈ S

ys ≥ 0 , ∀s ∈ S

Asx + bs + ys ≥ 0 , ∀s ∈ S



Minimizing a mixture:

linear programming formulation

◮ The risk-averse stochastic linear program with recourse

min
x,(ys )s∈S

min
r∈R

{

θ
∑

s∈S

πs

(

〈cs , x〉+ 〈ps , ys〉
)

+ (1 − θ)r +
1 − θ

1 − λ

∑

s∈S

πs

(

〈cs , x〉+ 〈ps , ys〉
)

+

}

◮ can be written as the linear program

min
x,(ys )s∈S

min
r

min
(us ,vs )s∈S

∑

s∈S

πs

{

θus + (1 − θ)r +
1 − θ

1 − λ
vs

}

us − 〈cs , x〉 − 〈ps , ys〉 ≥ 0 , ∀s ∈ S

vs − us + r ≥ 0 , ∀s ∈ S

vs ≥ 0 , ∀s ∈ S

ys ≥ 0 , ∀s ∈ S

Asx + bs + ys ≥ 0 , ∀s ∈ S



Roger Wets example

http://cermics.enpc.fr/~delara/TEACHING/

CEA-EDF-INRIA_2012/Roger_Wets1.pdf



Two-step sto
hasti
 programs with re
ourse 
an

be
ome deterministi
 non-smooth 
onvex problems

◮ Define

Qs(x)
︸ ︷︷ ︸

value fun
tion

= min{〈ps , y〉 ,Asx + bs + y ≥ 0}

which is a convex function of x , non-smooth
◮ so that the original two-step stochastic program with recourse

min
x,(ys )s∈S

∑

s∈S

πs

[
〈cs , x〉+ 〈ps , ys〉

]

ys ≥ 0 , ∀s ∈ S

Asx + bs + ys ≥ 0 , ∀s ∈ S

◮ now becomes the deterministic non-smooth convex problem

min
x

∑

s∈S

πs

[
〈cs , x〉+ Qs(x)

]

◮ An optimal solution is now more likely to be an inner solution
(more robust)



A quadrati
 toy problem

Let c > 0 , d
1

≥ 0 , d
2

≥ 0
◮ Show that the (worst case) optimization problem

min
x∈R

1
2
cx2

x ≥ d
1

x ≥ d
2

has (worst case) solution

x = max{d
1

, d
2

}

◮ What happens if we allow room for recourse?



A quadrati
 toy problem with re
ourse

Let c > 0 , d
1

≥ 0 , d
2

≥ 0 , p
1

> 0 , p
2

> 0

◮ Show that the (stochastic) optimization problem

min
(x,y

1

,y
2

)∈R3

1
2

(

cx2 + p
1

y2
1

+ p
2

y2
2

)

x + y
1

= d
1

x + y
2

= d
2

has a solution x⋆ given by

x⋆ =
p
1

c + p
1

+ p
2

d
1

+
p
2

c + p
1

+ p
2

d
2

+
c

c + p
1

+ p
2

0

◮ Therefore, x⋆ belongs to the convex generated by {0, d
1

, d
2

}, that is,

x⋆ ∈ [0,max{d
1

, d
2

}]

◮ Compare with the (worst case) solution x = max{d
1

, d
2

}



Where have we gone till now? And what 
omes next

◮ We have arrived at optimization problems
with two decision variables

◮
a �rst one deterministi


◮
a se
ond one random (as it is indexed by the s
enarios)

◮ We have handled the risk neutral case, but also the risk averse case,
with risk measures displaying good mathematical properties
(like the Tail Value at Risk)

◮ We will now present resolution methods that, somehow surprisingly,
relax the assumption that the first decision variable is deterministic
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We start with a two-stage sto
hasti
 optimization problem

formulated on a tree

Criterion j : X
︸︷︷︸

initial

de
ision

×

re
ourse

variable

︷︸︸︷

Y × S
︸︷︷︸

s
enario

→ R

and set-valued mapping Y : X× S → 2Y

◮ Stochastic optimization problem

min
x,(ys )s∈S

∑

s∈S

πs js
(
x , ys

)

x ∈ X

ys ∈ Ys

(
x
)
, ∀s ∈ S

◮ Solutions
(
x , (ys)s∈S

)
are naturally indexed by a tree

◮
with one root

◮
and S = 
ard S leaves



We transform the two-stage sto
hasti
 optimization problem

by extending the solution spa
e

◮ We consider initial decisions (xs)s∈S and the problem

min
x,(xs )s∈S,(ys)s∈S

∑

s∈S

πs js
(
xs , ys

)

xs ∈ X , ∀s ∈ S

ys ∈ Ys(xs) , ∀s ∈ S

xs = x , ∀s ∈ S

x ∈ X

◮ This problem has the same solutions
(
x , (ys)s∈S

)

