Processus avec sauts et applications au marché de l'énergie

Examen du lundi 07 mars 2016 14h30-16h30

Exercice I : Mesure ponctuelle de Poisson et fluctuations

Soit f une fonction mesurable positive définie sur [0,1]. On pose pour $t \in [0,1]$:

$$g(t) = \int_{]t,1]} x f(x) dx$$
 et $F(t) = \int_{]0,t]} x^2 f(x) dx$.

On suppose que $g(0) = +\infty$ et $F(1) < +\infty$.

Soit $\mathcal{N}(dx) = \sum_{i \in I} \delta_{x_i}(dx)$ une mesure ponctuelle de Poisson sur]0,1] d'intensité $f(x)\mathbf{1}_{[0,1]}(x)\,dx$. Pour $t \geq 1$, on pose :

$$G_t = \sum_{i \in I} x_i \mathbf{1}_{\{x_i \ge 1/t\}}$$
 et $M_t = G_t - g(1/t)$.

- 1. Montrer que : M_t est intégrable, $\mathbb{E}[M_t] = 0$ et $\mathbb{E}[M_t^2] = F(1) F(1/t)$.
- 2. Vérifier que le processus $(M_t, t \ge 1)$ est continu à droite avec une limite à gauche en tout t > 1.

On considère la tribu $\mathcal{F}_t = \sigma\left(\sum_{i \in I} \delta_{x_i}(dx) \mathbf{1}_{\{x_i \geq 1/t\}}\right)$ engendrée par la mesure aléatoire $\mathbf{1}_{[1/t,1]}(x) \mathcal{N}(dx)$. On note $\mathcal{F} = (\mathcal{F}_t, t \geq 1)$.

- 3. Vérifier que \mathcal{F} est une filtration (i.e. $\mathcal{F}_s \subset \mathcal{F}_t$ pour $1 \leq s \leq t$).
- 4. Vérifier que $(M_t, t \ge 1)$ est une martingale.
- 5. Montrer que $(M_t, t \ge 1)$ converge p.s. et dans L^2 vers une limite M_{∞} quant t tend vers l'infini.
- 6. Montrer que pour $1 \le s \le t, u \in \mathbb{R}$:

$$\mathbb{E}\left[e^{iu(M_t-M_s)}\right] = \exp\left(-\int_{1/t}^{1/s} (1+iux-e^{iux})f(x) dx\right).$$

- 7. Déduire de la question précédente la fonction caractéristique de M_{∞} .
- 8. On suppose que $f(x) = (1-\alpha)x^{-2-\alpha}$ avec $\alpha \in [0,1[$. Montrer que la suite $(W_t, t \ge 1)$, où :

$$W_t = \frac{1}{\sqrt{F(1/t)}}(M_t - M_\infty),$$

converge en loi vers une variable aléatoire gaussienne dont on précisera la variance.

Exercice II: Valorisation d'un stockage gazier

On considère un calendrier simplifié où l'année dure 360 jours et est découpée en 4 trimestres ou "quarters" de 90 jours chacun. Les "quarters" sont eux-mêmes découpés en 3 mois de 30 jours. On se place au temps t=0, et on considère les dates $(t_i, 0 \le i \le 360)$ telles que : $t_0 > 0$ et $t_{i+1} - t_i = 1$ jour pour tout $0 \le i \le 359$.

Description du stockage

On se donne un stockage gazier de volume V, que l'on gère à pas journalier entre t_0 et t_{360} . À chaque date t_i , pour $i \in \{0, \ldots, 359\}$, étant donné v le volume en stock en t_i , on peut ajouter un volume $z \in [-a; a]$ au stockage, sous réserve que $0 \le v + z \le V$. Le stockage est tel que a = V/100. Il faut donc 100 jours pour remplir (resp. vider) le stockage. Enfin, le volume en stock est nul à t_0 .

Description du marché

À la date t = 0, le marché du gaz cote les trois produits suivants (en plus du spot) :

- le "quarter" couvrant la période $[t_0; t_{90}]$, de prix Q_0^1 ;
- le "quarter" couvrant la période $[t_{90};t_{180}[$, de prix $Q_0^2;$
- le "season" couvrant la période $[t_{180}; t_{360}]$, de prix S_0^2 .

