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Cermics, École des Ponts ParisTech, France

Antoine Deza McMaster University, Hamilton, Ontario, Canada
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Support and the ℓ0 pseudonorm

Let d ∈ N∗ be a fixed natural number and

J0, dK =
{
0, 1, . . . , d

}
, J1, dK =

{
1, . . . , d

}
For any vector x ∈ Rd , we define

▶ its support by

supp(x) =
{
j ∈ J1, dK

∣∣ xj ̸= 0
}

supp((0, ∗, 0, ∗, ∗, 0)) = {2, 4, 5} ⊂ J1, 6K

▶ its ℓ0 pseudonorm(x) by

ℓ0(x) =

cardinality︷ ︸︸ ︷
|supp(x)| =

number of
nonzero entries︷ ︸︸ ︷

d∑
i=1

1{xi ̸=0}

ℓ0
(
(0, ∗, 0, ∗, ∗, 0)

)
= |{2, 4, 5}| = 3 ∈ J0, 6K



The ℓ0 pseudonorm is not a norm

The function ℓ0 pseudonorm : Rd → J0, dK
satisfies 3 out of 4 axioms of a norm

▶ we have ℓ0(x) ≥ 0 ✓

▶ we have
(
ℓ0(x) = 0 ⇐⇒ x = 0

)
✓

▶ we have ℓ0(x + x ′) ≤ ℓ0(x) + ℓ0(x
′) ✓

▶ But... instead of 1-homogeneity,
it is 0-homogeneity that holds true

ℓ0(ρx) = ℓ0(x) , ∀ρ ̸= 0

supp(ρx) = supp(x) , ∀ρ ̸= 0
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Archetypal sparse optimization problems
▶ For X ⊂ Rd a nonempty set,

minimal ℓ0 pseudonorm min
x∈X

ℓ0(x)

is an optimization problem for which any point in X
is a local minimizer Jean-Baptiste Hiriart-Urruty and Hai Le. A variational approach of the

rank function. TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, 21

(2):207–240, 2013.

▶ For k ∈ J1, dK and a function f : Rd → R,

optimal k-sparse vector min
ℓ0(x) ≤ k︸ ︷︷ ︸

k-sparse vectors

f (x)

▶ For γ > 0 and a function f : Rd → R,

min
x∈Rd

(
f (x) + γℓ0(x)︸ ︷︷ ︸

sparse penalty

)



The intuition behind lasso

min
x∈Rd

(
f (x) + γ ∥x∥1

)

min
x∈Rd

(
f (x) + γ ∥x∥2

)

Comments of
[Tibshirani, 1996, Figure 2]

“The lasso solution is the
first place that the contours
touch the square, and this
will sometimes occur at a
corner, corresponding to a
zero coefficient. The pic-
ture for ridge regression is
shown in Fig. 2(b): there
are no corners for the con-
tours to hit and hence zero
solutions will rarely result.”

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series

B (Methodological), 58(1):267–288, 1996



Kinks stand at sparse points

x3
x3

x2 x2x1

x1

x1 + x2 + x3



Geometric (alignment) expression of optimality condition

▶ We consider an optimal solution x∗ ̸= 0 of

min
x∈Rd

(
f (x) + γ||x ||

)
where f : Rd → R is a smooth convex function,
γ > 0 and ||·|| is a norm with unit ball B

0 ∈ ∇f (x∗) + γ∂||·||(x∗)︸ ︷︷ ︸
Fermat rule

=⇒

0-homogeneity︷ ︸︸ ︷
x∗

||x∗||
∈ F⊥(B,−∇f (x∗))︸ ︷︷ ︸

face of the unit ball B
exposed by −∇f (x∗)

▶ We expect that the support of x∗

can be recovered from dual information −∇f (x∗)
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We reformulate sparsity in terms of coordinate subspaces

y = (∗, ∗, ∗, ∗, ∗, ∗)→ π{2,4,5}(y) = (0, ∗, 0, ∗, ∗, 0) ∈ R{2,4,5}

▶ For any K ⊂ J1, dK, we introduce the (coordinate) subspace

RK =
{
y ∈ Rd

∣∣ yj = 0 , ∀j ̸∈ K
}
⊂ Rd

▶ The connection with the level sets of the ℓ0 pseudonorm is

ℓ≤k
0 =

{
x ∈ Rd

∣∣ ℓ0(x) ≤ k
}︸ ︷︷ ︸

k-sparse vectors

=
⋃

|K |≤k

RK , ∀k ∈ J0, dK

▶ We denote by πK : Rd → RK the orthogonal projection
For any vector y ∈ Rd , πK (y) ∈ RK ⊂ Rd is the vector
whose components coincide with those of y ,
except for those outside of K that vanish