as the original one



S
enarios 
an be organized like a fan or like a tree

t�✁ t�✂ t�✄ t�☎ t�✆ t�✁ t�✂ t�✄ t�☎ t�✆

◆ ✝✞✟✠✡☛☞✌✝ ❙✞✟✠✡☛☞✌✝ ✍☛✟✟



We transform the two-stage sto
hasti
 optimization problem

from a tree to a fan

◮ We consider initial decisions (xs)s∈S and the problem

min
(xs )s∈S,(ys)s∈S

∑

s∈S

πs js
(
xs , ys

)

xs ∈ X , ∀s ∈ S

ys ∈ Ys(xs) , ∀s ∈ S

xs =
∑

s′∈S
πs′xs′ , ∀s ∈ S

◮ Solutions (xs , ys)s∈S are naturally indexed by a fan



Primal and dual problems

◮ The primal problem is

min
(xs ,ys)s∈S

max
(λs)s∈S

∑

s∈S

πs

(

js
(
xs , ys

)
+ λs

(
xs −

∑

s′∈S

πs′xs′
))

xs ∈ X , ∀s ∈ S

ys ∈ Ys(xs) , ∀s ∈ S

◮ The dual problem is

max
(λs )s∈S

min
(xs ,ys)s∈S

∑

s∈S

πs

(

js
(
xs , ys

)
+ λs

(
xs −

∑

s′∈S

πs′xs′
))

xs ∈ X , ∀s ∈ S

ys ∈ Ys(xs) , ∀s ∈ S



We 
an translate the multipliers λs in the dual problem

◮ Denote by X : S → X the random variable X (s) = xs , s ∈ S

◮ Denote by Λ : S → R the random variable Λ(s) = λs , s ∈ S

∑

s∈S

πsλs

(
xs −

∑

s′∈S

πs′xs′
)

=E
[
Λ
(
X − E[X ]

)]

=E
[
ΛX

]
− E[Λ]E[X ]

=E
[(
Λ− E[Λ]

)
X
]

=
∑

s∈S

πs

(
λs −

∑

s′∈S

πs′λs′
)

︸ ︷︷ ︸

proje
ted multiplier λs

xs



Restri
ting the multiplier

Then the dual problem is

max
(λs )s∈S

min
(xs ,ys)s∈S

∑

s∈S

πs

(

js
(
xs , ys

)
+
(
λs −

∑

s′∈S

πs′λs′
)
xs

)

xs ∈ X , ∀s ∈ S

ys ∈ Ys(xs) , ∀s ∈ S



The dual problem 
an be de
omposed s
enario by s
enario

◮ The dual problem

max
(λs )s∈S

min
(xs ,ys)s∈S

∑

s∈S

πs

(

js
(
xs , ys

)
+

(
λs −

∑

s′∈S

πs′λs′
)
xs

)

xs ∈ X , ∀s ∈ S

ys ∈ Ys(xs) , ∀s ∈ S

◮ is equivalent to

max(λs )s∈S

∑

s∈S

πs min
(xs ,ys )

(

js
(
xs , ys

)
+
(
λs −

∑

s′∈S

πs′λs′
)
xs

)

xs ∈ X , ∀s ∈ S

ys ∈ Ys(xs) , ∀s ∈ S



Under proper assumptions
— to be seen later, as they require recalls in duality theory —
the dual problem can be solved by an algorithm “à la Uzawa”

yielding the following
scenario decomposition algorithm



S
heme of the s
enario de
omposition algorithm

Data: step ρ > 0, initial multipliers
{
λ
(0)
s

}

s∈S
and mean first decision

x
(0);

Result: optimal first decision x ;
repeat

forall scenarios s ∈ S do
Solve the deterministic minimization problem for scenario s,

with a penalization +λ
(k)
s

(

x
(k+1)
s − x

(k)
)

,

and obtain optimal first decision x
(k+1)
s ;

Update the mean first decisions

x
(k+1) =

∑

s∈S

πsx
(k+1)
s ;

Update the multiplier by

λ
(k+1)
s = λ

(k)
s + ρ

(
x
(k+1)
s − x

(k+1)
)
, ∀s ∈ S ;

until x
(k+1)
s −

∑

s′∈S
πs′x

(k+1)
s′ = 0 , ∀s ∈ S;



Outline of the presentation

Working out static examples
The blood-testing problem
The newsvendor problem

Two-stage stochastic programming problems
Moving from deterministic convex piecewise linear programs
Moving from linear programs with constraints
Scenario decomposition resolution methods
Recalls on duality and Lagrangian decomposition
Progressive Hedging



Re
alls and exer
ises on 
ontinuous optimization

http://cermics.enpc.fr/~delara/TEACHING/slides_optimization.pdf



Thanks to Pierre Carpentier (ENSTA ParisTech),
we provide a geometric interpretation of Uzawa’s algorithm



Uzawa's geometri
 interpretation I

For the sake of simplicity, we consider here equality constraints:

u(k+1) ∈ arg min
u∈Uad

J(u) +
〈
λ(k) ,Y (u)

〉
,

λ(k+1) = λ(k) + ρΘ(u(k+1)) .

