Decomposition/Coordination Methods for Multistage Stochastic Optimization Problems

M. De Lara, with P. Carpentier, J.-Ph. Chancelier

École des Ponts ParisTech and ENSTA ParisTech

PGMO Days, 21 November 2018
Motivation
Lecture outline

Decomposition and coordination
The three dimensions of stochastic optimization problems
A bird’s eye view of decomposition methods: the cube

A brief insight into scenario decomposition methods
Scenario decomposition methods “à la Progressive Hedging”
Handling risk with scenario decomposition methods

A brief insight into spatial decomposition methods
Spatial decomposition methods in the deterministic case
The stochastic case raises specific obstacles

Summary and research agenda
Outline of the presentation

Decomposition and coordination

A brief insight into scenario decomposition methods

A brief insight into spatial decomposition methods

Summary and research agenda
A long-term effort in our group (I)

A long-term effort in our group (II)

A long-term effort in our group (III)

2018 H. Gérard, “Décomposition de problèmes d’optimisation stochastique de grande dimension, avec mesure de risque”, Thèse de l’Université Paris-Est, octobre 2018
Outline of the presentation

Decomposition and coordination
 The three dimensions of stochastic optimization problems
 A bird’s eye view of decomposition methods: the cube

A brief insight into scenario decomposition methods
 Scenario decomposition methods “à la Progressive Hedging”
 Handling risk with scenario decomposition methods

A brief insight into spatial decomposition methods
 Spatial decomposition methods in the deterministic case
 The stochastic case raises specific obstacles

Summary and research agenda
Decomposition-coordination: divide and conquer

- **Spatial** decomposition
 - Multiple players with their local information
 - Network with decision-makers located at nodes where they control local storage and flows through edges

- **Temporal** decomposition
 - A state is an information summary
 - Time coordination realized through dynamic programming, by value functions
 - Hard nonanticipativity constraints

- **Scenario** decomposition
 - Along each scenario, sub-problems are deterministic (powerful algorithms)
 - Scenario coordination realized through Progressive Hedging, by updating nonanticipativity multipliers
 - Soft nonanticipativity constraints
Let us fix problem and notations

\[
\min_{U, X} \mathbb{E} \left[\sum_{i=1}^{N} \left(\sum_{t=0}^{T-1} L_t^i(X_t^i, U_t^i, W_{t+1}) + K_i^i(X_T^i) \right) \right]
\]

subject to dynamics constraints

\[
X_{t+1}^i = f_t^i(X_t^i, U_t^i, W_{t+1}), \quad X_0^i = f_{-1}^i(W_0)
\]

state uncertainty

to measurability constraints on the control \(U_t^i\)

\[
\sigma(U_t^i) \subset \sigma(W_0, \ldots, W_t) \iff U_t^i = \mathbb{E}\left(U_t^i \middle| W_0, \ldots, W_t\right)
\]

and to instantaneous coupling constraints

\[
\sum_{i=1}^{N} \gamma_t^i(X_t^i, U_t^i) = 0
\]

(The letter \(U\) stands for the Russian word for control: \(u\)pravl\(e\)nie)
Outline of the presentation

Decomposition and coordination
 The three dimensions of stochastic optimization problems
 A bird’s eye view of decomposition methods: the cube

A brief insight into scenario decomposition methods
 Scenario decomposition methods “à la Progressive Hedging”
 Handling risk with scenario decomposition methods

A brief insight into spatial decomposition methods
 Spatial decomposition methods in the deterministic case
 The stochastic case raises specific obstacles

Summary and research agenda
Couplings for stochastic problems

\[
\min \sum_{\omega} \sum_{i} \sum_{t} \pi_{\omega} L_{t}^{i}(X_{t}^{i}(\omega), U_{t}^{i}(\omega), W_{t+1}(\omega))
\]

\[
\sum_{i} Y_{t}^{i}(X_{t}^{i}, U_{t}^{i}) = 0
\]
Couplings for stochastic problems: in time

\[
\min \sum_{\omega} \sum_{i} \sum_{t} \pi_{\omega} L_t^i \left(X_t^i(\omega), U_t^i(\omega), W_{t+1}^i(\omega) \right)
\]

s.t. \(X_{t+1}^i = f_t^i \left(X_t^i, U_t^i, W_{t+1}^i \right) \)
Couplings for stochastic problems: in uncertainty

