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Here are the level sets
of the (highly nonconvex) pseudonorm `0 in R2

ℓ0 = 0

ℓ0 = 1

ℓ0 = 2



The pseudonorm `0 is not a norm
Only 1-homogeneity is missing

Let d ∈ N∗ be fixed

I For any vector x ∈ Rd , we define its pseudonorm `0(x) by

`0(x) = |x |0 = number of nonzero components of x

I The function pseudonorm `0 : Rd →
{

0, 1, . . . , d
}

satisfies 3 out of 4 axioms of a norm
I we have `0(x) ≥ 0 X
I we have

(
`0(x) = 0 ⇐⇒ x = 0

)
X

I we have `0(x + x ′) ≤ `0(x) + `0(x ′) X
I But... 0-homogeneity holds true

`0(ρx) = `0(x) , ∀ρ 6= 0



First, let us have a look at
the least squares regression sparse optimization problem
The pseudonorm `0 is in the constraints

Let a matrix A and a vector z be given (with proper dimensions)

I Letting k ∈ {1, . . . , d} be a (small) integer,
the least squares regression sparse optimization problem is

min
`0(x)≤k

‖Ax − z‖2

I In a sense, you try to “explain” the output variable z
by at most k components of x



The Fenchel conjugacy is not suitable
to handle such sparse constraints

I Indeed, from the easily obtained inequality

sup
y∈Y

((
−f ?(y)

)
·+
(
−δ(−?)

X (y)
))
≤ inf

x∈X

(
f (x)uδX (x)

)
= inf

x∈X
f (x)

I we deduce the (disappointing) lower bound

−∞ = sup
y∈Rd

(
−f ?(y) ·+

(
−δ(−?){

x∈Rd
∣∣ `0(x)≤k

}(y)︸ ︷︷ ︸
−σRd (y)=−∞

))
≤ inf

`0(x)≤k
f (x)



Second, let us turn towards
the sparse linear regression problem
The pseudonorm `0 is the objective function

Let a matrix A and a vector z be given (with proper dimensions)

I The sparse linear regression problem is

min
Ax=z

`0(x)

I In a sense, you try to “explain” the output variable z
by a vector x with the least number of components



The Fenchel conjugacy is not suitable
to handle the pseudonorm `0

I Indeed, as `0 is bounded in every direction,
the computation of the Fenchel conjugate `?0 easily gives

`?0 = δ{0} =

{
0 on {0}
+∞ on Rd\{0}

I leading to the Fenchel biconjugate `??
′

0

`??
′

0 (x) = 0︸ ︷︷ ︸
best convex lsc

lower approximation

≤ `0(x)

I and to the (once again disappointing) lower bound

0 ≤ min
Ax=z

`0(x)



We introduce a family of new conjugacies (Capra)
to tackle the pseudonorm `0

Each conjugacy is function of a (source) norm on Rd , and

I yields lower bound convex programs
for exact sparse optimization problems

min|||x |||R(k)≤1

(
inf
[
f | n

])??′
(x) ≤ inf`0(x)≤k f (x)

I reveals covert convexity in the pseudonorm `0

and yields variational formulas for the `0 pseudonorm

`0(x) =
1

|||x |||
min

z(1)∈Rd ,...,z(d)∈Rd∑d
k=1 |||z(k)|||?sn?,(k)≤|||x |||∑d

k=1 z
(k)=x

d∑
k=1

k |||z(k)|||?sn?,(k)

︸ ︷︷ ︸
convex optimization problem



The pseudonorm `0 coincides, on the sphere (circle in R2),
with a convex lsc function

ℓ0 = 0

ℓ0 = 1

ℓ0 = 2
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The Fenchel conjugacy

(+∞) ·+ (−∞) = (−∞) ·+ (+∞) = −∞

Definition
Two vector spaces X and Y, paired by a bilinear form 〈 , 〉
give rise to the classic Fenchel conjugacy

f ∈ RX 7→ f ? ∈ RY

f ?(y) = sup
x∈X

(
〈x , y〉 ·+

(
− f (x)

))
, ∀y ∈ Y

Fenchel conjugate Fourier transform
sup→ +
+→ ×

supx∈X

(
〈x , y〉 ·+

(
− f (x)

)) ∫
X e〈x ,y〉f (x)dx



Background on couplings and Fenchel-Moreau conjugacies

I Let be given two sets X (“primal”) and Y (“dual”)
(not necessarily paired vector spaces)

I We consider a coupling function

c : X× Y→ R = [−∞,+∞]

I We also use the notation X c↔ Y for a coupling

[Mart́ınez-Legaz, 2005]



What are couplings good for?

