Stochastic Process
 (Discrete Markov chains, Martingales, Brownian motion)
 2A ENPC, 2016

Vocabulary (english/français) : positive $=$ strictement positif ; irreducible $=$ irréductible; hitting time $=$ temps d'atteinte $;$ eigen-value $=$ valeur propre $;$ eigen-vector $=$ vecteur propre.

Exercice 1 (Q-process). Let E be a finite state space and $E_{*} \subset E$ such that $2 \leq \operatorname{Card}\left(E_{*}\right)<$ Card (E). Let $X=\left(X_{n}, n \in \mathbb{N}\right)$ be an irreducible Markov chain on E. We consider the first hitting time of E_{*}^{c} :

$$
\tau=\inf \left\{n \geq 0 ; X_{n} \notin E_{*}\right\}
$$

The aim of this problem is to study the distribution of X conditionally on $\{\tau=+\infty\}$, which will be called the Q-process associated to X and E_{*}.

I Preliminaries

1. Compute $\mathbb{P}(\tau=+\infty)$. Explain why the distribution of X conditionally on $\{\tau=+\infty\}$ is not well defined.

Let P be the transition matrix of X and π its invariant probability measure. We set $P_{*}=$ $\left(P(x, y) ; x, y \in E_{*}\right)$. The notation $P_{*}{ }^{n}$ corresponds to the usual matrix product of P_{*} with itself n times. For g a function defined on E_{*} or E, we define $P_{*} g$ by :

$$
P_{*} g(x)=\sum_{y \in E_{*}} P(x, y) g(y), \quad x \in E_{*}
$$

2. (a) Check that $P_{*} g(x)=\mathbb{E}_{x}\left[g\left(X_{1}\right) 1_{\{\tau>1\}}\right]$ for $x \in E_{*}$.

For all $x \in E$ and $n \in \mathbb{N}$, we set :

$$
h_{n}(x)=\mathbb{P}_{x}(\tau>n)
$$

so that $h_{0}(x)=\mathbf{1}_{E_{*}}$. We set $\mathbf{1}$ the constant function equal to 1 .
(b) Prove that, on E_{*}, we have $h_{n+1}=P_{*} h_{n}$ and thus $h_{n}=P_{*}{ }^{n} \mathbf{1}$.
(c) More generally, prove that for all $x \in E_{*}$ and g a function defined on E_{*}, we have :

$$
P_{*}^{n} g(x)=\mathbb{E}_{x}\left[g\left(X_{n}\right) \mathbf{1}_{\{\tau>n\}}\right]
$$

We assume that there exists $n \geq 1$ such that for all $x, y \in E_{*}$, we have $P_{*}{ }^{n}(x, y)>0$. PerronFrobenius' Theorem asserts that there exists for P_{*} :

- an eigen-value $\lambda>0$,
- a function φ (seen as a column vector) defined on E_{*} positive which is an eigen-vector on the right associated to λ,
- a probability measure ν (see as a lign vector) defined on E_{*} with $\nu(x)>0$ for all $x \in E_{*}$ which is an eigen-vector on the left associated to à λ,
such that $\lim _{n \rightarrow+\infty} \lambda^{-n} P_{*}^{n}=\varphi \nu$ that is:

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \lambda^{-n} P_{*}^{n}(x, y)=\varphi(x) \nu(y), \quad x, y \in E_{*} . \tag{1}
\end{equation*}
$$

3. (a) We assume in this question only that the distribution of X_{0} is ν, that is $\mathbb{P}\left(X_{0}=x\right)=$ $\nu(x)$ for $x \in E_{*}$ and $\mathbb{P}\left(X_{0}=x\right)=0$ for $x \notin E_{*}$. Compute $\mathbb{P}(\tau>n)$ for $n \in \mathbb{N}$.
(b) Identify the distribution of τ if the distribution of X_{0} is ν. Deduce that $\lambda<1$.

