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Young children fear wild animals more than cars

ë Psychologist Adah Maurer’s
studied Chicago children fears

ë almost all the 5- and 6-year-olds
schoolchildren mentioned wild
animals (most frequently
snakes, lions, and tigers) in
response to the question “What
are the things to be afraid of?”

ë “they do not (. . . ) fear the
things they have been taught to
be careful about”,
say electric socket or cars



Humans display myriads of biases

ë Children host innate preferences for savanna-type landscape

ë We perceive sounds with increasing intensity
as closer than they really are

ë Men overperceive women neutral signals as sexual advances

ë We all underestimate how long it takes to finish any project

ë We are reluctant to change (status quo bias)

ë We overweight the importance of salient events

ë We overestimate low probabilities



A debate in the “heuristics and biases” literature
opposes axiomatic and evolutionary validity

ë Some behaviors are qualified of
“bias” when they depart from
given “rationality benchmarks”
(like expected utility theory)

ë Some suggest that those
“so-called bias” were in fact
advantageous in the type of
environment where our
ancestors lived and thrived
(evolutionary validity)

ë In this latter case, the
benchmark should be a measure
of fitness reflecting survival and
reproduction (S & R) abilities



We will kill three birds (biases)
with one stone (optimization with learning)

We propose a model of

ë sequential optimization

ë under uncertainty and learning

and we prove that the optimal behavior
displays the following features of

ë status quo bias

ë salience effect

ë overestimation of the probability of outcomes
that are bad, unlikely and costly to avoid
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The story takes place in the savana landscape



Sinuous snakes haunt our minds



We start from a model of “paranoid optimist”
by M. G. Haselton and D. Nettle

M. G. Haselton and D. Nettle. The paranoid optimist:
An integrative evolutionary model of cognitive biases.
Personality and Social Psychology Review, 10(1):47–66, 2006

ë Consider two possible states of Nature, denoted by {B, G},
that we materialize by

B B: “a snake is in the grass” (“bad”)
B G: the contrary (“good”)

ë Consider two possible decisions, denoted by {α, ε},
that we materialize by

B α: avoid to cross the grass (and make a long detour)
B ε: experiment/try to cross the grass



“Error management theory” amounts to
minimize expected costs

ë Now, assume that a probability is given on
the states of Nature {B, G}:

B a snake is in the grass with probability pB

B and no snake is in the grass with probability pG

ë In the mean, it is better to avoid than to experiment/try
to cross the grass whenever

Cα︸︷︷︸
cost of avoidance

< pBCB + pGCG︸ ︷︷ ︸
expected costs of experiment



Avoiding is optimal when the probability of the bad
outcome exceeds a critical probability pc

To minimize mean costs, better avoid crossing whenever

ë the probability pB that a snake is in the grass

ë is greater than the critical probability pc (avoidability index)

Optimal static decision rule

avoid ⇐⇒ pB > pc =
relative cost of avoidance

relative cost of encounter
=
Cα − CG

CB − CG

The higher is the cost of encounter
(in comparison to the cost to avoid), the more one avoids



The Haselton and Nettle model
highlights the role of asymmetry in costs
in biasing towards prudent behavior

ë The conclusion of Haselton and Nettle is that

B when errors are asymmetrical in cost
B there is a tendency to favor false positive error (FP)
B that is, to adopt a belief that is not in fact true

(believing there is a snake, when this is not the case)
B as in fire detectors biased towards false alarm

(better evacuating a building in case of alarm, even false,
than risking life by staying if detection fails)

ë Asymmetries in cost have certainly tuned the human mind as
a fire detector, explaining human penchants as diverse as:
navigation bias, sound perception bias, disgust, agency bias,
hostile attribution bias



Better treat a stick as a snake than the reverse!



On rabbits, foxes and snakes

ë Joseph LeDoux, The Emotional Brain
It is better to have treated a stick as a snake
than not to have responded to a possible snake

ë Richard Dawkins’ so-called life-dinner principle
The rabbit runs faster than the fox,
because the rabbit is running for his life
while the fox is only running for his dinner
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Summary and roadmap

ë The Haselton and Nettle model displays the following features

B You have the choice between a safe (avoid)
and a risky option (experiment/try)

B You know the cost of the safe option (avoidance cost)
B The risky option displays two outcomes, good and bad,

and you know
I the costs of the two outcomes
I the probabilities of the two outcomes

ë The conclusion: avoid if the probability of the bad outcome
exceeds the costs ratio (of relative avoidance costs
over relative bad outcome costs)

ë Now, what happens when the probabilities
are not known in advance?

