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Universidad Técnica Federico Santa Maŕıa
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The Wolbachia bacterium

I The following model represents
the dynamics of a mosquito population
infected with the Wolbachia bacterium

I The Wolbachia bacterium is an inhibitor
of the capacity of the mosquitoes to transmit diseases,
such as dengue, in human populations

I Liberation of infected mosquitoes
is used as a control method for the disease



Dynamics of a mosquito population
infected with the Wolbachia bacterium

[Bliman, Aronna, Coelho, and da Silva, 2017]

L̇U = FL(LU ,AU , LW ,AW ) = αUAU
AU

AU + AW
− νLU − µ (1 + k (LU + LW )) LU

ȦU = FA(LU ,AU , LW ,AW ) = νLU − µUAU

˙LW = GL(LU ,AU , LW ,AW ) = αWAW − νLW − µ (1 + k (LU + LW )) LW

˙AW = GA(LU ,AU , LW ,AW ) = νLW − µWAW

I LU ,AU (larva and adults respectively):
uninfested mosquitoes abundances

I LW ,AW (larva and adults respectively):
infested mosquitoes abundances



Control of introduction of infected larvae in the population

We consider the following dynamical controlled system

ẋ = f (x , u(t))

where x ∈ R4 represents the same population compartments
as in the Wolbachia model, and where

u(·) ∈ U = {u(·) : [0,+∞)→ [0, umax ] is a measurable function}

represents a policy of introduction of infected larvae
in the population, and where

f (x , u) =


FL(LU ,AU , LW ,AW )
FA(LU ,AU , LW ,AW )
GL(LU ,AU , LW ,AW ) + u(t)
GA(LU ,AU , LW ,AW )



Controlling the system to remain
above or below sustainable thresholds

[Barrios, Gajardo, and Vasilieva, 2018]

The goal of the control policy is to have, permanently,

I the infested population of mosquitoes
to be above both AW , LW

I the uninfested population of mosquitoes
to be below both LU ,AU

We will show that the corresponding viability kernel can be
computed by means of a single control policy,
identically equal to umax , instead of a family of controls

What is the generality behind such property?
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Comparison theorems

I In ordinary differential equations

I In monotone differential systems: [Smith, 1995],
[Hirsch and Smith, 2003], [Hirsch and Smith, 2004]

I In monotone controlled differential systems:
[Angeli and Sontag, 2003]

I In monotone controlled differential or discrete-time systems
with state constraints (viability kernels):
[De Lara, Doyen, Guilbaud, and Rochet, 2007],
[De Lara, Gajardo, and Ramirez, 2011],
[De Lara and Sepulveda Salcedo, 2016]

I Our contribution: an umbrella framework
for comparison of viability kernels with conic orders



Conic order induced by a convex cone

If K ⊂ Rn is a closed convex cone,
then such cone induces a pre-order �K on Rn by

x �K y ⇐⇒ y − x ∈ K

For example, if K = Rn
+,

then �K is the usual componentwise order



K-quasimonotone mapping

[Smith, 1995]

Definition
We say that a mapping h : Rn × [0,+∞)→ Rn

is K -quasimonotone if

x �K∩{x∗}⊥ y =⇒ h(x , t) �{x∗}+ h(y , t)

∀x , y ∈ Rn , ∀x∗ ∈ K+ , ∀t ∈ [0,+∞)

where K+ is the positive polar cone associated with K

.



Example of K-quasimonotonicity

I A useful example in Rn is the case of the cone generated by
the vector set {(−1)mj ej}nj=1, where ej is the j-th element of
the canonic base in Rn and mj ∈ {0, 1}

I In such case, the mapping h = (h1, . . . , hn)
is K -quasimonotone if and only if

(−1)mj+mi
∂hj(x , t)

∂xi
≥ 0

∀(x , t) ∈ Rn × [0,+∞) ∀i , j ∈ {1, · · · , n}, i 6= j



Controlled dynamical system

I State x ∈ Rn

I Control u ∈ U ⊂ Rm

I Dynamics f : Rn × U ⊂ Rm → Rn

I Control paths

U = {u(·) : [0,+∞)→ U | u(·) is a measurable mapping}



Flow of a controlled dynamical system

I For the initial state x0 ∈ Rn and the control path u(·) ∈ U ,

we denote by Ψ
u(·)
f (t, x0) the flow, (unique) solution of

ẋ = f (x , u(t))

I We assume that, for any initial condition and control path,
the flow is well defined on [0,+∞), that is,
the solution exists and is unique