We set $\varphi(x)=0$ for $x \notin E_{*}$. We define $M=\left(M_{n}, n \in \mathbb{N}\right)$ with :

$$
M_{n}=\lambda^{-n} \varphi\left(X_{n}\right) \mathbf{1}_{\{\tau>n\}} .
$$

4. (a) Prove that M converges a.s. and give its limit. Prove that M is a martingale.
(b) Using (1), prove that $\lim _{n \rightarrow+\infty} \lambda^{-n} h_{n}(x)=\varphi(x)$, for $x \in E_{*}$.
(c) We assume that $\mathbb{P}\left(X_{0} \in E_{*}\right)>0$. Let ν_{0} denote the distribution of X_{0}. Let $n \in \mathbb{N}$ be fixed. Prove that, for p_{0} large enough, the sequence $\left(h_{p}(x) / \mathbb{E}\left[h_{p+n}\left(X_{0}\right)\right], p \geq p_{0}\right)$ is uniformly bounded in $x \in E$ and that for all $x \in E$:

$$
\begin{equation*}
\lim _{p \rightarrow+\infty} \frac{h_{p}(x)}{\mathbb{E}\left[h_{p+n}\left(X_{0}\right)\right]}=\lambda^{-n} \frac{\varphi(x)}{\nu_{0} \varphi} . \tag{2}
\end{equation*}
$$

II Q-process

We denote by ν_{0} the distribution of X_{0} and we assume that $\nu_{0}\left(E_{*}\right)=1$, that is $\mathbb{P}(\tau \geq 1)=1$. Let $Y=\left(Y_{n}, n \in \mathbb{N}\right)$ be a sequence of random variables taking values in E_{*}, such that for all $A \subset\left(E_{*}\right)^{n}$, we have :

$$
\mathbb{P}\left(\left(Y_{0}, \ldots, Y_{n}\right) \in A\right)=\mathbb{E}\left[\frac{M_{n}}{\mathbb{E}\left[M_{n}\right]} \mathbf{1}_{\left\{\left(X_{0}, \ldots, X_{n}\right) \in A\right\}}\right]
$$

1. Using (2), prove that for all $A \in\left(E_{*}\right)^{n}$, we have :

$$
\lim _{p \rightarrow+\infty} \mathbb{P}\left(\left(X_{0}, \ldots, X_{n}\right) \in A \mid \tau>n+p\right)=\mathbb{P}\left(\left(Y_{0}, \ldots, Y_{n}\right) \in A\right)
$$

We shall say the process Y is the process X conditioned to stay in E_{*}.
2. (a) Let $n \in \mathbb{N}$. Let f be a function defined on E_{*} and g a function defined on $E_{*}{ }^{n+1}$. Prove that:

$$
\mathbb{E}\left[f\left(Y_{n+1}\right) g\left(Y_{0}, \ldots, Y_{n}\right)\right]=\mathbb{E}\left[g\left(Y_{0}, \ldots, Y_{n}\right) F\left(Y_{n}\right)\right]
$$

with a function F which shall be precised.
(b) Deduce that Y is a Markov chain with transition matrix Q defined by :

$$
Q(x, y)=\frac{\varphi(y)}{\lambda \varphi(x)} P_{*}(x, y), \quad x, y \in E_{*} .
$$

(c) Check that Y is irreducible that it has an invariant probability measure ρ, which shall not be computed. Check that Y is aperiodic.
3. (a) Compute Q^{2}, Q^{n} and then $\lim _{n \rightarrow+\infty} Q^{n}$. Deduce a formula for ρ and compute $\nu \varphi=$ $\sum_{z \in E_{*}} \nu(z) \varphi(z)$.
(b) Prove that if X is reversible with respect to a probability measure π on E, then Y is reversible with respect to a probability measure, say $\hat{\rho}$ on E_{*}. Determine $\hat{\rho}$ using π and φ.
(c) If X is reversible with respect to a probability measure say π on E, deduce from the previous question an expression of ν using π and φ. Check that $\sum_{z \in E} \pi(z) \varphi(z)=$ $\sum_{z \in E} \pi(z) \varphi(z)^{2}$.
4. (a) Compute the following limits for $x \in E_{*}$ and $A \subset E_{*}$:

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} \lim _{p \rightarrow+\infty} \mathbb{P}_{x}\left(X_{n} \in A \mid \tau>n+p\right), \\
& \lim _{p \rightarrow+\infty} \lim _{n \rightarrow+\infty} \mathbb{P}_{x}\left(X_{n} \in A \mid \tau>n+p\right) .
\end{aligned}
$$

Check that those two limits are equal.
(b) Compute for $x \in E_{*}$ and $A \subset E_{*}$:

$$
\lim _{n \rightarrow+\infty} \mathbb{P}_{x}\left(X_{n} \in A \mid \tau>n\right) .
$$

And check if this limit is equal to the ones of the previous question.

Vocabulary (english/français) : bounded below = minoré.

Solutions

I Preliminaries

Exercice 1 1. As the Markov chain is irreducible on a finite state space, it is recurrent. Thus for any initial condition X_{0}, we get that a.s. τ is finite. Therefore, the problem is not well posed as the conditionning event $\{\tau=+\infty\}$ is of zero probability.
2. (a) For $x \in E_{*}$, we have $\tau>0$ and thus :

$$
P_{*} g(x)=\sum_{y \in E} P(x, y) g(y) \mathbf{1}_{\left\{y \in E_{*}\right\}}=\mathbb{E}_{x}\left[g\left(X_{1}\right) \mathbf{1}_{\{\tau>1\}}\right]
$$

as under $\mathbb{P}_{x},\{\tau>1\}=\left\{X_{1} \in E_{*}\right\}$.
(b) We prove the relation by induction. Using the Markov property, we get for $x \in E_{*}$:

$$
P_{*} h_{n}(x)=\mathbb{E}_{x}\left[h_{n}\left(X_{1}\right) \mathbf{1}_{\{\tau>1\}}\right]=\mathbb{E}_{x}\left[\mathbb{P}_{X_{1}}(\tau>n) \mathbf{1}_{\{\tau>1\}}\right]=\mathbb{P}_{x}(\tau>n+1)=h_{n+1}(x) .
$$

(c) We prove the relation by induction. We set $g_{n}(x)=P_{*}{ }^{n} g(x)$. Question 1 gives that $g_{1}(x)=\mathbb{E}_{x}\left[g\left(X_{1}\right) \mathbf{1}_{\{\tau>1\}}\right]$. We assume the relation $g_{k}(x)=\mathbb{E}_{x}\left[g\left(X_{k}\right) \mathbf{1}_{\{\tau>k\}}\right]$ is true for $k \leq n$. Using the Markov property at time 1, we get :

$$
g_{n+1}(x)=P_{*} g_{n}(x)=\mathbb{E}_{x}\left[\mathbb{E}_{X_{1}}\left[g\left(X_{n}\right) \mathbf{1}_{\{\tau>n\}}\right] \mathbf{1}_{\{\tau>1\}}\right]=\mathbb{E}_{x}\left[g\left(X_{n+1}\right) \mathbf{1}_{\{\tau>n+1\}}\right] .
$$

3. (a) We deduce from the previous question with $g=\mathbf{1}$ that, for $n \in \mathbb{N}$, we have :

$$
\mathbb{P}(\tau>n)=\sum_{x \in E_{*}} \nu(x) \mathbb{E}_{x}\left[\mathbf{1}_{\{\tau>n\}}\right]=\nu P_{*}{ }^{n} \mathbf{1}=\lambda^{n} \nu \mathbf{1}=\lambda^{n} .
$$