Design of unit ball
with k-sparse extreme points

(for example, 2-sparse points in R3)



Design of unit ball with k-sparse extreme points

For given sparsity threshold k ∈ J1, dK,
we consider a source norm ||·||, with unit ball B, and we

▶ project B onto ℓ≤k
0 ,

form the convex hull and get

B⊤⋆
⋆,(k) = co

( ⋃
|K |≤k

πK (B)
)

unit ball of the generalized k-support dual norm ||·||⊤⋆⋆,(k)
[Chancelier and De Lara, 2022b]

▶ the extreme points belong to
⋃

|K |≤k RK = ℓ≤k
0 ,

hence are k-sparse vectors



Generalized top-k and k-support dual norms

Chancelier and De Lara [2022b].

Definition

For any source norm ||·|| on Rd , for any k ∈ J1, dK,
▶ the generalized k-support dual norm ||·||⊤⋆⋆,(k)

is the dual norm ||·||⊤⋆⋆,(k) =
(
||·||⊤⋆,(k)

)
⋆

▶ of the generalized top-k dual norm ||·||⊤⋆,(k) defined by

||y ||⊤⋆,(k) = sup
|K |≤k

||

k-sparse
projection
on RK︷ ︸︸ ︷
πK (y) ||⋆︸ ︷︷ ︸

exploring all
k-sparse projections

, ∀y ∈ Rd



Exposed faces characterization



Exposed faces characterization

Theorem

Let k ∈ J1, dK
Then, for any nonzero dual vector y ∈ Rd \ {0},
the exposed face of the unit ball B⊤⋆

⋆,(k) is given by

F⊥(B
⊤⋆
⋆,(k), y) = co

{ projection on RK∗︷ ︸︸ ︷
πK∗

(
F⊥(B, πK∗y)︸ ︷︷ ︸
exposed face
of the original

unit ball

)
: K ∗ ∈ argmax

|K |≤k
||πKy ||⋆

}



Exposed faces characterization

Theorem

Let k ∈ J1, dK
Suppose that the source norm ||·|| is orthant-strictly monotonic

Then, for any nonzero dual vector y ∈ Rd \ {0},
the exposed face of the unit ball B⊤⋆

⋆,(k) is given by

F⊥(B
⊤⋆
⋆,(k), y) = co

{
F⊥(B, πK∗y)︸ ︷︷ ︸
exposed face
of the original

unit ball

: K ∗ ∈ argmax
|K |≤k

||πKy ||⋆
}
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Support identification: main result

Theorem

Let f : Rd → R be a smooth convex function, and γ > 0

For given sparsity threshold k ∈ J1, dK,
an optimal solution x∗ of

min
x∈Rd

(
f (x) + γ

generalized
k-support
dual norm︷ ︸︸ ︷
||x ||⊤⋆⋆,(k)

)
has support

supp(x∗) ⊂
⋃

K∗∈argmax|K |≤k

||πK (−∇f (x∗))||⋆

K ∗



Sparse support identification: corollary

Corollary

Let f : Rd → R be a smooth convex function and γ > 0

For given sparsity threshold k ∈ J1, dK, if an optimal solution x∗ of

min
x∈Rd

(
f (x) + γ||x ||⊤⋆⋆,(k)

)
satisfies

argmax
|K |≤k

||πK (−∇f (x∗))||⋆ = K ∗ is unique

then it has support

supp(x∗) ⊂ K ∗ with |K ∗| ≤ k

so that the optimal solution x∗ is k-sparse



Support identification: Lasso

Corollary

Let f : Rd → R be a smooth convex function,
γ > 0 and ||·||1 be the ℓ1 norm

An optimal solution x∗ of

min
x∈Rd

(
f (x) + γ||x ||1

)
has support

supp(x∗) ⊂ argmax
j∈J1,dK

|∇j f (x
∗)|
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The case of ℓp-norms ∥·∥p

