Stochastic Process (ENPC)
Monday, 22nd of January 2018 (2h30)

Vocabulary (english/francais) : distribution =distribution, loi; positive = strictement posi-

tif 5 [0,1) = [0,1].
We write N* = Z N [1, +oo[ and N = N* J{0}. We use the convention inf ) = co.

Exercice 1 (Distribution of the maximum of a random walk). Let X be a Z-valued random
variable and (X,, n € N*) be independent random variables distributed as X. We assume that
PX>2)=0,p=P(X =1) >0, E[|X|] < 400 and m = E[X] < 0. We consider the random
walk S = (S, n € N) defined by Sy = 0 and S, 11 = S, + Xp41 for n € N, and its natural
filtration F = (F,,,n € N). Our aim is to study the distribution of the global maximum of S :

M =supS,.
neN

I Preliminaries
1. Give the limit of (S, /n,n € N*) as n goes to infinity. Deduce that P(M < 4o00) = 1.
2. Check that S is a Markov chain. Is it irreducible, transient, recurrent ?

3. Check that the first hitting time of the level k € N for the random walk S :
7, = inf {n > 0; S, > k}

is a stopping time with respect to filtration F.
4. TIs the random time n = inf{n > 0; S,, = M} a stopping time ?
For A > 0, we set :
e\ =E [e)‘X} .

5. Prove that ¢ is of class C*> over (0, +00), and check it is strictly convex. Prove there exists
a unique \g > 0 such that ¢()\g) = 1. Check that ¢’'(A\g) > 0.

IT An auxiliary Markov chain

We set g, = e** P(X,, = k) for k € Z, so that according to the previous question ¢ = (g, k €
7Z) is a probability distribution. Let (Y,,,n € N*) be independent Z-valued random variables with
probability distribution ¢. We introduce the random walk V' = (V,,, n € N) defined by V) = 0
and V41 =V, + Y,y forn € N

1. Prove that for all measurable bounded or non-negative function f, we have :
E [f(Yl,...,Yn)e_)‘OV"] —E[f(X1,...,Xn)].

2. Check that Y] is integrable and that E[Y;] > 0.

Let G = (Gn,n € N) be the natural filtration of V' and pr = inf {n > 0; V,, > k} be the first
hitting time of the level £ € N for the random walk V.

3. Give the limit of (V,,/n,n € N*) as n goes to infinity. Deduce that pj is a.s. finite and
compute V), .



4. Prove that (e=*V» n > 1) is a martingale (with respect to the filtration G). Compute :
E [1pk§n e 20V | gpk/\n] .

5. Deduce that P(r, < n) = e **P(p; < n), and then compute P(7;, < 00).

6. Prove that M has a shifted geometric distribution, that is P(M = k) = ag(1 — ag)* for
k € N. Write o using Ag.

11T The simple random walk

We consider the simple random walk with negative drift : P(X = —1) = 1—p and p € (0,1/2).
1. Prove that P(S, <0; Vn > 1) = (1 —p)P(M = 0).

2. Compute ap and deduce that the probability, P(S,, < 0;¥n > 1), for the simple random
walk S with negative drift to never come back to {0} is equal to 1 — 2p.

A

Exercice 2 (Some Brownian martingale). Let B = (By,t € R} ) be a standard Brownian motion
and F = (F;,t € Ry) its natural filtration. For ¢ € [0,1), we set :

L= L B0
1-—¢

We recall that the density of the standard Gaussian distribution A/(0,1) is given by :

flx) = 1 e712/2, r € R,

and that if G is a standard Gaussian random variable then, for all A € C, we have :

E [e*AG] =eN/2,

1. Let 0 <t < s+t < 1. Compute E[X;;4| Ft].
2. Deduce that (X, ¢ € [0,1)) is a continuous martingale. And deduce E[X}] for all ¢ € [0,1).
3. Prove that a.s. lims X; = 0.
4. Deduce that
E | sup X¢| = +o0.
t€[0,1)




Correction

I Preliminaries

Ezxercice 1 1. By the law of large number we have that a.s. lim, 4o Sp/n = m < 0. This
implies that a.s. lim,_, ., S, = —oo and thus that a.s. M < 4o0.

2. The process S is a stochastic dynamical system and thus a Markov chain. Since P(X =
1) > 0 and since there exists k& € N* such that P(X = —k) > 0 (as m < 0), we deduce that
S is irreducible. Since lim,,— 4. S, = —00, we get that S is transient.

3. We have {1, > n} ={S; < k,0<j <n}eF, foral n €N and thus 7 is a stopping
time with respect to F.

4. The random time 7 is not a stopping time because {1 = 0} = [\, cn+{Sn < 0} doesn’t
belong to Fy.

5. Notice that | X|" e™ < max(e?, SUp,>o 2" e™7), so the functions ¢, (\) = E [ X" e*X], for
A € (0,+00), are well defined for n € N and locally bounded. Using Fubini, we get that
f; On+1(r)dr = ©p(b) — @n(a) for all 0 < a < b < +o00. This implies that ¢ is of class
C> over (0, +00) with n-th derivative ¢,. Since X2 e*X is non-negative and positive with
positive probability, we deduce that @9 > 0 and thus ¢ is strictly convex on (0,00). By
dominated convergence, we get that ¢ and ¢’ are continuous over [0,+00), and we have
©(0) =1, p(4+00) = +00, ¢'(0) = m < 0. The strict convexity of ¢ implies the existence
of a unique root of p(\) =1 on (0,+00), say A\g. Furthermore, we have that ¢’'(A\g) > 0.