ë Answer: you can learn by observing frequencies,
but you learn only by not avoiding, hence by taking risk
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The “armed bandit problem” illustrates
how acting affects learning and vice versa

ë To implement the
“critical probability rule”
avoid ⇐⇒ pB > pc

ë one needs to gauge
the probability pB

that a snake is in the grass

ë This estimate can be acquired
by experience, by learning



Now, we emphasize that decisions are made sequentially

ë We consider that decisions are made at discrete times
t = 0, 1, 2 . . .

ë We define the history space H∞ = {B, G}N∗
made of infinite sequences GGGBG . . .

ë The state of Nature (B or G) occuring at time t = 0, 1, 2 . . .
is denoted by

Xt+1 : H∞ → {B, G}

and it is revealed at time t + 1 (hence the notation Xt+1)

ë At each time t, the decision-maker (DM) can

B either “experiment/try” (decision ε), in which case
the state of Nature (B or G) is revealed and learned
(hence available at t + 1 for informed decision-making)

B or “avoid” (decision α), in which case
the DM has no information about the state of Nature



Information about the current state of Nature
depends on which decision is made

ë Define the mapping O : {ε, α} × {B, G} → {B, G, ∅}

“bad” (B) “good” (G)

Avoid no information (∅) no information (∅)
Experiment/Try “bad” (B) is observed “good” (G) is observed

Table: Information according to decisions (rows)
and states of Nature (columns)

ë Thus, when the DM makes decision vt ∈ {ε, α} at time t,
at time t + 1 he observes

Yt+1 = O(vt ,Xt+1)



Strategies depend upon observations

ë Define the observation spaces at time t = 0, 1, 2 . . . by

B O0 = {∅} (no observation at initial time t = 0)
B Ot = {B, G, ∅}t for t = 1, 2 . . . ,

with typical element a sequence of t past observations

ë A policy at time t is a mapping St : Ot → {ε, α}, that tells
the DM what is his next action in view of past observations

ë A strategy S is a sequence S0,S1 . . . of policies

ë Given the sequence X (·) = (X1,X2, . . . ) of states of Nature at
time t = 0, 1, 2 . . . , and given a strategy S,
decisions and observations are inductively given by

acting vt = St(Y1, . . . ,Yt) ∈ {ε, α}
learning Yt+1 = O(vt ,Xt+1) ∈ {B, G, ∅}
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Payoffs depend on current decision and state of Nature

“bad” state B “good” state G

avoid (α) avoidance U(α, B) = Uα avoidance U(α, G) = Uα

experiment/try (ε) encounter U(ε, B) = UB U(ε, G) = UG

Table: Payoffs according to decisions
(rows “avoid” (α) or “experiment/try” (ε))
and states of Nature (columns “bad” B or “good” G)

ë The payoffs are ranked as

UG︸︷︷︸
base payoff

>

avoidance payoff︷︸︸︷
Uα > UB︸︷︷︸

encounter payoff

ë In an evolutionary interpretation,
payoffs are measured in “fitness”
(supposed to be cumulative, as an offspring stock)



We suppose that the DM maximizes
discounted intertemporal payoff

We suppose that the DM

ë knows the matrix U(·, ·) of payoffs

ë evaluates his lifetime performance using strategy S
by the discounted intertemporal payoff

J
(
S,X (·)

)
=

+∞∑
t=0

ρtU(vt ,Xt+1) ,

where

vt =St(Y1, . . . ,Yt) ∈ {ε, α}
Yt+1 =O(vt ,Xt+1) ∈ {B, G, ∅}



We interpret discounting till infinity as
no discounting till Geometric distributed lifetime

ë Let θ denote a random variable having geometric distribution

P(θ ≥ t) = ρt−1 , t = 1, 2, 3 . . .

