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What makes optimization under uncertainty specific

I Optimization set is made of random variables

I Criterion generally derives from aggregating uncertainties,
mostly by a mathematical expectation, or by a risk measure

I Constraints
I generally include measurability constraints,

like the nonanticipativity constraints,
I and may also include probability constraints, or robust constraints



Here are the ingredients for
a general abstract optimization problem under uncertainty

I A set U of decisions

I A set Ω of scenarios

I An optimization set V ⊂ UΩ containing random variables V : Ω→ U
I A criterion J : V→ R ∪ {+∞}
I Constraints of the form V ∈ Vad ⊂ V

inf
V∈Vad

J(V)



Here is the most common framework
for robust and stochastic optimization

I A set U of decisions

I A set Ω of scenarios, or states of Nature,
possibly equipped with a σ-algebra

I An optimization set V ⊂ UΩ containing random variables V : Ω→ U
I A risk measure F : V→ R ∪ {+∞}
I A function j : U× Ω→ R ∪ {+∞}

(say, the “deterministic” criterion)

I Constraints of the form V ∈ Vad ⊂ V

inf
V∈Vad

J(V) = F
[
j(V(·), ·)

]
where the notation means that the risk measure F
has for argument the random variable

j(V(·), ·) : Ω→ R ∪ {+∞} , ω 7→ j(V(ω), ω)



Examples of classes of
robust and stochastic optimization problems

Uad ⊂ U

I Stochastic optimization “à la” gradient stochastique
I The risk measure F is a mathematical expectation E
I Measurability constraints make that the random variables V ∈ Vad

are constant, that is, are deterministic decision variables

inf
u∈Uad

EP
[
j(u, ·)

]
I Robust optimization

I The risk measure F is the fear operator/worst case supω∈Ω,

where Ω ⊂ Ω
I Measurability constraints make that the random variables V ∈ Vad

are constant, that is, are deterministic decision variables

inf
u∈Uad

sup
ω∈Ω

j(u, ω)



Multistage optimization examples

I A set U
U = U0 × U1 in two stage programming

I A set Ω of scenarios
Ω finite, Ω = N×WN for discrete time stochastic processes

I An optimization set V ⊂ UΩ containing random variables V : Ω→ U
I A risk measure F : V→ R ∪ {+∞}

most often a mathematical expectation E,
but can be supω∈Ω in the robust case, with Ω ⊂ Ω

I A function j : U× Ω→ R ∪ {+∞}
I Constraints of the form V ∈ Vad ⊂ V

I Measurability constraints,
like the nonanticipativity constraints

I Pointwise constraints,
like probability constraints and robust constraints



Most common constraints
in robust and stochastic optimization problems

I Measurability constraints

V ∈ linear subspace of UΩ

like the nonanticipativity constraints
I V = (V0,V1), V0 is F0-measurable, V1 is F1-measurable,

with {∅,Ω} = F0 ⊂ F1 = F
I V = {Vt}t=0,...,T , σ(Vt) ⊂ Ft for t = 0, . . . ,T

with filtration {Ft}t=0,...,T

I Pointwise constraints, with Uad : Ω⇒ U
I probability constraints

P
(
V ∈ Uad) ≥ 1− ε

I robust constraints

V(ω) ∈ Uad(ω) , ∀ω ∈ Ω ⊂ Ω



Savage’s minimal regret criterion... “Had I known”

The regret performs an additive normalization of the function
j : U× Ω→ R ∪ {+∞}

Regret
For u ∈ U and ω ∈ Ω, the regret is

r(u, ω) = j(u, ω)− min
u′∈U

j(u′, ω)

Then, take any risk measure F and solve

min
V∈Vad

F
[
r(V, ·)

]
= min

V∈Vad
F
[
j(V(ω), ω)−min

u∈U
j(u, ω)

]
so that one can have minimal worse regret, minimal expected regret, etc.