∥x∥∞ = sup
i∈J1,dK

|xi | and ∥x∥p =
( d∑
i=1

|xi |p
)1/p

for p ∈ [1,∞[



source norm ||·|| ||·||⊤⋆,(k), k ∈ J1, dK ||·||⊤⋆
⋆,(k), k ∈ J1, dK

∥·∥p top-(q,k) norm (p,k)-support norm

∥y∥⊤q,k ∥x∥⊤⋆
p,k

∥y∥⊤q,k =
(∑k

l=1|yν(l)|
q) 1

q no analytic expression

∥·∥1 top-(∞,k) norm (1,k)-support norm
ℓ∞-norm ℓ1-norm

∥y∥⊤∞,k = ∥y∥∞, ∀k ∈ J1, dK ∥x∥⊤⋆
1,k = ∥x∥1, ∀k ∈ J1, dK

∥·∥2 top-(2,k) norm (2,k)-support norm

∥y∥⊤2,k =
√∑k

l=1
|yν(l)|2 ∥x∥⊤⋆

2,k no analytic expression

(computation [Argyriou et al., 2012, Prop. 2.1])

∥y∥⊤2,1 = ∥y∥∞ ∥x∥⊤⋆
2,1 = ∥x∥1

∥·∥∞ top-(1,k) norm (∞,k)-support norm

∥y∥⊤1,k =
∑k

l=1|yν(l)| ∥x∥⊤⋆
∞,k = max{ ∥x∥1

k
, ∥x∥∞}

∥y∥⊤1,1 = ∥y∥∞ ∥x∥⊤⋆
1,1 = ∥x∥1

Table: Examples of generalized top-k and k-support dual norms
generated by the ℓp source norms ||·|| = ∥·∥p for p ∈ [1,∞], where

1/p + 1/q = 1. For y ∈ Rd , ν denotes a permutation of {1, . . . , d} such
that |yν(1)| ≥ |yν(2)| ≥ · · · ≥ |yν(d)|.



When the source norm is the ℓ∞-norm



Case k = 2 in R3 with source norm the ℓ∞-norm

(a) Unit ball B⊤⋆
∞,2

(support norm)
(b) Unit ball B⊤

1,2

(top norm)



When the source norm is the ℓ2-norm



Case k = 2 in R3 with source norm the ℓ2-norm

(a) Unit ball B⊤⋆
2,2

(support norm)

(b) Unit ball B⊤
2,2

(top norm)



Geometric description

Proposition

For any k ∈ J1, dK, all the proper faces of B⊤⋆
2,k are hypersimplices,

and the normal fan of B⊤⋆
2,k refines the normal fan of B⊤⋆

∞,k

x3
x3

x2 x2x1

x1

x1 + x2 + x3



When the source norm is the ℓ1-norm



Case k = 2 in R3 with source norm the ℓ1-norm

(a) Unit ball B⊤⋆
1,2

(support norm)
(b) Unit ball B⊤

∞,2

(top norm)



What comes next?

▶ What are orthant-strictly monotonic norms?

▶ In what are they related to the ℓ0 pseudonorm?

Background on the original motivation
Jean-Philippe Chancelier, Michel De Lara
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Orthant-monotonic norms

For any x ∈ Rd , we denote by |x |
the vector of Rd with components |xi |, i ∈ J1, dK

Definition

A norm ||·|| on the space Rd is called orthant-monotonic [Gries, 1967]
if, for all x , x ′ in Rd , we have

|x | ≤ |x ′| and x ◦ x ′ ≥ 0 =⇒ ||x || ≤ ||x ′||

where x ◦ x ′ = (x1x
′
1, . . . , xdx

′
d)

is the Hadamard (entrywise) product

|x1| ≤ |x ′1| , . . . , |xd | ≤ |x ′d |
and

x1x
′
1 ≥ 0 , . . . , xdx

′
d ≥ 0

 =⇒ ||x || ≤ ||x ′||



Example of unit sphere of a non orthant-monotonic norm

In the bottom right orthant,
consider

|(0,−1)| ≤ |(0.5,−1)|

and

(0,−1) ◦ (0.5,−1) ≥ (0, 0)

but

1 = ||(0,−1)|| > ||(0.5,−1)||



Orthant-strictly monotonic norms

[Chancelier and De Lara, 2023]

Definition

A norm ||·|| on the space Rd is called orthant-strictly monotonic if,
for all x , x ′ in Rd , we have

|x | < |x ′| and x ◦ x ′ ≥ 0 =⇒ ||x || < ||x ′||

where |x | < |x ′| means that
there exists j ∈ J1, dK such that |xj | < |x

′
j |

Intuition: ϵ ̸= 0 =⇒ ||(0, ∗, 0, ∗, ∗, 0)|| < ||(0, ∗, ϵ, ∗, ∗, 0)||



Examples of orthant-strictly monotonic norms

∥x∥∞ = sup
i∈J1,dK

|xi | and ∥x∥p =
( d∑
i=1

|xi |p
)1/p

for p ∈ [1,∞[

with unit ball Bp and unit sphere Sp

▶ All the ℓp-norms ∥·∥p on the space Rd , for p ∈ [1,∞],
are monotonic, hence orthant-monotonic