ë or, equivalently,

P(θ = t) = (1− ρ)ρt−1 , t = 1, 2, 3 . . .

ë Then, we have that

E
[ θ−1∑
t=0

U(vt ,Xt+1)︸ ︷︷ ︸
no discounting

]
=

+∞∑
t=0

ρtU(vt ,Xt+1)︸ ︷︷ ︸
discounting



We interpret the discount factor ρ ∈]0, 1[
in term of mean lifetime of the DM

discount factor discount rate mean time

discount factor ρ re = 1−ρ
ρ θ = 1

1−ρ
discount rate ρ = 1

1+re
re θ = 1+re

re

mean time ρ = θ−1
θ

re = 1
θ−1 θ

discount factor discount rate mean time survival

ρ re θ P(θ ≥ θ)

0.9999 0.01% 10,000 0.368

0.9900 1% 100 0.370

0.9520 5% 21 0.377

0.9090 10% 11 0.386



We suppose that “bad” and “good” outcomes

follow a Bernoulli process with probability P on H∞

ë We suppose that Nature

1. has selected probabilities pB and pG

of “bad” and “good” outcomes
2. then has let (X1,X2, . . . ) be

a sequence of independent Bernoulli trials
I with the event {Xt = B} having probability pB

I with the event {Xt = G} having probability pG

thus yielding a (true) probability P on the history space H∞
ë We suppose that the DM does not know

the probabilities pB and pG (that define P)



We suppose that the DM has a prior Pπ0 on H∞

The DM makes the assumption that Nature

1. has selected the probabilities pB and pG of “bad” and “good”
outcomes at random from the prior π0, which is a distribution
on the simplex S1 = {pB ≥ 0, pG ≥ 0, pB + pG = 1}

2. then has let (X1,X2, . . . ) be a
sequence of independent Bernoulli trials

B with the event {Xt = B} having probability pB

B with the event {Xt = G} having probability pG

3. so that the extended sample space S1×H∞ = S1×{B, G}N
∗

is

equipped with the probability π0(dpBdpG)⊗
(
pBδB + pGδG

)⊗N∗
,

whose marginal distribution on H∞ we denote by Pπ0



The DM can now formulate
a discounted expected optimization problem

ë We look for an optimal strategy S?, solution of

EPπ0
[
J
(
S?,X (·)

)]
= max

S
EPπ0

[
J
(
S,X (·)

)]
ë What are the features of an optimal strategy?
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An optimal strategy can be searched for
among state feedbacks

ë Let ∆(S1) denote the set of probability distributions
on the simplex S1

ë It is well-known that an optimal strategy can be searched for
among state feedbacks of the form

St(Y1, . . . ,Yt) = Ŝt(π̂t)

ë with a state feedback

Ŝt : ∆(S1)→ {ε, α}

ë and the information state π̂t ∈ ∆(S1),
the conditional distribution, with respect to Y1, . . . ,Yt

of the first coordinate mapping on S1 ×H∞



We introduce a relevant information state, the posterior

ë The dynamics of the posterior π̂t ∈ ∆(S1) is given by

π̂0 = π0

and

π̂t+1 =


π̂t if Yt+1 = ∅
θBπ̂t if Yt+1 = B

θGπ̂t if Yt+1 = G

ë where the mappings θB, θG : ∆(S1)→ ∆(S1) are given by

(θBπ)(dpBdpG) ∝ pBπ(dpBdpG)

(θGπ)(dpBdpG) ∝ pGπ(dpBdpG)



The maximum is achieved by a Gittins index strategy

Gittins index optimal strategy

There exists a function I : ∆(S1)→ R (called the Gittins index)
— which depends on the discount factor ρ and on the payoff U —
such that the following strategy is optimal

ë if I(π̂t) < Uα (index < sure payoff),
then select decision α (“avoid”)

ë if I(π̂t) > Uα (index > sure payoff),
then select decision ε (“experiment”)

ë if I(π̂t) = Uα (index = sure payoff),
then select indifferently decision α or decision ε

We call the strategy Gittins index optimal strategy (GIOS)
and GIOS DM a decision-maker who adopts
the Gittins index optimal strategy



The first time τ when the GIOS DM avoids
plays a pivotal role

First avoidance time
We denote by τ the first time t, if it exists,
when the GIOS DM avoids