\[
\begin{align*}
\min & \sum_{\omega} \sum_i \sum_t \pi_\omega L_t^i (X_t^i(\omega), U_t^i(\omega), W_{t+1}(\omega)) \\
\text{s.t.} & \quad X_{t+1}^i = f_t^i(X_t^i, U_t^i, W_{t+1}) \\
& \quad U_t^i = \mathbb{E} \left(U_t^i \mid W_0, \ldots, W_t \right)
\end{align*}
\]
Couplings for stochastic problems: in space

\[
\min \sum_{\omega} \sum_{i} \sum_{t} \pi_\omega L^i_t(X^i_t(\omega), U^i_t(\omega), W_{t+1}(\omega))
\]

s.t. \(X^i_{t+1} = f^i_t(X^i_t, U^i_t, W_{t+1}) \)

\[
U^i_t = \mathbb{E}\left(U^i_t \mid W_0, \ldots, W_t \right)
\]

\[
\sum_i Y^i_t(X^i_t, U^i_t) = 0
\]
Can we decouple stochastic problems?

\[
\begin{align*}
\min & \sum_{\omega} \sum_{i} \sum_{t} \pi_{\omega} L_{t}^{i}(X_{t}^{i}(\omega), U_{t}^{i}(\omega), W_{t+1}(\omega)) \\
\text{s.t.} & \quad X_{t+1}^{i} = f_{t}^{i}(X_{t}^{i}, U_{t}^{i}, W_{t+1}) \\
& \quad U_{t}^{i} = \mathbb{E}\left(U_{t}^{i} \mid W_{0}, \ldots, W_{t}\right) \\
& \quad \sum_{i} Y_{t}^{i}(X_{t}^{i}, U_{t}^{i}) = 0
\end{align*}
\]
Sequential decomposition in time

\[
\min \sum_{\omega} \sum_{i} \sum_{t} \pi_{\omega} L_{t}^{i}(X_{t}^{i}(\omega), U_{t}^{i}(\omega), W_{t+1}(\omega))
\]

s.t. \(X_{t+1}^{i} = f_{t}^{i}(X_{t}^{i}, U_{t}^{i}, W_{t+1}) \)

\[
U_{t}^{i} = \mathbb{E} \left(U_{t}^{i} \mid W_{0}, \ldots, W_{t} \right)
\]

\[
\sum_{i} Y_{t}^{i}(X_{t}^{i}, U_{t}^{i}) = 0
\]

Dynamic Programming
Bellman (56)
Parallel decomposition in uncertainty/scenarios

\[
\min \sum_{\omega} \sum_{i} \sum_{t} \pi_{\omega} L_{t}^{i}(X_{t}^{i}(\omega), U_{t}^{i}(\omega), W_{t+1}(\omega))
\]

\[\text{s.t. } X_{t+1}^{i} = f_{t}^{i}(X_{t}^{i}, U_{t}^{i}, W_{t+1})\]

\[U_{t}^{i} = \mathbb{E}\left(U_{t}^{i} \bigg| W_{0}, \ldots, W_{t}\right)\]

\[\sum_{i} Y_{t}^{i}(X_{t}^{i}, U_{t}^{i}) = 0\]

Progressive Hedging
Rockafellar - Wets (91)
Parallel decomposition in space/units

\[
\min \sum_{\omega} \sum_{i} \sum_{t} \pi_{\omega} L_t^i (X_t^i(\omega), U_t^i(\omega), W_{t+1}(\omega))
\]

s.t. \(X_{t+1}^i = f_t^i (X_t^i, U_t^i, W_{t+1}) \)

\(U_t^i = \mathbb{E} \left(U_t^i \bigg| W_0, \ldots, W_t \right) \)

\[
\sum_i Y_t^i(X_t^i, U_t^i) = 0
\]

Price and Quantity Decompositions with DP
Outline of the presentation

Decomposition and coordination

A brief insight into scenario decomposition methods

A brief insight into spatial decomposition methods

Summary and research agenda
Outline of the presentation

Decomposition and coordination
 The three dimensions of stochastic optimization problems
 A bird’s eye view of decomposition methods: the cube

A brief insight into scenario decomposition methods
 Scenario decomposition methods “à la Progressive Hedging”
 Handling risk with scenario decomposition methods

A brief insight into spatial decomposition methods
 Spatial decomposition methods in the deterministic case
 The stochastic case raises specific obstacles