ℓ1, ℓ2, ℓ∞

▶ All the ℓp-norms ∥·∥p on the space Rd , for p ∈ [1,∞[,
are orthant-strictly monotonic

ℓ1, ℓ2,��ℓ∞

|ϵ| < 1 =⇒ ∥(1, 0)∥∞ = 1 = ∥(1, ϵ)∥∞
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Graph of the Euclidean ℓ0-cup function L0



Orthant-strictly monotonic norms
and hidden convexity in the ℓ0 pseudonorm

[Chancelier and De Lara, 2022b]

Theorem

If both the norm ||·|| and the dual norm ||·||⋆
are orthant-strictly monotonic,
there exists a proper convex lsc function L0,
the ℓ0-cup function, with domain the unit ball B, such that

ℓ0(x) = L0︸︷︷︸
convex lsc
function

(
x

||x ||
) , ∀x ∈ Rd \ {0}

and, as a consequence, the ℓ0 pseudonorm coincides,
on the unit sphere S , with the proper convex lsc function L0

ℓ0(x) = L0(x) , ∀x ∈ S



The ℓ0-cup function as a convex envelope
Proposition

The proper convex lsc function L0 is the convex envelope
of the following piecewise constant function

L0(x) =


0 if x = 0,

ℓ if x ∈ B⊤⋆
(ℓ)\B

⊤⋆
(ℓ−1) , ℓ ∈ J1, dK

+∞ if x ̸∈ B⊤⋆
(n) = B

x
y

z



The ℓ0-cup function as best proper convex lsc lower
approximation of the ℓ0 pseudonorm on the unit ball

Theorem

The ℓ0-cup function L0 is
the best convex lsc lower approximation of the ℓ0 pseudonorm
on the unit ball B

best convex lsc function L0(x) ≤ ℓ0(x) , ∀x ∈ B

and, as seen above, coincides with the ℓ0 pseudonorm

on the unit sphere S

ℓ0(x) = L0(x) , ∀x ∈ S2



Tightest closed convex function below the ℓ0 pseudonorm
on the ℓp-unit balls on R2 for p ∈ {1, 1.1, 2, 4, 300,∞}
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Motivation: Legendre transform and
Fenchel conjugacy in convex analysis

Definition

Two vector spaces X and Y, paired by a bilinear form
〈
,
〉
,

give rise to the classic Fenchel conjugacy

f ∈ RX 7→ f ⋆ ∈ RY

given by the Legendre transform

f ⋆(y) = sup
x∈X

(
⟨x , y⟩+

(
−f (x)

))
, ∀y ∈ Y



Coupling function between sets

▶ Let be given two sets X (“primal”) and Y (“dual”)
not necessarily paired vector spaces (nodes and arcs, etc.)

▶ We consider a coupling function

c : X × Y → R

We also use the notation X c↔ Y for a coupling

[Moreau, 1966-1967, 1970]

In duality in convex analysis, one uses the bilinear coupling

c(x , y) = ⟨x , y⟩

and, on a Hilbert space, the scalar product

c(x , y) = ⟨x | y⟩



Constant Along Primal RAys (Capra) coupling

[Chancelier and De Lara, 2021, 2022a]

Definition

On the vector space Rd , equipped with a (source) norm ||·||, the

Capra coupling (Capra) Rd ¢←→ Rd is given by

∀y ∈ Rd ,


¢(x , y) =

⟨x | y⟩
||x ||

, ∀x ∈ Rd\{0}

¢(0, y) = 0

The coupling Capra has the property of being
Constant Along Primal RAys (Capra)



Fenchel-Moreau conjugate of a function

f ∈ RX 7→ f c ∈ RY

Definition

The c-Fenchel-Moreau conjugate f c : Y → R
of a function f : X → R is defined by

f c(y) = sup
x∈X

(
c(x , y) ·+

(
−f (x)

))
, ∀y ∈ Y

We use the Moreau lower and upper additions on R
that extend the usual addition with

(+∞) ·+ (−∞) = (−∞) ·+ (+∞) = −∞
(+∞) ∔ (−∞) = (−∞) ∔ (+∞) = +∞



Capra-conjugate of the ℓ0 pseudonorm

[Chancelier and De Lara, 2021, 2022a]

