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Optimal operation and valuation of electricity storages

The growing proportion of renewable energy increases the
uncertainties and seasonalities of supply and the price of electricity.

This creates an incentive to store energy.

We study the problem of optimal operation of electricity storages in
the face of seasonalities and stochastic price developments.

The optimization model lends itself to indifference pricing which is
consistent with

the agent’s views, risk preferences and existing storage/production
facilities,
available quotes of electricity derivatives,
classical risk-neutral valuations in the case of complete markets.

The same approach applies to optimal management and valuation of
production facilities.
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Optimal operation and valuation of electricity storages

The crossing point of the supply and demand curves determines the transacted
power and unit price.

Gas prices drive the steep end of the supply curve while renewable production
drives the zero-cost part of the curve. [Barlow: A diffusion model for electricity
prices. Math. Finance 12 (2002)], [Coulon, Howison: Stochastic behaviour of the
electricity bid stack: from fundamental drivers to power prices. J. Energy Markets
(2009)], [Carmona, Coulon, Schwarz: Electricity price modeling and asset
valuation: a multi-fuel structural approach, MathḞinan. Econ. (2013)], [Deschatre,
Féron, Gruet. A survey of electricity spot and futures price models for risk
management applications. Energy Economics, 2021].
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Optimal operation and valuation of electricity storages

Some articles closely related to our work include

Porchet, Touzi, Warin. Valuation of power plants by utility
indifference and numerical computation. Math. Methods Oper. Res.,
2009.

Callegaro, Campi, Giusto, Vargiolu. Utility indifference pricing and
hedging for structured contracts in energy markets. Math. Methods
Oper. Res., 2017.

Picarelli, Vargiolu. Optimal management of pumped hydroelectric
production with state constrained optimal control. J. Econom.
Dynam. Control, 2021.

Germain, Pham, Warin. A level-set approach to the control of
state-constrained McKean-Vlasov equations: application to renewable
energy storage and portfolio selection. Numer. Algebra Control
Optim., 2023.

Löhndorf, Wozabal. Gas storage valuation in incomplete markets.
European J. Oper. Res., 2021.
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Optimal operation of electricity storages

Given a probability space (Ω,F , P ) with a filtration (Ft)
T
t=0 (an increasing

sequence of sub-σ-algebras of F), consider the problem

maximize Eu(Xm
T ) over (X,U) ∈ N

subject to Xm
0 = w,

Xe
0 = 0,

Xm
t+1 ≤ Rm

t+1(X
m
t )− St+1(Ut),

Xe
t+1 ≤ Re

t+1(X
e
t , Ut).

(1)

Xe
t is the amount of energy in storage, Xm

t is the amount of money
invested in financial markets, Ut is the amount of energy bought at time t,

N is the linear space of stochastic processes adapted to (Ft)
T
t=0,

Rm
t+1(X

m
t ) is the of wealth obtained at time t+ 1 when Xm

t units of cash is
invested in the financial market at time t,

St+1(Ut) is the cost of buying Ut units of energy from the market at time t,

Re
t+1(X

e
t , Ut) is the amount of energy in the storage at time t+ 1 when, at

time t, the inventory is Xe
t and Ue

t more units is stored.
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Numerical solution
We rewrite the problem in the convex stochastic control format

minimize E

[
T∑

t=0

Lt(Xt, Ut)

]
over (X,U) ∈ N ,

subject to Xt = AtXt−1 +BtUt−1 +Wt t = 1, . . . , T,

where the state X and the control U take values in RN and RM ,
respectively, At and Bt are Ft-measurable random matrices, Wt is an
Ft-measurable random vector and the functions Lt are extended
real-valued proper convex normal integrands on RN × RM × Ω.

This is amenable to numerical solution by Stochastic Dual Dynamic
Programming

Pereira, Pinto. Multi-stage stochastic optimization applied to energy
planning. Math. Program., 1991.
Dowson, Kapelevich. Julia package for stochastic dual dynamic
programming, INFORMS Journal on Computing, 2021.

Curin, Kettler, Kleisinger-Yu, Komaric, Krabichler, Teichmann, Wutte. A
deep learning model for gas storage optimization. Decisions in Economics
and Finance, 2021

Jean-Philippe Chancelier Ecole des Ponts Michel De Lara Ecole des Ponts François Pacaud Mines Paris-PSL Teemu Pennanen King’s College London Ari-Pekka Perkkiö LMU MunichOptimal Operation and Valuation of Electricity Storages 6 / 26



Numerical solution

We say that sequences of normal integrands Jt : RN × Ω → R and
It : RN ×RM ×Ω → R solve Bellman equations for the control problem if

IT = 0,

Jt(Xt, ω) = inf
Ut∈RM

Et(Lt + It)(Xt, Ut, ω),

It−1(Xt−1, Ut−1, ω) = Jt(Xt−1 +At(ω)Xt−1 +Bt(ω)Ut−1 +Wt(ω), ω).

Recall that a function f : Rn × Ω → R is a normal integrand if the
set-valued mapping

ω 7→ epi f(·, ω)

is closed-valued and measurable.