Where have we gone till now? And what comes next

I We have layed out the ingredients to set up problems of
optimization under uncertainty

I We have overviewed the constraints

I Now, we detail how we can build an array of criteria
from an array of risk measures

I Robust and stochastic optimization will appear as special cases
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For you, Nature is rather random or hostile?
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The (+,×) algebra of probability theory



Probability space

I The set Ω is equipped with a σ-field F ((Ω,F) measurable space),
and the elements of F ⊂ 2Ω are called events

I One speaks of a probability space (Ω,F ,P)
when the measurable space (Ω,F) is equipped with a probability P
(supposed, when needed and for the sake of simplicity, to have a
density p w.r.t. a reference measure, thus covering the finite case)

I The probability P : F → [0, 1] has the properties
I normalization

P(∅) = 0 , P(Ω) = 1

I additivity

P(
⋃
n∈N

An) =
∑
n∈N

P(An)

for any countable set N , An ∈ F for all n ∈ N ,
such that m 6= n =⇒ Am ∩ Am = ∅



Expected value
I A random variable is a measurable mapping X : (Ω,F)→ (X,X )

(between measurable spaces)

I The expected value of a nonnegative random variable
X : Ω→ R+ ∪ {+∞} is

E[X] =

∫
Ω

X(ω)dP(ω)
(∫

Ω

X(ω)p(ω)d(ω)
) (∑

ω∈Ω

P{ω}X(ω)
)

I The notation E (or EP or EP) refers to the mathematical
expectation (operator) over Ω under probability P,
extended to integrable real-valued random variables

I The expectation operator E enjoys linearity in the (+,×) algebra

E[X + Y] = E[X] + E[Y]

I The random variables X,Y are independent under P when
their joint distribution P(X,Y) can be decomposed as a product

P(X,Y) = PX ⊗ PY



The (max,+) algebra of decision/robust/plausability theory



Decision space, cost measure, plausability
are the robust counterparts of probability space

I The set Ω is equipped with a σ-field F ((Ω,F) measurable space)

I One speaks of a decision space (Ω,F ,K) when the measurable
space (Ω,F) is equipped with a cost measure K (supposed, when
needed, to have a density κ, thus covering the finite case)

I The cost measure (plausibility) K : F → [−∞, 0] has the properties
I normalization

K(∅) = −∞ , K(Ω) = 0

I (max,+) “additivity”

K(
⋃
n∈N

An) = sup
n∈N

K(An)

for any countable set N , An ∈ F for all n ∈ N ,
such that m 6= n =⇒ Am ∩ Am = ∅



Cost density, plausibility function

I The function κ : Ω→ [−∞, 0] is a cost density
of the cost measure K if

K(A) = sup
ω∈A

κ(ω) , ∀A ∈ F

I A function κ : Ω→ R ∪ {−∞} = [−∞, 0],
such that supω∈Ω κ(ω) = 0,
is a cost density, also called plausibility function



The fear operator [Bernhard, 1995]

The Moreau lower addition extends the usual addition with

(+∞) ·+ (−∞) = (−∞) ·+ (+∞) = −∞

I A decision variable is a mapping (Ω,F)→ (T, T )
(with codomain a topological space)

I The feared value of a function ψ : Ω→ [−∞,+∞]
(real-valued decision variable) is defined by

F(ψ) = sup
ω∈Ω

[
ψ(ω) ·+ κ(ω)

]
I The fear operator F enjoys linearity in the (max,+) algebra

F
(
max{ψ, φ}

)
= max{F(ψ),F(φ)}

I Independence
K(ψ,φ) = Kψ + Kφ



More or less implausible events

I For any subset Ω′′ ⊂ Ω, we have that

K(∅) = −∞ ≤ K(Ω′′) ≤ K(Ω) = 0

I The higher (closest to zero from below), the more plausible, whereas
totally implausible outcomes in Ω′′ are such that K(Ω′′) = −∞

I With any subset Ω′ ⊂ Ω, we associate the characteristic function
δΩ′ : Ω→ {0,+∞}

δΩ′
(
ω
)

=

{
0 if ω ∈ Ω′

+∞ if ω 6∈ Ω′

I The cost measure associated with the uniform density −δΩ′ satisfies

∀Ω′′ ⊂ Ω , K(Ω \ Ω′′) =

{
−∞ if Ω′′ ⊂ Ω′ (Ω \ Ω′′ implausible )

