Stochastic Process (ENPC)
Monday, 21st of January 2019 (2h30)

Vocabulary (english/francais) : house of cards =chdteau de cartes ; distribution =loi ; posi-
tive = strictement positif ; Brownian bridge = pont brownien ; (0,1] = /0,1].
We write N* =Z N [1, +oo] and N = N*J{0}.

Exercice 1 (House of cards). Consider a kid building an house of cards and denote by X,, € N
the size (or number of cards) of the house at time n € N. When adding a new card to the house
which contains already k cards, then, with probability pg, the house with k+1 cards is stable and
with probability 1 — pi the house collapses and the kid has to restart from scratch, see figure 1.
The “house of cards” model! is also an elementary example of growth-collapse models?. The
aim of this exercise is to study some asymptotic properties of the “house of cards” dynamic.

a=1—px

FIGURE 1 — Graph of transitions for the “house of cards” game (with k € N).

Let p = (px, k € N) be a sequence of elements of (0, 1] with pg = 1, and set g = 1 — pj, for
k € N. Let (©2,G,P) be a probability space. The “house of cards” is a Markov chain which is
modelled by the following stochastic dynamical system X = (X,,, n € N) on the state space N :

Xn+1 = (Xn + 1)1{Un+1§pxn} for n € N,

where (U,,n € N*) is a sequence of independent random variables uniformly distributed over
[0,1] which is independent of the N-valued random variable Xy. We consider F = (F, =
o(Xo,...,Xn), n € N) the natural filtration of X. We write Py, and E; the probability mea-
sure and corresponding expectation when the Markov chain X starts with Xg =k € N.

1. Give the transition matrix P of the Markov chain X.

2. Give a necessary and sufficient condition on p for X to be irreducible.
(Hint. First check that Po(Xy = k) > 0 for all k € N*.)

From now on, we assume that X is irreducible. We set Ag =1, A, = HZ;& pi for n € N* and :

SQ = qu and Sl = ZAk
k=0 k=0

Let 71 be the return time to k € N given by 7, = inf{n > 1; X,, = k}.
3. We study the transience and recurrence of X.
(a) Prove that Py(m9p > n) = A, for all n € N. Deduce that Eq[ro] = 5.
(b) Prove that lim,, o A, = 0 if and only if Sy = +oo.
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(c) Characterise the transience, the null recurrence and the positive recurrence of X in
terms of S5 and Sy being finite or not.

4. We study the invariant measures m = (7, k € N) of X.
(a) Compute the invariant probability measure m when X is positive recurrent.
(Hint. Check that mp, = Agmo for k € N.)
A measure 7 is invariant for X if 7 € (0,+o00) for all k € N and 7 = 7 P.

(b) Compute an invariant measure m for X when X is null recurrent and check this
measure is unique (up to a multiplicative factor) and that Y 7,7, = +o0.

(Hint. Check that >~} _o qpAk =1 — Apqy for n € N.)
(c¢) Prove there exists no invariant measure for X when X is transient.

5. We shall compute Py (7 < 79) for 0 < k < £. We define the function ¢ = (p(k), k € N) by
©(0) =0 and ¢(k) = 1/Ay, for k € N*. We consider the random process M = (M,,n € N)
defined by M,, = p(Xnar)-

(a) Prove that E [1{70>n+1} | Fo] = Px, Liry>ny for n € N.
(b) Prove that M is a martingale under Py for k € N*.
(Hint. Check that M,, = A)_(il{fpn} forn e N.)
(c) For 0 < k < ¢, compute Ej, [M,pp] for n € N and deduce the value of E;, [M,].
(d) Deduce the value of Py (7 < 19) for 0 < k < £.

6. We shall compute Eg[ry] for k,¢ € N. We define the random process V = (V,,,n € N) by
Vo = Xo and for n € N :

LiX,a20) (1+ V).
Px,

Vn+1 =

(a) Prove that Q@ = (@, =V, —n, n € N) is a martingale as soon as E[X()] is finite.

(b) Prove that Eg[ry A n] = Eq [Vr,an] for £ € N* and n € N.

(c) For ¢ € N*, compute V;, under Py and deduce the value of Eq [7y].

(d)

(e) Assume that X is recurrent positive. Give the value of Ey[y] and prove that E,[m] =
E¢[1e] — Eo[7e] and Ey [7] = E¢[re] — Eo[7¢] + Eo[7%] for 0 < k < £.

Use the strong Markov property to prove that Ey [1y] = Eg [1¢] — Eg [7] for 0 < k < £.

A

Exercice 2 (Yet another representation of the Brownian bridge). Let B = (B, t € Ry) be a
standard Brownian motion. The distribution of the Brownian bridge is the distribution of the
Gaussian process W = (W = By —tBy, t € [0, 1]).
1. Check that X = (X; = Wiy, t € [0,1]) is a Brownian bridge.
2. Prove that Y = (Y; = (1 — t)B/1—y), t € [0,1]), with the convention that Y1 = 0, is a
Brownian bridge.

