## Stochastic Process (ENPC) Monday, 22nd of January 2018 (2h30)

Vocabulary (english/français) : distribution $=$ distribution, loi $;$ positive $=$ strictement positif $;[0,1)=[0,1[$.

We write $\mathbb{N}^{*}=\mathbb{Z} \cap\left[1,+\infty\left[\right.\right.$ and $\mathbb{N}=\mathbb{N}^{*} \bigcup\{0\}$. We use the convention $\inf \emptyset=\infty$.
Exercice 1 (Distribution of the maximum of a random walk). Let $X$ be a $\mathbb{Z}$-valued random variable and $\left(X_{n}, n \in \mathbb{N}^{*}\right)$ be independent random variables distributed as $X$. We assume that $\mathbb{P}(X \geq 2)=0, p=\mathbb{P}(X=1)>0, \mathbb{E}[|X|]<+\infty$ and $m=\mathbb{E}[X]<0$. We consider the random walk $S=\left(S_{n}, n \in \mathbb{N}\right)$ defined by $S_{0}=0$ and $S_{n+1}=S_{n}+X_{n+1}$ for $n \in \mathbb{N}$, and its natural filtration $\mathbb{F}=\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$. Our aim is to study the distribution of the global maximum of $S$ :

$$
M=\sup _{n \in \mathbb{N}} S_{n}
$$

## I Preliminaries

1. Give the limit of $\left(S_{n} / n, n \in \mathbb{N}^{*}\right)$ as $n$ goes to infinity. Deduce that $\mathbb{P}(M<+\infty)=1$.
2. Check that $S$ is a Markov chain. Is it irreducible, transient, recurrent?
3. Check that the first hitting time of the level $k \in \mathbb{N}$ for the random walk $S$ :

$$
\tau_{k}=\inf \left\{n \geq 0 ; S_{n} \geq k\right\}
$$

is a stopping time with respect to filtration $\mathbb{F}$.
4. Is the random time $\eta=\inf \left\{n \geq 0 ; S_{n}=M\right\}$ a stopping time?

For $\lambda \geq 0$, we set :

$$
\varphi(\lambda)=\mathbb{E}\left[\mathrm{e}^{\lambda X}\right]
$$

5. Prove that $\varphi$ is of class $\mathcal{C}^{\infty}$ over $(0,+\infty)$, and check it is strictly convex. Prove there exists a unique $\lambda_{0}>0$ such that $\varphi\left(\lambda_{0}\right)=1$. Check that $\varphi^{\prime}\left(\lambda_{0}\right)>0$.

## II An auxiliary Markov chain

We set $q_{k}=\mathrm{e}^{\lambda_{0} k} \mathbb{P}\left(X_{n}=k\right)$ for $k \in \mathbb{Z}$, so that according to the previous question $q=\left(q_{k}, k \in\right.$ $\mathbb{Z})$ is a probability distribution. Let $\left(Y_{n}, n \in \mathbb{N}^{*}\right)$ be independent $\mathbb{Z}$-valued random variables with probability distribution $q$. We introduce the random walk $V=\left(V_{n}, n \in \mathbb{N}\right)$ defined by $V_{0}=0$ and $V_{n+1}=V_{n}+Y_{n+1}$ for $n \in \mathbb{N}$.

1. Prove that for all measurable bounded or non-negative function $f$, we have :

$$
\mathbb{E}\left[f\left(Y_{1}, \ldots, Y_{n}\right) \mathrm{e}^{-\lambda_{0} V_{n}}\right]=\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}\right)\right]
$$

2. Check that $Y_{1}$ is integrable and that $\mathbb{E}\left[Y_{1}\right]>0$.

Let $\mathbb{G}=\left(\mathcal{G}_{n}, n \in \mathbb{N}\right)$ be the natural filtration of $V$ and $\rho_{k}=\inf \left\{n \geq 0 ; V_{n} \geq k\right\}$ be the first hitting time of the level $k \in \mathbb{N}$ for the random walk $V$.
3. Give the limit of $\left(V_{n} / n, n \in \mathbb{N}^{*}\right)$ as $n$ goes to infinity. Deduce that $\rho_{k}$ is a.s. finite and compute $V_{\rho_{k}}$.
4. Prove that ( $\mathrm{e}^{-\lambda_{0} V_{n}}, n \geq 1$ ) is a martingale (with respect to the filtration $\mathbb{G}$ ). Compute :

$$
\mathbb{E}\left[\mathbf{1}_{\rho_{k} \leq n} \mathrm{e}^{-\lambda_{0} V_{n}} \mid \mathcal{G}_{\rho_{k} \wedge n}\right] .
$$