Summary and research agenda
Non-anticipativity constraints are linear

- From tree to scenarios (fan)
- Equivalent formulations of the non-anticipativity constraints
 - pairwise equalities
 - all equal to their mathematical expectation
- Linear structure

\[U_t = \mathbb{E} \left(U_t \middle| W_0, \ldots, W_t \right) \]
Progressive Hedging stands as a scenario decomposition method

We dualize the non-anticipativity constraints

- When the criterion is strongly convex, we use a Lagrangian relaxation (algorithm “à la Uzawa”) to obtain a scenario decomposition
- When the criterion is linear, Rockafellar - Wets (91) propose to use an augmented Lagrangian, and obtain the Progressive Hedging algorithm
Data: step $\rho > 0$, initial multipliers $\{\lambda_s^{(0)}\}_{s \in \mathcal{S}}$ and mean first decision $\bar{x}^{(0)}$;

Result: optimal first decision x;

repeat

forall scenarios $s \in \mathcal{S}$ do

Solve the deterministic minimization problem for scenario s, with a penalization $+\lambda_s^{(k)} \left(x_s^{(k+1)} - \bar{x}^{(k)} \right)$, and obtain optimal first decision $x_s^{(k+1)}$;

Update the mean first decisions

$$\bar{x}^{(k+1)} = \sum_{s \in \mathcal{S}} \pi_s x_s^{(k+1)};$$

Update the multiplier by

$$\lambda_s^{(k+1)} = \lambda_s^{(k)} + \rho \left(x_s^{(k+1)} - \bar{x}^{(k+1)} \right), \quad \forall s \in \mathcal{S};$$

until $x_s^{(k+1)} - \sum_{s' \in \mathcal{S}} \pi_{s'} x_{s'}^{(k+1)} = 0, \quad \forall s \in \mathcal{S};$
Outline of the presentation

Decomposition and coordination
 The three dimensions of stochastic optimization problems
 A bird’s eye view of decomposition methods: the cube

A brief insight into scenario decomposition methods
 Scenario decomposition methods “à la Progressive Hedging”
 Handling risk with scenario decomposition methods

A brief insight into spatial decomposition methods
 Spatial decomposition methods in the deterministic case
 The stochastic case raises specific obstacles

Summary and research agenda
Suppose you had to manage a day-ahead energy market
You would have to fix reserves by night
and adjust in the morning with recourse energies
From linear to stochastic programming

- The linear program

\[
\min_{x \in \mathbb{R}^n} \langle c , x \rangle \\
Ax + b \geq 0 \quad (\in \mathbb{R}^m)
\]

- becomes a stochastic program

\[
\min_{x \in \mathbb{R}^n} \sum_{s \in S} \pi_s \langle c_s , x \rangle \\
A_s x + b_s \geq 0 , \quad \forall s \in S
\]

- We observe that there are as many (vector) inequalities as there are possible scenarios \(s \in S \)

\[
A_s x + b_s \geq 0 , \quad \forall s \in S
\]

and these inequality constraints can delineate an empty domain for optimization
Recourse variables need be introduced for feasibility issues

- We denote by $s \in S$ any possible value of the random variable ξ, with corresponding probability π_s
- and we introduce a recourse variable $y = (y_s)_{s \in S}$ and the program

\[
\min_{x, (y_s)_{s \in S}} \sum_{s \in S} \pi_s \left(\langle c_s, x \rangle + \langle p_s, y_s \rangle \right)
\]

\[
y_s \geq 0, \quad \forall s \in S
\]

\[
A_s x + b_s + y_s \geq 0, \quad \forall s \in S
\]

- so that the inequality $A_s x + b_s + y_s \geq 0$ is now possible, at (unitary recourse) price vector $p = (p_s, s \in S)$
- Observe that such stochastic programs are huge problems, with solution $(x, (y_s)_{s \in S})$, but remain linear
Minimizing the Tail Value at Risk of costs: linear programming formulation

- The risk-averse stochastic linear program with recourse

\[
\min_{x, (y_s)_{s \in S}} \min_{r \in \mathbb{R}} \left\{ r + \frac{1}{1 - \lambda} \sum_{s \in S} \pi_s \left(\langle c_s, x \rangle + \langle p_s, y_s \rangle \right) \right\}
\]

