
Stochastic Process (ENPC)
Monday, 21st of January 2019 (2h30)

Vocabulary (english/français) : house of cards =château de cartes ; distribution =loi ; posi-
tive = strictement positif ; Brownian bridge = pont brownien ; (0, 1] = ]0,1].

We write N∗ = Z ∩ [1,+∞[ and N = N∗
⋃
{0}.

Exercice 1 (House of cards). Consider a kid building an house of cards and denote by Xn ∈ N
the size (or number of cards) of the house at time n ∈ N. When adding a new card to the house
which contains already k cards, then, with probability pk, the house with k+1 cards is stable and
with probability 1− pk the house collapses and the kid has to restart from scratch, see figure 1.
The “house of cards” model 1 is also an elementary example of growth-collapse models 2. The
aim of this exercise is to study some asymptotic properties of the “house of cards” dynamic.
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Figure 1 – Graph of transitions for the “house of cards” game (with k ∈ N).

Let p = (pk, k ∈ N) be a sequence of elements of (0, 1] with p0 = 1, and set qk = 1− pk for
k ∈ N. Let (Ω,G,P) be a probability space. The “house of cards” is a Markov chain which is
modelled by the following stochastic dynamical system X = (Xn, n ∈ N) on the state space N :

Xn+1 = (Xn + 1)1{Un+1≤pXn} for n ∈ N,

where (Un, n ∈ N∗) is a sequence of independent random variables uniformly distributed over
[0, 1] which is independent of the N-valued random variable X0. We consider F = (Fn =
σ(X0, . . . , Xn), n ∈ N) the natural filtration of X. We write Pk and Ek the probability mea-
sure and corresponding expectation when the Markov chain X starts with X0 = k ∈ N.

1. Give the transition matrix P of the Markov chain X.

2. Give a necessary and sufficient condition on p for X to be irreducible.

(Hint. First check that P0(Xk = k) > 0 for all k ∈ N∗.)
From now on, we assume that X is irreducible. We set ∆0 = 1, ∆n =

∏n−1
k=0 pk for n ∈ N∗ and :

S2 =
∞∑
k=0

qk and S1 =
∞∑
k=0

∆k.

Let τk be the return time to k ∈ N given by τk = inf{n ≥ 1; Xn = k}.
3. We study the transience and recurrence of X.

(a) Prove that P0(τ0 > n) = ∆n for all n ∈ N. Deduce that E0[τ0] = S1.

(b) Prove that limn→∞∆n = 0 if and only if S2 = +∞.

1. An introduction to probability theory and its applications. Vol. I. Third edition. John Wiley & Sons, 1968.
(See pages 381-382, 390, 398, 403 and 408.)

2. T. Huillet. On a Markov chain model for population growth subject to rare catastrophic events. Physica A.
Statistical Mechanics and its Applications, 390(23-24) :4073-4086, 2011.
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(c) Characterise the transience, the null recurrence and the positive recurrence of X in
terms of S2 and S1 being finite or not.

4. We study the invariant measures π = (πk, k ∈ N) of X.

(a) Compute the invariant probability measure π when X is positive recurrent.

(Hint. Check that πk = ∆kπ0 for k ∈ N.)

A measure π is invariant for X if πk ∈ (0,+∞) for all k ∈ N and π = πP .

(b) Compute an invariant measure π for X when X is null recurrent and check this
measure is unique (up to a multiplicative factor) and that

∑∞
k=0 πk = +∞.

(Hint. Check that
∑n

k=0 qk∆k = 1−∆n+1 for n ∈ N.)

(c) Prove there exists no invariant measure for X when X is transient.

5. We shall compute Pk(τ` < τ0) for 0 < k < `. We define the function ϕ = (ϕ(k), k ∈ N) by
ϕ(0) = 0 and ϕ(k) = 1/∆k for k ∈ N∗. We consider the random process M = (Mn, n ∈ N)
defined by Mn = ϕ(Xn∧τ0).

(a) Prove that E
[
1{τ0>n+1} | Fn

]
= pXn1{τ0>n} for n ∈ N.