Couplings are good for providing

I lower bounds for optimization problems with constraints
(uses conjugates)

I c-convex lower approximations of functions
(uses biconjugates)

I dual representation formulas for c-convex functions
(uses biconjugates)



Fenchel-Moreau conjugate

Definition
The c-Fenchel-Moreau conjugate of a function f : X→ R,
with respect to the coupling c ,
is the function f c : Y→ R defined by

f c(y) = sup
x∈X

(
c(x , y) ·+

(
− f (x)

))
, ∀y ∈ Y

Fenchel-Moreau conjugate (max,+) Kernel transform (+,×)

supx∈X

(
c(x , y) ·+

(
− f (x)

)) ∫
X c(x , y)f (x)dx

The (−c)-Fenchel-Moreau conjugate of h : X→ R is given by

h−c(y) = sup
x∈X

((
− c(x , y)

)
·+
(
− h(x)

))
, ∀y ∈ Y



Fenchel inequality yields lower bounds

I Conjugacies are special cases of dualites,
that make it possible to obtain dual problems

sup
y∈Y

((
− f c(y)

)
·+
(
− g−c(y)

))
≤ inf

x∈X

(
f (x) u g(x)

)
I In particular, optimization under constraints x ∈ X gives

sup
y∈Y

((
− f c(y)

)
·+
(
− δ−cX (y)

))
≤ inf

x∈X
f (x)

where δX (x) =

{
0 if x ∈ X

+∞ if x 6∈ X

I Hence, the issue is to find a coupling c
that gives nice expressions for f c and δ−cX



Fenchel-Moreau biconjugate

With the coupling c , we associate the reverse coupling c ′

c ′ : Y× X→ R , c ′(y , x) = c(x , y) , ∀(y , x) ∈ Y× X

I The c ′-Fenchel-Moreau conjugate of a function g : Y→ R,
with respect to the coupling c ′, is the function g c ′ : X→ R

g c ′(x) = sup
y∈Y

(
c(x , y) ·+

(
− g(y)

))
, ∀x ∈ X

I The c-Fenchel-Moreau biconjugate f cc
′

: X→ R
of a function f : X→ R is given by

f cc
′
(x) =

(
f c
)c ′

(x) = sup
y∈Y

(
c(x , y) ·+

(
− f c(y)

))
, ∀x ∈ X



So called c-convex functions have dual representations

f cc
′ ≤ f

Definition
The function f : X→ R is c-convex if f cc

′
= f

If the function f : X→ R is c-convex, we have

f (x) = sup
y∈Y

(
c(x , y) ·+

(
− f c(y)

))
, ∀x ∈ X

Example: convex lsc function = supremum of affine functions
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We will display a conjugacy Capra which,
as the pseudonorm `0, is invariant by normalization

I The pseudonorm `0 is a 0-homogeneous function

∀x ∈ Rd , `0(ρx) = `0(x) , ∀ρ 6= 0

I and, therefore, the pseudonorm `0

is invariant by normalization

∀x ∈ Rd\{0} , `0(x) = `0(
x

|||x |||
)

for any norm |||·||| on Rd



We introduce the coupling Capra

I Let be given X and Y, two vector spaces
paired by a bilinear form 〈 , 〉

I Suppose that X is equipped with a (source) norm |||·|||

Definition

We introduce the coupling Capra X
¢←→ Y

∀y ∈ Y ,


¢(x , y) =

〈x , y〉
|||x |||

, ∀x ∈ X\{0}

¢(0, y) = 0

The coupling Capra has the property of being
Constant Along Primal RAys (Capra)