The general theory of normal integrands allows us to give general sufficient
condsitions for preservation of normality in the above recursion.

We say that a normal integrand is lower bounded if there exists an m ∈ L1

such that infx f(x, ω) ≥ m(ω) for almost every ω.
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Numerical solution

Theorem 1

Assume that Lt is lower bounded for each t and that (It, Jt)
T
t=0 solve the Bellman

equations. Then the optimum value of the optimal control problem coincides with that
of

minimize E

[
t−1∑
s=0

(EtLs)(Xs, Us) + Jt(Xt)

]
over (Xt, U t) ∈ N t,

subject to ∆Xs = AsXs−1 +BsUs−1 +Ws s = 1, . . . , t a.s

for all t = 0, . . . , T and, moreover, a pair (X̄, Ū) ∈ N solves the control problem if and
only if it satisfies the system equations and

Ūt ∈ argmin
Ut∈RM

Et(Lt + It)(X̄t, Ut) a.s.

for all t = 0, . . . , T . If the measurable mappings

Mt(ω) := {Ut ∈ RM | (Et(Lt + It))
∞(0, Ut, ω) ≤ 0}

are linear-valued for all t = 0, . . . , T , then there exists an optimal control U with
Ut ∈M⊥

t almost surely.
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Numerical solution

Theorem 2

Assume that Lt is lower bounded for each t and that the set

{(X,U) ∈ N | L∞
t (Xt, Ut) ≤ 0, ∆Xt = AtXt−1 +BtUt−1 ∀t a.s.}

is linear. Then the Bellman equations have a unique solution (Jt, It)
T
t=0 of

lower bounded convex normal integrands, and

Mt(ω) := {Ut ∈ RM | (Et(Lt + It))
∞(0, Ut, ω) ≤ 0}

is linear-valued for all t.

In classical models of math finance, the above linearity condition
coincides with the no-arbitrage condition.

The lower boundedness condition can be relaxed to a condition that,
in math finance, coincides with the “reasonable asymptotic elasticity”
condition of [Kramkov and Schachermayer, 1999].
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Numerical solution

Theorem 3 (Markov decision processes)

Assume that there is a Markov process ξ = (ξt)
T
t=0 such that Lt, At, Bt

and Wt depend on ω only through ξt. Then, for each t, the cost-to-go
function Jt depends on ω only through ξt.
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Numerical solution

Even in the Markovian case, the Bellman equations do not allow for analytic
solutions in general.

We will therefore first approximate the Markov process ξ by a finite-state Markov
chain and then use the Stochastic Dual Dynamic Programming algorithm to solve
the corresponding Bellman equations.

To that end, we assume that ξ is Rd-valued and that the ξt-conditional
distribution of ξt+1 has density p(·|ξt).
Given a strictly positive probability density ϕt+1 on Rd, we have for every
quasi-integrable function ψ,

E[ψ(ξt+1) | ξt] =
∫
Rd

ψ(ξ)p(ξ|ξt)dξ

=

∫
Rd

ψ(ξ)
p(ξ|ξt)
ϕt+1(ξ)

ϕt+1(ξ)dξ

≈
N∑
i=1

ψ(ξit+1)
p(ξit+1|ξt)
ϕt+1(ξit+1)

wi
t+1,

where (ξit+1, w
i
t+1)

N
i=1 is a quadrature approximation of the measure Pt+1 that has

density ϕt+1.
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Numerical solution

The SDDP algorithm proceeds as follows:

0. Initialization: Choose convex (e.g. polyhedral) lower-approximations J0
t of the

cost-to-go functions Jt and set k = 0.

1 Forward pass: Sample a path ξk of the Markov process ξ and define Xk
t for

t = 0, . . . , T by

Xk
0 ∈ argmin J0

k ,

Uk
t ∈ argmin

Ut∈RM

E[Lt(X
k
t , Ut) + Jk

t+1(X
k
t +At+1X

k
t +Bt+1Ut +Wt+1) | ξkt ],

Xk
t+1 = Xk

t +At+1(ξ
k
t+1)X

k
t +Bt+1(ξ

k
t+1)U

k
t +Wt+1(ξ

k
t+1).

2 Backward pass: Let Jk+1
T+1 := 0 and, for t = T, . . . , 0, compute

J̃k+1
t (Xk

t , ξ
k
t ) := inf

Ut∈RM
E[Lt(X

k
t , Ut) + Jk+1

t+1 (X
k
t +At+1X

k
t +Bt+1Ut +Wt+1) | ξkt ],

V k+1
t ∈ ∂J̃k+1

t (Xk
t , ξ

k
t ),

Jk+1
t (Xt, ξ

k
t ) := max{Jk

t (Xt, ξ
k
t ), J̃

k+1
t (Xk

t , ξ
k
t ) + V k+1

t · (Xt −Xk
t )}.