We introduce the notion of K -reduction

We propose the following two hypothesis

K -quasimonotonicity + K -reduction

I (K -QM) ∀u(·) ∈ U , the mapping (x , t)→ f (x , u(t))
is K -quasimonotone

I (K -R) there exists a set-valued mapping φ : U⇒ U,
satisfying, ∀u(·) ∈ U , there exists v(·) ∈ U ,
such that v(t) ∈ φ(u(t)), ∀t ∈ [0,+∞), and

f (x , u(t)) �K f (x , v(t)) ∀(x , t) ∈ Rn × [0,+∞)

We call the set-valued mapping φ a K -reduction for the dynamics f



We provide a comparison result for flows

Proposition

Suppose that hypothesis K -quasimonotonicity (K -QM)
and K -reduction (K -R) hold true
for the controlled dynamics f with the cone K

Then, the following flows satisfy

x0 �K y0 ⇒ Ψ
u(·)
f (t, x0) �K Ψ

v(·)
f (t, y0) ∀ t ∈ [0,+∞)

where, with any control path u(·) ∈ U ,
we associate the control path v(·) ∈ U , denoted vφ(·),
thanks to the K -reduction φ provided by hypothesis (K -R)
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Viability kernel

[Aubin, 1990], [Aubin, Bayen, and Saint-Pierre, 2011]

Definition
Given the controlled dynamical system

ẋ = f (x , u(t))

and what we call a desirable set

D ⊂ Rn × U

the associated viability kernel V(f ,D) is

V(f ,D) =
{
x0 ∈ Rn | ∃u(·) ∈ U(
Ψ

u(·)
f (t, x0), u(t)

)
∈ D , ∀t ∈ [0,+∞)

}



Preparation for viability kernels comparison

Under hypothesis K -quasimonotonicity (K -QM)
and K -reduction (K -R) with K -reduction φ,
we introduce the following

I alternative desirable set

DK ,φ =
⋃

(x ,u)∈D

(x + K )× φ(u)

I alternative dynamics

fφ(x , u) = f
(
x , vφ(u)

)



We provide a viability kernels comparison result

Theorem
Under hypothesis K -quasimonotonicity (K -QM)
and K -reduction (K -R) with K -reduction φ,
one has the following inclusion between viability kernels

V(f ,D) ⊂ V(fφ,DK ,φ)

If, in addition, one has that

DK ,φ ⊂ D

then one has the following equality between viability kernels

V(f ,D) = V(fφ,DK ,φ)
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A conic order suitable for the Wolbachia bacterium model

We introduce the cone

K = R− × R− × R+ × R+

so that we have

(x1, x2, x3, x4) �K (y1, y2, y3, y4)

⇐⇒
x1 ≥ y1 , x2 ≥ y2 , x3 ≤ y3 , x4 ≤ y4



The Wolbachia bacterium controlled model is
K -quasimonotone

The Wolbachia bacterium controlled model is K -quasimonotone,
because

I ∂FL
∂AU
≥ 0, ∂FL

∂LW
≤ 0, ∂FL

∂AW
≤ 0

I ∂FA
∂LU
≥ 0, ∂FA

∂LW
≤ 0, ∂FA

∂AW
≤ 0

I ∂GL
∂AW

≥ 0, ∂GL
∂LU
≤ 0, ∂GL

∂AU
≤ 0

I ∂GA
∂LW
≥ 0, ∂GA

∂LU
≤ 0, ∂GA

∂AU
≤ 0

for all LU ,AU , LW ,AW > 0



Existence of a K -reduction

I We define the mapping φ : [0, umax ]→ [0, umax ] by

φ(u) = umax

I The mapping φ is a K -reduction,
satisfying hypothesis (K -R), because one has, ∀t ∈ [0,+∞)

GL(LU ,AU , LW ,AW ) + u(t) ≤ GL(LU ,AU , LW ,AW ) + umax



Desirable set and its alternative

The desirable set is

D ={(LU ,AU , LW ,AW , u) ∈ R+ × R+ × R+ × R+ × [0, umax ] |
LU ≤ LU ,AU ≤ AU , LW ≥ LW ,AW ≥ AW }

and the alternative desirable set is

DK ,φ ={(LU ,AU , LW ,AW , u) ∈ R+ × R+ × R+ × R+ × {umax} |
LU ≤ LU ,AU ≤ AU , LW ≥ LW ,AW ≥ AW }

so that
DK ,φ ⊂ D



Viability kernels equality

Using the Theorem, we obtain the equality

V(f ,D) = V(fφ,DK ,φ)

where fφ denotes the dynamic mapping
with the control umax applied

Therefore, computing the viability kernel has been reduced to
compute the viability kernel for a single constant control policy,
instead of for a family of controls,
which is an easier problem to handle



Conclusion

I Some (but not all) natural resource management problems
display monotonicity properties:
e.g. the more you harvest, the less abundance

I These properties can help simplify the analysis,
here the computation of viability kernels

I By using conic orders, we have provided
an umbrella framework for this purpose,
relying on K -quasimonotonicity and K -reduction
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