Capra = Fenchel coupling after primal normalization

I We denote the unit sphere

S =
{
x ∈ X

∣∣ |||x ||| = 1
}

and we introduce the primal normalization mapping

n : X→ S ∪ {0} , n(x) =

{
x
|||x ||| if x 6= 0

0 if x = 0

I so that the coupling Capra

¢(x , y) = 〈n(x) , y〉 , ∀x ∈ X , ∀y ∈ Y

appears as the Fenchel coupling after primal normalization



The Capra-subdifferential shares properties
with the Rockafellar-Moreau subdifferential

Capra-subdifferential

For any function f : X→ R and x ∈ Rd

∂¢f (x) = {y ∈ Rd | ¢(x ′, y) ·+
(
− f (x ′)

)
≤ ¢(x , y) ·+

(
− f (x)

)
, ∀x ′ ∈ Rd}

y ∈ ∂¢f (x) ⇐⇒ f ¢(y) = ¢(x , y) ·+
(
− f (x)

)
x ∈ arg min f ⇐⇒ 0 ∈ ∂¢f (x)

∂¢f + ∂¢h ⊂ ∂¢(f u h)

∂¢f (x) 6= ∅ ⇒ f ¢¢′(x) = f (x)



The Capra conjugacy shares properties
with the Fenchel conjugacy

Proposition

For any function f : X→ R,
the ¢-Fenchel-Moreau conjugate is given by

f ¢ =
(

inf
[
f | n

])?
where

inf
[
f | n

]
(x) =

{
infρ>0 f (ρx) if x ∈ S ∪ {0}
+∞ if x 6∈ S ∪ {0}

As a consequence, when X and Y are paired vector spaces

the ¢-Fenchel-Moreau conjugate f ¢ is a convex lsc function



The ¢-convex functions are 0-homogeneous
and coincide, on the sphere, with a convex lsc function

I The ¢′-Fenchel-Moreau conjugate of g : Y→ R is given by

g¢′ = g? ◦ n
I The ¢-convex functions are

{
g¢′ ∣∣ g ∈ RY}

, hence

g¢′(x) = g?
(
n(x)

)
= g?( x

|||x |||) if x 6= 0

Proposition

When X and Y are paired vector spaces,
any ¢-convex function coincides, on the sphere S,
with a convex lsc function defined on the whole space X

¢-convex function(x) = convex lsc function(
x

|||x |||
)
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A first step towards a dual problem for sparse optimization

I From the easily obtained inequality

sup
y∈Y

((
−f ¢(y)

)
·+
(
−δ−¢X (y)

))
≤ inf

x∈X

(
f (x)uδX (x)

)
= inf

x∈X
f (x)

we deduce that

sup
y∈Rd

(
−
(

inf
[
f | n

])?
(y)︸ ︷︷ ︸

concave usc

·+
(
−δ−¢{

x∈Rd
∣∣ `0(x)≤k

}(y)︸ ︷︷ ︸
what is it?

))
≤ inf

`0(x)≤k
f (x)

I We denote the level sets of the pseudonorm `0 by

`≤k0 =
{
x ∈ Rd

∣∣ `0(x) ≤ k
}
, ∀k ∈

{
0, 1, . . . , d

}
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We reformulate sparsity in terms of coordinate subspaces

I For any x ∈ Rd and K ⊂ {1, . . . , d},
we denote by xK ∈ Rd the vector which coincides with x ,
except for the components outside of K that vanish

x = (1, 2, 3, 4, 5, 6)→ x{2,4,5} = (0, 2, 0, 4, 5, 0)

I xK is the orthogonal projection of x
onto the (coordinate) subspace

RK = RK × {0}−K =
{
x ∈ Rd

∣∣ xj = 0 , ∀j 6∈ K
}
⊂ Rd

I The connection with the level sets of the pseudonorm `0 is

`≤k0 =
⋃
|K |≤k

RK , ∀k = 0, 1, . . . , d



We generate a sequence of coordinate norms
from any source norm

For any source norm |||·|||, we define

I a sequence
{
|||·|||R(k)

}
k=1,...,d

of coordinate-k norms

characterized by the following dual norms

I a sequence
{
|||·|||R(k),?