On notera X_{t_i} l'ensemble des prix (spot et forwards) observés sur le marché à la date t_i .

1. Montrer que la valeur du stockage est supérieure ou égale à :

$$\max_{(u,v)\in[-90a;90a]^2;\,u+v=100} \left(-u \times Q_0^1 - v \times Q_0^2 + 100 \times S_0^2\right). \tag{1}$$

- 2. On note $P(t_i, v, x)$ la valeur du stockage à l'instant t_i avec le volume v en stock, lorsqu'on observe les prix x sur le marché du gaz. Appliquer le principe de la programmation dynamique en t_i pour poser l'équation donnant P.
- 3. Donner un exemple de méthode pour calculer le terme d'espérance conditionnelle dans l'équation de la question précédente.
- 4. Quel serait l'avantage d'une valorisation par réplication du type de l'équation (1) par rapport à une valorisation par programmation dynamique?

Correction

Exercice I: Mesure ponctuelle de Poisson et fluctuations

- 1. On remarque que $G(t) = \int h_t(x) \mathcal{N}(dx)$ où $h_t(x) = \mathbf{1}_{[1/t,1]}(x)$. Comme la fonction h est positive, on a $\mathbb{E}[G_t] = \int_{]0,1]} h_t f = g(1/t)$. Comme g est finie sur]0,1] on en déduit que M_t est intégrable pour tout $t \geq 1$. On a aussi $\mathbb{E}[M_t] = g(1/t) g(1/t) = 0$. On déduit de la "master formula" que $\mathbb{E}[M_t^2] = \int_{]0,1]} h_t^2 f$, soit $\mathbb{E}[M_t^2] = F(1) F(1/t)$.
- 2. Les temps de discontinuité du processus $M = (M_t, t \ge 1)$ sont $\{1/x_i, i \in I\}$. De plus comme la mesure d'intensité est finie sur tout ensemble [1/t, 1] pour $t \ge 1$, on en déduit que $\mathcal{N}([1/t, 1])$ est fini pour tout $t \ge 1$. Autrement dit le processus M a un nombre fini de sauts sur tout intervalle borné de $[1, +\infty[$. La continuité à droite et la limite à gauche sont alors évidentes en tout point de $[1, +\infty[$.
- 3. On pose $N_t(dx) = \mathbf{1}_{[1/t,1]}(x) \mathcal{N}(dx)$. Pour $1 \leq t$, on a $N_t(dx) = N_s(dx) + N'(dx)$ avec $N'(dx) = \mathbf{1}_{[1/s,1/t]}(x) \mathcal{N}(dx)$. Les supports des mesures aléatoires N_s et N' sont distincts donc $\sigma(N_t) = \sigma(N_s, N')$. Comme $\mathcal{F}_t = \sigma(N_t)$, on en déduit que $\mathcal{F}_s \subset \mathcal{F}_t$. Donc \mathcal{F} est une filtration.
- 4. On a M_t intégrable d'après la question 1. De plus M_t est \mathcal{F}_t mesurable. En reprenant les notations de la réponse à la question précédente, on a que les propriétés des mesures de Poisson impliquent que les mesures aléatoires N_s et N' sont indépendantes (car les ensembles [1/s, 1/t[et [1/t, 1] sont disjoints). On en déduit que pour toute fonction ℓ :

$$\mathbb{E}[N_t(\ell)|\mathcal{F}_s] = N_s(\ell) + \mathbb{E}[N'(\ell)] = N_s(\ell) + \int_{1/t}^{1/s} \ell(x)f(x) \, dx.$$

En prenant $\ell(x) = x$, on obtient : $\mathbb{E}[M_t | \mathcal{F}_s] = M_s$. Donc M est une martingale.