IT An auxiliary Markov chain

1. We have that :

n n
oV | -2 m ki _
E [1{Y1=k1,...,yn=kn}e OV] = ITaw |e==% = TIpn = E[Lxi ok xumtn]
j=1 j=1

This proves the result as the random variables X, and Y, are discrete.

2. We deduce from the previous question that E[|Y;]] = E[|X|e*X] < M E[|X]] < 4o0.
Thus Y; is integrable and we have E[Y;] = E[X e*X] = ¢/()\g) > 0.

3. By the law of large number we have that a.s. lim,—, V,,/n = E[Y7] > 0. This implies
that a.s. limy,_, o Vi, = 400 and thus that a.s. pr < +o0.

4. Set N,, = e " for n € N. Notice that the process N = (N,,n € N) is G-adapted and
non-negative. We also have :

E [Npt1]Fn] = N, E {e—Aanﬂ |gn} = N,E {e—)\anH] =N,

where we used that N, is G,-measurable for the first equality, that Y11 is independent of
Gy, for the second and for the third that, by definition of the distribution of Y;,41, we have
E [eo¥nt1] = E [emtoXnt1thoXns1] — 1 We deduce that E[Np41] = E[Ng] = 1 and thus
that N,41 is integrable. We have proven that N is a non-negative martingale.

Similarly to Question 1.3, we get that pj is a stopping time with respect to G. Therefore
{pr < n} belongs to G, an. By the stopping time theorem, since py A n is a bounded
stopping time, we get :

E 11, <n} e ot | gpk/\"] =1 <mE [eionn | Gppnn
= L zny e 00

_ —Xok
=1gp<nye ™,



where, for the last equality, we used that V, rn =V, =k on {pr < n}.
5. We have thanks to the previous question and Question II.1 that :

P(ri < 1) = B [Lpcn €| = B [15, 0y 7] = 4Pl <),

Letting n goes to infinity, and as py, is a.s. finite, we get that P(1;, < oo) = e~ 0k,

6. Let k € N. As {M > k} = {r, < oo}, we deduce that P(M > k) = (1 — ag)* with
ap =1 —e 2, We deduce that P(M = k) =P(M > k) —P(M >k +1) = (1 — ap)*.

III The simple random walk

1. Let M’ = max,en+ S, — X1. Notice that M’ is distributed as M and is independent of X;.
Since {S, < 0; Vn > 1} = {X; = =1} {M’ = 0}, we deduce that :

P(S, < 0;Yn > 1) = P(X; = —1)P(M’ = 0) = (1 — p)P(M = 0).

2. We have p(\) = pe* +(1 — p)e™>. We get that e~ € (0,1) is a root of z — (1 — p)a? —
z +p = 0. This gives e = p/(1 — p). We deduce that ag =1 —e™ = (1 —2p)/(1 — p).
This gives :

(1=p)P(M =0) = (1—-p)ag=1-2p.

Ezxercice 2 1. The process X = (Xy,t € [0,1)) is F-adapted. Since X5 is non-negative, we
can compute its conditional expectation. Set n> = 1 — t — s. Using that By, , — B; is
independent of F; and distributed as /sG, with G a standard Gaussian random variable,
we get that :

1
E[Xers| ] = B [ o (BB Bey?/2n?

} — 16*33/2772 H(By),
n

with
H(z)=E {ef[(BHFBHm)?fx?}/an} _E [ef[«/zcﬂﬁfxﬂ/w

We get with z = yv/1 —t/n :

H( [(Vsy+a)?—a?]/2n° =y /2 4
(@) \/27‘(’/ Y

*(stn®)/20° /sy /0* - gy,

e
/ 3225/ IE g,

\/1 -1 V27
"1 [eﬂ/—xG/n\/ f}
1—t
_ n 6312/2772(1715)
V1—t '
We get :
1 2 2 1 2
2o TP ) = = ot 200-1)
; e (x) Vi e

2. We deduce from the previous question that E[X;,|F;] = X;. This gives, with ¢ = 0, that
E[X,] = 1 for all s € [0,1). Thus, as X; is non-negative, we have that X; € L' for all
t €[0,1). Since the process X is F-adapted, we deduce that X is a martingale. Since B is
continuous, we get that X is continuous.



3. As By # 0 a.s. and B is continuous, we deduce there exists ¢ € (0,1) (random), such
that By # 0 for all t € (1 — €, 1]. Then use that lim, e /2 = 0 to deduce that a.s.
limtﬂ Xt =0.

4. Consider M = (M,, = X1-1/(nt1),1 € N), which is a non-negative martingale with My = 1
and a.s. limy,_,oo My, = 0. If E[sup,,cy My] < +00, then the martingale would also converge
in L' by dominated convergence. Since this not the case, we get that E[sup,,cy M,] = +oo0.
Then use that sup,cg 1) X > sup, ey My to conclude.