The minimization step in u is equivalent to:

min
v∈V

min
u∈Uad

J(u) +
〈
λ(k) , v

〉
s.t. Y (u)− v = 0 .

Introducing the perturbation function G given by

G(v) = min
u∈Uad

J(u) s.t. Y (u)− v = 0 ,

the minimization step writes equivalently:

min
v∈V

G(v) +
〈
λ(k) , v

〉
.



Uzawa's geometri
 interpretation II

Recall that the initial problem consists in obtaining G(0). . .

With the help of the function G , Uzawa’s algorithm writes:

v (k+1) ∈ arg min
v∈V

G(v) +
〈
λ(k) , v

〉
,

λ(k+1) = λ(k) + ρv (k+1) .

From a (conceptual) geometric point of view, it amounts to:

◮ Step (a): minimize the gap between G(·) and
〈
− λ(k) , ·

〉
.

◮ Step (b): adjust the slope −λ(k) if v (k+1) 6= 0.



Uzawa's geometri
 interpretation III

V

RG(·)



Uzawa's geometri
 interpretation III

V

RG(·)

−〈λ(k), ·〉



Uzawa's geometri
 interpretation III

V

RG(·)

v(k+1)

−〈λ(k), ·〉



Uzawa's geometri
 interpretation III

G(·)

v(k+1)

−〈λ(k), ·〉

v(k+2)

−〈λ(k+1), ·〉

V

R



Uzawa's geometri
 interpretation III

v(k+2)

v(k+1)

−〈λ(k), ·〉

−〈λ♯, ·〉

−〈λ(k+1), ·〉

V

RG(·)



Uzawa's geometri
 interpretation IV

G(·)

V

R



Uzawa's geometri
 interpretation IV

v

V

R

v

G(·)

−〈λ♯, ·〉

Even if {λ(k)}k∈N converges towards λ⋆, the constraint level v (k)

oscillates between v and v , but the value v⋆ = 0 is never reached



Uzawa's geometri
 interpretation V

v

−〈λ♯, ·〉

R

V

v

G(·)



Uzawa's geometri
 interpretation V

v

−〈λ♯, ·〉

R

V

v

G(·)

−〈λ♯, ·〉 − c
2
‖ · ‖2

In the non convex case, use an augmented Lagrangian. . .
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Progressive Hedging

Rockafellar, R.T., Wets R. J-B.
Scenario and policy aggregation in optimization under uncertainty,

Mathematics of Operations Research, 16, pp. 119-147, 1991

http://cermics.enpc.fr/~delara/TEACHING/

CEA-EDF-INRIA_2012/Roger_Wets4.pdf



The �plus� of Progressive Hedging

◮ In addition to the variables xs , we introduce a new variable x ,
so that the non-anticipativity constraint becomes xs = x

◮ We dualize this constraint with an augmented Lagrangian term,
yielding to an optimization problem with variables x·, x , λ

◮ When the multiplier λ is fixed,
we minimize the primal problem which, unfortunately,
is not separable with respect to scenarios s

◮ Luckily, we recover separability by solving sequentially
“à la Gauss-Seidel”

minx· L(x·, x
(k), λ(k))

minx L(x
(k+1)
· , x, λ(k))

because the first problem is separable with respect to scenarios s



S
heme of the Progressive Hedging algorithm

Data: penalty r > 0, initial multipliers
{
λ
(0)
s

}

s∈S
and mean first decision

x
(0);

Result: optimal first decision x ;
repeat

forall scenarios s ∈ S do
Solve the deterministic minimization problem for scenario s, with

penalization +λ
(k)
s

(

x
(k+1)
s − x

(k)
)

+ r
2

∥
∥
∥x

(k+1)
s − x

(k)
∥
∥
∥

2

,

and obtain optimal first decision x
(k+1)
s ;

Update the mean first decisions

x
(k+1) =

∑

s∈S

πsx
(k+1)
s ;

Update the multiplier by

λ
(k+1)
s = λ

(k)
s + r

(
x
(k+1)
s − x

(k+1)
)
, ∀s ∈ S ;

until x
(k+1)
s −

∑

s′∈S
πs′x

(k+1)
s′ = 0 , ∀s ∈ S;



What land have we 
overed?

◮ We have introduced one and two-stage optimization problems
under uncertainty

◮ Thanks to a general framework, using risk measures,
stochastic and robust optimization
appear as (important) special cases

◮ We have presented resolution methods by scenario decomposition
for two-stage optimization problems

◮ Dealing with multi-stage optimization problems
requires specific tools, as is the notion of state



�Self-promotion, nobody will do it for you� ;-)
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