(b) Prove that M is a martingale under Pk for k ∈ N∗.
(Hint. Check that Mn = ∆−1Xn

1{τ0>n} for n ∈ N.)

(c) For 0 < k < `, compute Ek [Mτ`∧n] for n ∈ N and deduce the value of Ek [Mτ` ].

(d) Deduce the value of Pk(τ` < τ0) for 0 < k < `.

6. We shall compute Ek[τ`] for k, ` ∈ N. We define the random process V = (Vn, n ∈ N) by
V0 = X0 and for n ∈ N :

Vn+1 =
1{Xn+1 6=0}

pXn

(1 + Vn).

(a) Prove that Q = (Qn = Vn − n, n ∈ N) is a martingale as soon as E[X0] is finite.

(b) Prove that E0[τ` ∧ n] = E0 [Vτ`∧n] for ` ∈ N∗ and n ∈ N.

(c) For ` ∈ N∗, compute Vτ` under P0 and deduce the value of E0 [τ`].

(d) Use the strong Markov property to prove that Ek [τ`] = E0 [τ`]−E0 [τk] for 0 < k < `.

(e) Assume that X is recurrent positive. Give the value of E`[τ`] and prove that E`[τ0] =
E`[τ`]− E0[τ`] and E` [τk] = E`[τ`]− E0[τ`] + E0[τk] for 0 < k < `.
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Exercice 2 (Yet another representation of the Brownian bridge). Let B = (Bt, t ∈ R+) be a
standard Brownian motion. The distribution of the Brownian bridge is the distribution of the
Gaussian process W = (Wt = Bt − tB1, t ∈ [0, 1]).

1. Check that X = (Xt = W1−t, t ∈ [0, 1]) is a Brownian bridge.

2. Prove that Y = (Yt = (1 − t)Bt/(1−t), t ∈ [0, 1]), with the convention that Y1 = 0, is a
Brownian bridge.

3. Deduce that Z = (Zt = tB(1−t)/t, t ∈ [0, 1]), with the convention that Z0 = 0, is a
Brownian bridge.

4
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Correction

Exercice 1 1. We have P (k, k + 1) = pk, P (k, 0) = qk and P (k, `) = 0 for ` 6∈ {0, k + 1}.
2. The Markov chain is irreducible if and only if the set {k ∈ N; pk < 1} is infinite.

3. (a) The result is clear for n = 0. Assume n ∈ N∗. The event {τ0 > n,X0 = 0} is equal to
{Xk = k for 0 ≤ k ≤ n}. Under P0, this latter event has probability

∏n−1
k=0 P (k, k +

1) =
∏n−1
k=0 pk = ∆n. Use that E[Y ] =

∑∞
k=0 P(Y > k) for any N-valued random

variable Y to get that E[τ0] = S1.

(b) The sums S2 and S3 = −
∑∞

k=0 log(1 − qk) are of the same nature. Conclude using
that limn→∞∆n = e−S3 .

(c) The chain X is transient if and only if P0(τ0 = ∞) > 0, which is equivalent to
limn→∞ P0(τ0 > n) > 0 that is S2 < +∞. The chain X is null recurrent if and only
if P0(τ0 =∞) = 0 and E0[τ0] = +∞ that is S2 = S1 = +∞. The chain X is positive
recurrent if and only if E0[τ0] < +∞ that is S1 < +∞ (which implies that S2 = +∞).

4. (a) We deduce from the equation πP = π that

π0 =
∞∑
k=0

qkπk, (1)

πk = pk−1πk−1 for k ∈ N∗. (2)

Equality (2) implies that πk = ∆kπ0 for k ∈ N∗. This equality trivially holds also for
k = 0. Then use that π is a probability to get :

1 =
∞∑
k=0

πk = π0

∞∑
k=0

∆k = π0S1.

Since X is positive recurrent, we have that S1 < +∞ and thus πk = ∆k/S1 for k ∈ N.
Now, we check that (1) holds. Indeed, as S1 is finite, we have :

∞∑
k=0

qkπk =
1

S1

∞∑
k=0

(1− pk)∆k =
1

S1

∞∑
k=0

∆k −
1

S1

∞∑
k=1

∆k =
∆0

S1
= π0.