0 if Ω′′ ∩ Ω′ 6= ∅
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In the robust or pessimistic approach,
Nature is supposed to be malevolent,
and the DM aims at protection against all odds



In the robust or pessimistic approach,
Nature is supposed to be malevolent

I In the robust approach, the DM considers the worst cost

sup
ω∈Ω

j(V(ω), ω)︸ ︷︷ ︸
worst cost

I Nature is supposed to be malevolent,
and specifically selects the worst outcome:
the DM plays after Nature has played, and minimizes the worst cost

min
V∈Vad

sup
ω∈Ω

j(V(ω), ω)

I Robust, pessimistic, worst case, minimax, maximin (for payoffs)



The robust approach can be softened
with plausibility weighting

I Let κ : Ω→ R ∪ {−∞} = [−∞, 0], such that supω∈Ω κ(ω) = 0,
be a plausibility function

I The higher (closest to zero from below), the more plausible,
whereas totally implausible outcomes ω are those for which
κ(ω) = −∞

I Nature is malevolent, and specifically selects the worst outcome,
but weighs it according to the plausibility function κ

I The DM plays after Nature has played, and solves

min
V∈Vad

sup
ω∈Ω

j(V(ω), ω) ·+ κ(ω)︸︷︷︸
plausibility






In the optimistic approach,
Nature is supposed to benevolent

Future. That period of time in which our affairs prosper,
our friends are true and our happiness is assured.

Ambrose Bierce

I Instead of minimizing the worst cost as in a robust approach,
the optimistic focuses on the most favorable cost

inf
ω∈Ω

j(V(ω), ω)︸ ︷︷ ︸
lowest cost

I Nature is supposed to benevolent,
and specifically selects the best outcome:
the DM plays after Nature has played, and solves

min
V∈Vad

inf
ω∈Ω

j(V(ω), ω)



The Hurwicz criterion reflects an intermediate attitude
between optimistic and pessimistic approaches

A proportion α ∈ [0, 1] graduates the level of prudence

min
V∈Vad

{
α

pessimistic︷ ︸︸ ︷
sup
ω∈Ω

j(V(ω), ω) +(1− α) inf
ω∈Ω

j(V(ω), ω)︸ ︷︷ ︸
optimistic

}
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In the stochastic or expected approach,
Nature is supposed to play stochastically



In the stochastic or expected approach,
Nature is supposed to play stochastically

I (Ω,F) equipped with a probability P
I The expected cost is

mean cost︷ ︸︸ ︷
EP
[
j
(
V(·), ·

)]
=

∫
Ω

j(V(ω), ω)dP(ω)

I Nature is supposed to play stochastically,
according to distribution P:
the DM plays after Nature has played, and solves

min
V∈Vad

EP
[
j
(
V(·), ·

)]



The expected disutility approach distorts costs
before taking the expectation

I We consider a disutility function L to assess the disutility of the costs
(for instance minus a CARA exponential utility function)

I The expected disutility is

E
[
L
(
j
(
V(·), ·

))]
︸ ︷︷ ︸
expected disutility

=

∫
Ω

L
(
j
(
V(ω), ω

))
dP(ω)

I The expected disutility minimizer solves

min
V∈Vad

E
[
L
(
j
(
V(·), ·

))]



The ambiguity or multi-prior approach
combines robust and expected criterion

I Set ∆(Ω) of probabilities on Ω

I Different probabilities P (often termed as beliefs or priors)
belonging to a subset P ⊂ ∆(Ω) of admissible probabilities on Ω

I The multi-prior approach combines robust and expected criterion
by taking the worst beliefs in terms of expected cost

min
V∈Vad

sup
P∈P

mean cost︷ ︸︸ ︷
EP
[
j
(
V(·), ·

)]
︸ ︷︷ ︸

pessimistic over probabilities



Extension of the ambiguity or multi-prior approach

I Subset P ⊂ ∆(Ω) of admissible probabilities on Ω

I To each probability P is attached a plausibility κ(P) ∈ [−∞, 0]

min
V∈Vad

sup
P∈P

( mean cost︷ ︸︸ ︷
EP
[
j
(
V(·), ·

)]
·+

plausibility︷︸︸︷
κ(P)

)
︸ ︷︷ ︸

pessimistic over probabilities

What is the special case where P is
either the set of Dirac measures or the whole set of probabilities?