5. Deduce that $\mathbb{P}\left(\tau_{k} \leq n\right)=\mathrm{e}^{-\lambda_{0} k} \mathbb{P}\left(\rho_{k} \leq n\right)$, and then compute $\mathbb{P}\left(\tau_{k}<\infty\right)$.
6. Prove that $M$ has a shifted geometric distribution, that is $\mathbb{P}(M=k)=\alpha_{0}\left(1-\alpha_{0}\right)^{k}$ for $k \in \mathbb{N}$. Write $\alpha_{0}$ using $\lambda_{0}$.

## III The simple random walk

We consider the simple random walk with negative drift : $\mathbb{P}(X=-1)=1-p$ and $p \in(0,1 / 2)$.

1. Prove that $\mathbb{P}\left(S_{n}<0 ; \forall n \geq 1\right)=(1-p) \mathbb{P}(M=0)$.
2. Compute $\alpha_{0}$ and deduce that the probability, $\mathbb{P}\left(S_{n}<0 ; \forall n \geq 1\right)$, for the simple random walk $S$ with negative drift to never come back to $\{0\}$ is equal to $1-2 p$.

Exercice 2 (Some Brownian martingale). Let $B=\left(B_{t}, t \in \mathbb{R}_{+}\right)$be a standard Brownian motion and $\mathbb{F}=\left(\mathcal{F}_{t}, t \in \mathbb{R}_{+}\right)$its natural filtration. For $t \in[0,1)$, we set :

$$
X_{t}=\frac{1}{\sqrt{1-t}} \mathrm{e}^{-B_{t}^{2} / 2(1-t)}
$$

We recall that the density of the standard Gaussian distribution $\mathcal{N}(0,1)$ is given by :

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-x^{2} / 2}, \quad x \in \mathbb{R},
$$

and that if $G$ is a standard Gaussian random variable then, for all $\lambda \in \mathbb{C}$, we have :

$$
\mathbb{E}\left[\mathrm{e}^{-\lambda G}\right]=\mathrm{e}^{\lambda^{2} / 2}
$$

1. Let $0 \leq t \leq s+t<1$. Compute $\mathbb{E}\left[X_{t+s} \mid \mathcal{F}_{t}\right]$.
2. Deduce that $\left(X_{t}, t \in[0,1)\right)$ is a continuous martingale. And deduce $\mathbb{E}\left[X_{t}\right]$ for all $t \in[0,1)$.
3. Prove that a.s. $\lim _{t \uparrow 1} X_{t}=0$.
4. Deduce that