}
k=1,...,d

of dual coordinate-k norms by

|||·|||R(k),? =
(
|||·|||R(k)

)
?

= sup
|K |≤k

σRK∩S = σ
`≤k

0 ∩S

|||y |||R(k),? = sup
|K |≤k

|||yK |||K ,? , ∀y ∈ Rd



The case of `p-norms: |||·||| = ‖ · ‖p

For y ∈ Rd , let ν be a permutation of {1, . . . , d} such that

|yν(1)| ≥ |yν(2)| ≥ · · · ≥ |yν(d)|

|||·||| |||x |||R(k) |||y |||R(k),?

‖ · ‖1 ‖x‖1 |yν(1)| = ‖y‖∞
‖ · ‖2

√∑k
l=1 |yν(l)|2

‖ · ‖∞
∑k

l=1 |yν(l)|
‖ · ‖p

(∑k
l=1 |yν(l)|q

)1/q

1/p + 1/q = 1

(More on these norms, and their dual norms, later)



The pseudonorm `0 and the ¢-coupling

Proposition

The pseudonorm `0,
the characteristic function δ

`≤k
0

of its level sets

and the dual coordinate-k norms |||·|||R(k),?

are conjugate as follows

δ
−¢
`≤k

0

= δ
¢
`≤k

0

= |||·|||R(k),? , k = 0, 1, . . . , d

`
¢
0 = sup

l=0,1,...,d

[
|||·|||R(l),? − l

]



Where have we gone till now? And what comes next

Fenchel conjugacy Capra conjugacy

δ
(−?)

`≤k
0

= +∞ δ
−¢
`≤k

0

= |||·|||R(k),?

`?0 = δ{0} `
¢
0 = supl=0,1,...,d

[
|||·|||R(l),? − l

]
I The highly nonconvex constraint x ∈ `≤k0

cannot be handled by the Fenchel conjugacy

because δ
(−?)

`≤k
0

= +∞

I We have exhibited a new conjugacy Capra

such that δ
−¢
`≤k

0

= |||·|||R(k),? < +∞,

and with which we are ready to obtain
lower bound dual problems for exact sparse optimization
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A second step towards a dual problem
for sparse optimization

From

sup
y∈Y

((
− f ¢(y)

)
·+
(
− δ−¢X (y)

))
≤ inf

x∈X

(
f (x) u δX (x)

)
we deduce that

sup
y∈Rd

(
−
(

inf
[
f | n

])?
(y) ·+

(
− δ−¢

`≤k
0

(y)︸ ︷︷ ︸
|||y |||R(k),?

))
≤ inf

`0(x)≤k
f (x)



Concave dual problem for exact sparse optimization

Theorem
For any function f : Rd → R, we have the following lower bound

sup
y∈Rd

(
−
(

inf
[
f | n

])?
(y)− |||y |||R(k),?

)
≤ inf
`0(x)≤k

f (x)

= inf
`0(x)≤k

inf
[
f | n

]
(x)

The dual problem is the maximization of a concave usc function
(possibly opening the way for numerical computation)



Convex primal problem for exact sparse optimization

Theorem
Under a mild technical assumption (“à la” Fenchel-Rockafellar),
namely if

(
inf
[
f | n

])?
is a proper function,

we have the following lower bound

min
|||x |||R(k)≤1

(
inf
[
f | n

])??′
(x) ≤ inf

`0(x)≤k
f (x) = inf

`0(x)≤k
inf
[
f | n

]
(x)

The primal problem is the minimization of a convex lsc function
on the unit ball of the coordinate-k norm |||·|||R(k)

(possibly opening the way for numerical computation)



Least squares regression sparse optimization

− |||z |||2 + sup
y∈Rd

((
− 〈z ,A ·〉

2

|||A·|||2
I〈z ,A ·〉>0 u δS

)?
(y)− |||y |||R(k),?