(b) We deduce from the equation πP = π that (1) and (2) hold. Using (2), we get that
πk = ∆kπ0 for k ∈ N. We shall check that (1) holds. We have :

n∑
k=0

qk∆k =
n∑
k=0

(1− pk)∆k =
n∑
k=0

∆k −
n+1∑
k=1

∆k = ∆0 −∆n+1 = 1−∆n+1.

We deduce that :

∞∑
k=0

qkπk = lim
n→∞

n∑
k=0

qkπk = lim
n→∞

π0

n∑
k=0

qk∆k = π0(1− lim
n→∞

∆n) = π0,

where we used for the last equality that limn→∞∆n = 0 as X is null recurrent. We
deduce that (π0∆k, k ∈ N) is the unique invariant measure up to the multiplicative
factor π0 ∈ (0,+∞).
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(c) If X is transient then limn→∞∆n > 0 and, arguing as in the previous question, we get
that πk = ∆kπ0 for k ∈ N thanks to (2) and then

∑∞
k=0 qkπk = π0(1− limn→∞∆n) <

π0. Thus (1) can not be satisfied. Hence there exists no invariant measure.

5. (a) Let n ∈ N. We have :

E
[
1{τ0>n+1} | Fn

]
= 1{τ0>n}E

[
1{Xn+1=Xn+1} | Fn

]
= 1{τ0>n}E

[
1{Xn+1=Xn+1} | Xn

]
= pXn1{τ0>n},

where we used that {τ0 > n+ 1} = {τ0 > n}
⋂
{Xn+1 = Xn + 1} and {τ0 > n} ∈ Fn

as τ0 is a F-stopping time for the first equality, the Markov property of X for the
second and that the transition probability from k to k + 1 is pk for the last.

(b) Let n ∈ N. On {τ0 ≤ n}, we have ϕ(Xn∧τ0) = ϕ(0) = 0. We deduce that Mn =
∆−1Xn

1{τ0>n}. Since τ0 is a F-stopping time, we get that {τ0 > n} ∈ Fn and thus M
is F-adapted. Since M is non-negative, we can compute E[Mn+1| Fn]. We have :

E[Mn+1| Fn] = E
[

1

∆Xn pXn

1{τ0>n+1} | Fn
]

=
1

∆Xn pXn

E
[
1{τ0>n+1} | Fn

]
=

1

∆Xn

1{τ0>n},

where we used that Xn+1 = Xn + 1, and thus ∆Xn+1 = ∆Xn pXn , on {τ0 > n+ 1} for
the first equality and the previous question for the last. We deduce that E[Mn+1| Fn] =
Mn. Taking the expectation, we deduce that E[Mn+1] = E[Mn] and by induction
E[Mn+1] = E[M0]. Thus, if E[M0] is finite, then Mn is integrable for all n ∈ N and
since E[Mn+1| Fn] = Mn for all n ∈ N, we get that M is a martingale. Notice that
Ek[M0] = ϕ(k) < +∞ to conclude.

(c) Notice that Ek[M0] = ϕ(k) is finite, so M is a martingale under Pk. Since τ` is
a stopping time, we get by the stopping time theorem that Ek [Mτ`∧n] = ϕ(k). In
both the transient case and recurrent case, we obtain that τ` is a.s. finite. Since the
sequence (Mτ`∧n, n ∈ N) is non-negative, bounded from above by ϕ(`) and converges
Pk-a.s. to Mτ` , we deduce from the dominated convergence theorem that :

Ek [Mτ` ] = lim
n→∞

Ek [Mτ`∧n] = ϕ(k).

(d) Since Mτ` is equal to 0 on {τ0 < τ`}, to ϕ(`) on {τ` < τ0}, and that a.s. τ0 6= τ`, we
get that :

Ek [Mτ` ] = ϕ(`)Pk(τ` < τ0).