τ = inf{t = 0, 1, 2 . . . | I(π̂t) < Uα}



The DM that follows the GIOS strategy switches
at most one time from experimenting to avoiding (I)

ë Infinite learning:
if τ = +∞, that is,
if I(π̂t) ≥ Uα for all times t = 0, 1, 2 . . .,
the GIOS DM never avoids

ë No learning:
if τ = 0, that is, if I(π0) < Uα,
the GIOS DM avoids from the start



The DM that follows the GIOS strategy switches
at most one time from experimenting to avoiding (II)

ë Finite learning:
if 1 ≤ τ < +∞, the GIOS DM

B experiments from t = 0 to τ − 1, that is, as long as

I(π̂t) ≥ Uα

B then switches to avoiding at time t = τ , that is, as soon as

I(π̂t) < Uα

B and then keeps avoiding for all times
(indeed, once the GIOS DM avoids,
he no longer updates the posterior π̂t ,
so that he keeps avoiding)
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We recover the status quo bias

William Samuelson and Richard Zeckhauser.
Status quo bias in decision making.
Journal of Risk and Uncertainty, 1(1):7–59, March 1988

ë The optimal rule states that,
once the GIOS DM selects the “avoid” option,
he will never more experiment,
hence no longer updates the posterior π̂t ,
so that he keeps avoiding

ë Status quo bias: once stuck in a risk avoidance attitude,
experimenting brings no benefit
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We recover the salience bias

ë The Gittins index function I : ∆(S1)→ R has the property

I ◦ θG ≥ I

that is, the index increases when the posterior changes
following a “good” outcome, so that

I(π̂t) ≥ Uα ⇒ I(θGπ̂t) ≥ I(π̂t) ≥ Uα

ë As a consequence

t < τ and Yt+1 = G⇒ t + 1 < τ



We recover the salience bias

ë This “stay-with-a-winner” characteristics of GIOS
makes that, when learning stops,
the only switch from experimenting to avoiding
occurs when a bad outcome materializes

ë Salience bias: behaviour change occurs only
when a bad outcome materializes



Humans display myriads of biases. Why?

When one saw the grass moving

When one saw the grass moving day after day
A model of learning
A fitness-based optimization problem
The Gittins index optimal strategy (GIOS)

Killing three biases with one stone
When learning stops, GIOS induces a status quo bias
When learning stops, GIOS induces a salience bias
When learning stops, GIOS induces probability overestimation

Discussion: when optimal learning induces biases



How does the GIOS DM estimate
the unknown probability pB?

We introduce the numbers NB
t and NG

t

of “bad” and “good” encounters up to time t

NB
0 = NG

0 = 0

NB
t =

t∑
s=1

1{Ys=B} , NG
t =

t∑
s=1

1{Ys=G} , t = 1, 2 . . .



We suppose that the DM’s prior π0 is a beta distribution
on the simplex S1

ë We suppose that the prior π0 is a beta distribution

π0 = β(nB0, n
G
0) ∝ (pB)n

B
0−1(pG)n

G
0−1

where nB0 > 0 and nG0 > 0

ë We can establish that the posterior π̂t is the beta distribution

π̂t = β(nB0 + NB
t , n

G
0 + NG

t ) ∝ (pB)n
B
0+NB

t −1(pG)n
G
0+NG

t −1



How does the GIOS DM estimate
the unknown probability pB?

We introduce an estimator p̂Bt of the “bad” outcome probability

p̂Bt =
nB0 + number of ”bad” encounters up to time t

nB0 + nG0 + number of tries up to time t

=
nB0 + NB

t

nB0 + NB
t + nG0 + NG

t



Here is how the GIOS DM estimates
the unknown probability pB of the “bad” outcome