3. Deduce that Z = (Z; = tBu_y;, t € [0,1]), with the convention that Zy = 0, is a
Brownian bridge.

A



Correction

Exercice 1

1. We have P(k,k+ 1) = px, P(k,0) = g and P(k,¢) =0 for £ & {0,k + 1}.

2. The Markov chain is irreducible if and only if the set {k € N; p;, < 1} is infinite.

3.

(a)

The result is clear for n = 0. Assume n € N*. The event {79 > n, Xy = 0} is equal to
{X}) = k for 0 < k <n}. Under Py, this latter event has probability HZ;(I) P(k,k+
1) = [[{Zgpk = An. Use that E[Y] = 332 (P(Y > k) for any N-valued random
variable Y to get that E[rp] = 5.

The sums Sy and S3 = — ) ;2 log(1l — gi) are of the same nature. Conclude using
that lim, o A, = €93,

The chain X is transient if and only if Po(19 = oo) > 0, which is equivalent to
limy, 00 Po(79 > n) > 0 that is So < +o00. The chain X is null recurrent if and only
if Po(190 = 00) = 0 and Eg[ry] = +oo that is So = S = +00. The chain X is positive
recurrent if and only if Eg[r] < +o0o that is S; < 400 (which implies that Ss = +00).

We deduce from the equation 7P = 7 that

o0

o = ZQkﬂ-ka (1)
k=0

T = Pp—1Tk—1 for k € N*, (2)

Equality (2) implies that 7w, = Agmy for £ € N*. This equality trivially holds also for
k = 0. Then use that 7 is a probability to get :

oo o0
1= Zﬂ'k = WOZAk = 7 51.
k=0 k=0

Since X is positive recurrent, we have that S1 < 400 and thus 7 = Ag/S; for k € N.
Now, we check that (1) holds. Indeed, as S; is finite, we have :

kZOQkﬂ'k:SkZ 1_pk S ZAk— kz = 0.

We deduce from the equation 7P = 7 that (1) and (2) hold. Using (2), we get that
7 = Agmo for k& € N. We shall check that (1) holds. We have :

n n+1
Z%Ak —Z 1 — pr) Ay ZZAk—ZAk =00 —Apr1=1-Apy1.
k=0 k=0 k=1

We deduce that :
quﬂ'k = hm quﬂ'k = hm 0 quAk =mo(1 — hm Ay) = 7o,

k=0

where we used for the last equality that lim,, .o A, = 0 as X is null recurrent. We
deduce that (mpAg, k € N) is the unique invariant measure up to the multiplicative
factor my € (0, +00).



5.

(c)

(a)

If X is transient then lim,, .., A, > 0 and, arguing as in the previous question, we get
that 7, = Agmo for k € N thanks to (2) and then Y72 j gpm = mo(1 —limy00 Ap) <
mo. Thus (1) can not be satisfied. Hence there exists no invariant measure.

Let n € N. We have :

E [1{7'0>n+1} | ‘Fn} = 1{7‘0>TL}E [1{Xn+1:Xn+1} | ]:n]
= LmomE [Lpxo i =xory | X
= an]'{T0>TL}7
where we used that {0 > n+ 1} = {70 > n} ({Xn+1 = Xn + 1} and {79 > n} € F,

as 79 is a JF-stopping time for the first equality, the Markov property of X for the
second and that the transition probability from k to k + 1 is pg for the last.

Let n € N. On {79 < n}, we have ¢(Xprr,) = ¢(0) = 0. We deduce that M, =
A;(}Ll{m>n}' Since 7¢ is a F-stopping time, we get that {rg > n} € F,, and thus M
is F-adapted. Since M is non-negative, we can compute E[M, 1| F,]. We have :

1
E[Mn-l—l"’rn] =E m 1{7-o>n+1} ’ Fn
1
= Elpepin | Fn
AXn an [ { 0> +1} ‘ ]
1
- Ax Hro>np

n

where we used that X,,11 = X, +1, and thus Ax, ,, = Ax, px,,, on {79 > n+1} for
the first equality and the previous question for the last. We deduce that E[M,, 11| F,,] =
M,,. Taking the expectation, we deduce that E[M, 1] = E[M,] and by induction
E[M;+1] = E[Mo]. Thus, if E[M)] is finite, then M, is integrable for all n € N and
since E[M+1| Fpn] = M, for all n € N, we get that M is a martingale. Notice that
Ex[Mo] = ¢(k) < +00 to conclude.

Notice that Ex[My] = (k) is finite, so M is a martingale under Py. Since 7 is
a stopping time, we get by the stopping time theorem that Ey [My,an] = ¢(k). In
both the transient case and recurrent case, we obtain that 7, is a.s. finite. Since the
sequence (Mr,an, n € N) is non-negative, bounded from above by ¢(¢) and converges
Py-a.s. to M;,, we deduce from the dominated convergence theorem that :

By [Mr,] = lim By [Mrypn] = o(k).
Since M, is equal to 0 on {79 < 74}, to ¢(¢) on {7y < 79}, and that a.s. 79 # 7, we
get that :

By, [Mr,] = o(O)Py(7¢ < 70).

