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Bird's eye view from optimization to game theory

I Optimization
j : U→ R

I Multicriteria
ja : U→ R , a ∈ A

I Non-cooperative game theory

ja :
∏
b∈A

Ub → R , a ∈ A

I Cooperative game theory

j : 2A → R
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Let us start by lining up the ingredients for
a general abstract optimization problem

I Optimization set U containing optimization variables u ∈ U
I A criterion J : U→ R ∪ {+∞}
I Constraints of the form u ∈ Uad ⊂ U

min
u∈Uad

J(u)
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Examples of classes of deterministic optimization problems

min
u∈Uad

J(u)

I Linear programming
I Optimization set U = RN

I Criterion J is linear (a�ne)
I Constraints Uad de�ned by

a �nite number of linear (a�ne) equalities and inequalities

I Convex optimization
I Criterion J is a convex function
I Constraints Uad de�ne a convex set

I Combinatorial optimization
I Optimization set U is discrete (binary {0, 1}N , integer ZN , etc.)



A deterministic sequential optimization problem
is just de�ned over a product space, without arrow of time

I A set {t0, t0 + 1, . . . ,T} ⊂ N of discrete times t

I Control sets Ut containing control variable ut ∈ Ut , for
t = t0, t0 + 1, . . . ,T

I A criterion J :
∏T

t=t0
Ut → R ∪ {+∞}

I Constraints of the form u = (ut0 , . . . , uT ) ∈ Uad ⊂
∏T

t=t0
Ut

min
(ut0 ,...,uT )∈Uad

J(ut0 , . . . , uT )

Two-stage problem

Times t ∈ {0, 1} (and criterion L0
(
u0
)

+ L1
(
u1, ω

)
)
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What makes optimization under uncertainty speci�c

I Optimization set is made of random variables
I Criterion generally derives from a mathematical expectation,

or from a risk measure
I Constraints

I generally include measurability constraints,
like the nonanticipativity constraints,

I and may also include probability constraints, or robust constraints



Here are the ingredients for
a general abstract optimization problem under uncertainty

I A set U
I A set Ω of scenarios
I An optimization set V ⊂ UΩ containing random variables V : Ω→ U
I A criterion J : V→ R ∪ {+∞}
I Constraints of the form V ∈ Vad ⊂ V

min
V∈Vad

J(V)



Here is the most common framework
for robust and stochastic optimization

I A set U
I A set Ω of scenarios, or states of Nature,

possibly equipped with a σ-algebra
I An optimization set V ⊂ UΩ containing random variables V : Ω→ U
I A risk measure F : V→ R ∪ {+∞}
I A function j : U×Ω→ R∪{+∞} (say, the �deterministic� criterion)
I Constraints of the form V ∈ Vad ⊂ V

min
V∈Vad

J(V) = F
[
j(V(·), ·)

]
where the notation means that the risk measure F
has for argument the random variable

j(V(·), ·) : Ω→ R ∪ {+∞} , ω 7→ j(V(ω), ω)



Examples of classes of
robust and stochastic optimization problems

I Stochastic optimization �à la� gradient stochastique
I The risk measure F is a mathematical expectation E
I Measurability constraints make that random variables V ∈ Vad are

constant, that is, are deterministic decision variables

min
u∈Uad

EP
[
j(u, ·)

]
I Robust optimization

I The risk measure F is the fear operator/worst case maxω∈Ω,

where Ω ⊂ Ω
I Measurability constraints make that random variables V ∈ Vad

are constant, that is, are deterministic decision variables

min
u∈Uad

max
ω∈Ω

j(u, ·)



Examples

I A set U
U = U0 × U1 in two stage programming

I A set Ω of scenarios
Ω �nite, Ω = N×WN for discrete time stochastic processes

I An optimization set V ⊂ UΩ containing random variables V : Ω→ U
I A risk measure F : V→ R ∪ {+∞}

most often a mathematical expectation E,
but can be maxω∈Ω in the robust case, with Ω ⊂ Ω

I A function j : U× Ω→ R ∪ {+∞}
I Constraints of the form V ∈ Vad ⊂ V

I Measurability constraints,
like the nonanticipativity constraints

I Pointwise constraints,
like probability constraints and robust constraints



Most common constraints in robust and stochastic
optimization problems

I Measurability constraints

V ∈ linear subspace of UΩ

like the nonanticipativity constraints V = (V0,V1),
V0 is F0-measurable, V1 is F1-measurable

I Pointwise constraints, with Uad : Ω ⇒ U
I probability constraints

P
(
V ∈ Uad

)
≥ 1− ε

I robust constraints

V(ω) ∈ Uad (ω) , ∀ω ∈ Ω ⊂ Ω



Savage's minimal regret criterion... �Had I known�

The regret performs an additive normalization of the function
j : U× Ω→ R ∪ {+∞}

Regret

For u ∈ U and ω ∈ Ω, the regret is

r(u, ω) = j(u, ω)− min
u′∈U

j(u′, ω)

Then, take any risk measure F and solve

min
V∈Vad

F
[
r(V, ·)

]
= min

V∈Vad
F
[
j(V(ω), ω)−min

u∈U
j(u, ω)

]
so that one can have minimal worse regret, minimal expected regret, etc.