ë Infinite learning: if τ = +∞, experiment goes on forever
and the GIOS DM estimates pB by the limit

lim
t→+∞

p̂Bt = pB

due to the Law of Large Numbers under the (true)
probability P

ë Finite learning and No learning: if 0 ≤ τ < +∞,
the GIOS DM estimates pB

by the probability estimator p̂Bτ , which satisfies

pc < p̂Bτ



nB0 + NB
τ

nB0 + NB
τ + nG0 + NG

τ

UB +
nG0 + NG

τ

nB0 + NB
τ + nG0 + NG

τ

UG

≤ I
(
β(nB0 + NB

τ , n
G
0 + NG

τ )
)
< Uα

⇒
pc < p̂Bτ



Accuracy is not necessarily optimal

ë Notice that, when τ < +∞, the GIOS DM no longer updates
the probability estimator of the “bad” outcome
after the finite time τ

ë Hence, the DM does not retrieve asymptotically
the true probability pB

ë The observation that accuracy is not necessarily optimal
— the optimal strategy does not necessarily lead to rightly
evaluate the unknown probability — had already been made
by economist Michael Rothschild, and is coined the
Incomplete Learning Theorem
in his paper “A two-armed bandit theory of market pricing.”
Journal of Economic Theory, 9(2):185–202, October 1974

ë Our contribution is demonstrating overestimation, that is,
we establish a biased form of inaccuracy



We recall the definition of the critical probability pc

Critical probability / Avoidability index

We define the critical probability (avoidability index)
by the following ratio
of avoidance disutility over “bad” encounter disutility

pc =
UG − Uα
UG − UB

=
disutility of avoidance

disutility of encounter
∈]0, 1[

ë A low index pc means that
it is cheap to avoid the bad outcome

ë An index pc close to 1 means that
the bad outcome can only be avoided at high costs



We consider outcomes that are
bad, unlikely and costly to avoid

We consider the case where

pB︸︷︷︸
true probability

≤ pc︸︷︷︸
avoidability index

ë Therefore, with foresight, it is worth taking the risk because
the (true) probability of the bad outcome is so low that the
expected payoff outweighs the sure payoff of avoiding

ë Without foresight, we show that it is optimal to take the risk,

B either forever — obtaining an accurate probability estimate
of pB in the long run

B or up to a finite time — ending up with a probability estimate
that is consistently distorted towards overestimating
the probability pB of the bad and unlikely outcome



Theorem (Biased Learning Theorem)

Suppose that the “bad” outcome B is unlikely, in the sense that

pB ≤ pc

A decision-maker who follows the Gittins index optimal strategy

ë either experiments forever,
and he accurately estimates asymptotically
the (true) probability of the bad and unlikely outcome B

ë or experiments during a finite number of periods (possibly 0)
and, when the experiment phase ends, he overerestimates
the (true) probability of the bad and unlikely outcome B



We consider cases where, with foresight,
it would be worth taking the risk

Case pB ≤ pc estimate of pB comment

τ = +∞ limt→+∞ p̂Bt = pB exact estimation of pB

0 ≤ τ < +∞ p̂Bτ > pc ≥ pB overestimation of pB
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In many situations, probabilities are not known but learnt

ë The recent nuclear accident in Japan (2011)
has led many countries to stop nuclear energy

ë This sharp switch may be interpreted as
the stopping of an experiment phase
where the probability of nuclear accidents
has been progressively learnt



We suggest that rational overestimation of loss probability
might enlighten some economic puzzles

Rajnish Mehra and Edward C. Prescott.
The equity premium: A puzzle.
Journal of Monetary Economics, 15(2):145 – 161, 1985

ë The equity premium puzzle comes from the observation that
bonds are underweighted in portfolios, despite the empirical
fact that stocks have outperformed bonds over the last
century in the USA by a large margin

ë However, this analysis is done ex post under risk, whereas
decision-makers take decisions day by day under uncertainty,
and sequentially learn about the probability of stocks loss

ë Ex ante, the overweighting of sure bonds might possibly be
explained by optimal strategy under uncertainty and learning



Conclusion: are our innate biases the consequences of
optimal strategies, selected through evolution?

ë In many situations of uncertainty, probabilities are not known,
but can be learned

ë In our setting, we show that optimal learning can stop before
full learning and that, under general assumptions,

1. When learning stops,
we overestimate the probability of an outcome that is
bad, unlikely and costly to avoid

2. When learning stops,
we do it necessarily when a bad outcome materializes

3. When learning stops,
we will not learn again and we stick to the (no risk) status quo



We are biased by design

THANK YOU :-)
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