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We highlight management issues at
the interface between nature and society



To make a long story short . . .
We claim that mathematical control theory is an insightful framework
to deal with natural resources management issues

Problems. Many natural resources management problems
can be grasped within mathematical control theory

◮ climate change mitigation, management of energies
◮ fisheries management, epidemics control

Methods. Theory provides concepts, tools and methods
◮ viability kernel, viable controls
◮ dynamic programming, monotonicity

Answers. Practical answers are obtained
◮ ecosystem viable yields, precautionary rules
◮ tradeoffs display between economic and ecological

sustainability thresholds and risk
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First, we start by laying out
a far-reaching distinction between

knowledge/assessment models
versus

decision models
(for control/optimization problems)



We distinguish two polar classes of models:
knowledge models versus decision models

Knowledge models:
1/1 000 000 → 1/1 000 → 1/1
maps

Office of Oceanic and
Atmospheric Research (OAR)
climate model



We distinguish two polar classes of models:
knowledge models versus decision models

Knowledge models:
1/1 000 000 → 1/1 000 → 1/1
maps

Office of Oceanic and
Atmospheric Research (OAR)
climate model

Action/decision models:
economic models are fables
designed to provide insight

William Nordhaus
economic-climate model



This talk is not about crafting dynamical models

◮ Elaborating a dynamical model is a delicate venture
◮ Peter Yodzis, Predator-Prey Theory and Management of

Multispecies Fisheries, Ecological Applications 4:51–58, 1994

In population modelling the functional forms of models are
at least as important as are parameter values in expressing
the underlying biology and in determining the outcome.
(. . . ) For instance, May et al. (1979) assumed, without
comment, a particular form of predator-prey interaction;
and this particular form was carried over, again without
comment, by Flaaten. It turns out that this "invisible" but
powerful assumption is responsible in large part for the
conclusion reached by Flaaten (1988). (. . . ) Flaaten’s
work is controversial because of his conclusion that "sea
mammals should be heavily depleted to increase the
surplus production of fish resources for man" (Flaaten
1988:114).

◮ Our starting point will be a mathematical dynamical model
that captures how sequences of decisions affect a “piece of reality”

◮ Then, we will use such a model to frame a decision problem



Second, we present a series of
natural resources management problems

formalized by means of
decision model + viability/optimization problem



Viable management of an animal population

B(t + 1) =

dynamic
︷ ︸︸ ︷

Biol

(
B(t)
︸︷︷︸

biomass

− h(t)
︸︷︷︸

catches

)

◮ B(t) biomass

◮ h(t) catch with 0 ≤ h(t) ≤ B(t)

◮ Biol natural resource growth
function
(linear, logistic, etc.)
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We define an ecological window by
lower and upper bounds for the biomass

State constraints

B♭ ≤ B(t) ≤ B♯ , t = t0, . . . ,T

◮ B♭ minimum viable population
◮ B♯ maximal safety value

(pest control, invasive species)



Epidemics control



Endemic channels form the core of a decision rule
for dengue outbreak prevention

The epidemiological surveillance system should be able to
differentiate between transient and seasonal increases in disease
incidence and increases observed at the beginning of a dengue
outbreak. One such approach is to track the occurrence of
current (probable) cases and compare them with the average
number of cases by week (or month) of the preceding 5–7 years,
with confidence intervals set at two standard deviations above
and below the average (± 2 SD). This is sometimes referred to
as the “endemic channel”. If the number of cases reported
exceeds 2 SDs above the “endemic channel” in weekly or
monthly reporting, an outbreak alert is triggered.

Dengue. Guidelines for Diagnosis, Treatment, Prevention and Control.
A joint publication of the World Health Organization (WHO) and the
Special Programme for Research and Training in Tropical Diseases
(TDR), 2009



We consider an epidemiological model with vector control

◮ Basic variables and parameters are
◮ time t= t0, t0 + 1 . . . ,T − 1,T , measured in days
◮ Mt , the abundance of infected mosquitos (Aedes Aegypti adultos)
◮ Ht , the abundance of infected humans
◮ ∆µM

t , the additional mortality rate of mosquitos, a control variable
◮ M, H , f H , f M , µM and µH , parameters

◮ The controlled dynamics of an epidemic outbreak is

Mt+1 = f HHt(M −Mt)− (µM +∆µM
t )Mt

Ht+1 = f MMt(H − Ht)− µHHt

◮ The objective is to maintain infected humans at a low level

Ht ≤ H♯ , ∀t = t0, . . . ,T

with limited resources 0 ≤ ∆µM
t ≤ ∆µ♯ , ∀t = t0, . . . ,T − 1



Climate change mitigation



Let us scout a very stylized model
of the climate-economy system

We lay out a dynamical model with
◮ two state variables

environmental: atmospheric co2

concentration level M(t)
economic: gross world product

gwp Q(t)

◮ one decision variable,
the emission abatement rate a(t)



A carbon cycle model “à la Nordhaus”
is an example of decision model

◮ Time index t in years

◮ Economic production Q(t) (gwp)

Q(t + 1) =

economic growth
︷ ︸︸ ︷

(1 + g) Q(t)

◮ co2 concentration M(t)

M(t + 1) = M(t)−δ(M(t)−M−∞)
︸ ︷︷ ︸

natural sinks

+α

emissions
︷ ︸︸ ︷

Emiss

(
Q(t)

) (
1 − a(t)

)

︸ ︷︷ ︸

abatement

◮ Decision a(t) ∈ [0, 1] is the abatement rate of co2 emissions



Data

◮ M(t) co2 atmospheric concentration, measured in ppm, parts per
million
(379 ppm in 2005)

◮ M−∞ pre-industrial atmospheric concentration
(about 280 ppm)

◮ Emiss(Q(t)) “business as usual” co2 emissions
(about 7.2 GtC per year between 2000 and 2005)

◮ 0 ≤ a(t) ≤ 1 abatement rate reduction of co2 emissions

◮ α conversion factor from emissions to concentration
(α ≈ 0.471 ppm.GtC−1 sums up highly complex physical
mechanisms)

◮ δ natural rate of removal of atmospheric co2 to unspecified sinks
(δ ≈ 0.01 year−1)



A concentration target is pursued to avoid danger

United Nations Framework
Convention on Climate Change
“to achieve, (. . . ), stabilization of
greenhouse gas concentrations in the
atmosphere at a level that would
prevent dangerous anthropogenic
interference with the climate
system”

Limitation of concentrations of co2

◮ below a tolerable threshold M♯

(say 350 ppm, 450 ppm)
◮ at a specified date T > 0

(say year 2050 or 2100)

M(T )
︸ ︷︷ ︸

concentration at horizon

≤ M♯
︸︷︷︸

threshold



Constraints capture different requirements
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◮ The concentration has
to remain below a
tolerable level at the
horizon T :

M(T ) ≤ M♯

◮ More demanding:
from the initial time t0
up to the horizon T

M(t) ≤ M♯

t = t0, . . . ,T



Constraints may be environmental, physical, economic

◮ The concentration has to remain below a tolerable level
from initial time t0 up to the horizon T

M(t) ≤ M♯ , t = t0, . . . ,T

◮ Abatements are expressed as fractions

0 ≤ a(t) ≤ 1 , t = t0, . . . ,T − 1

◮ As with “cap and trade”, setting a ceiling on co2 price
amounts to cap abatement costs

Cost

(
a(t),Q(t)

)

︸ ︷︷ ︸

costs

≤ c♯ (100 euros / tonne co2) , t = t0, . . . ,T − 1



Mixing dynamics, optimization and constraints
yields a cost-effectiveness problem

◮ Minimize abatement costs

min
a(t0),...,a(T−1)

T−1∑

t=t0

(
1

1 + re
)t−t0 Cost

(
a(t),Q(t)

)

︸ ︷︷ ︸

abatement costs

◮ under the gwp-co2 dynamics
{

M(t + 1) = M(t)− δ(M(t)−M−∞) + αEmiss
(
Q(t)

)
(1 − a(t))

Q(t + 1) = (1 + g)Q(t)

◮ and under target constraint

M(T ) ≤ M♯

︸ ︷︷ ︸

CO2 concentration
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Fishery management



Populations can be described by abundances at ages

Jack Mackrel abundances (Chilean data)
are measured in thousand of individuals

13651022 thousand of age < 1 (recruits)
7495888 thousand of age ∈ [1, 2[
6804151
4191318
4582943
2500338
1139182
523261
269328
166390
95606 thousand of age ≥ 11



We now line up the ingredients
of a harvested population age-class dynamical model

◮ Time t ∈ N measured in years

◮ Abundances at age
N = (Na)a=1,...,A ∈ X = RA

+

◮ a ∈ {1, . . . ,A} age class index
◮ A = 3 for anchovy
◮ A = 8 for hake
◮ A = 40 for bacalao

◮ Control variable λ ∈ U = R+

is fishing effort



One year older every year. . .