Where have we gone till now? And what comes next

I A single criterion
I A single agent with all the information at hand

(this is going to change in multi-agent optimization)
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Here are the ingredients for
a multi criteria optimization problem

I A set U
I A �nite set A of stake holders
I A collection of criteria Ja : U→ R ∪ {+∞}, for a ∈ A

In multi criteria optimization, stake holders a ∈ A bargain
over a common decision u ∈ U



In a multi criteria optimization problem,
a solution is a Pareto optimum

A decision u[ ∈ U is dominated by a decision u] ∈ U if
I all stake holders prefer u] to u[, that is,

Ja(u]) ≥ Ja(u[) , ∀a ∈ A

I at least one stake holder strictly prefers u] to u[, that is,

∃a ∈ A , Ja(u]) > Ja(u[)

A decision is a Pareto optimum if it is not dominated
by any other decision
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Witsenhausen intrinsic model

Till now, we could only account for agents whose order of play was �xed
in advance (sequential optimization)

To account for agents whose order of play is not �xed in advance,
but depends on the state of Nature and on the moves of other agents,

we use the Witsenhausen intrinsic model
with an information �eld attached to each agent
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Let us line up the ingredients for
a stochastic sequential optimization problem

I A set {t0, t0 + 1, . . . ,T} ⊂ N of discrete times,
with generic element t

I Control sets Ut containing control variable ut ∈ Ut ,
for t = t0, t0 + 1, . . . ,T

I Constraints of the form ut ∈ Uad
t ⊂ Ut

I A set Ω of scenarios, or states of Nature, with generic element ω
(without temporal structure, a priori)

I A pre-criterion j : Ut0 × · · · × UT × Ω→ R,
with generic value j(ut0 , . . . , uT , ω)

Two-stage problem

Times t ∈ {0, 1} (and pre-criterion L0
(
u0
)

+ L1
(
u1, ω

)
)



I Stochastic optimization deals with risk attitudes:
mathematical expectation E, risk measure F (including worst case),
probability or robust constraints

I Stochastic dynamic optimization emphasizes
the handling of online information,
and especially the nonanticipativity constraints



For the purpose of handling online information,
we introduce �elds and sub�elds

1. (Ω,F) a measurable space (uncertainties, states of Nature)

2. (Ut0 ,Ut0),. . . , (UT ,UT ) measurable spaces (decision spaces)

3. Sub�eld It ⊂ Ut0 ⊗ · · · ⊗ Ut−1 ⊗ F, for t = t0, . . . ,T (information)

The inclusion
It︸︷︷︸

information

⊂ Ut0 ⊗ · · · ⊗ Ut−1︸ ︷︷ ︸
past controls

⊗F

captures the fact that the information at time t is made at most
of past controls and of the state of Nature (causality)

Static team
Sub�eld It ⊂ F for t = t0, . . . ,T (no dynamic �ow of information)



We introduce strategies

Decision rule, policy, strategy

A strategy is a sequence λ = {λt}t=t0,...,T

of measurable mappings from past histories to decision sets

λt0 : (Ω,F)→ (Ut0 ,Ut0)

. . .

λt : (Ut0 × · · · × Ut−1 × Ω,Ut0 ⊗ · · · ⊗ Ut−1 ⊗ F)→ (Ut ,Ut)

. . .

With obvious notations, the set of strategies is denoted by

Λt0,...,T =
∏

t=t0,...,T

Λt



We introduce admissible strategies to account for
the interplay between decision and information

Admissible strategy

An admissible strategy is a strategy λ = {λt}t=t0,...,T

λt0 : (Ω,F)→ (Ut0 ,Ut0)

. . .

λt : (Ut0 × · · · × Ut−1 × Ω,Ut0 ⊗ · · · ⊗ Ut−1 ⊗ F)→ (Ut ,Ut)

. . .

satisfying, for t = t0, . . . ,T , the information constraints

λ−1t (Ut) ⊂ It︸︷︷︸
information

With obvious notations, the set of admissible strategies is denoted by

Λad
t0,...,T =

∏
t=t0,...,T

Λad
t



The solution map is attached to a strategy,
and maps a scenario towards a history

Solution map

With a strategy λ, we associate the mapping

Sλ : Ω→ Ut0 × · · · × UT × Ω︸ ︷︷ ︸
history space

called solution map, and de�ned by

(ut0 , . . . , uT , ω) = Sλ(ω) ⇐⇒


ut0 = λt0(ω)
ut0+1 = λt0+1(ut0 , ω)
...