Convex risk measures cover a wide range of risk criteria
(more on convex risk measures later)

I Plausibility function κ : ∆(Ω)→ [−∞, 0]

sup
P∈∆(Ω)

( mean cost︷ ︸︸ ︷
EP
[
j
(
V(·), ·

)]
·+

plausibility︷︸︸︷
κ(P)

)
︸ ︷︷ ︸

pessimistic over probabilities

I Expected: κ(P̄) = 0, and κ(P) = −∞ for any P 6= P̄
I Robust: κ(P) = 0 for any P ∈ ∆(Ω)

I Multi-prior: κ(P) = 0 for any P ∈ P ⊂ ∆(Ω),
and κ(P) = −∞ for any P 6∈ P



Non convex risk measures can lead to non diversification

How to gamble if you must,
L.E. Dubbins and L.J.
Savage, 1965

Imagine yourself at a casino with
$1,000. For some reason, you des-
perately need $10,000 by morning;
anything less is worth nothing for
your purpose.

The only thing possible is to gam-
ble away your last cent, if need be,
in an attempt to reach the target
sum of $10,000.

I The question is how to play,
not whether. What ought you do?
How should you play?
I Diversify, by playing 1 $ at a time?
I Play boldly and concentrate,

by playing 1,000 $ only one time?

I What is your decision criterion?
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Here are some guiding principles for any risk formalization

I The essence of risk is asymmetry between bad and good odds

I If a prospect makes better than another in every state of nature,
it should be less risky

I Diversification should not increase risk
(this point should be discussed)



Recalls on measurable spaces, σ-fields, probability

I Finite set Ω, random variables are mappings X : Ω→ R
I The law of large numbers requires an infinite (product) probability

space able to sustain an infinite number of distinct random variables

I It is not possible to define a probability P
on all subsets of an infinite sample space Ω

I This is why we restrict events to elements of a σ-field F
I (Ω,F ,P) is a probability space

I Random variables are measurable mappings X : (Ω,F)→ (R,BR),
namely X−1(BR) ⊂ F

I With a random variable X we associate
the image probability PX = P ◦ X−1 on (R,BR)



“There are things we do not know we don’t know”

“Reports that say that something hasn’t happened are always interesting
to me, because as we know, there are known knowns; there are things we
know we know. We also know there are known unknowns; that is to say
we know there are some things we do not know. But there are also
unknown unknowns – the ones we don’t know we don’t know. And if one
looks throughout the history of our country and other free countries, it is
the latter category that tend to be the difficult ones.”

Donald Rumsfeld, former United States Secretary of Defense. From
Department of Defense news briefing, February 12, 2002.



Uncertainty, risk, ambiguity

HH

HM

HL

MH

MM

ML

LH

LM

LL

I Uncertainty: set Ω

I ω ∈ Ω: outcome, scenario, state of
nature, etc.

I Information: σ-field F of events
F ⊂ F

I Risk: (Ω,F) carries a probability P
I Ambiguity: family Q of

probabilities P ∈ Q



Variance and standart deviation fail the test as risk
measures: they are measures of dispersion and variability

var
(
X
)

= E
[(

X− E[X]
)2
]

I The variance is not measured in the same units than X,
since var

(
θX
)

= θ2 var
(
X
)

I This can be corrected by using the standart deviation

σ(X) =
√

var
(
X
)

I The variance is not monotonous: X ≥ Y 6⇒ var
(
X
)
≤ var

(
Y
)

(take Y = 0 and any X ≥ 0 which is not constant)

I The variance weighs symmetrically
what is above and what is below the mean, whereas
the essence of risk is asymmetry between bad and good odds:

→ E
[(

X− E[X]
)
−

]
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Going from home to the airport with a safety margin