)
=|||z |||2 + min

|||x |||R(k)≤1

(
− 〈z ,A ·〉

2

|||A·|||2
I〈z ,A ·〉>0 u δS

)??′
(x)

≤ inf
`0(x)≤k

|||z − Ax |||2



Where have we gone till now? And what comes next

I Till now, we have used Capra conjugates, and have obtained
lower bounds for optimization problems with constraints
with any source norm

Fenchel conjugacy Capra conjugacy

δ
(−?)

`≤k
0

= +∞ δ
−¢
`≤k

0

= |||·|||R(k),?

`?0 = δ{0} `
¢
0 = supl=0,1,...,d

[
|||·|||R(l),? − l

]
`??
′

0 = 0 `
¢¢′
0 =???

I Now, we will study Capra biconjugates, and we will obtain
dual representation formulas for so-called c-convex functions
for orthant-strictly monotonic source norms
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Biconjugates provide lower c-convex functions

Proposition

δ{
x∈Rd

∣∣ |||x |||R(k)=|||x |||
} = δ

¢¢′

`≤k
0

≤ δ
`≤k

0
, ∀k ∈

{
1, . . . , d

}

1

|||x |||
min

z(1)∈Rd ,...,z(d)∈Rd∑d
k=1 |||z(l)|||R(k)≤|||x |||∑d

k=1 z
(l)=x

d∑
k=1

k|||z(l)|||R(k) = `
¢¢′
0 (x) ≤ `0(x)



Our roadmap

I We are going to provide (necessary and) sufficient conditions
under which the characteristic functions δ

`≤k
0

and the `0 pseudonorm are ¢-convex, that is,

δ
¢¢′

`≤k
0

= δ
`≤k

0

`
¢¢′
0 = `0

I For this purpose, we introduce the new notions of
I orthant-strictly monotonic norm
I graded sequence of norms



Orthant-strictly monotonic norms

For any x ∈ Rd , we denote by |x |
the vector of Rd with components |xi |, i = 1, . . . , d

Definition
A norm |||·||| on the space Rd is called

I orthant-monotonic [Gries, 1967]
if, for all x , x ′ in Rd , we have(
|x | ≤ |x ′| and x ◦ x ′ ≥ 0⇒ |||x ||| ≤ |||x ′|||

)
,

where x ◦ x ′ = (x1x
′
1, . . . , xdx

′
d)

is the Hadamard (entrywise) product

I orthant-strictly monotonic [Chancelier and De Lara, 2019]
if, for all x , x ′ in Rd , we have(
|x | < |x ′| and x ◦ x ′ ≥ 0⇒ |||x ||| < |||x ′|||

)
,

where |x | < |x ′| means that there exists j ∈
{

1, . . . , d
}

such that |xj | < |x
′
j |



Examples of orthant-strictly monotonic norms
among the `p-norms ‖ · ‖p

I All the `p-norms ‖ · ‖p on the space Rd , for p ∈ [1,∞],
are monotonic, hence orthant-monotonic

I All the `p-norms ‖ · ‖p on the space Rd , for p ∈ [1,∞[,
are orthant-strictly monotonic

I The `1-norm ‖ · ‖1 is orthant-strictly monotonic,
whereas its dual norm, the `∞-norm ‖ · ‖∞,
is orthant-monotonic, but not orthant-strictly monotonic



We define generalized top-k and k-support dual norms

Definition
For any source norm |||·||| on Rd , for any k ∈

{
1, . . . , d

}
, we call

I generalized top-k dual norm the norm

|||y |||tn?,(k) = sup
|K |≤k

|||yK |||? = sup
|K |≤k

|||yK |||?,K , ∀y ∈ Rd

I generalized k-support dual norm the dual norm

|||·|||?sn?,(k) =
(
|||·|||tn?,(k)

)
?