...
uT = λT (ut0 , · · · , uT−1, ω)



By composing the pre-criterion with the solution map,
we move forward the design of a criterion

I With a strategy λ, we associate the solution map

Sλ : Ω→ Ut0 × · · · × UT × Ω︸ ︷︷ ︸
history space

that maps a scenario towards a history
I The pre-criterion

j : Ut0 × · · · × UT × Ω→ R

maps a a history towards the real numbers
I Therefore, by composing the pre-criterion with the solution map,

we obtain
j ◦ Sλ : Ω→ R

that maps a scenario towards the real numbers



For the purpose of building a criterion
(and of handling risk attitudes),
we introduce a risk measure

As j ◦ Sλ ∈ RΩ, all we need is a risk measure

F : RΩ → R ∪ {+∞}

to build a criterion that maps a strategy λ
towards the (extended) real numbers

λ ∈ Λt0,...,T 7→ F ◦ j ◦ Sλ ∈ R ∪ {+∞}

where we recall that Λt0,...,T denotes the set of strategies



We can now formulate
an optimization problem under uncertainty

Optimization problem under uncertainty

When F is a risk measure on Ω,

F : RΩ → R ∪ {+∞} ,

the corresponding optimization problem under uncertainty is

min
λ∈Λadt0,...,T

F
(
j
(
Sλ(·)

))
where we recall that Λad

t0,...,T
denotes the set of admissible strategies,

those such that
λ−1t (Ut) ⊂ It , ∀t = t0, . . . ,T



Risk neutral and robust optimization appear as special cases

Risk-neutral stochastic optimization problem

When (Ω,F,P) is a probability space,
the stochastic optimization problem is

min
λ∈Λadt0,...,T

EP

(
j
(
Sλ(·)

))

Robust optimization problem

When Ω ⊂ Ω, the robust optimization problem is

min
λ∈Λadt0,...,T

max
ω∈Ω

j
(
Sλ(ω)

)
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I We survey special cases of nonanticipativity constraints,
when the scenario space is a product over time

I We show how two classical settings �t in the geneal framework:
stochastic programming (SP) and stochastic optimal control (SOC)



How to handle the nonanticipativity constraints

I Product scenario space

Ω =
T∏

t=t0+1

Wt with F =
T⊗

t=t0+1

Wt

I Past uncertainties �elds for t = t0 + 1, . . . ,T ,

Ft = Wt0+1 ⊗ · · · ⊗Wt︸ ︷︷ ︸
past uncertainties

⊗{∅,Wt+1} ⊗ · · · ⊗ {∅,WT}

I Nonanticipativity constraint

It0 = {∅,Ω} and It ⊂ Ut0 ⊗ · · · ⊗ Ut−1︸ ︷︷ ︸
past controls

⊗Ft



Two-stage stochastic programming problem

min
u0

L0
(
u0
)

+ E
(
min
u1

L1
(
u1, ω1

))
I Decision spaces

(U0,U0) = (Rp0 ,Bo
Rp0 ) and (U1,U1) = (Rp1 ,Bo

Rp1 )

I Probability P on the probability space

Ω = W1 = Rq1 with F = Bo
W1

= Bo
Rq1

I Information �elds

I0 = {∅,Ω} and I1 = U0 ⊗ F

I at the �rst stage, there is no information whatsoever
I at the second stage, the �rst decision and the state of Nature

are available for decision-making



Multi-stage stochastic programming problem

min
ut0

Lt0
(
ut0
)
+

E
(
min
ut0+1

Lt0+1

(
ut0+1, ωt0+1

)
+ E

(
· · ·+ E

(
min
uT

LT
(
uT , ωT

))))
,

This corresponds to the decision spaces

(Ut0 ,Ut0) = (Rpt0 ,Bo
Rpt0 ) , . . . , (UT ,UT ) = (RpT ,Bo

RpT ) ,

and to the probability space

Ω =
T∏

t=t0+1

Wt with F =
T⊗

t=t0+1

Wt

equipped with a probability P



State model and stochastic optimal control (SOC)

I Dynamics with an intermediary variable xt ∈ Xt

xt+1 = ft(xt , ut ,wt

)
, t = t0, . . . ,T

I Criterion j
(
x(·), u(·),w(·)

)
de�ned over trajectories

I White noise assumption: the scenario space Ω =
∏T

t=t0+1 Wt

is equipped with a product probability

P =
T⊗

t=t0+1

µt

I Then xt ∈ Xt deserves the name of state:
xt summarizes the past history in that, given time t and the value
of xt , one can calculate the optimal ut and also xt+1 without
knowledge of the whole history (ut0 , . . . , ut−1, ω), for all t



Where have we gone till now? And what comes next

I A single criterion
(this is going to change in game theory)

I Multiple agents with di�erent information
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