$$
\mathbb{E}\left[\sup _{t \in[0,1)} X_{t}\right]=+\infty .
$$

## Correction

## I Preliminaries

Exercice 1 1. By the law of large number we have that a.s. $\lim _{n \rightarrow+\infty} S_{n} / n=m<0$. This implies that a.s. $\lim _{n \rightarrow+\infty} S_{n}=-\infty$ and thus that a.s. $M<+\infty$.
2. The process $S$ is a stochastic dynamical system and thus a Markov chain. Since $\mathbb{P}(X=$ 1) $>0$ and since there exists $k \in \mathbb{N}^{*}$ such that $\mathbb{P}(X=-k)>0$ (as $m<0$ ), we deduce that $S$ is irreducible. Since $\lim _{n \rightarrow+\infty} S_{n}=-\infty$, we get that $S$ is transient.
3. We have $\left\{\tau_{k}>n\right\}=\left\{S_{j}<k, 0 \leq j \leq n\right\} \in \mathcal{F}_{n}$ for all $n \in \mathbb{N}$ and thus $\tau_{k}$ is a stopping time with respect to $\mathbb{F}$.
4. The random time $\eta$ is not a stopping time because $\{\eta=0\}=\bigcap_{n \in \mathbb{N}^{*}}\left\{S_{n}<0\right\}$ doesn't belong to $\mathcal{F}_{0}$.
5. Notice that $|X|^{n} \mathrm{e}^{\lambda X} \leq \max \left(\mathrm{e}^{\lambda}, \sup _{x \geq 0} x^{n} \mathrm{e}^{-\lambda x}\right)$, so the functions $\varphi_{n}(\lambda)=\mathbb{E}\left[X^{n} \mathrm{e}^{\lambda X}\right]$, for $\lambda \in(0,+\infty)$, are well defined for $n \in \mathbb{N}$ and locally bounded. Using Fubini, we get that $\int_{a}^{b} \varphi_{n+1}(r) d r=\varphi_{n}(b)-\varphi_{n}(a)$ for all $0<a \leq b<+\infty$. This implies that $\varphi$ is of class $\mathcal{C}^{\infty}$ over $(0,+\infty)$ with $n$-th derivative $\varphi_{n}$. Since $X^{2} \mathrm{e}^{\lambda X}$ is non-negative and positive with positive probability, we deduce that $\varphi_{2}>0$ and thus $\varphi$ is strictly convex on $(0, \infty)$. By dominated convergence, we get that $\varphi$ and $\varphi^{\prime}$ are continuous over $[0,+\infty)$, and we have $\varphi(0)=1, \varphi(+\infty)=+\infty, \varphi^{\prime}(0)=m<0$. The strict convexity of $\varphi$ implies the existence of a unique root of $\varphi(\lambda)=1$ on $(0,+\infty)$, say $\lambda_{0}$. Furthermore, we have that $\varphi^{\prime}\left(\lambda_{0}\right)>0$.

## II An auxiliary Markov chain

1. We have that :

$$
\mathbb{E}\left[\mathbf{1}_{\left\{Y_{1}=k_{1}, \ldots, Y_{n}=k_{n}\right\}} \mathrm{e}^{-\lambda_{0} V_{n}}\right]=\left(\prod_{j=1}^{n} q_{k_{j}}\right) \mathrm{e}^{-\lambda_{0} \sum_{j=1}^{n} k_{j}}=\prod_{j=1}^{n} p_{k_{j}}=\mathbb{E}\left[\mathbf{1}_{\left\{X_{1}=k_{1}, \ldots, X_{n}=k_{n}\right\}}\right] .
$$

This proves the result as the random variables $X_{\ell}$ and $Y_{\ell}$ are discrete.
2. We deduce from the previous question that $\mathbb{E}\left[\left|Y_{1}\right|\right]=\mathbb{E}\left[|X| \mathrm{e}^{\lambda_{0} X}\right] \leq \mathrm{e}^{\lambda_{0}} \mathbb{E}[|X|]<+\infty$. Thus $Y_{1}$ is integrable and we have $\mathbb{E}\left[Y_{1}\right]=\mathbb{E}\left[X \mathrm{e}^{\lambda_{0} X}\right]=\varphi^{\prime}\left(\lambda_{0}\right)>0$.
3. By the law of large number we have that a.s. $\lim _{n \rightarrow+\infty} V_{n} / n=\mathbb{E}\left[Y_{1}\right]>0$. This implies that a.s. $\lim _{n \rightarrow+\infty} V_{n}=+\infty$ and thus that a.s. $\rho_{k}<+\infty$.
4. Set $N_{n}=\mathrm{e}^{-\lambda_{0} V_{n}}$ for $n \in \mathbb{N}$. Notice that the process $N=\left(N_{n}, n \in \mathbb{N}\right)$ is $\mathbb{G}$-adapted and non-negative. We also have :

$$
\mathbb{E}\left[N_{n+1} \mid \mathcal{F}_{n}\right]=N_{n} \mathbb{E}\left[\mathrm{e}^{-\lambda_{0} Y_{n+1}} \mid \mathcal{G}_{n}\right]=N_{n} \mathbb{E}\left[\mathrm{e}^{-\lambda_{0} Y_{n+1}}\right]=N_{n}
$$

where we used that $N_{n}$ is $\mathcal{G}_{n}$-measurable for the first equality, that $Y_{n+1}$ is independent of $\mathcal{G}_{n}$ for the second and for the third that, by definition of the distribution of $Y_{n+1}$, we have $\mathbb{E}\left[\mathrm{e}^{-\lambda_{0} Y_{n+1}}\right]=\mathbb{E}\left[\mathrm{e}^{-\lambda_{0} X_{n+1}+\lambda_{0} X_{n+1}}\right]=1$. We deduce that $\mathbb{E}\left[N_{n+1}\right]=\mathbb{E}\left[N_{0}\right]=1$ and thus that $N_{n+1}$ is integrable. We have proven that $N$ is a non-negative martingale.
Similarly to Question I.3, we get that $\rho_{k}$ is a stopping time with respect to $\mathbb{G}$. Therefore $\left\{\rho_{k} \leq n\right\}$ belongs to $\mathcal{G}_{\rho_{k} \wedge n}$. By the stopping time theorem, since $\rho_{k} \wedge n$ is a bounded stopping time, we get :