Except for the recruits (a = 1) and the last age class (a = A),

Na(t + 1) = e

−

mortality

︷ ︸︸ ︷

(Ma−1
︸ ︷︷ ︸

natural

+λ(t)Fa−1
︸ ︷︷ ︸

fishing

)

Na−1(t), a = 2, . . . ,A− 1

where

◮ Ma stands for
the natural mortality-at-age a

◮ Fa is the harvesting mortality rate
of individuals of age a, also called
exploitation pattern-at-age a,
related to the mesh size for instance

◮ the control variable λ(t) is
the fishing effort, or
the exploitation pattern multiplier



The last age-class may comprise a plus-group

◮ NA is the abundance of individuals of age above A− 1
(and not equal, like for other classes)

◮ To account for this specificity, one considers the dynamics

NA(t + 1) = NA−1(t) exp
(
− (MA−1 + λ(t)FA−1)

)

+ π
︸︷︷︸

0 or 1

NA(t) exp
(
− (MA + λ(t)FA)

)

◮ The parameter π ∈ {0, 1} is related to the existence of a so-called
plus-group

◮ if we neglect the survivors older than age A,
then π = 0 (an example is anchovy)

◮ if we consider the survivors older than age A,
then π = 1, and the last age class is a plus group
(an example is hake)



The stock-recruitment function mathematically turns
spawning stock biomass into future recruits abundance

◮ The spawning stock biomass is

SSB(N) =

A∑

a=1

γa
︸︷︷︸

proportion

mass
︷︸︸︷
µa Na

︸︷︷︸

abundance

◮ γa proportion of matures-at-age a
◮ µa weight-at-age a

◮ The stock-recruitment relationship S/R turns biomass into
abundance

N1(t + 1)
︸ ︷︷ ︸

future recruits

= S/R
(

SSB

(
N(t)

)

︸ ︷︷ ︸

spawning biomass

)



Here are traditional examples
of stock-recruitment functions

Recruitment involves complex biological and environmental processes that
fluctuate in time, and are difficult to integrate into a population model
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◮ constant: S/R(B) = R

◮ linear: S/R(B) = rB

◮ Beverton-Holt:
S/R(B) = B

α+βB

◮ Ricker: S/R(B) = αBe−βB



And here are the state vector and the control

◮ The state vector N(t) is forged with abundances at age

N(t) =










N1(t)
N2(t)

...
NA−1(t)
NA(t)










∈ R
A
+

◮ The scalar control λ(t) is the fishing effort multiplier



A harvested population age-class model is an
A—dimensional controlled dynamical system

N1(t + 1) = S/R
(

spawning biomass
︷ ︸︸ ︷

SSB

(
N(t)

) )

recruitment

N2(t + 1) = e−(M1+λ(t)F1)N1(t)

Na(t + 1) = e

−

mortality

︷ ︸︸ ︷

(Ma−1
︸ ︷︷ ︸

natural

+λ(t)Fa−1
︸ ︷︷ ︸

fishing

)

Na−1(t), a = 2, . . . ,A− 1

NA−1(t + 1) = e−(MA−2+λ(t)FA−2)NA−2(t)

NA(t + 1) = e−(MA−1+λ(t)FA−1)NA−1(t) + πe−(MA+λ(t)FA)
︸ ︷︷ ︸

plus group

NA(t)



The ices precautionary approach uses indicators and
reference points to tackle ecological objectives

International Council for the Exploration of the Sea
precautionary approach

◮ keeping (or restoring) spawning stock biomass SSB indicator
above a threshold reference point Blim

◮ restricting fishing effort to have mean fishing mortality F indicator
below a threshold reference point Flim

Definition Notation Anchovy Hake

F limit RP Flim / 0.35
SSB limit RP (t) Blim 21 000 100 000



Spawning biomass and fishing mortality are outputs
of the harvested population age-class model

◮ Spawning stock biomass

SSB(N) =

A∑

a=1

γa
︸︷︷︸

proportion

mass
︷︸︸︷
µa Na

︸︷︷︸

abundance

with reference point SSB(N) ≥ Blim

◮ Mean fishing mortality over age range from ar to Ar

F (λ) =
λ

Ar − ar + 1

a=Ar∑

a=ar

Fa

with reference point F (λ) ≤ Flim
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A control system connects input and output variables

Input variables

Control wood logs
Uncertainty wood humidity,

metal
conductivity

Output variables

soup quality,
water vapor,
temperature
(internal state)



Discrete-time nonlinear state-control systems
are special input-output systems

A specific output is distinguished, and is labeled state,
when the system may be written as

x(t + 1) = F (t, x(t), u(t)), t ∈ T = {t0, t0 + 1, . . . ,T − 1}

◮ the time t ∈ T = {t0, t0 + 1, . . . ,T − 1,T} ⊂ N is discrete
with initial time t0 and horizon T (T < +∞ or T = +∞)
(the time period [t, t + 1[ may be a year, a month, etc.)

◮ the state variable x(t) belongs to the state space X = RnX

(stocks, biomasses, abundances, capital)
◮ the control variable u(t) is an element of the control space U = RnU

(inflows, outflows, catches, harvesting effort, investment)
◮ the dynamics F maps T× X× U into X

(storage, age-class model, population dynamics, economic model)



A historical snapshot
on the distinction between states and controls

The Maximum Principle of optimal control: A history of ingenious ideas
and missed opportunities, by Hans Josef Pesch and Michael Plail,
Control and Cybernetics, vol. 38 (2009) No. 4A

◮ Lawrence M. Graves (1932, 1933) distinguished the state variables
and the degrees of freedom by different letters

◮ Buried in RAND reports (1949, 1950), Magnus R. Hestenes
has definitely introduced different notations
for the state and the control variables

◮ RAND (Research ANd Development) corporation:
Magnus R. Hestenes, Rufus P. Isaacs, Richard E. Bellman

◮ Later, Rudolf E. Kálmán as well introduced
the concept of state and control variables

◮ The letter u stands for the Russian word for control: upravlenie

◮ Russian school: Pontryagin, Gamkrelidze, Boltyanskii



We dress natural resources management issues
in the formal clothes of control theory in discrete time

Control theory
in discrete time

blanco

Ecology Economics Modeling
Life-cycle Decision Simulations
Patches under

uncertainty

◮ Problems are framed as
◮ find controls/decisions

driving a dynamical system
◮ to achieve various goals

◮ Three main ingredients are
◮ controlled dynamics ®

◮ constraints �
◮ criterion to optimize



We mathematically express the objectives pursued
as control and state constraints

◮ For a state-control system,
we cloth objectives as constraints

◮ and we distinguish

control constraints (rather easy)
state constraints (rather difficult)

◮ Viability theory deals with state
constraints



Constraints may be explicit on the control variable
and are rather easily handled by reducing the decision set

Examples of control constraints

◮ Irreversibility constraints, physical bounds
�

0 ≤ a(t) ≤ 1 , 0 ≤ h(t) ≤ B(t)

◮ Tolerable costs c
(
a(t),Q(t)

)
≤ c♯

Control constraints / admissible decisions

u(t)
︸︷︷︸

control

∈ B
(
t, x(t)

)

︸ ︷︷ ︸

admissible set

, t = t0, . . . ,T − 1

Easy because control variables u(t) are precisely those variables
whose values the decision-maker can fix at any time within given bounds



Meeting constraints bearing on the state variable is delicate
due to the dynamics pipeline between controls and state

State constraints / admissible states

x(t)
︸︷︷︸

state

∈ A(t)
︸︷︷︸

admissible set

, t = t0, . . . ,T

Examples (“tipping points”)

◮ co2 concentration M(t) ≤ M♯

◮ biomass B♭ ≤ B(t) ≤ B♯

State constraints are mathematically difficult because of “inertia”

x(t) = function
︸ ︷︷ ︸

iterated dynamics

(
u(t − 1), . . . , u(t0)
︸ ︷︷ ︸

past controls

, x(t0)
)



Target and asymptotic state constraints are special cases

◮ Final state achieves some target

x(T )
︸ ︷︷ ︸

final state

∈ A(T )
︸ ︷︷ ︸

target set

Example: co2 concentration

◮ State converges toward a target

lim
t→+∞

x(t)
︸ ︷︷ ︸

asymptotic state

∈ A(∞)
︸ ︷︷ ︸

target set

Example: in mathematical epidemiology,
convergence towards an endemic state



Can we solve the compatibility puzzle between dynamics and
objectives by means of appropriate controls?

◮ Given a dynamics that
mathematically embodies the
causal impact of controls
on the state

◮ Imposing objectives bearing on
output variables
(states, controls)

◮ Is it possible to
find a control path
that achieves the objectives
for all times?