ℓ
¢
0 (y) = sup

x∈Rd

{
¢(x , y) ·+

(
−ℓ0(x)

)}
= sup

{
0, sup

x ̸=0

{⟨x | y⟩
||x ||

− ℓ0(x)
}}

= sup
{
0, sup

s∈S

{
⟨s | y⟩ − ℓ0(s)

}}
where S ⊂ Rd is the unit sphere

= sup
{
0, sup

j∈J1,dK

{
sup
s∈S

ℓ0(s)=j

⟨s | y⟩

︸ ︷︷ ︸
coordinate-j norm ||y ||R(j)

−j
}}

= sup
j∈J1,dK

[
||y ||R(j) − j

]
+



Wrap-up on generalized/abstract convexity

▶ Generalized convexity
▶ coupling function between two sets

c : X × Y → R
▶ conjugacy and biconjugacy

f ∈ RX 7→ f c ∈ RY 7→ f cc
′ ∈ RX

▶ generalized convex functions
f = f cc

′

▶ subdifferential
∂c f (x) ⊂ Y

▶ Abstract convexity
▶ set of elementary functions
▶ abstract convex envelope:

supremum of lower elementary functions
▶ abstract convex function:

equal to its abstract convex envelope
▶ subdifferential:

tight lower elementary functions
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Capra = Fenchel coupling after primal normalization

▶ We define the primal radial projection ϱ as

ϱ : Rd → S ∪ {0} , ϱ(x) =


x

||x ||
if x ̸= 0

0

0
= 0 if x = 0

▶ so that the coupling Capra

¢(x , y) = ⟨ϱ(x) | y⟩ , ∀x ∈ Rd , ∀y ∈ Rd

appears as the Fenchel coupling after primal normalization
(and the coupling Capra is one-sided linear)



The Capra conjugacy shares properties
with the Fenchel conjugacy

Proposition

▶ For any function f : Rd → R,
the ¢-Fenchel-Moreau conjugate is given by

f ¢ =
(
inf

[
f | ϱ

])⋆
where

inf
[
f | ϱ

]
(x) =

{
infρ>0 f (ρx) if x ∈ S ∪ {0}
+∞ if x ̸∈ S ∪ {0}

▶ For any function g : Rd → R,
the ¢′-Fenchel-Moreau conjugate is given by

g¢
′
= g⋆′ ◦ ϱ



The Capra-convex functions are 0-homogeneous and
coincide, on the unit sphere, with a closed convex function

Proposition

¢-convexity of the function h : Rd → R

⇐⇒ h = h¢¢
′

⇐⇒ h =
(
h¢

)⋆′︸ ︷︷ ︸
convex lsc function

◦ ϱ

⇐⇒ hidden convexity in the function h : Rd → R
there exists a closed convex function f : Rd → R

such that h = f ◦ ϱ , that is, h(x) = f
( x

||x ||
)



[Chancelier and De Lara, 2022b]

Theorem

If both the norm ||·|| and the dual norm ||·||⋆
are orthant-strictly monotonic, we have that

∂¢ℓ0(x) ̸= ∅ , ∀x ∈ Rd ,

and, as a consequence,

ℓ
¢¢′

0 = ℓ0

and thus

ℓ0 = ℓ
¢¢′

0 = ℓ
¢⋆′
0 ◦ ϱ =

(
ℓ
¢
0

)⋆′︸ ︷︷ ︸
convex lsc
function L0

◦

radial
projection︷︸︸︷

ϱ



Variational formulas for the ℓ0 pseudonorm

Proposition

ℓ0(x) =
1

||x ||
min

x(1)∈Rd ,...,x(d)∈Rd∑d
ℓ=1 ||x(ℓ)||

⊤⋆
(ℓ)≤||x ||∑d

ℓ=1 x
(ℓ)=x

d∑
ℓ=1

ℓ||x (ℓ)||⊤⋆(ℓ) , ∀x ∈ Rd

ℓ0(x) = sup
y∈Rd

inf
ℓ∈J1,dK

(
⟨x | y⟩
||x ||

−
[
||y ||⊤(ℓ) − ℓ

]
+

)
, ∀x ∈ Rd \ {0}



Conclusion

▶ We have proposed systematic ways to design
unit balls that enhance sparsity at a given threshold

▶ The corresponding norms originally appeared related to
generalized Capra-convexity of the ℓ0 pseudonorm,
as well as the property of orthant-strict monotonicity

▶ For classic ℓ∞, ℓ2 and ℓ1 source norms,
we have a complete description of
the corresponding sparsity-inducing unit balls
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