$$
\begin{aligned}
\mathbb{E}\left[\mathbf{1}_{\left\{\rho_{k} \leq n\right\}} \mathrm{e}^{-\lambda_{0} V_{n}} \mid \mathcal{G}_{\rho_{k} \wedge n}\right] & =\mathbf{1}_{\left\{\rho_{k} \leq n\right\}} \mathbb{E}\left[\mathrm{e}^{-\lambda_{0} V_{n}} \mid \mathcal{G}_{\rho_{k} \wedge n}\right] \\
& =\mathbf{1}_{\left\{\rho_{k} \leq n\right\}} \mathrm{e}^{-\lambda_{0} V_{\rho_{k} \wedge n}} \\
& =\mathbf{1}_{\left\{\rho_{k} \leq n\right\}} \mathrm{e}^{-\lambda_{0} k},
\end{aligned}
$$

where, for the last equality, we used that $V_{\rho_{k} \wedge n}=V_{\rho_{k}}=k$ on $\left\{\rho_{k} \leq n\right\}$.
5. We have thanks to the previous question and Question II. 1 that :

$$
\mathbb{P}\left(\tau_{k} \leq n\right)=\mathbb{E}\left[\mathbf{1}_{\left\{\rho_{k} \leq n\right\}} \mathrm{e}^{-\lambda_{0} V_{n}}\right]=\mathbb{E}\left[\mathbf{1}_{\left\{\rho_{k} \leq n\right\}} \mathrm{e}^{-\lambda_{0} k}\right]=\mathrm{e}^{-\lambda_{0} k} \mathbb{P}\left(\rho_{k} \leq n\right) .
$$

Letting $n$ goes to infinity, and as $\rho_{k}$ is a.s. finite, we get that $\mathbb{P}\left(\tau_{k}<\infty\right)=\mathrm{e}^{-\lambda_{0} k}$.
6. Let $k \in \mathbb{N}$. As $\{M \geq k\}=\left\{\tau_{k}<\infty\right\}$, we deduce that $\mathbb{P}(M \geq k)=\left(1-\alpha_{0}\right)^{k}$ with $\alpha_{0}=1-\mathrm{e}^{-\lambda_{0}}$. We deduce that $\mathbb{P}(M=k)=\mathbb{P}(M \geq k)-\mathbb{P}(M \geq k+1)=\alpha_{0}\left(1-\alpha_{0}\right)^{k}$.

## III The simple random walk

1. Let $M^{\prime}=\max _{n \in \mathbb{N}^{*}} S_{n}-X_{1}$. Notice that $M^{\prime}$ is distributed as $M$ and is independent of $X_{1}$. Since $\left\{S_{n}<0 ; \forall n \geq 1\right\}=\left\{X_{1}=-1\right\} \cap\left\{M^{\prime}=0\right\}$, we deduce that:

$$
\mathbb{P}\left(S_{n}<0 ; \forall n \geq 1\right)=\mathbb{P}\left(X_{1}=-1\right) \mathbb{P}\left(M^{\prime}=0\right)=(1-p) \mathbb{P}(M=0) .
$$

2. We have $\varphi(\lambda)=p \mathrm{e}^{\lambda}+(1-p) \mathrm{e}^{-\lambda}$. We get that $\mathrm{e}^{-\lambda_{0}} \in(0,1)$ is a root of $x \mapsto(1-p) x^{2}-$ $x+p=0$. This gives $\mathrm{e}^{-\lambda_{0}}=p /(1-p)$. We deduce that $\alpha_{0}=1-\mathrm{e}^{-\lambda_{0}}=(1-2 p) /(1-p)$. This gives :