Crisis occurs when constraints are trespassed at least once

◮ An initial state is not viable if,
whatever the sequence of
controls, a crisis occurs

◮ There exists a time when
one of the state or control
constraints is violated



The compatibility puzzle can be solved when
the initial viability kernel Viab(t0) is not empty

Viable initial states form the viability kernel (Jean-Pierre Aubin)

Viab(t) =







initial
states
x ∈ X

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

there exist a control path u(·) =
(
u(t), u(t + 1), . . . , u(T − 1)

)

and a state path x(·) =
(
x(t), x(t + 1), . . . , x(T )

)

starting from x(t) = x at time t

satisfying for any time s ∈ {t, . . . ,T − 1}
x(s + 1) = F

(
s, x(s), u(s)

)
dynamics

u(s) ∈ B(s, x(s)) control constraints

x(s) ∈ A(s) state constraints

and x(T ) ∈ A(T ) target constraints









The viability kernel is included in the state constraint set

◮ The largest set is the
state constraint set A

◮ It includes the smaller blue
viability kernel Viab(t0)

◮ The green set measures
the incompatibility between
dynamics and constraints:
good start, but inevitable crisis!



The viability program aims at turning
a priori constraints, with state constraints,

into a posteriori constraints, without state constraints

◮ A priori constraints, with state constraints






x(t0) ∈ X

x(t + 1) = F
(
t, x(t), u(t)

)

u(t) ∈ B
(
t, x(t)

)
control constraints

x(t) ∈ A(t) state constraints

◮ are turned into a posteriori constraints, without state constraints
except for the initial state







x(t0) ∈ Viab(t0) initial state constraint
x(t + 1) = F

(
t, x(t), u(t)

)

u(t) ∈ B
viab

(
t, x(t)

)
control constraints



The viability kernels satisfy
a backward dynamic programming equation

Proposition
Assume that T < +∞. The viability kernels Viab(t) satisfy a
backward induction, where t runs from T − 1 down to t0:

Viab(T ) = A(T )

Viab(t) = { admissible states x ∈ A(t) |

there exists an admissible control u ∈ B(t, x)

such that the future state F (t, x , u)

belongs to the next viability kernel Viab(t + 1) }



The dynamic programming equation
yields viable controls

◮ The following viable regulation set

B
viab(t, x) = {u ∈ B(t, x) | F (t, x , u) ∈ Viab(t + 1)}

is not empty if and only if x ∈ Viab(t)

B
viab(t, x) 6= ∅ ⇐⇒ x ∈ Viab(t)

◮ Any u ∈ Bviab(t, x) is said to be a viable control

◮ A viable policy is a mapping Pol : T× X → U such that

Pol(t, x) ∈ B
viab(t, x)

for all (t, x) ∈ T× X



“Policies” are closed-loop controls

◮ Deterministic control theory appeals to
open-loop control, �

that is, a time-dependent sequence
(planning, scheduling)

u : t ∈ T
︸ ︷︷ ︸

time

7→ u(t) ∈ U
︸ ︷︷ ︸

control

◮ Another notion of solution is
a decision rule, �×E a policy,
that is, a mapping

Pol : (t, x) ∈ T× X
︸ ︷︷ ︸

(time, state)

7→ u = Pol(t, x) ∈ U
︸ ︷︷ ︸

control

which “closes the loop” between
time t–state x and control u
(and is especially relevant in presence of
uncertainties)



Monotonicity assumptions on dynamics and constraints
can help identify viable decision rules

Monotonicity assumptions

◮ Dynamics F is monotonous:
◮ the more abundant today, the more tomorrow
◮ the more harvested today, the less abundance tomorrow

(monospecific models and technical interactions)

◮ Constraints/objectives are monotonous functions

Results

◮ Lower and upper approximations of the viability kernel
◮ Precautionary viable decision rules
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Is the ICES precautionary approach sustainable?

◮ The precautionary approach (PA) may be sketched as follows
◮ the condition SSB(N) ≥ Blim is checked
◮ if valid, the following usual advice is given

λUA

abundance
︷︸︸︷

(N)
︸ ︷︷ ︸

effort

= max{λ ∈ R+ |

next year spawning biomass
︷ ︸︸ ︷

SSB(F (N , λ)) ≥ Blim

and F (λ)
︸︷︷︸

fishing mortality

≤ Flim}

◮ Is it possible to apply the ICES precautionary rule every year?
◮ If so, can we remain within precautionary bounds as follows?

SSB(N(t)) ≥ Blim and F (λ(t)) ≤ Flim , ∀t = t0, t0 + 1, . . .



The ices precautionary rule is sustainable or not,
depending on the stock-recruitment model

◮ Bay of Biscay anchovy

S/R
Relationship Constant Constant Constant Constant Linear Ricker

(2002) (2004)
Condition Rmean ≥ R Rgm ≥ R Rmin ≥ R Rmin ≥ R γ1µ1r ≥ 1

Left hand side 14 016 ×106 7 109 ×106 3 964 ×106 696 ×106 0.84 0
Right hand side 1 312 ×106 1 312 ×106 1 312 ×106 1 312 ×106 1 21 000

Sustainable yes yes yes no no no

◮ For species with late maturation, like hake,
ices precautionary approach is never sustainable!
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Despite calls to an “ecosystem approach”,
stocks management remains monospecific

◮ The World Summit on Sustainable Development
(Johannesburg, 2002) encouraged the application
of the “ecosystem approach” by 2010

◮ but. . . following the Summit, the signatory States undertook to
restore and exploit their stocks at maximum sustainable yield (MSY)

◮ The MSY is a concept which relies upon a monospecific dynamic
model Ḃ = f (B)− qEB where B is biomass, and E fishing effort
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Perú is World 2nd for marine and inland capture fisheries

The northern Humboldt current system
off Perú covers
less than 0.1% of the world ocean
but presently sustains
about 10% of the world fish catch



We were lucky enough that IMARPE entrusted us
yearly data of anchoveta and merluza stock and catches

from 1971 to 1985
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We consider two species targeted by two fleets
in a biomass ecosystem dynamic

We embody stocks and fishing interactions
in a two-dimensional dynamical model

future biomass
︷ ︸︸ ︷

A(t + 1) = A(t)

growth factor
︷ ︸︸ ︷

RA

(
A(t),H(t)

) (
1 − EA(t)

︸ ︷︷ ︸

effort

)

H(t + 1) = H(t)RH

(
A(t),H(t)

)(
1 −

control
︷ ︸︸ ︷

EH(t)
)

◮ State vector (A(t),H(t)) represents biomasses
◮ Control vector (EA(t),EH(t)) is fishing effort of each species

◮ Catches are EA(t)RA

(
A(t),H(t)

)
A(t) and

EH(t)RH

(
A(t),H(t)

)
H(t) (measured in biomass)



Our objectives are twofold: conservation and production

The viability kernel is the set of initial species biomasses
(
A(t0),H(t0)

)

from which appropriate effort controls
(
EA(t),EH(t)

)
, t = t0, t0 + 1, . . .

produce a trajectory of biomasses
(
A(t),H(t)

)
, t = t0, t0 + 1, . . .

such that the following goals are satisfied

◮ preservation (minimal biomass thresholds)

A stocks: A(t) ≥ S♭
A

H stocks: H(t) ≥ S♭
H

◮ economic/social requirements (minimal catch thresholds)

A catches: EA(t)RA

(
A(t),H(t)

)
A(t) ≥ C ♭

A

H catches: EH(t)RH

(
A(t),H(t)

)
H(t) ≥ C ♭

H



We provide an explicit expression for the viability kernel
under rather weak assumptions

Proposition
If the thresholds S♭

A, S
♭
H and C ♭

A,C
♭
H meet the inequalities

S♭
ARA(S

♭
A, S

♭
H)− S♭

A
︸ ︷︷ ︸

surplus

≥ C ♭
A and S♭

HRH(S
♭
A, S

♭
H)− S♭

H
︸ ︷︷ ︸

surplus

≥ C ♭
H

the viability kernel is given by

{

(A,H) | A ≥ S♭
A, H ≥ S♭

A, ARA(A,H)− S♭
A ≥ C ♭

A, HRH(A,H)− S♭
H ≥ C ♭

H

}



We taylor a Lotka-Volterra decision model

to hake-anchovy Peruvian fisheries scarce data
Hake-anchovy Peruvian fisheries data between 1971 and 1981, in thousands of tonnes (103 tons)

◮ anchoveta_stocks= [11019 4432 3982 5220 3954 5667 2272 2770 1506 1044 3407]

◮ merluza_stocks= [347 437 455 414 538 735 636 738 408 312 148]

◮ anchoveta_captures= [9184 3493 1313 3053 2673 3211 626 464 1000 223]

◮ merluza_captures= [26 13 133 109 85 93 107 303 93 159 69]

(a) Anchovy (b) Hake

Figure: Comparison of observed and simulated biomasses of anchovy and hake
using a Lotka-Volterra model with density-dependence in the prey. Model
parameters are R = 2.25, L = 0.945, κ = 67 113 × 103 t
(K = 37 285 × 103 t), α = 1.22 × 10−6 t−1, β = 4.845 × 10−8 t−1.