Use the previous question to get that Pr(1y < 79) = Ay/Ay for 0 < k < £. (Notice
this result could have been seen directly as there is only one path starting from & to
¢ which avoids 0; it corresponds to the event {X; =k + j, j € {0,k — £}} which has

probability Hf;}c Dr.)



6.

(a) By an easy induction, we get that V' and @ are F-adapted. Since V' is non-negative,

we can compute E[V,, 11| F,]. We have :

1
B Vot | il = 5 (4 VB (1,00 | 72

1

Px,
1

= ];(1 + V2)E [1ix, =xo413 | X

:1+Vn7

(1 + Vn)E [1{Xn+17£0} ‘ Xn]

where we used the Markov property of X for the second equality, that {X,,+1 # 0} =
{Xn+1 = X, + 1} for the third and that the transition probability from k to k + 1
is pi for the last. We deduce that E[V, 11| F,] = Vi, + 1. Taking the expectation,
we deduce that E[V,,11] = E[V,] + 1 and by induction E[V,,41] = E[Xy] + n which
is finite by assumption. Thus V,, and @, are integrable for all n € N and since
E[Qn+1| Fn] = E[Viy1| Fo] —n—1 = @, for all n € N, we get that @ is a martingale.

Notice that Eg[Xo] = 0 is finite, so @ is a martingale under Py. Since 74 is a stopping
time, we get by the stopping time theorem that Eq [Qr,An] = 0. This implies that :

Eo [re An] =Eq[Vyan] for £ € N* and n € N. (3)

By monotone convergence, we have that Eq [7¢] = limy, 0o Eo [z An]. As £ > 0, in
both the transient case and recurrent case, we obtain that 7y is a.s. finite. The sequence
(Vzan, n € N) is non-negative, and using an elementary induction, it is bounded from
above by V;, which is Pp-a.s. equal to Azl Zi_:%) Aj. We deduce from the dominated
convergence theorem that :

-1
. 1
i Bo [Veon,] = Eo [Ve] = kz_o A

Taking the limit in (3), we deduce that Eg[r,] = A;* Zf;_:%] Ag.
Let 0 < k < £. Under Py, we have that 7, = 7, + Té, where :

rp=inf{n >1;Y, =¢} with Y, = X,4, forneN.

Recall that Pp-a.s. 73, is finite and thus Pp-a.s. X, = k. By the strong Markov property
at time 7, we get that Y = (Y,,,n € N) is distributed as X under Pj. This implies
that Eq [r;] = E[7], and thus :

Ex[e] = Eo [77] = Eo [re] — Eo [72] -

Since X is recurrent positive, we get Ey[ry] = 1/m; = S1/Ay. Let 0 < k < £. Under
Py, to return to £, one has first to pass to 0 and thus to k. Thus, under Py, we have
that 7, = 7, + 7, where :

7p=inf{n >1;Y, =¢} with Y, = X,4, forneN.



Recall that P-a.s. 7, is finite and thus P-a.s. X;, = k. By the strong Markov property
at time 7, we get that Y = (Y,,,n € N) is distributed as X under Pj. This implies
that Ey [7)] = Eg[r] and thus for 0 < k < ¢ :

Eo[7i] = E¢[1e] — Eo[7y] = Eo[7e] — Eg[7e].
Then, use Question 6(c) to conclude when k > 0.

FEzercice 2 The Gaussian process W is centerd with covariance kernel Ky = (K (s,t); s,t €
[0,1]), where Ky (s,t) =s(1—t) for0<s<t<1.

1. By construction X is a centered Gaussian process. We remark its covariance kernel Kx =
(Kx(s,t); s,t €[0,1]) is given by, for 0 < s <t <1:

Kx(s,t)=Kw(l—s,1—-t)=(1—-t)(1—(1—35)) = Kw(s,t).

Thus, we get Kx = Ky (as the covariance kernel is symmetric). We deduce that X and
W have the same distribution.

2. By construction Y is a centered Gaussian process. We remark its covariance kernel Ky =
(Ky(s,t); s,t €10,1]) is given by, for 0 < s <t < 1:

Ky (s,8) = (1 t)(1 — ) K (s/(L - ),t/(1— 1)) = (1 - t)s = Ky (s,1),

ass/(1—s)<t/(1—t). If0<s<t=1,thenasY; =0, weget Ky(s,1) =0= Ky (s,1).
Thus, we get Ky = K (as the covariance kernel is symmetric). We deduce that Y and
W have the same distribution.

3. Notice that Z; = Y1, for t € [0, 1]. Since Y is distributed as W according to Question 2,
we deduce that Z is distributed as X and thus as W according to Question 1.