I When you go from home to the airport, you consider
possible transportation delay (road accident, bus delay),
represented by a (stochastic) transport time X

I You take a safety margin,
and add some (deterministic) extra time ρ(X)

I This extra time ρ(X) depends
I on the randomness (X) that affects transportation
I on how you perceive (ρ) the importance of being “just in time”

I This deterministic extra time is an example of (gauge) risk measure
deterministic extra time︷︸︸︷

ρ(X) +

stochastic transportation time︷︸︸︷
X︸ ︷︷ ︸

acceptable stochastic time from home to airport

∈ A



Risk measures as capital requirement

A measure of risk associates to each cost X

I the minimum extra capital ρ(X), a deterministic number,

I required to make it “acceptable” to a regulator

I that is, such that when you substract ρ(X) from the cost X,
the shifted cost X− ρ(X) becomes acceptable

The lower ρ(X), the better (the less risk)



Mathematical ingredients

I We consider a measurable space (Ω,F)

I We denote by L(Ω,F ,R) the set of random variables
(measurable functions Z : Ω→ R)

I When Ω is finite (scenarios), the set of random variables
coincides with RΩ, the set of functions from Ω to R



Interpreting the mathematical expectation
as a gauge risk measure

I Define the following set of acceptable random variables

A = {Z ∈ L(Ω,F ,R) | E[Z] ≤ 0}

When the random variable Z is interpreted as a cost,
a cost with negative mean is acceptable

I The mathematical expectation E[X] of a random cost X is the
smallest amount x you can substract to X to make X− x acceptable

E[X] = inf{x ∈ R | X− x ∈ A} = inf{x ∈ R | E[X− x ] ≤ 0}
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Axiomatics of risk measures

A risk measure is a mapping ρ : L(Ω,F ,R)→ R (or R ∪ {−∞})

Risk measures
A risk measure ρ is

(T) invariant by translation if ρ(X + x) = ρ(X) + x ,
for all x ∈ R

(M) monotonous whenever X ≥ Y ⇒ ρ(X) ≥ ρ(Y)

(C) convex if ρ(θX + (1− θ)Y) ≤ θρ(X) + (1− θ)ρ(Y)

(PH) positively homogeneous if ρ(θX) = θρ(X) when θ > 0

(S) subadditive if ρ(X + Y) ≤ ρ(X) + ρ(Y)

One says that ρ is a monetary risk measure if it is
monotonous (M) and invariant by translation (T)



Acceptance set of a translation invariant risk measure

ρ 7→ Aρ
With any translation invariant risk measure ρ, we associate
the subset Aρ of random variables, called acceptance set of ρ

Aρ = {X ∈ L(Ω,F ,R) | ρ(X) ≤ 0}

Denoting by 1 the constant random variable having value 1, we have that

Aρ + R+1 ⊂ Aρ

since ρ is translation invariant



Translation invariant risk measure
associated with a given acceptance set

A 7→ ρA
Letting A ⊂ L(Ω,F ,R) be such that A+ R+1 ⊂ A, we define

ρA(X) = inf{x ∈ R | X− x ∈ A}

which is a translation invariant risk measure



Axiomatics of acceptance sets

Acceptance sets

An acceptance set A is

(M) monotonous whenever X ≥ Y and Y ∈ A ⇒ X ∈ A
(C) convex if θX + (1− θ)Y ∈ A whenever X ∈ A and Y ∈ A

(PH) a cone if θA ⊂ A for any θ > 0, that is,
if θX ∈ A whenever X ∈ A and θ > 0

(S) stable by addition if X + Y ∈ A
whenever X ∈ A and Y ∈ A

(SS) star-shaped if θA ⊂ A for any θ ∈]0, 1[



Worst case risk measure

The worst case risk measure is

ρmax(X) = sup
ω∈Ω

X(ω)

with acceptance set

A = {Z ∈ L(Ω,F ,R) | Z ≤ 0}
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Cumulative distribution function

−3 −2 −1 0 1 2 3 4
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Cumulative distribution function of a Normal random variable