Here is the Lotka-Volterra decision model

◮ A is the prey biomass (anchovy)

◮ H is the predator biomass (hake)
◮ The discrete-time Lotka-Volterra system is

A(t + 1) = A(t)

RA

(
A(t),H(t)

)

︷ ︸︸ ︷

(
R −

R

κ
A(t)− αH(t)

) (
1 − EA(t)

)

H(t + 1) = H(t)
(
L+ βA(t)

)

︸ ︷︷ ︸

RH

(
A(t),H(t)

)

(
1 − EH(t)

)
,

◮ The associated deterministic viability kernel is V(t0) =
{

(A,H) | A ≥ S♭
A,

1
α
[R −

R

κ
A−

S♭
A + C ♭

A

A
] ≥ H ≥ max{

S♭
H + C ♭

H

L+ βA
, S♭

H}

}



For given biomasses and catches thresholds,
we display the associated viability kernel

◮ Minimal biomasses
thresholds

◮ S♭
A = 7 000 kt (anchovy)

◮ S♭
H = 200 kt (hake)

◮ Minimal catches thresholds
◮ C ♭

A = 2 000 kt (anchovy)
◮ C ♭

H = 5 kt (hake)

First acid test: plotting years of observed biomasses

◮ The range of values for viable states fits with measured biomasses
◮ Theoretically, a viable management with guaranteed biomasses and

catches would have been possible since the initial state ⋆ is viable



Let us make a pause on our way
towards ecosystem viable yields

◮ Let us turn back on what we have covered so far
◮ taking in consideration both ecological and economic objectives
◮ we have identified the viable states starting from which

both objectives can be guaranteed as time flies

◮ And let us change the perspective
◮ by first guaranteeing the ecological objectives
◮ and then identifying compatible captures that can be guaranteed
◮ when starting from a given initial state



We use the viability kernel the other way round,
to design ecosystem viable yields
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minimal biomass conservation
thresholds S♭

A ≥ 0 , S♭
H ≥ 0

2. for initial biomasses
A0 ≥ S♭

A and H0 ≥ S♭
H ,

the following catch levels,
if positive, can be
sustainably maintained

C
♭,⋆
A (A0,H0) = min

{
S♭
ARA(S

♭
A, S

♭
H)− S♭

A;A0RA(A0,H0)− S♭
A

}

C
♭,⋆
H (A0,H0) = min

{
S♭
HRH(S

♭
A, S

♭
H)− S♭

H ;H0RH(A0,H0)− S♭
H

}



And now, the second acid test. . . We compare theoretical
ecosystem viable yields to Perú official quotas

Viable yields (kt) Perú official quotas (kt)
Model 1 Model 2 2006 2007

Anchovy 5 152 5 399



And now, the second acid test. . . We compare theoretical
ecosystem viable yields to Perú official quotas

Viable yields (kt) Perú official quotas (kt)
Model 1 Model 2 2006 2007

Anchovy 5 152 5 399 4 250 5 300



And now, the second acid test. . . We compare theoretical
ecosystem viable yields to Perú official quotas

Viable yields (kt) Perú official quotas (kt)
Model 1 Model 2 2006 2007

Anchovy 5 152 5 399 4 250 5 300

Hake 49 56, 8 55 35



And now, the second acid test. . . We compare theoretical
ecosystem viable yields to Perú official quotas

Viable yields (kt) Perú official quotas (kt)
Model 1 Model 2 2006 2007

Anchovy 5 152 5 399 4 250 5 300

Hake 49 56, 8 55 35

◮ Quotas are maximal bounds on catches
◮ Ecosystem viable yields (EVY) are minimal guaranteed yields

◮ EVY are obtained by “puzzling” viable effort rules:
one can harvest more than the predator EVY to let the prey increase

◮ Instituto del Mar del Perú showed interest for this
transparent method



Where have we gone till now? And what comes next

◮ We have laid out examples
of natural resources management problems where objectives are
framed as constraints,
using the apparatus of mathematical control theory

◮ We have provided solutions derived from viability theory methods

◮ And now, how do we move
from deterministic dynamics and constraints
to the uncertainty situation?
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A control system connects input and output variables

Input variables

Control wood logs
Uncertainty wood humidity,

metal
conductivity

Output variables

soup quality,
water vapor,
temperature
(internal state)



Uncertainty variables are new input variables



Uncertainty is pervasive in natural resources management

◮ Environmental uncertainties
(El Niño)

◮ Habitats changes, mortality,
natality

◮ Scientific uncertainties
(structure of trophic networks,
ecosystem services)



We plug incertain variables
into the carbon cycle model “à la Nordhaus”

◮ Economic production Q(t)

Q(t + 1) =
(

1 +

economic growth
︷ ︸︸ ︷

g
(
we(t)

) )

Q(t)

◮ co2 concentration M(t)

M(t+1) = M(t)−δ(M(t)−M−∞)+α(wp(t))
︸ ︷︷ ︸

physics

technologies
︷ ︸︸ ︷

Emiss

(
Q(t),wz (t)

)) (
1−a(t)

)

◮ Vector of uncertainties w(t) = (we(t),wp(t),wz(t)) on
◮ economic growth
◮ technologies
◮ climate dynamics



Uncertainties transpire in epidemiological models

◮ Basic variables and parameters are
◮ time t= t0, t0 + 1 . . . ,T − 1,T , measured in days
◮ Mt , the abundance of infected mosquitos (Aedes Aegypti adultos)
◮ Ht , the abundance of infected humans
◮ ∆µM

t , the additional mortality rate of mosquitos, a control variable
◮ M, H , f H , f M , µM and µH , parameters

◮ The controlled dynamics of an epidemic outbreak is

Mt+1 = f HHt(M −Mt)− (µM +∆µM
t )Mt

Ht+1 = f MMt(H − Ht)− µHHt

◮ Scientific literature provides bounds for
◮ disease transmission rates f H and f M

◮ mortality rate of mosquitos µM



Uncertainties abound in population models
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◮ Stock-recruitment relationship
condenses, in one function,
complex mechanisms of
birth, dispersion, predation,
habitats, physical conditions

◮ Natural mortality
(deseases, predation)
between age-classes
is poorly known



We plug incertain variables
into the harvested age-class model

N1(t + 1) = S/R
(

SSB

(
N(t)

)
, w(t)

︸︷︷︸

birth mortality, etc.

)

recruitment

N2(t + 1) = e−(M1+λ(t)F1)N1(t)

... =
...

Na(t + 1) = e−(

mortality

︷ ︸︸ ︷

Ma−1 +λ(t)Fa−1)Na−1(t), a = 2, . . . ,A− 1

NA(t + 1) = e−(MA−1+λ(t)FA−1)NA−1(t) + πe−(MA+λ(t)FA)NA(t)



Input control variables are in the hands
of the decision-maker at successive time periods

Control variables u(t) ∈ U

The decision-maker can choose the values of control variables u(t)
at any time within given bounds

◮ at successive time periods
◮ annual catches
◮ years, months:

starting of energy units like nuclear plants
◮ weeks, days, intra-day:

starting of hydropower units

◮ within given bounds
◮ fishing quotas
◮ turbined capacity



Input uncertain variables are out of the control
of the decision-maker

Uncertain variables w(t) ∈ W are variables

◮ that take more than one single value (else they are deterministic)
◮ and over which the decision-maker (DM) has no control whatsoever

◮ Stationary parameters:
unitary cost of co2 emissions

◮ Trends or seasonal effects:
energy consumption pathway, mean
temperatures, mean prices

◮ Stochastic processes:
rain inputs in a dam, energy demand, prices

◮ Else (set membership):
costs of climate change damage,
water inflows in a dam



Let us fix notations and vocabulary



Uncertainty variables are new input variables
in a discrete-time nonlinear state-control system

A specific output is distinguished, and is labeled “state”
(more on this later), when the system may be written

x(t + 1) = F
(
t, x(t), u(t),w(t)

)
, t ∈ T = {t0, t0 + 1, . . . ,T − 1}

◮ the time t ∈ T = {t0, t0 + 1, . . . ,T − 1,T} ⊂ N is discrete
with initial time t0 and horizon T (T < +∞ or T = +∞)
(the time period [t, t + 1[ may be a year, a month, etc.)

