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Mathematical control of Wolbachia bacteria (1)



The Wolbachia bacterium

» The following model represents
the dynamics of a mosquito population
infected with the Wolbachia bacterium

» The Wolbachia bacterium is an inhibitor
of the capacity of the mosquitoes to transmit diseases,
such as dengue, in human populations

» Liberation of infected mosquitoes
is used as a control method for the disease



Dynamics of a mosquito population
infected with the Wolbachia bacterium

[Bliman, Aronna, Coelho, and da Silva, 2017]

Au
Au+ Aw
Ay = Fa(Ly, Ay, Lw, Aw) = vLy — pyAy
Ly = G (Ly, Au, Lw, Aw) = awAw —vlw —p(1+ k(Ly + Lw)) Ly
Aw = Ga(Ly, Au, Lw, Aw) = vlw — pwAw

Ly = Fi(Ly, Au, Lw, Aw) = ayAy —vly—p(+k(Ly+Lw)) Ly

» Ly, Ay (larva and adults respectively):
uninfested mosquitoes abundances

» Ly, Aw (larva and adults respectively):
infested mosquitoes abundances



Control of introduction of infected larvae in the population

We consider the following dynamical controlled system
x = f(x,u(t))

where x € R* represents the same population compartments
as in the Wolbachia model, and where

u(-) e ={u(-) : [0,+00) = [0, umax] is a measurable function}

represents a policy of introduction of infected larvae
in the population, and where

FL(LU7AU7LW7AW)

F(x, ) = Fa(Lu,Au, Lw,Aw)
’ GL(LU,AU,LW,AW)+U(t)

Ga(Ly,Au, Lw, Aw)



Controlling the system to remain
above or below sustainable thresholds

[Barrios, Gajardo, and Vasilieva, 2018]

The goal of the control policy is to have, permanently,
> the infested population of mosquitoes
to be above both Ay, Ly

» the uninfested population of mosquitoes
to be below both Ly, Ay

We will show that the corresponding viability kernel can be
computed by means of a single control policy,
identically equal to umax, instead of a family of controls

What is the generality behind such property?
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Comparison theorems

> In ordinary differential equations

» In monotone differential systems: [Smith, 1995],
[Hirsch and Smith, 2003], [Hirsch and Smith, 2004]

» In monotone controlled differential systems:
[Angeli and Sontag, 2003]

» In monotone controlled differential or discrete-time systems
with state constraints (viability kernels):
[De Lara, Doyen, Guilbaud, and Rochet, 2007],
[De Lara, Gajardo, and Ramirez, 2011],
[De Lara and Sepulveda Salcedo, 2016]

» Qur contribution: an umbrella framework
for comparison of viability kernels with conic orders



Conic order induced by a convex cone

If K CR" is a closed convex cone,
then such cone induces a pre-order <K on R” by

X2ky &= y—xcK

For example, if K =R",
then <k is the usual componentwise order



K-quasimonotone mapping

[Smith, 1995]

Definition
We say that a mapping h: R"” x [0, +00) — R”
is K-quasimonotone if

X jKﬂ{X*}J‘ _y — h(X, t) j{x*}+ h(y, t)

Vx,y €R", Vx* € KT, Vt e [0,+00)

where KT is the positive polar cone associated with K



Example of K-quasimonotonicity

> A useful example in R” is the case of the cone generated by
the vector set {(—1)™e;}7_;, where ¢; is the j-th element of
the canonic base in R” and m; € {0,1}
» In such case, the mapping h = (hy,..., hy)
is K-quasimonotone if and only if
ahj(X, t)

(= 20
Xj

V(x,t) € R" x [0,+00) Vi,je{l,--- ,n},i#]



Controlled dynamical system

v

State x € R”

Control u € U C R™

Dynamics f : R" x U C R™ — R"
Control paths

v

v

v

U ={u(:):[0,4+00) = U | u(-) is a measurable mapping}



Flow of a controlled dynamical system

» For the initial state xo € R” and the control path u(-) € U,
we denote by W?(')(t,xo) the flow, (unique) solution of

x = f(x, u(t))

» We assume that, for any initial condition and control path,
the flow is well defined on [0, +00), that is,
the solution exists and is unique