$$
(1-p) \mathbb{P}(M=0)=(1-p) \alpha_{0}=1-2 p .
$$

Exercice 2 1. The process $X=\left(X_{t}, t \in[0,1)\right)$ is $\mathbb{F}$-adapted. Since $X_{t+s}$ is non-negative, we can compute its conditional expectation. Set $\eta^{2}=1-t-s$. Using that $B_{t+s}-B_{t}$ is independent of $\mathcal{F}_{t}$ and distributed as $\sqrt{s} G$, with $G$ a standard Gaussian random variable, we get that :

$$
\mathbb{E}\left[X_{t+s} \mid \mathcal{F}_{t}\right]=\frac{1}{\eta} \mathbb{E}\left[\mathrm{e}^{-\left(B_{t+s}-B_{t}+B_{t}\right)^{2} / 2 \eta^{2}} \mid \mathcal{F}_{t}\right]=\frac{1}{\eta} \mathrm{e}^{-B_{t}^{2} / 2 \eta^{2}} H\left(B_{t}\right),
$$

with

$$
H(x)=\mathbb{E}\left[\mathrm{e}^{-\left[\left(B_{t+s}-B_{t}+x\right)^{2}-x^{2}\right] / 2 \eta^{2}}\right]=\mathbb{E}\left[\mathrm{e}^{-\left[(\sqrt{s} G+x)^{2}-x^{2}\right] / 2 \eta^{2}}\right] .
$$

We get with $z=y \sqrt{1-t} / \eta$ :

$$
\begin{aligned}
H(x) & =\frac{1}{\sqrt{2 \pi}} \int \mathrm{e}^{-\left[(\sqrt{s} y+x)^{2}-x^{2}\right] / 2 \eta^{2}-y^{2} / 2} d y \\
& =\frac{1}{\sqrt{2 \pi}} \int \mathrm{e}^{-y^{2}\left(s+\eta^{2}\right) / 2 \eta^{2}-\sqrt{s} x y / \eta^{2}} d y \\
& =\frac{\eta}{\sqrt{1-t}} \frac{1}{\sqrt{2 \pi}} \int \mathrm{e}^{-z^{2} / 2-\sqrt{s} x z / \eta \sqrt{1-t}} d z \\
& =\frac{\eta}{\sqrt{1-t}} \mathbb{E}\left[\mathrm{e}^{-\sqrt{s} x G / \eta \sqrt{1-t}}\right] \\
& =\frac{\eta}{\sqrt{1-t}} \mathrm{e}^{s x^{2} / 2 \eta^{2}(1-t)} .
\end{aligned}
$$

We get:

$$
\frac{1}{\eta} \mathrm{e}^{-x^{2} / 2 \eta^{2}} H(x)=\frac{1}{\sqrt{1-t}} \mathrm{e}^{-x^{2} / 2(1-t)} .
$$

2. We deduce from the previous question that $\mathbb{E}\left[X_{t+s} \mid \mathcal{F}_{t}\right]=X_{t}$. This gives, with $t=0$, that $\mathbb{E}\left[X_{s}\right]=1$ for all $s \in[0,1)$. Thus, as $X_{t}$ is non-negative, we have that $X_{t} \in L^{1}$ for all $t \in[0,1)$. Since the process $X$ is $\mathbb{F}$-adapted, we deduce that $X$ is a martingale. Since $B$ is continuous, we get that $X$ is continuous.
3. As $B_{1} \neq 0$ a.s. and $B$ is continuous, we deduce there exists $\varepsilon \in(0,1)$ (random), such that $B_{t} \neq 0$ for all $t \in(1-\varepsilon, 1]$. Then use that $\lim _{x \rightarrow+\infty} x \mathrm{e}^{-x^{2} / 2}=0$ to deduce that a.s. $\lim _{t \uparrow 1} X_{t}=0$.
4. Consider $M=\left(M_{n}=X_{1-1 /(n+1)}, n \in \mathbb{N}\right)$, which is a non-negative martingale with $M_{0}=1$ and a.s. $\lim _{n \rightarrow \infty} M_{n}=0$. If $\mathbb{E}\left[\sup _{n \in \mathbb{N}} M_{n}\right]<+\infty$, then the martingale would also converge in $L^{1}$ by dominated convergence. Since this not the case, we get that $\mathbb{E}\left[\sup _{n \in \mathbb{N}} M_{n}\right]=+\infty$. Then use that $\sup _{t \in[0,1)} X_{t} \geq \sup _{n \in \mathbb{N}} M_{n}$ to conclude.