In the Euclidian case were the source norm is ‖ · ‖2, we recover the original definition of top-k dual norms,

used to define the k-support dual norms in [Argyriou, Foygel, and Srebro, 2012]



The case of `p-norms: |||·||| = ‖ · ‖p
For y ∈ Rd , let ν be a permutation of {1, . . . , d} such that

|yν(1)| ≥ |yν(2)| ≥ · · · ≥ |yν(d)|

|||·||| |||x |||?sn?,(k) |||y |||tn?,(k)

‖ · ‖p (p, k)-support norm top (k, q)-norm
||x ||snp,k ||y ||tnk,q

=
(∑k

l=1 |yν(l)|q
)1/q

, 1/p + 1/q = 1

‖ · ‖1 (1, k)-support norm top (k,∞)-norm
`1-norm `∞-norm

||x ||sn1,k = ‖x‖1 ||y ||tnk,∞ = |yν(1)| = ‖y‖∞
‖ · ‖2 (2, k)-support norm top (k , 2)-norm

||y ||tnk,2 =
√∑k

l=1 |yν(l)|2

‖ · ‖∞ (∞, k)-support norm top (k , 1)-norm

||y ||tnk,1 =
∑k

l=1 |yν(l)|



Coordinate norms and dual norms
versus
generalized top-k and k-support dual norms

k-coordinate norm k-support dual norm

|||·|||R(k) ≤ |||·|||?sn?,(k)

dual k-coordinate norm top-k dual norm

|||·|||R(k),? = sup|K |≤k |||·|||K ,? ≥ sup|K |≤k |||·|||?,K = |||·|||tn?,(k)



Orthant-monotonic source norms
generate coordinate norms and duals
that are generalized top-k and k-support dual norms

Proposition

If the source norm is orthant monotonic, we have

|||·|||K ,? = |||·|||?,K , ∀K ⊂
{

1, . . . , d
}

hence, for all k ∈ {1, . . . , d},

k-coordinate norm k-support dual norm

|||·|||R(k) = |||·|||?sn?,(k)

dual k-coordinate norm top-k dual norm

|||·|||R(k),? = |||·|||tn?,(k)



We define graded sequence of norms
A graded sequence of norms detects the number of nonzero components of a vector in Rd

when the sequence becomes stationary

Definition
We say that a sequence {|||·|||k}k=1,...,d of norms is
(increasingly) graded with respect to the `0 pseudonorm if,
for any y ∈ Rd and l = 1, . . . , d , we have

`0(y) = l ⇐⇒ |||y |||1 ≤ · · · ≤ |||y |||l−1 < |||y |||l = · · · = |||y |||d

or, equivalently, k ∈
{

1, . . . , d
}
7→ |||y |||k is nondecreasing and

`0(y) ≤ l ⇐⇒ |||y |||l = |||y |||d

Graded sequences are suitable for so-called
“difference of convex” (DC) optimization methods

to tackle sparse `0(y) ≤ l constraints



Orthant-strictly monotonic dual norms
produce graded sequences of norms

Proposition

If the dual norm ||||·||||? of the source norm |||·|||
is orthant-strictly monotonic, then the sequence{

|||·|||tn?,(l)
}
l=1,...,d︸ ︷︷ ︸

generalized top-k dual norm

=
{
|||·|||R(l),?

}
l=1,...,d︸ ︷︷ ︸

dual-k coordinate norm

is graded with respect to the `0 pseudonorm

Thus, we can produce families of graded sequences of norms
suitable for “difference of convex” (DC) optimization methods

to tackle sparse constraints



We establish ¢-convexity of the pseudonorm `0

Theorem

I The sequence
{
|||·|||R(l)

}
l=1,...,d

of coordinate-k norms is

decreasingly graded with respect to the `0 pseudonorm iff

δ
¢¢′

`≤k
0

= δ
`≤k

0

I If both the norm |||·||| and the dual norm |||·|||?
are orthant-strictly monotonic, we have

`
¢¢′
0 = `0



Proof: conditions for nonempty Capra-subdifferentials

∂¢δ`≤k
0

(x) =


∅ if `0(x) = k + 1, . . . , d or |||x ||| < |||x |||R(k)

NBR
(k)

( x
|||x |||R(k)

) if `0(x) = 1, . . . , k and |||x ||| = |||x |||R(k)

{0} if `0(x) = 0

∂¢`0(x) =



NBR
(l)