(b) We get that τ has a geometric distribution with parameter $(1-\lambda)$ if $\lambda<1$ and that $\mathbb{P}(\tau=+\infty)=1$ if $\lambda=1$. According to question $1, \tau$ is a.s. finite for all initial random condition X_{0}. We deduce that $\lambda<1$.
4. (a) As τ is finite, we deduce that $M_{n}=0$ on $\{n \geq \tau\}$. Thus M converges a.s. towards 0 . M is a martingale according to question I. 4 as φ is an eigen-vector of P_{*} associated with the eigen-value λ. The martingale is not uniformly integrable if $\mathbb{P}\left(X_{0} \in E_{*}\right)>0$ as $\mathbb{E}\left[\varphi\left(X_{0}\right)\right]>0=\mathbb{E}\left[M_{\infty}\right]$. If $\mathbb{P}\left(X_{0} \in E_{*}\right)=0$, then the martingale is constant equal to 0 and is thus uniformly integrable.
(b) We get $P_{*}^{n}=\lambda^{n}\left(\varphi \nu+R_{n}\right)$ with $\lim _{n \rightarrow+\infty} R_{n}(x, y)=0$ for all $x, y \in E_{*}$. As ν is a probability measure on E_{*}, we get :

$$
h_{n}=P_{*}{ }^{n} \mathbf{1}_{E_{*}}=\lambda^{n}\left(\varphi+r_{n}\right),
$$

with $r_{n}=R_{n} 1$. As E_{*} is finite, we deduce that $\lim _{n \rightarrow+\infty} \sup _{x \in E_{*}}\left|r_{n}(x)\right|=0$.
(c) Let ν_{0} be the distribution of X_{0}. As E is finite, we get $\lim _{p \rightarrow+\infty} \lambda^{-p} \nu_{0} h_{p}=\nu_{0} \varphi>0$. In particular, for p_{0} big enough, the sequence ($\lambda^{-p} \nu_{0} h_{p}, p \geq 0$) is bounded below by a positive constant. Thus, for all $x \in E$, the sequence $\left(h_{p}(x) / \nu_{0} h_{n+p}, p \geq p_{0}\right)$ converges towards $\lambda^{-n} \varphi(x) / \nu_{0} \varphi$. Furthermore, the sequences are uniformly bounded below in x as E is finite.

II Q-process

1. We have :

$$
\begin{aligned}
& \mathbb{P}\left(\left(X_{0}, \ldots, X_{n}\right) \in A \mid \tau>n+p\right)=\frac{\mathbb{E}\left[\mathbf{1}_{\left\{\left(X_{0}, \ldots, X_{n}\right) \in A\right\}} \mathbf{1}_{\{\tau>n+p\}}\right]}{\nu_{0} h_{n+p}} \\
&=\frac{\mathbb{E}\left[\mathbf{1}_{\left\{\left(X_{0}, \ldots, X_{n}\right) \in A\right\}} \mathbf{1}_{\{\tau>n\}} \mathbb{P}_{X_{n}}(\tau>p)\right]}{\nu_{0} h_{n+p}} \\
&=\mathbb{E}\left[\mathbf{1}_{\left\{\left(X_{0}, \ldots, X_{n}\right) \in A\right\}} \mathbf{1}_{\{\tau>n\}} h_{p}\left(X_{n}\right)\right. \\
& \nu_{0} h_{p+n}
\end{aligned} .
$$

where we conditioned with respect to $\left(X_{0}, \ldots, X_{n}\right)$ in the second equality, and used the Markov property in the second. We deduce from the previous question that the sequence $\left(h_{p}\left(X_{n}\right) / \mathbb{E}\left[h_{p+n}\left(X_{0}\right)\right], p \geq p_{0}\right)$ is and that it converges \mathbb{P}-a.s. towards $\lambda^{-n} \varphi\left(X_{n}\right) / \nu_{0} \varphi=$ $M_{n} / \mathbb{E}\left[M_{0}\right]=M_{n} / \mathbb{E}\left[M_{n}\right]$. The dominated convergence theorem ensures that :

$$
\begin{aligned}
\lim _{p \rightarrow+\infty} \mathbb{E}\left[\mathbf{1}_{\left\{\left(X_{0}, \ldots, X_{n}\right) \in A\right\}} \mathbf{1}_{\{\tau>n\}} \frac{h_{p}\left(X_{n}\right)}{\nu_{0} h_{p+n}}\right] & =\mathbb{E}\left[\mathbf{1}_{\left\{\left(X_{0}, \ldots, X_{n}\right) \in A\right\}} \mathbf{1}_{\{\tau>n\}} \frac{M_{n}}{\mathbb{E}\left[M_{n}\right]}\right] \\
& =\mathbb{P}\left(\left(Y_{0}, \ldots, Y_{n}\right) \in A\right) .
\end{aligned}
$$