- 5. D'après la question 1, on a $\mathbb{E}[M_t^2] \leq F(1) < +\infty$ pour tout $t \geq 1$. La martingale $M = (M_t, t \geq 1)$ est bornée dans L^2 , elle est continue à droite et limitée à gauche donc elle converge p.s. et dans L^2 quand t tend vers l'infini.
- 6. On utilise la "master formula".
- 7. Pour s=1, on a $M_s=0$. Par convergence dominée, on a :

$$\lim_{t \to +\infty} \mathbb{E}\left[e^{iuM_t}\right] = \mathbb{E}\left[e^{iuM_\infty}\right].$$

Comme $\int_{]0,1]} x^2 f(x) dx$ est fini et que $|1+iux-{\rm e}^{iux}| \le u^2 x^2$. On obtient par convergence dominée que :

$$\lim_{t \to +\infty} \int_{1/t}^{1} (1 + iux - e^{iux}) f(x) dx = \int_{[0,1]} (1 + iux - e^{iux}) f(x) dx.$$

On déduit alors de la question précédente que :

$$\mathbb{E}\left[e^{iuM_{\infty}}\right] = \exp\left(-\int_{]0,1]} (1 + iux - e^{iux}) f(x) dx\right).$$

8. On calcule la fonction caractéristique de W_t . En utilisant la question 6 et en faisant tendre t vers l'infini, par convergence dominée, on obtient avec $u = v/\sqrt{F(1/s)}$ et $v \in \mathbb{R}$:

$$\mathbb{E}\left[e^{-ivW_s}\right] = e^{-A_s(v)},$$

avec

$$A_s(v) = \int_0^{1/s} \left(1 + \frac{ivx}{\sqrt{F(1/s)}} - e^{ivx/\sqrt{F(1/s)}} \right) f(x) dx.$$

On a F(1/s)) = $s^{\alpha-1}$. Avec le changement de variable y=sx, il vient avec $\beta=(1+\alpha)/2$:

$$A_s(v) = (1 - \alpha) \int_0^1 g_s(v, y) y^{-2 - \alpha} dy.$$

avec

$$g_s(v,y) = s^{2\beta} \left(1 + ivys^{-\beta} - e^{ivys^{-\beta}} \right).$$

On a $\lim_{s\to+\infty} g_s(v,y) = -v^2y^2/2$. Comme $|g_s(v,y)| \le v^2y^2$ et que $\int_0^1 v^2y^2y^{-2-\alpha} dy$ est finie, on a par convergence dominée que :

$$\lim_{s \to +\infty} A_s(v) = -\frac{(1-\alpha)v^2}{2} \int_0^1 y^{-\alpha} \, dy = -\frac{v^2}{2}.$$

On en déduit donc que $(W_s, s \ge 1)$ converge en loi vers une gaussienne centrée réduite quand s tend vers l'infini.

Exercice II: Valorisation d'un stockage gazier

- 1. Le stockage permet de reproduire n'importe quelle combinaison de forwards correspondant à l'équation (1) : sa valeur est donc au minimum le résultat de l'équation (1).
- 2. En t_i , la valeur du stockage est donnée par l'équation :

$$P(t_i, v, x) = \sup_{n \in [-a, a]; 0 \le v + z \le V} \left(-zvS + \mathbb{E} \left[P(t_{i+1}, v + z, X_{t_{i+1}}) \middle| X_{t_i} = x \right] \right)$$
(2)

en notant S le prix spot associé au vecteur des prix x. La décision de gestion est la valeur de z qui maximise le second membre de l'équation (2).

On peut aussi remarquer que la gestion du stockage est bang-bang puisque le coût des opérations dépend linéairement du volume ; l'équation ci-dessus devient alors :

$$P(t_i, v, x) = \max_{z \in \{-\min(a; v); \min(a; V - v)\}} \left(-zvS + \mathbb{E}\left[P(t_{i+1}, v + z, X_{t_{i+1}}) \middle| X_{t_i} = x\right]\right).$$
(3)

- 3. On peut par exemple utiliser un modèle de prix par arbre, l'algorithme de Longstaff-Schwartz, ou la quantification.
- 4. La valorisation par réplication statique de l'équation (1) permet d'obtenir un prix que l'on peut couvrir parfaitement. À l'inverse, dans le cadre d'un marché incomplet à cause du risque de base (c'est-à-dire de l'absence de produits de couverture à la granularité du produit à couvrir), il n'est pas possible de sécuriser la valorisation obtenue par programmation dynamique.