( x
|||x |||R(k)

)∩{
y ∈ Rd | |||y |||R(l),? − l = supk=0,1,...,d

[
|||y |||R(k),? − k

]
and |||y |||R(l),? = |||yL|||L,? where L = supp(x)

}
if l = `0(x) ≥ 1⋂

k=1,...,d

kBR(k),? if x = 0
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The pseudonorm `0 coincides, on the sphere,
with a convex lsc function defined on the whole space

Proposition

If both the norm |||·||| and the dual norm |||·|||?
are orthant-strictly monotonic, we have

`0(x) = L0(
x

|||x |||
) , ∀x ∈ Rd\{0}

where L0 =
(

sup
l=0,1,...,d

[
|||·|||tn?,(l) − l

])?
︸ ︷︷ ︸

convex lsc on Rd

Proof: `0(x) = `
¢¢′
0 (x)

= sup
y∈Rd

(
¢(x, y) ·+

(
− `¢0 (y)

))

= sup
y∈Rd

( 〈x , y〉
‖x‖ ·+

(
− sup

l=0,1,...,d

[
|||y|||tn?,(l) − l

]))
= L0(

x

|||x|||
)



Covert convexity in the pseudonorm `0
Here is graph of the convex lsc function L0 such that `0 = L0 on the circle



The pseudonorm `0 coincides, on the sphere (circle on R2),
with a convex lsc function

ℓ0 = 0

ℓ0 = 1

ℓ0 = 2



What is the convex lsc function L0?

Proposition
In dimension d = 2, the function L0 is given by

L0(x1, x2) =


+∞ if x2

1 + x2
2 > 1 , (1)

1 if (x1, x2) ∈ {(1, 0), (0, 1), (−1, 0), (0,−1)} , (2)

2 if x2
1 + x2

2 = 1 and (x1, x2) 6∈ {(1, 0), (0, 1), (−1, 0), (0,−1)} , (3)

and, for any (x1, x2) such that x2
1 + x2

2 < 1 by

L0(x1, x2) =



|x1| + |x2| if |x1| + |x2| ≤ 1 , (4)

|x1| + |x2| − 2 +
√

2
√

2− 1
if


(
√

2− 1)|x1| + |x2| < 1 < |x1| + |x2|
or

|x1| + (
√

2− 1)|x2| < 1 < |x1| + |x2| ,
(5)

3− |x2|
2

+
x2

1

2(1− |x2|)
if (
√

2− 1)|x1| + |x2| ≥ 1 and |x2| > |x1| , (6)

3− |x1|
2

+
x2

2

2(1− |x1|)
if |x1| + (

√
2− 1)|x2| ≥ 1 and |x1| > |x2| . (7)
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Variational formula for the `0 pseudonorm

Theorem
If both the norm |||·||| and the dual norm |||·|||?
are orthant-strictly monotonic, we have

`0(x) =
1

|||x |||
min

z(1)∈Rd ,...,z(d)∈Rd∑d
k=1 |||z(k)|||?sn?,(k)≤|||x |||∑d

k=1 z
(k)=x

d∑
k=1

k |||z(k)|||?sn?,(k)

︸ ︷︷ ︸
convex optimization problem



The case of `p-norms: |||·||| = ‖ · ‖p for p ∈]1,∞[

`0(x) =
1

‖x‖p
min

z(1)∈Rd ,...,z(d)∈Rd∑d
k=1||z(k)||snp,k≤‖x‖p∑d

k=1 z
(k)=x

d∑
k=1

k ||z(k)||snp,k



With any norm, we have an inequality

`0(x) ≥ 1

|||x |||
min

z(1)∈Rd ,...,z(d)∈Rd∑d
k=1 |||z(k)|||R(k)≤|||x |||∑d

k=1 z
(k)=x

d∑
k=1

k |||z(k)|||R(k)

In the case of the `1-norm, |||·||| = ‖ · ‖1,
we obtain the trivial inequality x 6= 0⇒ `0(x) ≥ 1...