Set k := k + 1 and go to 1.
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A simple example

In the numerical illustrations below, we study the problem

maximize Eu(Xm
T ) over (X,U) ∈ N

subject to Xm
0 = w,

Xe
0 = 0,

Xm
t+1 = (1 + r)Xm

t − st+1Ut ∀t a.s.,
Xe

t+1 = (1− l)Xe
t + Ut ∀t a.s.,

Xe
t ∈ [0, C] ∀t a.s.,
Ut ∈ [u, u] ∀t a.s.,

(2)

where

u(z) =
1

ρ
[1− exp(−ρz)]

with risk aversion ρ > 0.
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A simple example

The electricity price displays seasonal variations.

Figure: Annual, weekly and daily variations of log-prices.
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A simple example

Figure: Left: price, average and residuals. Right: histogram of the residual.

We model the residual ξt := log st − log s̄t as an Ornstein-Uhlenbeck
process

∆ξt+1 = −αξt + σϵt+1,

where α, σ > 0 are constants and ϵt are iid Gaussians.
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Discretized price process

The ξt-conditional distribution of ξt+1 is Gaussian.
We use the conditional quadrature

Et[ψ(ξt+1)] ≈
N∑
i=1

ψ(ξit+1)
p(ξi|ξt)

ϕt+1(ξit+1)
wi
t+1

where ϕt+1 is a Gaussian density and (ξit+1, w
i
t+1)

N
i=1 is its

Gauss-Hermite quadrature.

Figure: The log-price and its discretization with N = 3.
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Convergence of the SDDP

Figure: Convergence of the SDDP lower bound for varying number N of Markov
states
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Convergence of the SDDP

Figure: Out-of-sample evaluation of the optimized strategies obtained with
varying number N of Markov states
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Convergence of the SDDP

Figure: SDDP cost-to-go functions with varying number N of Markov states
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Effect of the risk aversion

Figure: Out-of-sample distribution (obtained with 10,000 scenarios) of terminal
wealth given by optimal strategies with different levels of risk aversion.
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Indifference pricing

The indifference price π for buying/renting the storage is the greatest price
the investor can pay for it without worsening their financial position.

Mathematically,
π = sup{p ∈ R | φ(w − p) ≥ φ0},

where φ(w) is the optimum value in the optimization problem with initial
wealth w and φ0 is the optimum value in a problem with initial wealth w
but without the storage.

The indifference price depends on

the user’s views on future electricity prices and interest rates. This is
described by the underlying probabilistic model,
the user’s risk preferences described by the utility function,
the user’s existing position.

In complete market models, indifference prices coincide with replication costs
and risk-neutral valuations.

The above model assumes that, before the purchase of the storage, the
agent has no storage nor production, but this can be generalized.
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Indifference pricing

Figure: Indifference price π as a function of the maximum charging speed of the
storage.
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Indifference pricing

Figure: Indifference price π as a function of the storage capacity (log-log plot).
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The effect of interest rates

The UK government offers to buy offshore wind power generation at a
constant unit price in order to reduce the financial risks of wind power
generation developers.

The price is set at set semi-annual auctions run by the Low Carbon
Contracts Company (LCCC) through the Contracts for Difference (CfD)
scheme; www.lowcarboncontracts.uk/our-schemes/contracts-for-difference

LCCC asks for bids from developers and enters a CfD with the most
generous offers (lowest offered electricity prices).

LCCC sets a price cap it is willing to pay.

The September 2023 auction failed to get any offers since the prices that
developers were willing to offer exceeded the price cap due to the current
levels of interest rates.

High interest rate expectations make future money less valuable than
today’s money.

In our model, interest rates are modeled with the functions Rt.
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Calibration to option quotes

Assume that the agent has access to a set K of electricity derivatives such that

the cost of buying zk ∈ R units of derivative k ∈ K costs Sk(zk) units of
cash,

derivative k ∈ K provides ckt (random) units of cash at time t.

The problem becomes

maximize Eu(Xm
T ) over (X,U) ∈ N

subject to Xm
0 = w − C(z),

Xe
0 = 0,

Xm
t+1 ≤ Rm

t+1(X
m
t )− St+1(Ut) + z · ct+1,

Xe
t+1 ≤ Re

t+1(X
e
t , Ut).

(3)

where
C(z) =

∑
k∈K

Ck(zk) and z · ct =
∑
k∈K

zkckt .

This can be dualized within the general Convex Stochastic Optimization theory.
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Calibration to option quotes

Under the silly assumption that Rm
t , Re

t , St and C are linear and there is no
capacity constraints, the dual problem becomes

maximize Eu∗(qT ) + q0W over q, w ∈ N 1,

subject to Et−1[qtR
m
t ] = qt−1,

Et−1[wtR
e
t ] = wt−1,

qtSt = wt,

q0C = E[

T∑
t=1

qtct].

The processes q and w are stochastic discount factors for cash and electricity,
respectively. If Rm

t ≡ Re
t ≡ 1 (another silly assumption), the constraints above

mean that qT = dQ/dP where Q is a martingale measure for the electricity
price process S and

EQ[

T∑
t=1

ct] = C.
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