- can be written as the linear program

\[
\begin{align*}
\min_{x, (y_s)_{s \in S}} \min_{r} \min_{(v_s)_{s \in S}} & \quad r + \frac{1}{1 - \lambda} \sum_{s \in S} \pi_s v_s \\
 v_s - \langle c_s, x \rangle - \langle p_s, y_s \rangle & \geq 0, \quad \forall s \in S \\
v_s & \geq 0, \quad \forall s \in S \\
y_s & \geq 0, \quad \forall s \in S \\
A_s x + b_s + y_s & \geq 0, \quad \forall s \in S
\end{align*}
\]
Minimizing a mixture: linear programming formulation

▶ The risk-averse stochastic linear program with recourse

\[
\min_{x, (y_s)} \min_{r \in \mathbb{R}} \left\{ \theta \sum_{s \in S} \pi_s \left(\langle c_s, x \rangle + \langle p_s, y_s \rangle \right) + (1 - \theta) r + \frac{1 - \theta}{1 - \lambda} \sum_{s \in S} \pi_s \left(\langle c_s, x \rangle + \langle p_s, y_s \rangle \right) \right\}
\]

▶ can be written as the linear program

\[
\min_{x, (y_s)} \min_{r} \min_{(u_s, v_s)} \sum_{s \in S} \pi_s \left\{ \theta u_s + (1 - \theta) r + \frac{1 - \theta}{1 - \lambda} v_s \right\}
\]

\[
\begin{align*}
u_s - \langle c_s, x \rangle - \langle p_s, y_s \rangle & \geq 0, \quad \forall s \in S \\
v_s - u_s + r & \geq 0, \quad \forall s \in S \\
v_s & \geq 0, \quad \forall s \in S \\
y_s & \geq 0, \quad \forall s \in S \\
A_s x + b_s + y_s & \geq 0, \quad \forall s \in S
\end{align*}
\]
Outline of the presentation

Decomposition and coordination

A brief insight into scenario decomposition methods

A brief insight into spatial decomposition methods

Summary and research agenda
Outline of the presentation

Decomposition and coordination
The three dimensions of stochastic optimization problems
A bird’s eye view of decomposition methods: the cube

A brief insight into scenario decomposition methods
Scenario decomposition methods “à la Progressive Hedging”
Handling risk with scenario decomposition methods

A brief insight into spatial decomposition methods
Spatial decomposition methods in the deterministic case
The stochastic case raises specific obstacles

Summary and research agenda
Decomposition and coordination

- The system to be optimized consists of interconnected subsystems.
- We want to use this structure to formulate optimization subproblems of reasonable complexity.
- But the presence of interactions requires a level of coordination.
- Coordination iteratively provides a local model of the interactions for each subproblem.
- We expect to obtain the solution of the overall problem by concatenation of the solutions of the subproblems.
Example: the “flower model”

\[
\begin{align*}
\min_u & \quad \sum_{i=1}^{N} J_i(u_i) \\
\text{s.t.} & \quad \sum_{i=1}^{N} \theta_i(u_i) = 0
\end{align*}
\]

Unit Commitment Problem
Intuition of spatial decomposition

- **Unit 1**
- **Unit 2**
- **Unit 3**
- **Coordinator**

- **Purpose:** satisfy a demand with N production units, at minimal cost
- **Price decomposition**
 - The coordinator sets a price λ
 - The units send their optimal decision u_i
 - The coordinator compares total production $\sum_{i=1}^{N} \theta_i(u_i)$ and demand, and then updates the price accordingly
 - And so on...
Intuition of spatial decomposition

Purpose: satisfy a demand with N production units, at minimal cost.

Price decomposition:
- the coordinator sets a price λ
- the units send their optimal decision u_i
- the coordinator compares total production $\sum_{i=1}^{N} \theta_i(u_i)$ and demand, and then updates the price accordingly.
- and so on...
Intuition of spatial decomposition

- Purpose: satisfy a demand with N production units, at minimal cost
- **Price decomposition**
 - the coordinator sets a price λ
 - the units send their optimal decision u_i

Diagram:
- Unit 1
- Unit 2
- Unit 3
- Coordinator

Arrows:
- $u_1^{(0)}$ from Unit 1 to Coordinator
- $u_2^{(0)}$ from Unit 2 to Coordinator
- $u_3^{(0)}$ from Unit 3 to Coordinator
Intuition of spatial decomposition