We introduce the notion of K-reduction

We propose the following two hypothesis
K-quasimonotonicity + K-reduction
» (K-QM)  Vu(-) € U, the mapping (x,t) — f(x, u(t))
is K-quasimonotone

» (K-R) there exists a set-valued mapping ¢ : U = U,
satisfying, Yu(-) € U, there exists v(-) € U,
such that v(t) € ¢(u(t)), Vt € [0, +00), and

f(x,u(t)) <k f(x,v(t)) V¥(x,t) €R"x[0,400)

We call the set-valued mapping ¢ a K-reduction for the dynamics f



We provide a comparison result for flows

Proposition

Suppose that hypothesis K-quasimonotonicity (K-QM)
and K-reduction (K-R) hold true

for the controlled dynamics  with the cone K

Then, the following flows satisfy
X0 =K Yo = lU?(')(t',X()) <K lU;(.)(t'./y()) Vte [O,+OO)

where, with any control path u(-) € U,
we associate the control path v(-) € U, denoted vy(-),
thanks to the K-reduction ¢ provided by hypothesis (K-R)
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Viability kernel
[Aubin, 1990], [Aubin, Bayen, and Saint-Pierre, 2011]

Definition
Given the controlled dynamical system

x = f(x,u(t))
and what we call a desirable set

DcR"xU
the associated viability kernel V(f, D) is

V(f,D)= {xeR"|Ju()elU
(WO (£, x0), u(t)) €D, Vt € [0,+00)}



Preparation for viability kernels comparison

Under hypothesis K-quasimonotonicity (K-QM)
and K-reduction (K-R) with K-reduction ¢,
we introduce the following

> alternative desirable set

Dro= |J (x+K)xo(u)

(x,u)eD

» alternative dynamics

fo(x, u) = f(x, v¢(u))



We provide a viability kernels comparison result

Theorem

Under hypothesis K-quasimonotonicity (K-QM)

and K-reduction (K-R) with K-reduction ¢,

one has the following inclusion between viability kernels

V(f,D) C V(fy,Dx 4)
If, in addition, one has that
Dkqy CD
then one has the following equality between viability kernels

V(f,D) = V(fy,Dg g)
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A conic order suitable for the Wolbachia bacterium model

We introduce the cone
K=R_ xR_ xRy xRy

so that we have

(x1,x2,x3,Xa) =k (¥1,¥2, 3, ya)
<~

X121, 22y, X3JYy3, Xa <y



The Wolbachia bacterium controlled model is
K-quasimonotone

The Wolbachia bacterium controlled model is K-quasimonotone,

because
> 5as 2 0 <0, gay <0
> SEA >0, 512 <0, SrA <0
- 520,58 <0, 3% <o

for all Ly, Ay, Lw,Aw >0



Existence of a K-reduction

» We define the mapping ¢ : [0, Umax] — [0, Umax] by

¢(U) = Umax

» The mapping ¢ is a K-reduction,
satisfying hypothesis (K-R), because one has, Vt € [0, +00)

GL(Ly,Au, Lw, Aw) + u(t) < G (Ly, Au, Lw, Aw) + Umax



Desirable set and its alternative

The desirable set is
]D) :{(LU,AU, LW,AW, U) (S R+ X R+ X R+ X R+ X [07 Umax] |
Ly < Ly,Au <Ay, Lw > Lw,Aw > Aw}
and the alternative desirable set is
DK@ :{(LUvAUa Lw,Aw, U) €ERy xRy xRy xRy % {umax} |
Ly < Ly, Au < Ay, Lw > Lw, Aw > Aw}

so that
DK7¢ cDh



Viability kernels equality

Using the Theorem, we obtain the equality
V(f,D) = V(fy, Dx ¢)

where f; denotes the dynamic mapping
with the control umax applied

Therefore, computing the viability kernel has been reduced to
compute the viability kernel for a single constant control policy,
instead of for a family of controls,

which is an easier problem to handle



Conclusion

» Some (but not all) natural resource management problems
display monotonicity properties:
e.g. the more you harvest, the less abundance

> These properties can help simplify the analysis,
here the computation of viability kernels

> By using conic orders, we have provided
an umbrella framework for this purpose,
relying on K-quasimonotonicity and K-reduction
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