◮ the state variable x(t) belongs to the state space X = RnX

(stocks, biomasses, abundances, capital)

◮ the control variable u(t) is an element of the control space U = R
nU

(inflows, outflows, catches, harvesting effort, investment)

◮ the uncertainty w(t) ∈ W = RnW

(recruitment or mortality uncertainties, climate fluctuations)

◮ the dynamics F maps T× X× U into X

(storage, age-class model, population dynamics, economic model)



What have we covered so far?
Uncertainty variables are new input variables

x(t + 1) = F
(
t, x(t), u(t), w(t)

︸︷︷︸

uncertainty

)

◮ The future state x(t + 1) is no longer predictable
◮ because of the uncertain term w(t),

◮ but the current state x(t) carries information
relevant for decision-making,

◮ and we shed light on the notion of policy



Summary

◮ Control variables are defined rather unambiguously:
the DM can select their values at any time within given sets

◮ The distinction between input and output variables is relative to a
system: for two interconnected dams, the water release from the
upper to the lower dam can be “seen” as an input to the lower dam
or as a control variable for the two-dams system

◮ In various examples of natural resources management,
we have seen so-called uncertain variables

◮ Uncertain variables are variables
◮ which take more than one single value (else they are deterministic)
◮ and over which the decision-makers have no control whatsoever

◮ Uncertain and control variables combine in a dynamical model



Water inflows historical scenarios



We call scenario a temporal sequence of uncertainties

Scenarios are special cases of “states of Nature”
A scenario (pathway, chronicle) is a sequence of uncertainties

w(·) =
(
w(t0),w(t0 + 1), . . . ,w(T − 1)

)
∈ S = W

T−t0

HHH

HHC

HCH

HCC

CHH

CHC

CCH

CCC

El tiempo se bifurca perpetuamente hacia innumerables futuros
(Jorge Luis Borges, El jardín de senderos que se bifurcan)



Beware! Scenario holds a different meaning
in other scientific communities

◮ In practice, what modelers call
a “scenario” is a mixture of

◮ a sequence of uncertain
variables (also called a
pathway, a chronicle)

◮ a policy Pol

◮ and even a static or
dynamical model

◮ In what follows

scenario = pathway = chronicle



A scenario is said to be viable for a given policy if
the state and control trajectories satisfy the constraints

Viable scenario under given policy
A scenario w(·) ∈ S is said to be viable under policy Pol : T× X → U

if the trajectories x(·) and u(·) generated by the dynamics

x(t + 1) = F
(
t, x(t), u(t),w(t)

)
, t = t0, . . . ,T − 1

with the policy
u(t) = Pol

(
t, x(t)

)

satisfy the state and control constraints

u(t) ∈ B
(
t, x(t)

)

︸ ︷︷ ︸

control constraints

and x(t) ∈ A(t)
︸ ︷︷ ︸

state constraints

, ∀t = t0, . . . ,T

The set of viable scenarios is denoted by SPol,t0,x0



We look after policies that make
the corresponding set of viable scenarios “large”

Set of viable scenarios

SPol,t0,x0 = {w(·) ∈ S | the state constraints

x(t) ∈ A(t)

and the control constraints

u(t) ∈ B
(
t, x(t)

)

are satisfied for all times t = t0, . . . ,T}

◮ The larger set SPol,t0,x0 of viable scenarios, the better,
because the policy Pol is able to maintain the system
within constraints for a large “number” of scenarios

◮ But “large” in what sense? Robust? Probabilistic?
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Robust viability dissects how to channel the system
inside constraints whatever the scenarios

Let S ⊂ S be a subset of the set S of scenarios

The robust viability problem
Identify the initial states x0 ∈ X for which there exists
at least one viable robust policy Pol : T× X → U such that
for all scenarios w(·) ∈ S

◮ the state trajectories given by the state solution map
x(t) = XF [t0, x0, Pol,w(·)](t) satisfy
the following state constraints

x(t) ∈ A(t) for t = t0, . . . ,T

◮ and the control constraints u(t) = Pol

(
t, x(t)

)
∈ B

(
t, x(t)

)

are satisfied for t = t0, . . . ,T − 1



The robust viability kernel is the set of initial states
for which the robust viability problem can be solved

Robust viability kernel

Viab1(t0) =







x0 ∈ X

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

there exists a policy Pol ∈ U

such that for all scenario w(·) ∈ S

the state constraints x(t) ∈ A(t)
and the control constraints
u(t) = Pol

(
t, x(t)

)
∈ B

(
t, x(t)

)

are satisfied for all times t = t0, . . . ,T







where the state x(t) = XF [t0, x0, Pol,w(·)](t)
is given by the state solution map



The robust viability kernel and viable scenarios are related

x0 ∈ Viab1(t0)
︸ ︷︷ ︸

robust viability kernel

⇐⇒







there exists a policy Pol ∈ U,

S ⊂ SPol,t0,x0
︸ ︷︷ ︸

viable scenarios



Robust viability kernels and robust viable policies
can be defined for all times

Robust viability kernel at time t

The robust viability kernel at time t is the subset of states

Viab1(t) =






x ∈ X

∣
∣
∣
∣
∣
∣

there exists Pol ∈ U
ad such that

for all scenario w(·) ∈ S

x(s) ∈ A(s) for s = t, . . . ,T







where x(s) = XF [t, x , Pol,w(·)](s) is given by the state solution map

The final viability kernel is the whole target set: Viab1(T ) = A(T )

Viable robust policies

U
viab
1 (t, x) =






Pol ∈ U

ad

∣
∣
∣
∣
∣
∣

for all scenario w(·) ∈ S

XF [t, x , Pol,w(·)](s) ∈ A(s)
for s = t, . . . ,T









The viability program aims at turning
state constraints into control constraints

◮ A priori constraints, with state constraints






x(t0) ∈ X

x(t + 1) = F
(
t, x(t), u(t),w(t)

)

u(t) ∈ B
(
t, x(t)

)
control constraints

x(t) ∈ A(t) state constraints

◮ are turned into a posteriori constraints, without state constraints
except for the initial state







x(t0) ∈ Viab1(t0) initial state constraint
x(t + 1) = F

(
t, x(t), u(t),w(t)

)

u(t) ∈ Bviab
1

(
t, x(t)

)
⊂ B

(
t, x(t)

)
control constraints

◮ ex ante state constraints → ex post control constraints



Product scenarios subsets embody time independence

HH

HM

HL

MH

MM

ML

LH

LM

LL

There is no time independence
because
the range of values of w(t + 1)
depends on the value of w(t):
w(t) = H ⇒ w(t + 1) ∈ {M , L}
w(t) = M ⇒ w(t + 1) ∈ {M}

HH

HM

HL

MH

MM

ML

LH

LM

LL

There is time independence
because
S = {H ,M} × {M , L} ⊂ S

is a product set



A priori information on the scenarios
may be set membership
The product case

◮ Uncertain variables may be restricted to subsets, period by period

w(t) ∈ W(t) ⊂ W

so that some scenarios are selected and the rest are excluded

w(·) ∈ S = W(t0)× · · · ×W(T − 1) ⊂ S = W
T−t0

Bounded water inflows in a dam
If only an upper bound on water inflows is known,
we represent off-line information by

0 ≤ a(t) ≤ a♯



The robust dynamic programming equation is a
backward equation relating the robust viability kernels

Robust dynamic programming equation
If the scenarios vary within a rectangle S = W(t0)× · · · ×W(T − 1)
(corresponding to independence in the stochastic setting),
the robust viability kernels satisfy the following backward induction,
where t runs from T − 1 down to t0

Viab1(T ) = A(T )

Viab1(t) =






x ∈ A(t)

∣
∣
∣
∣
∣
∣

there exists an admissible control u ∈ B(t, x)

such that for all scenarios w ∈ W(t)
one has that F (t, x , u,w) ∈ Viab1(t + 1)









The robust dynamic programming equation yields
the robust viable controls

Robust viable controls
For any time t and state x , robust viable controls are

B
viab
1 (t, x) =

{
u ∈ B(t, x) | ∀w ∈ W(t) , F (t, x , u,w) ∈ Viab1(t + 1)

}

Proposition
Viable robust policies are those Pol ∈ U such that

Pol(t, x) ∈ B
viab
1 (t, x) , ∀t ∈ T , ∀x ∈ Viab1(t)



The viability program is achieved

◮ Robust viable controls exist at time t if and only if
the state x belongs to the robust viability kernel at time t:

B
viab
1 (t, x) 6= ∅ ⇐⇒ x ∈ Viab1(t)

◮ A solution to the viability problem is
◮ an initial state x0

◮ and a policy Pol

such that

x0 ∈ Viab1(t0)

Pol(t, x) ∈ Bviab
1 (t, x) , ∀t ∈ T , ∀x ∈ Viab1(t)
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We taylored a Lotka-Volterra decision model

to hake-anchovy Peruvian fisheries scarce data
Hake-anchovy Peruvian fisheries data between 1971 and 1981, in thousands of tonnes (103 tons)

◮ anchoveta_stocks= [11019 4432 3982 5220 3954 5667 2272 2770 1506 1044 3407]

◮ merluza_stocks= [347 437 455 414 538 735 636 738 408 312 148]

◮ anchoveta_captures= [9184 3493 1313 3053 2673 3211 626 464 1000 223]

◮ merluza_captures= [26 13 133 109 85 93 107 303 93 159 69]

(a) Anchovy (b) Hake

Figure: Comparison of observed and simulated biomasses of anchovy and hake
using a Lotka-Volterra model with density-dependence in the prey. Model
parameters are R = 2.25, L = 0.945, κ = 67 113 × 103 t
(K = 37 285 × 103 t), α = 1.22 × 10−6 t−1, β = 4.845 × 10−8 t−1.



