
ENPC Processus Stochastiques
Lundi 30 Janvier 2017 (2h30)

Vocabulary (english/français) : distribution =distribution, loi ; offspring distribution =loi de
reproduction ; generating function =fonction génératrice ; positive = strictement positif ; Brow-
nian bridge = pont brownien ; (0, 1] = ]0,1].

Exercice 1 (Brownian bridge and Wiener integral). Let (Bt, t ≥ 0) be a Brownian motion. We
recall that (Wt = Bt − tB1, t ∈ [0, 1]) is distributed as the Brownian bridge. We set X0 = 0 and
for t ∈ (0, 1] :

Xt = t
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1. Compute E[WsWt] for s, t ∈ [0, 1].

2. Check the random variables (Xt, t ∈ [0, 1]) are well defined with Gaussian distributions.

3. Prove that (Xt, t ∈ [0, 1]) is a Brownian bridge.

△

Exercice 2 (Galton-Watson process). A Galton-Watson process is an elementary stochastic
model for population evolution. We assume that each individual at generation n dies out at
generation n+1 and produces a random number of children who will compose the population at
generation n+1. We also assume that the individuals reproduce independently from each other
and that the number of its children is random and distributed according to a random variable
X whose distribution on N, say p = (pk = P(X = k), k ∈ N), which does not depend neither
on the individual nor on its generation, is called offspring distribution. Eventually, we assume
there is only one initial individual at generation 0.

More precisely, let (Xn,i, n ∈ N
∗, i ∈ N

∗) be independent random variables distributed as X.
The random variable Xn+1,i represents the number of children of individual i living at generation
n (if it exists). For n ∈ N, let Zn be the size of the population at generation n. We have :

Z0 = 1 and, for n ∈ N, Zn+1 =

Zn
∑

i=1

Xn+1,i ,

with the convention that
∑

∅ = 0. We shall study the extinction time of the population defined
by T = inf{n ∈ N;Zn = 0}, with the convention that inf ∅ = +∞.

We assume the offspring distribution p has its first moment that is µ = E[X] < +∞. We
consider the generating function ofX : ϕ(x) = E[xX ] for x ∈ [0, 1]. We recall that ϕ is continuous.

I A Markov chain

1. Prove that Z = (Zn, n ∈ N) is a Markov chain.

2. Give the distribution of T in the following cases : (i) p0 = 0 ; (ii) p0 + p1 = 1 and p0 > 0.

From now on we assume that 0 < p0 ≤ p0 + p1 < 1.

3. Classify the states of the Markov chain and give the invariant probability measures.

4. Prove that Z converges a.s. and identify the possible limits.
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II Two martingales

We assume that 0 < p0 ≤ p0 + p1 < 1. We consider the process M = (Mn, n ∈ N) with
Mn = Zn/µ

n.

1. Prove that M is a martingale which converges to a limit say M∞.

2. If µ ≤ 1, then proves that T is a.s. finite.

From now on we assume that µ > 1. Elementary arguments give that there exists a unique
ρ ∈ (0, 1) such that ϕ(ρ) = ρ. We consider the process Q = (Qn, n ∈ N) with Qn = ρZn .

3. Prove that Q is a martingale which converges to a limit say Q∞.

4. Prove that P(T < +∞) = ρ.

III The L2 case

We assume that 0 < p0 ≤ p0 + p1 < 1 and µ > 1. Let ϕn be the generating function of Zn :
ϕn(x) = E[xZn ] for x ∈ [0, 1], so that ϕ1 = ϕ and ϕ0(x) = x for all x ∈ [0, 1].

1. Prove that ϕn = ϕn−1 ◦ ϕ for all n ∈ N
∗. Deduce that ϕn = ϕ ◦ ϕn−1 for all n ∈ N

∗.

2. Prove that E
[

e−uMn
]

= ϕ
(

E
[

e−uMn−1/µ
])

for u ≥ 0 and n ∈ N
∗. And deduce that for

u ≥ 0 :

E
[

e−uM∞

]

= ϕ
(

E

[

e−uM∞/µ
])

.

3. Using the previous question, prove that P(M∞ = 0) = ϕ(P(M∞ = 0)) and deduce that
P(M∞ = 0) ∈ {ρ, 1}.

We assume that the offspring distribution has a second moment, that is σ2 = Var(X) < ∞.

4. Compute E
[

(Zn − µZn−1)
2|Zn−1

]

and deduce that :

E
[

(Zn − µn)2
]

=
µn−1(µn − 1)

µ− 1
σ2.

5. Deduce that M is bounded in L2 and the value of E[M∞]. Prove that P(M∞ = 0) = ρ.

6. Prove that P(M∞ > 0|T = +∞) = 1. Therefore, either the population becomes extinct in
finite time or it grows exponentially as fast as µn (times a positive random variable).

△
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