2. (a) Let $n \in \mathbb{N}$. Let f be a function defined on E_{*} and g a function defined on $E_{*}{ }^{n+1}$. We have :

$$
\begin{aligned}
\mathbb{E}\left[f\left(Y_{n+1}\right) g\left(Y_{0}, \ldots, Y_{n}\right)\right] & =\mathbb{E}\left[f\left(X_{n+1}\right) \frac{M_{n+1}}{\mathbb{E}\left[M_{n+1}\right]} g\left(X_{0}, \ldots, X_{n}\right)\right] \\
& =\frac{1}{\mathbb{E}\left[M_{0}\right]} \mathbb{E}\left[\mathbf{1}_{\{\tau>n\}} g\left(X_{0}, \ldots, X_{n}\right) \lambda^{-n-1} \mathbf{1}_{\left\{X_{n+1} \in E_{*}\right\}} f\left(X_{n+1}\right)\right] \\
& =\frac{1}{\mathbb{E}\left[M_{0}\right]} \mathbb{E}\left[g\left(X_{0}, \ldots, X_{n}\right) M_{n} F\left(X_{n}\right)\right] \\
& =\mathbb{E}\left[g\left(Y_{0}, \ldots, Y_{n}\right) F\left(Y_{n}\right)\right],
\end{aligned}
$$

where we used the Markov property for the last but one inequality with

$$
F(x)=\frac{1}{\lambda \varphi(x)} \mathbb{E}_{x}\left[\mathbf{1}_{\left\{X_{1} \in E_{*}\right\}} \varphi\left(X_{1}\right) f\left(X_{1}\right)\right]=\frac{1}{\lambda \varphi(x)} P_{*}(\varphi f)(x) .
$$

(b) We deduce from the previous question that:

$$
\mathbb{E}\left[f\left(Y_{n+1}\right) \mid Y_{0}, \ldots, Y_{n}\right]=F\left(Y_{n}\right)
$$

The sequence $\left(Y_{n}, n \in \mathbb{N}\right)$ is thus a Markov chain. Its transition matrix Q is given by

$$
Q(x, y)=\frac{\varphi(y)}{\lambda \varphi(x)} P_{*}(x, y), \quad x, y \in E_{*} .
$$

(c) We have $Q(x, y)>0$ if and only if $P_{*}(x, y)>0$. Since there exists $n>0$ such that $P_{*}^{n}(x, y)>0$ for all $x, y \in E_{*}$, we deduce that $Q^{n}(x, y)>0$ for all $x, y \in E_{*}$. Therefore the Markov chain Y is irreducible and aperiodic. Since E_{*} is finite, we deduce it has a unique invariant probability measure.
3. (a) We have :

$$
Q^{2}(x, y)=\sum_{z \in E_{*}} \frac{1}{\lambda^{2} \varphi(x)} \varphi(y) P_{*}(x, z) P_{*}(z, y)=\frac{\varphi(y)}{\lambda^{2} \varphi(x)} P_{*}^{2}(x, y)
$$

By itereation, we obtain :

$$
Q^{n}(x, y)=\frac{\varphi(y)}{\lambda^{n} \varphi(x)} P_{*}^{n}(x, y)
$$

We get :

$$
\lim _{n \rightarrow+\infty} Q^{n}(x, y)=\varphi(y) \nu(y)
$$

As Y is aperiodic, we deduce from the ergodic theorem that $\lim _{n \rightarrow+\infty} Q^{n}(x, y)=\rho(y)$ and thus $\rho(y)=\varphi(y) \nu(y)$ for $y \in E_{*}$.
Since ρ is a probability measure, we notice that $\nu \varphi=1$.
(b) If P is reversible with respect to π, then for $x, y \in E_{*}$, we have $\pi(x) P_{*}(x, y)=$ $\pi(y) P_{*}(y, x)$. We deduce that :

$$
Q(x, y)=\frac{\varphi(y)}{\lambda \varphi(x)} P_{*}(x, y)=\frac{\pi(y) \varphi(y)}{\lambda \pi(x) \varphi(x)} P_{*}(y, x)=\frac{\pi(y) \varphi(y)^{2}}{\pi(x) \varphi(x)^{2}} Q(y, x)
$$