Minimization of the pseudonorm `0 under constraints

Proposition

Let C ⊂ Rd be such that 0 6∈ C
If both the norm |||·||| and the dual norm |||·|||?
are orthant-strictly monotonic, we have

min
x∈C

`0(x) = min
x∈C ,z(1)∈Rd ,...,z(d)∈Rd∑d

k=1 |||z(k)|||?sn?,(k)≤|||x |||∑d
k=1 z

(k)=x

1

|||x |||

d∑
k=1

k |||z(k)|||?sn?,(k)

= min
x∈C

1

|||x |||
min

z(1)∈Rd ,...,z(d)∈Rd∑d
k=1 |||z(k)|||?sn?,(k)≤|||x |||∑d

k=1 z
(k)=x

d∑
k=1

k |||z(k)|||?sn?,(k)

︸ ︷︷ ︸
convex optimization problem



Minimization over level sets of the pseudonorm `0

Proposition

Let f : Rd → R and k ∈
{

1, . . . , d
}

If both the norm |||·||| and the dual norm |||·|||?
are orthant-strictly monotonic, we have

min
`0(x)≤k

f (x) = min
x∈Rd ,z(1)∈Rd ,...,z(d)∈Rd∑d

k=1 |||z(k)|||?sn?,(k)≤|||x |||∑d
k=1 z

(k)=x∑d
k=1 k|||z(k)|||?sn?,(k)≤k|||x |||

f (x)

= min
z(1)∈Rd ,...,z(d)∈Rd∑d

k=1 |||z(k)|||?sn?,(k)≤|||
∑d

k=1 z
(k)|||∑d

k=1 k|||z(k)|||?sn?,(k)≤k|||
∑d

k=1 z
(k)|||

f (
d∑

k=1

z(k))
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Conclusion (1/3)

I We have dealt with sparse optimization in an exact way
(and not with susbstitute convex formulations)

I Using generalized convexity with an original coupling Capra,
Fenchel after primal normalization with a (source) norm,
we have displayed a suitable conjugacy for the pseudonorm `0



Conclusion (2/3)

Without any assumption on the (source) norm
and on the objective function to be minimized,
we have obtained a lower bound
for any k-sparse optimization problem, which is

I a usc concave dual maximization problem
involving the dual coordinate-k norm
(always)

I a lsc convex primal minimization problem
on the unit ball of the coordinate-k norm
(under a mild assumption)



Conclusion (3/3)

With proper assumptions on the (source) norm
(related to orthant-strict monotonicity and rotundity),
we have

I produced graded sequences of generalized top-k dual norms,
suitable for “difference of convex” (DC) optimization methods

I revealed covert convexity in the pseudonorm `0

I yielded variational formulas for the `0 pseudonorm
involving generalized k-support dual norms
and convex parts



Open questions

I Are the lower bounds accurate?

I Do the lower bound convex programs
provide good approximate solutions?

I Are variational formulas for the `0 pseudonorm
computationaly tractable?

I Do Capra-subdifferentials formulas pave the way
for suitable algorithms for sparse optimization?



Towards a Capra-subdifferential descent method?

I For any y ∈ ∂¢f (x), we have

¢(x ′, y) ·+
(
− f (x ′)

)
≤ ¢(x , y) ·+

(
− f (x)

)
so that an algorithm to find a minimum of f over `≤k0

would exploit the inequality

(
f ·+ δ

`
≤k
0

)
(x(j+1)) ·+

(
−
(
f ·+ δ

`
≤k
0

)
(x(j))

)
≤
〈

x(j)

|||x(j)|||
−

x(j+1)

|||x(j+1)|||
, y (j+1)︸ ︷︷ ︸
∈∂¢(f ·+δ`≤k

0

)(x(j+1))

〉

I Starting from (x (j), y (j)) ∈ Rd × Rd ,
find (x (j+1), y (j+1)) ∈ Rd × Rd such that

y (j+1) ∈ ∂¢(f ·+ δ
`≤k

0
)(x (j+1))〈

x(j)

|||x(j)||| −
x(j+1)

|||x(j+1)||| , y
(j+1)

〉
≤ · · · ≤ 0



Thank you :-)
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