I (Ω,F) equipped with a
probability P

I X : Ω→ R real random variable

I ψX(x) = P(X ≤ x)

I x 7→ ψX(x) is increasing and
right-continuous



Continuous case example

0.25 0.30 0.35 0.40 0.45 0.50
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Empirical cumulated distribution of a Log−Normal prospect X: log(X) ~ N(−1,0.09)



Quantiles in the continuous case

I Let λ ∈]0, 1[, that plays the role of a risk level

I In the case of a random variable X with positive density,
the c.d.f. ψX is stricly increasing,
and there is a unique λ-quantile given by

Q−λ (X) = Q+
λ (X) = ψ−1

X (λ)

I Some quantiles of a Normal random variable are

x −3.33 −2.57 −2.33 −1.96 −1.64
ψN (0,1)(x) 0.0005 0.005 0.01 0.025 0.05

Table: Quantiles of a Normal random variable N (0, 1)



Discrete case example

X P
12 0.2
10 0.3
6 0.4
-3 0.1

for x ≤ 12 ψX(x) = 1
for 10 ≤ x < 12 ψX(x) = 0.1 + 0.4 + 0.3
for 6 ≤ x < 10 ψX(x) = 0.1 + 0.4
for −3 ≤ x < 6 ψX(x) = 0.1
for x < −3 ψX(x) = 0



Cumulative distribution function left-continuous inverse

In the general case, we introduce

I left-continuous inverse of ψX

ψ−1
X (λ) = inf{x ∈ R | ψX(x) ≥ λ}

I characterized by the equivalence

ψ−1
X (λ) ≤ x ⇐⇒ λ ≤ ψX(x)



Quantiles

I Let λ ∈]0, 1[, that plays the role of a risk level

I A λ-quantile of the real random variable X is
any real number q such that

P(X ≤ q) ≥ λ︸︷︷︸
risk level

≥ P(X < q)

I The set of λ-quantiles is an interval [Q−λ (X),Q+
λ (X)] where

Q−λ (X) = inf{q | P(X ≤ q) ≥ λ}
Q+
λ (X) = inf{q | P(X ≤ q) > λ}

I Q−λ (X) = inf{q | ψX(q) ≥ λ} = ψ−1
X (λ)



Quantiles in the discrete case

I Let X ∼ B(1/2; 1) follow a Bernoulli distribution

P(X < 0) = 0 < P(X ≤ 0) = 1/2 = P(X < 1) < P(X ≤ 1) = 1

I The quantiles are

0 < λ < 1/2 λ = 1/2 1/2 < λ < 1
Q−λ (X) 0 0 1
Q+
λ (X) 0 1 1

Table: Quantiles of a Bernoulli B(1/2; 1) random variable



Quantiles in the discrete case

I Discrete random variable X
I having values x1 < x2 < · · · < xn
I with probabilities P(X = xi ) = pi > 0, i = 1, . . . , n

I Letting q1 = p1, q2 = p1 + p2, qn−1 = p1 + · · ·+ pn−1

I the quantiles are given by

0 < λ < q1 λ = q1 p1 < λ < q2 λ = q2 · · · λ = qn−1 qn−1 < λ < 1

Q
−
λ

(X) x1 x1 x2 x2 · · · xn−1 xn

Q+
λ

(X) x1 x2 x2 x3 · · · xn xn

Table: Quantiles of a discrete random variable



The Value at Risk (quantile)

Let λ ∈]0, 1[, that plays the role of a risk level

Value at Risk
The Value at Risk of the cost X at level λ ∈]0, 1[ is

VaRλ(X) = inf{x ∈ R | P(X > x) < λ}

with acceptance set

A = {Z ∈ L(Ω,F ,R) | P(Z ≥ 0) < λ}



Value at Risk

I Intuitively, saying that the VaR5% of a portfolio is 100 means that
the loss will be more than 100 with probability at most 5%

I VaR5% is the maximum loss in the 95% of the cases

I However, VaR5% does not inform on the size of the loss

I If P(X > 0) = 0, then VaRλ(X) ≥ 0, meaning that money could be
added to the cost, and it would still be acceptable