- **Purpose:** satisfy a demand with N production units, at minimal cost

- **Price decomposition**
 - the coordinator sets a price λ
 - the units send their optimal decision u_i
 - the coordinator compares total production $\sum_{i=1}^{N} \theta_i(u_i)$ and demand, and then updates the price accordingly

Diagram:

- Coordinator
 - $\lambda^{(1)}$ to Unit 1
 - $\lambda^{(1)}$ to Unit 2
 - $\lambda^{(1)}$ to Unit 3
Intuition of spatial decomposition

- **Purpose:** satisfy a demand with N production units, at minimal cost
- **Price decomposition**
 - the coordinator sets a price λ
 - the units send their optimal decision u_i
 - the coordinator compares total production $\sum_{i=1}^{N} \theta_i(u_i)$ and demand, and then updates the price accordingly
 - and so on...
Intuition of spatial decomposition

- Purpose: satisfy a demand with N production units, at minimal cost
- Price decomposition
 - the coordinator sets a price λ
 - the units send their optimal decision u_i
 - the coordinator compares total production $\sum_{i=1}^{N} \theta_i(u_i)$ and demand, and then updates the price accordingly
- and so on...
Intuition of spatial decomposition

- **Purpose**: satisfy a demand with N production units, at minimal cost
- **Price decomposition**
 - the coordinator sets a price λ
 - the units send their optimal decision u_i
 - the coordinator compares total production $\sum_{i=1}^{N} \theta_i(u_i)$ and demand, and then updates the price accordingly
 - and so on...
Price decomposition relies on dualization

\[\min_{u_i \in \mathcal{U}_i, i=1 \ldots N} \sum_{i=1}^{N} J_i(u_i) \quad \text{subject to} \quad \sum_{i=1}^{N} \theta_i(u_i) = 0 \]

1. Form the Lagrangian and assume that a saddle point exists

\[\max_{\lambda \in \mathcal{V}} \min_{u_i \in \mathcal{U}_i, i=1 \ldots N} \sum_{i=1}^{N} \left(J_i(u_i) + \langle \lambda, \theta_i(u_i) \rangle \right) \]

2. Solve this problem by the dual gradient algorithm “à la Uzawa”

\[u_i^{(k+1)} \in \arg \min_{u_i \in \mathcal{U}_i} J_i(u_i) + \langle \lambda^{(k)}, \theta_i(u_i) \rangle, \quad i = 1 \ldots , N \]

\[\lambda^{(k+1)} = \lambda^{(k)} + \rho \sum_{i=1}^{N} \theta_i(u_i^{(k+1)}) \]
Remarks on decomposition methods

- The theory is available for infinite dimensional Hilbert spaces, and thus applies in the stochastic framework, that is, when the U_i are spaces of random variables.

- The minimization algorithm used for solving the subproblems is not specified in the decomposition process.

- New variables $\lambda^{(k)}$ appear in the subproblems arising at iteration k of the optimization process

$$\min_{u_i \in U_i} J_i(u_i) + \langle \lambda^{(k)}, \theta_i(u_i) \rangle$$

- These variables are fixed when solving the subproblems, and do not cause any difficulty, at least in the deterministic case.
Price decomposition applies to various couplings
Outline of the presentation

Decomposition and coordination
- The three dimensions of stochastic optimization problems
- A bird’s eye view of decomposition methods: the cube

A brief insight into scenario decomposition methods
- Scenario decomposition methods “à la Progressive Hedging”
- Handling risk with scenario decomposition methods

A brief insight into spatial decomposition methods
- Spatial decomposition methods in the deterministic case
- The stochastic case raises specific obstacles

Summary and research agenda
Stochastic optimal control (SOC) problem formulation

Consider the following SOC problem

\[\min_{U, X} \mathbb{E} \left(\sum_{i=1}^{N} \left(\sum_{t=0}^{T-1} L_t^i(X_t^i, U_t^i, W_{t+1}) + K_t^i(X_T^i) \right) \right) \]

subject to the constraints

\[X_{0}^{i} = f_{-1}^{i}(W_0) , \]

\[X_{t+1}^{i} = f_{t}^{i}(X_{t}^{i}, U_{t}^{i}, W_{t+1}) , \quad t = 0 \ldots T-1 , \quad i = 1 \ldots N \]

\[\sigma(U_t^i) \subset \sigma(W_0, \ldots, W_t) , \quad t = 0 \ldots T-1 , \quad i = 1 \ldots N \]

\[\sum_{i=1}^{N} \theta_t^i(X_t^i, U_t^i) = 0 , \quad t = 0 \ldots T-1 \]
Stochastic optimal control (SOC) problem formulation