Now, we add an uncertain term, wA(t) and wH(t),
to the growth rate of each population

◮ Uncertainties wA(t) and wH(t) are discrepancies
between the Lotka-Volterra model and the data

◮ State vector (A(t),H(t)) represents biomasses

◮ Control vector (EA(t),EH(t)) is fishing effort of each species
◮ The discrete-time Lotka-Volterra system with uncertainty is

A(t + 1) = A(t)

RA

(
A(t),H(t),wA(t)

)

︷ ︸︸ ︷

(
wA(t) + R −

R

κ
A(t) − αH(t)

) (
1 − EA(t)

)

H(t + 1) = H(t)
(
wH(t) + L+ βA(t)

)

︸ ︷︷ ︸

RH

(
A(t),H(t),wH(t)

)

(
1 − EH(t)

)



In practice, we consider stationary uncertainty sets
forged from empirical data

◮ (A(t),H(t))t=t0,...,T and (EA(t),EH(t))t=t0 ,...,T−1

denote the empirical biomass and effort trajectories
between 1971 and 1981, in thousands of tonnes (103 tons)

◮ anchoveta_stocks=
[11019 4432 3982 5220 3954 5667 2272 2770 1506 1044 3407]

◮ merluza_stocks= [347 437 455 414 538 735 636 738 408 312 148]
◮ anchoveta_captures=

[9184 3493 1313 3053 2673 3211 626 464 1000 223]
◮ merluza_captures= [26 13 133 109 85 93 107 303 93 159 69]

◮ We define wA(t) and wH(t) such that






A(t + 1) = A(t)
(
wA(t) + R − R

κA(t)− αH(t)
)(

1 − EA(t)
)

H(t + 1) = H(t)
(
wH(t) + L+ βA(t)

)(
1 − EH(t)

)



Empirical distribution of the uncertainties
(wA(t),wH(t))t=t0,...,T−1



We consider two species targeted by two fleets
in a biomass ecosystem dynamics with uncertainties

We embody uncertainties, stocks and fishing interactions
in a two-dimensional dynamical model

future biomass
︷ ︸︸ ︷

A(t + 1) = A(t)

growth factor
︷ ︸︸ ︷

RA

(
A(t),H(t),wA(t)

︸ ︷︷ ︸

uncer

) (
1 − EA(t)

︸ ︷︷ ︸

effort

)

H(t + 1) = H(t)RH

(
A(t),H(t),

tainty
︷ ︸︸ ︷

wH(t)
)(

1 −

control
︷ ︸︸ ︷

EH(t)
)

◮ Uncertainties wA(t) and wH(t) are discrepancies

◮ State vector (A(t),H(t)) represents biomasses

◮ Control vector (EA(t),EH(t)) is fishing effort of each species
◮ Catches are EA(t)RA

(
A(t),H(t),wA(t)

)
A(t) and

EH(t)RH

(
A(t),H(t),wH(t)

)
H(t) (measured in biomass)



Our objectives are twofold: conservation and production

The robust viability kernel is the set of initial species biomasses
(
A(t0),H(t0)

)
from which at least one appropriate policy

produces biomasses and effort trajectories
such that the following goals are satisfied

for all the scenarios
(
wA(t),wH(t)

)
, t = t0, t0 + 1, . . . ,T

◮ preservation (minimal biomass thresholds)

A stocks: A(t) ≥ S♭
A

H stocks: H(t) ≥ S♭
H

◮ economic/social requirements (minimal catch thresholds)

A catches: EA(t)RA

(
A(t),H(t),wA(t)

)
A(t) ≥ C ♭

A

H catches: EH(t)RH

(
A(t),H(t),wH(t)

)
H(t) ≥ C ♭

H



We make a heroic assumption about the set of scenarios
◮ An uncertainty scenario is a time sequence of uncertainty couples

(
wA(·),wH(·)

)
=

((
wA(t0),wH(t0)

)
, . . . ,

(
wA(T − 1),wH(T − 1)

))

◮ We assume that, at each time t,
the uncertainties (wA(t),wH(t)) can take any value in a
two-dimensional set

(wA(t),wH(t)) ∈ W(t) ⊂ R
2

◮ Therefore, from one time t to the next t + 1,
uncertainties can be drastically different,
since (wA(t),wH(t)) is not related to (wA(t + 1),wH(t + 1))

◮ Such an independence assumption is materialized by the property
that a scenario can take any value in a product set

(
wA(·),wH(·)

)
∈

T−1∏

t=t0

W(t)



In practice, we consider stationary uncertainty sets
forged from empirical data

◮ In practice, we consider stationary uncertainty sets

W(t) = W

◮ Therefore, our heroic assumption about the set of scenarios is:
any of the possible uncertainty of any year
can materialize any other year



Empirical distribution of the uncertainties
(wA(t),wH(t))t=t0,...,T−1



We first consider the empirical uncertainty set

◮ The empirical uncertainties set is

W
E
= {(wA(t),wH(t))|t = t0, . . . ,T − 1}

︸ ︷︷ ︸

empirical discrepancies

∪ {(0, 0)}
︸ ︷︷ ︸

deterministic case

◮ Since {(0, 0)} ⊂ W
E
,

the corresponding robust and deterministic viability kernels satisfy

ViabE
1 (t0) ⊂ Viab(t0)



The robust viability kernel is noticeably smaller
than the deterministic one



Algorithm for the robust viability kernel
and the robust viable controls

initialization V (T ,A,H) = 1A≥S♭
A
1H≥S♭

H
;

for times t = T ,T − 1, . . . , t0 do

forall biomasses (A,H) do

forall efforts (CA,CH) do

forall uncertainties (wA,wH) do

V
(
t + 1,F (t,A,H ,CA,CH ,wA,wH)

)

infwA,wH
V
(
t + 1,F (t,A,H ,CA,CH ,wA,wH)

)

max(CA,CH ) inf(wA,wH ) V
(
t + 1,F (t,A,H ,CA,CH ,wA,wH)

)

V (t,A,H) = 1A≥S♭
A
1H≥S♭

H
V
(
t + 1,F (t,A,H ,CA,CH ,wA,wH)

)
;

Bviab
1 (t,A,H) =

argmax(CA,CH ) inf(wA,wH ) V
(
t + 1,F (t,A,H ,CA,CH ,wA,wH)

)



Second, we consider a refined uncertainty set

Figure: Uncertainty sets W
E

(diamonds) and W
ER

(grid)



Here is the refinement of the empirical uncertainty set

◮ The empirical uncertainties set is

W
E
= {(wA(t),wH(t))|t = t0, . . . ,T − 1}

︸ ︷︷ ︸

empirical discrepancies

∪ {(0, 0)}
︸ ︷︷ ︸

deterministic case

◮ The refined empirical uncertainties set W
ER

is made of 900 uncertainty couples delineated by a 30 × 30 grid
over the rectangle [wmin

A ,wmax
A ]× [wmin

H ,wmax
H ],

including all the uncertainty couples in W
E

◮ Since {(0, 0)} ⊂ W
E
⊂ W

ER
,

the corresponding robust and deterministic viability kernels satisfy

ViabER
1 (t0) ⊂ ViabE

1 (t0) ⊂ Viab(t0)



The robust viability kernels are noticeably smaller
than the deterministic one



Now, we focus on worst-case uncertainties

◮ Numerical simulations led us to consider the three following
uncertainty sets

◮ low growth factor for both species /
low growth factor for prey and high growth factor for predator

W
M

= {(wmin
A ,w

min
H ), (wmin

A ,w
max
H )}

◮ half

W
L
= {(

wmin
A

2
,
wmin

H

2
), (

wmin
A

2
,
wmax

H

2
)}

◮ 10% increase
W

H
= 1.1 ×W

M

◮ Since {(0, 0)} ⊂ W
L
⊂ W

M
⊂ W

H
,

the corresponding robust and deterministic viability kernels satisfy

ViabH
1 (t0) ⊂ ViabM

1 (t0) ⊂ ViabL
1(t0) ⊂ Viab(t0)



Figure: Uncertainty sets W
L

(crosses), W
M

(diamonds) and W
H

(triangles)



Figure: Robust viability kernels ViabL
1(t0), ViabM

1 (t0) and ViabH
1 (t0) and the

deterministic viability kernel



Summary

◮ We introduce uncertainties in the growth rates
of interacting populations

◮ When populations start from a robust viable state, the fisheries can
be managed so that both preservation and conservation objectives
are met, whatever the scenarios of uncertainties

◮ To compute robust viable states, we make the strong assumption
that, from one year t to the next t + 1,
uncertainties can be drastically different (independence)

◮ With this assumption, we compute the robust viability kernel
by dynamic programming, for different sets of uncertainties

◮ We observe that the robust viability kernels are noticeably smaller
than the deterministic ones

◮ We also identify uncertainties and scenarios that really matter
for a precautionary approach: low growth for both species
alternance of low growth of anchovy/high growth of hake
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Maximizing the probability of success may be an objective

How to gamble if you must,
L.E. Dubbins and L.J.
Savage, 1965

Imagine yourself at a casino with
$1,000. For some reason, you
desperately need $10,000 by
morning; anything less is worth
nothing for your purpose.