We deduce also that :

$$
\pi(x) \varphi(x)^{2} Q(x, y)=\pi(y) \varphi(y)^{2} Q(y, x)
$$

Therefore, Q is reversible with respect to the probability measure $\hat{\rho}$, with :

$$
\hat{\rho}(x)=\frac{\pi(x) \varphi(x)^{2}}{\sum_{z \in E} \pi(z) \varphi(z)^{2}}
$$

(c) The probability measure $\hat{\rho}$ is also invariant for Q. By uniqueness, it is equal to ρ. We deduce that :

$$
\nu(x)=\frac{\pi(x) \varphi(x)}{\pi\left(\varphi^{2}\right)}, \quad x \in E_{*}
$$

As ν is a probability measure, we deduce that $\pi \varphi=\pi\left(\varphi^{2}\right)$.
4. We have :

$$
\lim _{n \rightarrow+\infty} \lim _{p \rightarrow+\infty} \mathbb{P}_{x}\left(X_{n} \in A \mid \tau>n+p\right)=\lim _{n \rightarrow+\infty} \mathbb{P}\left(Y_{n} \in A\right)=\rho(A)
$$

With $g_{p}(x)=\lambda^{-p} \mathbf{1}_{A}(x) h_{p}(x)$, we have :

$$
\begin{aligned}
\lim _{n \rightarrow+\infty} \mathbb{P}_{x}\left(X_{n} \in A \mid \tau>n+p\right) & =\lim _{n \rightarrow+\infty} \frac{1}{h_{n+p}(x)} \mathbb{E}_{x}\left[\mathbf{1}_{A}\left(X_{n}\right) h_{p}\left(X_{n}\right) \mathbf{1}_{\{\tau>n\}}\right] \\
& =\lim _{n \rightarrow+\infty} \frac{\lambda^{p}}{h_{n+p}(x)} P_{*}^{n} g_{p}(x) \\
& =\nu g_{p}
\end{aligned}
$$

As $\lim _{p \rightarrow+\infty} g_{p}=\mathbf{1}_{A} \varphi$, we deduce that:

$$
\lim _{p \rightarrow+\infty} \lim _{n \rightarrow+\infty} \mathbb{P}_{x}\left(X_{n} \in A \mid \tau>n+p\right)=\nu\left(\varphi \mathbf{1}_{A}\right)=\rho(A)
$$

We get :

$$
\lim _{n \rightarrow+\infty} \mathbb{P}_{x}\left(X_{n} \in A \mid \tau>n\right)=\lim _{n \rightarrow+\infty} \frac{P_{*}^{n}\left(\mathbf{1}_{A}\right)(x)}{P_{*}^{n} \mathbf{1}}=\nu(A) .
$$

The measure ν is called the quasi-stationary distribution of X_{n} in E_{*}. We deduce that, for all $A \subset E_{*}$:

$$
\lim _{n \rightarrow+\infty} \lim _{p \rightarrow+\infty} \mathbb{P}_{x}\left(X_{n} \in A \mid \tau>n+p\right)=\lim _{p \rightarrow+\infty} \lim _{n \rightarrow+\infty} \mathbb{P}_{x}\left(X_{n} \in A \mid \tau>n+p\right)
$$

But, unless $\varphi=1$, this quantity is not equal to $\lim _{n \rightarrow+\infty} \mathbb{P}_{x}\left(X_{n} \in A \mid \tau>n\right)$ for all $A \subset E_{*}$.