Consider the following SOC problem

$$\min_{U,X} \sum_{i=1}^{N} \left(\mathbb{E} \left(\sum_{t=0}^{T-1} L_t^i(X_t^i, U_t^i, W_{t+1}) + K_t^i(X_T^i) \right) \right)$$

subject to the constraints

$$X_0^i = f_{-1}^i(W_0), \quad i = 1 \ldots N$$

$$X_{t+1}^i = f_t^i(X_t^i, U_t^i, W_{t+1}), \quad t = 0 \ldots T-1, \quad i = 1 \ldots N$$

$$\sigma(U_t^i) \subset \sigma(W_0, \ldots, W_t), \quad t = 0 \ldots T-1, \quad i = 1 \ldots N$$

$$\sum_{i=1}^{N} \theta_t^i(X_t^i, U_t^i) = 0, \quad t = 0 \ldots T-1$$
Dynamic programming yields centralized controls

- As we want to solve this SOC problem using dynamic programming (DP), we suppose to be in the Markovian setting, that is, W_0, \ldots, W_T are a white noise

- The system is made of N interconnected subsystems, with the control U^i_t and the state X^i_t of subsystem i at time t

- The optimal control U^i_t of subsystem i is a function of the whole system state (X^1_t, \ldots, X^N_t)

$$U^i_t = \lambda^i_t(X^1_t, \ldots, X^N_t)$$

Naive decomposition should lead to decentralized feedbacks

$$U^i_t = \hat{\lambda}^i_t(X^i_t)$$

which are, in most cases, far from being optimal...
Straightforward decomposition of dynamic programming?

The crucial point is that the optimal feedback of a subsystem a priori depends on the state of all other subsystems, so that using a decomposition scheme by subsystems is not obvious...

As far as we have to deal with dynamic programming, the central concern for decomposition/coordination purpose boils down to

- how to decompose a feedback λ_t w.r.t. its domain X_t rather than its range U_t?

And the answer is

- impossible in the general case!
Price decomposition and dynamic programming

When applying price decomposition to the problem by dualizing the (almost sure) coupling constraint \(\sum \theta_t^i(X^i_t, U^i_t) = 0 \), multipliers \(\Lambda_t^{(k)} \) appear in the subproblems arising at iteration \(k \)

\[
\min_{U_t^i, X_t^i} \mathbb{E} \left[\sum_t L_t^i(X_t^i, U_t^i, W_{t+1}) + \Lambda_t^{(k)} \cdot \theta_t^i(X_t^i, U_t^i) \right]
\]

- The variables \(\Lambda_t^{(k)} \) are fixed random variables, so that the random process \(\Lambda^{(k)} \) acts as an additional input noise in the subproblems
- But this process may be correlated in time, so that the white noise assumption has no reason to be fulfilled
- DP cannot be applied in a straightforward manner!

Question: how to handle the coordination instruments \(\Lambda_t^{(k)} \) to obtain (an approximation of) the overall optimum?
Outline of the presentation

Decomposition and coordination

A brief insight into scenario decomposition methods

A brief insight into spatial decomposition methods

Summary and research agenda
Let us move to broader stochastic optimization challenges

- **Stochastic** optimization requires to make risk attitudes explicit
 - robust, worst case, risk measures, in probability, almost surely

- **Stochastic dynamic** optimization requires to make online information explicit
 - State-based functional approach
 - Scenario-based measurability approach

Numerical walls

- in dynamic programming, the bottleneck is the dimension of the state
- in stochastic programming, the bottleneck is the number of stages
Here is our research agenda for stochastic decomposition

- Designing risk criteria compatible with decomposition
 - thèse d'Adrien Le Franc (2018—)
- Combining different decomposition methods
 - time: dynamic programming
 - scenario: Progressive Hedging
 - space: decomposition by prices or by quantities
 - into blends
 - time + space: Pierre Carpentier talk
 nodal decomposition by prices or by quantities
 + dynamic programming within node
 - time + scenario: Jean-Philippe Chancelier talk
 dynamic programming accross time blocks
 + Progressive Hedging within time blocks