The only thing possible is to
gamble away your last cent, if
need be, in an attempt to reach
the target sum of $10,000.

◮ The question is how to play,
not whether. What ought you do?
How should you play?

◮ Diversify, by playing 1 $ at a time?
◮ Play boldly and concentrate,

by playing 1,000 $ only one time?

◮ What is your decision criterion?



We suppose that the set S of scenarios is equipped
with a probability P (though this is a delicate issue!)

In practice, one often assumes that the components
(
w(t0), . . . ,w(T − 1)

)
form an

independent and identically distributed sequence of random variables,
or form a Markov chain, or a time series



We extend viability kernels to
stochastic viability kernels



Stochastic viability kernels

In stochastic viability, state constraints are to be met along time
with a given confidence level β ∈ [0, 1]

P

(

w(·) ∈ S | x(t) ∈ A(t) for t = t0, . . . ,T
)

≥ β

Stochastic viability kernels
The stochastic viability kernel at confidence level β ∈ [0, 1] is

Viabβ(t0) =

{

x0 ∈ X

∣
∣
∣
∣
∣

there exists a policy Pol ∈ U
ad such that

P

(

w(·) ∈ S | x(t) ∈ A(t) for t = t0, . . . ,T
)

≥ β

}

where the state x(t) = XF [t0, x0, Pol,w(·)](t)
is the outcome of the state solution map



Stochastic viability kernels Viabβ(t0)
for a hake-anchovy fisheries model
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Stochastic viability kernels
can be obtained by

dynamic programming



The viability probability is the probability
of satisfying constraints under a policy

Viability probability
The viability probability associated with
the initial time t0, the initial state x0 and the policy Pol

is the probability P [SPol,t0,x0 ] of the set SPol,t0,x0 of viable scenarios

P [SPol,t0,x0 ] = Proba







w(·) ∈ S |

the state constraints
XF [t0, x0, Pol,w(·)](t) ∈ A(t)
and the control constraints
UF [t0, x0, Pol,w(·)] ∈ B

(
t, x(t)

)

are satisfied for all times t = t0, . . . ,T









The maximal viability probability is the upper bound
for the probability of satisfying constraints

Maximal viability probability and optimal viable policy
The maximal viability probability is

max
Pol

P [SPol,t0,x0 ]

An optimal viable policy Pol
⋆ satisfies

P [SPol⋆,t0,x0 ] ≥ P [SPol,t0,x0 ]

In a sense, any optimal viable policy makes the set of viable scenarios
the “largest” possible



Let us introduce the stochastic viability Bellman function

Suppose that the primitive random variables
(
w(t0),w(t0 + 1), . . . ,w(T − 2),w(T − 1)

)

are independent under the probability P

Bellman function / stochastic viability value function
Define the probability-to-go as

V (t, x) =

max
Pol

P

(

w(·) ∈ S |

control constraints
︷ ︸︸ ︷

Pol

(
s, x(s)

)
∈ B

(
s, x(s)

)
and

state constraints
︷ ︸︸ ︷

x(s) ∈ A(s) for s ≥ t
)

where x(s + 1) = F
(
s, x(s), Pol

(
s, x(s)

)
,w(s)

)
and x(t) = x

◮ The function V (t, x) is called stochastic viability value function
or Bellman function

◮ The original problem is V (t0, x0)



The dynamic programming equation
is a backward equation satisfied by

the stochastic viability value function

Proposition
If the primitive random variables
(
w(t0),w(t0 + 1), . . . ,w(T − 2),w(T − 1)

)
are independent under the

probability P, the stochastic viability value function V (t, x) satisfies the
following backward induction, where t runs from T − 1 down to t0

V (T , x) = 1A(T )(x)

V (t, x) = 1A(t)(x) max
u∈B(t,x)

Ew(t)

[

V
(

t + 1,F
(
t, x , u,w(t)

))]



Algorithm for the Bellman functions
and the stochastic viable controls

initialization V (T , x) = 1A(T )(x);
for t = T ,T − 1, . . . , t0 do

forall x ∈ X do

forall u ∈ B(t, x) do

Ew(t)

[

V
(

t + 1,F
(
t, x , u,w(t)

))]

maxu∈B(t,x) Ew(t)

[

V
(

t + 1,F
(
t, x , u,w(t)

))]

V (t, x) = 1A(t)(x)maxu∈B(t,x) Ew(t)

[

V
(

t + 1,F
(
t, x , u,w(t)

))]



The stochastic viable dynamic programming equation
yields stochastic viable policies

For any time t and state x , let us assume that the set

B
viab(t, x) = argmax

u∈B(t,x)

(

1A(t)(x)Ew(t)

[

V
(

t + 1,F
(
t, x , u,w(t)

))])

of viable controls is not empty

Proposition
Then, any (measurable) policy Pol such that Pol⋆(t, x) ∈ Bviab(t, x) is
an optimal viable policy which achieves the maximal viability probability

V (t0, x0) = max
Pol

P [SPol,t0,x0 ]



The dynamic programming equation yields
the viability kernels

The viability kernel at confidence level β turns out to coincide
with the section of level β of the stochastic value function:

V (t0, x0) ≥ β ⇐⇒ x0 ∈ Viabβ(t0)
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We set up a dynamical age-class model
of hake and nephrops in technical interaction

Nh
1(t + 1) = wh(t) uncertain hake recruitment

Nn
1(t + 1) = wn(t) uncertain nephrops recruitment

Nh
a(t + 1) = Nh

a−1(t)




1 −Mh

a−1 −

hake bycatch
︷ ︸︸ ︷

u(t)F nh
a−1 −F hh

a−1






Nn
a(t + 1) = Nn

a−1(t)




1 −Mn

a−1 −

nephrops fishing mortality
︷ ︸︸ ︷

u(t)F nn
a−1






Nh
A(t + 1) = Nh

A−1(t)
(
1 −Mh

A−1 − u(t)F nh
A−1 − F hh

A−1

)

+Nh
A(t)

(
1 −Mh

A − u(t)F nh
A − F hh

A

)

Nn
A(t + 1) = Nn

A−1(t)
(
1 −Mn

A−1 − u(t)F nn
A−1

)

+Nn
A(t)

(
1 −Mn

A − u(t)F nn
A

)



The relative effort of the nephrops fleet
has to be controlled to ensure both

nephrops fleet profitability and hake preservation

◮ Economic objective: nephrops fishery is economically viable
if the gross return is greater than a threshold

P
(
Nn(t), u(t)

)

︸ ︷︷ ︸

payoff

≥ P♭

◮ Ecological objective: fishery is ecologically viable if
its impact by bycatch on the hake biology is compatible with
sufficient recruitment of mature hakes

Nh
4 (t)

︸ ︷︷ ︸

fourth age−class

≥ (Nh
4 )

♭



An optimal viable policy can be calculated
thanks to monotonicity properties

◮ Due to monotonicity properties
◮ of the dynamics, increasing in the state variable

and decreasing in the control
◮ of the constraints, increasing in the state variable

and decreasing in the control

◮ we can prove that

Pol
⋆(t,N) = inf{u ∈ [0, u♯] | P(Nn, u) ≥ P♭}

is an optimal viable policy



Numerical evaluation of the maximal viability probability

as a function of the guaranteed thresholds P♭ and (Nh
4 )

♭

◮ We fix the horizon (10 years)

◮ We select a 18-dimensional initial state
(hake and nephrops abundances at all age-classes)

◮ A top loop runs over the thresholds P♭ and (Nh
4 )