Value at Risk and quantiles

VaRλ(X) = inf{x ∈ R | P(X > x) ≤ λ}
= Q−1−λ(X) = −Q+

λ (−X)

where

Q−λ (X) = inf{x | P(X ≤ x) ≥ λ}
= inf{x ∈ R | ψX(x) ≥ λ} = ψ−1

X (λ)

Q+
λ (X) = inf{x | P(X ≤ x) > λ}

= sup{x | P(X < x) ≤ λ}



Properties of the Value at Risk

The Value at Risk of a cost X is measured in the same units than X,
and is

I invariant by translation

VaRλ(X + x) = VaRλ(X) + x , ∀x ∈ R

I monotonous
X ≥ Y ⇒ VaRλ(X) ≥ VaRλ(Y)

I positively homogeneous

VaRλ(θX) = θVaRλ(X) , ∀θ > 0

But. . . diversification does not always decrease risk!



Value at Risk and diversification

Beware: here X and Y are minus costs!

ω X P
1 -100 4%
2 0 4%
3 0 4%
...

...
...

25 0 4%

ω Y P
1 0 4%
2 -100 4%
3 0 4%
...

...
...

25 0 4%

ω 0.5X + 0.5Y P
1 -50 4%
2 -50 4%
3 0 4%
...

...
...

25 0 4%

I The minimum m to be added to X in such a way that
P(X + m < 0) ≤ 5% is m = 0 since P(X− ε < 0) = 100% > 5% for
all ε > 0.

I Hence VaR5%(X) = VaR5%(Y) = 0.

I And. . .

VaR5%(X) = VaR5%(Y) = 0 < 50 = VaR5%(0.5X + 0.5Y)
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The Tail Value at Risk (superquantile)

Let λ ∈]0, 1[, that plays the role of a risk level

Tail Value at Risk
The Tail Value at Risk of the cost X at level λ ∈]0, 1[ is

TVaRλ(X) =
1

1− λ

∫ 1

λ

VaRλ′(X)dλ′



Properties of the Tail Value at Risk

The Tail Value at Risk of a cost X is measured in the same units than X,
and is

I invariant by translation

TVaRλ(X + x) = TVaRλ(X) + x , ∀x ∈ R

I monotonous
X ≥ Y ⇒ TVaRλ(X) ≥ TVaRλ(Y)

I positively homogeneous

TVaRλ(θX) = θTVaRλ(X) , ∀θ > 0

I convex, hence favors diversification :-)



[Rockafellar and Uryasev, 2000]

TVaRλ[X] = inf
s∈R

{
E[(X− s)+]

1− λ
+ s

}
, λ ∈ [0, 1[

Limit cases

TVaR0[X] = E[X]

TVaR1[X] = lim
λ→1

TVaRλ[X] = sup
ω∈Ω

X(ω)



More on the Tail Value at Risk

I The Average Value at Risk or Tail Value at Risk

TVaRλ(X) =
1

λ

∫ λ

0

VaRλ′(X)dλ′

I The Worst Conditional Expectation

sup{E[X | A] , A ∈ F , P(A) < λ}

are the worst costs conditioned over events
of probability less than the risk level λ ∈]0, 1[

I If P
{

X ≤ Q−1−λ(X)
}

= λ,

TVaRλ(X) = E[X |
costs greater than VaR︷ ︸︸ ︷

X ≥ VaRλ(X) ]

is the average of costs greater than the Value at Risk
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Affine risk measures

The cost average under probability Q is

ρ(X) = EQ(X)

whereas the shifted cost average under probability Q is

ρ(X) = EQ(X)− γ



Convex risk measures

Given

I a subset Q of probabilities on Ω,
representing different priors about the randomness

I a function γ : Q → R, with supQ∈Q γ(Q) < +∞,
representing cost shifts

we define
ρ(X) = sup

Q∈Q

(
EQ(X)− γ(Q)

)
which expresses

I first, an average of the cost X over different outcomes ponderations
Q ∈ Q, each being penalized by γ(Q)

I second, a conservative attitude by taking the largest with the sup
operation over priors
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