♭

◮ We launch S Monte-Carlo simulations (S = 10, 000)

◮ For each recruitment scenario, we simulate hake and nephrops
abundances with the dynamics driven by the optimal policy
(that depends on the threshold P♭)

◮ For each recruitment scenario, we evaluate the minimum over time
of the abundance of the hake fourth age-class
and check whether it exceeds (Nh

4 )
♭ or not

◮ We increment the viability frequency by 1/S or by 0 accordingly



We draw the maximal viability probability

as a function of the guaranteed thresholds P♭ and (Nh
4 )

♭



We draw the iso-values for the maximal viability probability

as a function of guaranteed thresholds P♭ and (Nh
4 )

♭
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Tourism issues impose constraints upon traditional
economic management of a hydro-electric dam

◮ Maximizing the revenue
from turbinated water

◮ under a tourism constraint
of having enough water
in July and August



We consider a single dam nonlinear dynamical model
in the decision-hazard setting

We model the dynamics of the water volume in a dam by

S(t + 1)
︸ ︷︷ ︸

future volume

= min{S♯, S(t)
︸︷︷︸

volume

− q(t)
︸︷︷︸

turbined

+ a(t)
︸︷︷︸

inflow volume

}

◮ S(t) volume (stock) of water at the beginning of period [t, t + 1[
◮ q(t) turbined outflow volume during [t, t + 1[

◮ decided at the beginning of period [t, t + 1[
◮ chosen such that 0 ≤ q(t) ≤ min{S(t),q♯}

◮ a(t) inflow water volume (rain, etc.) during [t, t + 1[,
which materializes at the end t + 1 of period [t, t + 1[

◮ S♯ dam capacity

The setting is called decision-hazard because
the decision q(t) is made before the hazard a(t)



The red stock trajectories fail to meet
the tourism constraint in July and August



In the risk-neutral economic approach,
an optimal management maximizes the expected payoff

◮ Suppose that
◮ turbined water q(t) is sold at price p(t),

related to the price at which energy can be sold at time t
◮ a probability P is given on the set S = R

T−t0 × R
T−t0

of water inflows scenarios
(
a(t0), . . . , a(T − 1)

)

and prices scenarios
(
p(t0), . . . , p(T − 1)

)

◮ at the horizon, the final volume S(T ) has a value K

(
S(T )

)
,

the “final value of water”

◮ The traditional (risk-neutral) economic problem is to maximize the
intertemporal payoff (without discounting if the horizon is short)

maxE






T−1∑

t=t0






price
︷︸︸︷

p(t)

turbined
︷︸︸︷

q(t) −ǫq(t)2
︸ ︷︷ ︸

turbined costs




+

final volume utility
︷ ︸︸ ︷

K
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We now have a stochastic optimization problem,
where the tourism constraint still needs

to be dressed in formal clothes

◮ Traditional cost minimization/payoff maximization

maxE
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◮ Tourism constraint

volume S(t) ≥ S♭ , ∀t ∈ T = { July, August }

◮ In what sense should we consider this inequality
which involves the random variables S(t) for t ∈ T ?



Robust / almost sure / probability constraint

◮ Robust constraints: for all the scenarios in a subset S ⊂ S

S(t) ≥ S♭ , ∀t ∈ T

◮ Almost sure constraints

Probability
{

S(t) ≥ S♭ , ∀t ∈ T
}

= 1

◮ Probability constraints, with “confidence” level p ∈ [0, 1]

Probability
{

S(t) ≥ S♭ , ∀t ∈ T
}

≥ p

◮ and also by penalization, or in the mean, etc.



Our problem may be clothed as a stochastic optimization
problem under a probability constraint

P(T ) =

T−1∑

t=t0

turbined water payoff
︷ ︸︸ ︷

p(t)q(t) − ǫq(t)2 +

final volume utility
︷ ︸︸ ︷

K

(
S(T )

)

◮ The traditional economic problem is maxE [P(T )]

◮ and a failure tolerance is accepted

Probability
{

S(t) ≥ S♭ , ∀t ∈ T
}

≥ 90%



Details concerning the theoretical and numerical resolution
are available on demand

◮ π(0) = 1 and π(t + 1) =
{

1{S(t+1)≥S♭} × π(t) if t ∈ T

π(t) else

◮ P
[
S(τ) ≥ S♭ , ∀τ ∈ T

]

= E

[

1{S(τ )≥S♭ , ∀τ∈T }

]

= E

[
∏

τ∈T 1{S(τ )≥S♭}

]

= E [π(T )]



90% of the stock trajectories meet the tourism constraint



Our resolution approach brings a sensible improvement
compared to standard procedures



However, though the expected payoff is optimal,
the payoff effectively realized can be far from it



We propose a stochastic viability formulation
to treat symmetrically and to guarantee

both environmental and economic objectives

◮ Given two thresholds to be guaranteed
◮ a volume S♭ (measured in cubic hectometers hm3)
◮ a payoff P♭ (measured in numeraire $)

◮ we look after policies achieving the maximal viability probability

Π(S♭,P♭) = max Proba







water inflow scenarios along which
the volumesS(t) ≥ S♭

for all time t ∈ { July, August }
and the final payoff P(T ) ≥ P♭







◮ Π(S♭,P♭) is the maximal probability
to guarantee to be above the thresholds S♭ and P♭



The stochastic viability formulation
requires to redefine state and dynamics

◮ The state is the couple x(t) =
(
S(t),P(t)

)
volume/payoff

◮ The control u(t) = q(t) is the turbined water
◮ The dynamics is

S(t + 1)
︸ ︷︷ ︸

future volume

= min{S♯, S(t)
︸︷︷︸

volume

− q(t)
︸︷︷︸

turbined

+ a(t)
︸︷︷︸

inflow volume

} ,

t = t0, . . . ,T − 1

P(t + 1)
︸ ︷︷ ︸

future payoff

= P(t)
︸︷︷︸

payoff

+ p(t)q(t) − ǫq(t)2
︸ ︷︷ ︸

turbined water payoff

, t = t0, . . . ,T − 2

P(T ) = P(T − 1) + K

(
S(T )

)

︸ ︷︷ ︸

final volume utility



In the stochastic viability formulation,
we dress objectives as state constraints

◮ The control constraints are

u(t) ∈ B
(
t, x(t)

)
⇐⇒ 0 ≤ q(t) ≤ min{S(t), q♯}

◮ The state constraints are

x(t) ∈ A(t) ⇐⇒

{
S(t) ≥ S♭ , ∀t ∈ { July, August }

P(T ) ≥ P♭



For each couple of thresholds on payoff and stock,
we write a dynamic programming equation

◮ Abstract version

V (T , x) = 1A(T )(x)

V (t, x) = 1A(t)(x) max
u∈B(t,x)

Ew(t)

[

V
(

t + 1, F
(
t, x , u,w(t)

))]

◮ Specific version

V (T , S,P) = 1{P≥P♭}

V (T − 1, S,P) = max
0≤q≤min{S,q♯}

Ea(T−1),p(T−1)

[

V
(

t + 1,S − q + a(t),P + K

(

S
)

)]

V (t, S,P) = max
0≤q≤min{S,q♯}

Ea(t),p(t)

[

V
(

t + 1, S − q + a(t),P + p(t)q − ǫq2
)]

,

t 6∈ { July, August }

V (t, S,P) = 1{S≥S♭} max
0≤q≤min{S,q♯}

Ea(t),p(t)

[

V
(

t + 1,S − q + a(t),P + p(t)q − ǫq2

t ∈ { July, August }



We plot iso-values for the maximal viability probability

as a function of guaranteed thresholds S ♭ and P
♭



The probability distribution of the random gain
reflects the viability objectives
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In the resource managers literature, the distinction between
objectives and decision rules is often blurred

objectives

decision rules
In practice, we observe that
resource managers generally

◮ design decision rules

◮ which directly incorporate
objectives

◮ with confusion between
objectives and decision rules



Mismatch can be avoided by highlighting the distinction
between objectives and decision rules

◮ Control theory makes a clear distinction
between objectives and decision rules

objectives ⇒ adapted decision rules

◮ More specifically, viability theory puts
emphasis on consistency between
dynamics and objectives

objectives + dynamics ⇒ decision rules



At the end of the day, where do we stand?

◮ Conceptual framework for
quantitative sustainable
management

◮ Managing ecological and
economic conflicting objectives

◮ Ecosystem viable yields as a
contribution to the “ecosystem
approach”

◮ Displaying tradeoffs between
ecology and economy
sustainability thresholds
and risk



“Nul n’est mieux servi que par soi-même”
“Self-promotion, nobody will do it for you” ;-)

M. De Lara, L. Doyen, Sustainable Management of Natural Resources.
Mathematical Models and Methods, Springer, 2008.



THANK YOU!
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