Use the previous question to get that Pk(τ` < τ0) = ∆`/∆k for 0 < k < `. (Notice
this result could have been seen directly as there is only one path starting from k to
` which avoids 0 ; it corresponds to the event {Xj = k + j, j ∈ {0, k − `}} which has

probability
∏`−1
r=k pr.)
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6. (a) By an easy induction, we get that V and Q are F-adapted. Since V is non-negative,
we can compute E[Vn+1| Fn]. We have :

E [Vn+1 | Fn] =
1

pXn

(1 + Vn)E
[
1{Xn+1 6=0} | Fn

]
=

1

pXn

(1 + Vn)E
[
1{Xn+1 6=0} | Xn

]
=

1

pXn

(1 + Vn)E
[
1{Xn+1=Xn+1} | Xn

]
= 1 + Vn,

where we used the Markov property of X for the second equality, that {Xn+1 6= 0} =
{Xn+1 = Xn + 1} for the third and that the transition probability from k to k + 1
is pk for the last. We deduce that E[Vn+1| Fn] = Vn + 1. Taking the expectation,
we deduce that E[Vn+1] = E[Vn] + 1 and by induction E[Vn+1] = E[X0] + n which
is finite by assumption. Thus Vn and Qn are integrable for all n ∈ N and since
E[Qn+1| Fn] = E[Vn+1| Fn]−n− 1 = Qn for all n ∈ N, we get that Q is a martingale.

(b) Notice that E0[X0] = 0 is finite, so Q is a martingale under P0. Since τ` is a stopping
time, we get by the stopping time theorem that E0 [Qτ`∧n] = 0. This implies that :

E0 [τ` ∧ n] = E0 [Vτ`∧n] for ` ∈ N∗ and n ∈ N. (3)

(c) By monotone convergence, we have that E0 [τ`] = limn→∞ E0 [τ` ∧ n]. As ` > 0, in
both the transient case and recurrent case, we obtain that τ` is a.s. finite. The sequence
(Vτ`∧n, n ∈ N) is non-negative, and using an elementary induction, it is bounded from

above by Vτ` which is P0-a.s. equal to ∆−1`
∑`−1

k=0 ∆k. We deduce from the dominated
convergence theorem that :

lim
n→∞

E0 [Vτ`∧n ] = E0 [Vτ` ] =
1

∆`

`−1∑
k=0

∆k.

Taking the limit in (3), we deduce that E0[τ`] = ∆−1`
∑`−1

k=0 ∆k.

(d) Let 0 < k < `. Under P0, we have that τ` = τk + τ ′`, where :

τ ′` = inf{n ≥ 1; Yn = `} with Yn = Xn+τk for n ∈ N.

Recall that P0-a.s. τk is finite and thus P0-a.s.Xτk = k. By the strong Markov property
at time τk, we get that Y = (Yn, n ∈ N) is distributed as X under Pk. This implies
that E0 [τ ′`] = Ek[τ`], and thus :

Ek[τ`] = E0

[
τ ′`
]

= E0 [τ`]− E0 [τk] .

(e) Since X is recurrent positive, we get E`[τ`] = 1/π` = S1/∆`. Let 0 ≤ k < `. Under
P`, to return to `, one has first to pass to 0 and thus to k. Thus, under P`, we have
that τ` = τk + τ ′`, where :

τ ′` = inf{n ≥ 1; Yn = `} with Yn = Xn+τk for n ∈ N.

5



Recall that P`-a.s. τk is finite and thus P`-a.s. Xτk = k. By the strong Markov property
at time τk, we get that Y = (Yn, n ∈ N) is distributed as X under Pk. This implies
that E` [τ ′`] = Ek[τ`] and thus for 0 ≤ k < ` :

E`[τk] = E`[τ`]− E`[τ ′`] = E`[τ`]− Ek[τ`].

Then, use Question 6(c) to conclude when k > 0.

Exercice 2 The Gaussian process W is centerd with covariance kernel KW = (KW (s, t); s, t ∈
[0, 1]), where KW (s, t) = s(1− t) for 0 ≤ s ≤ t ≤ 1.

1. By construction X is a centered Gaussian process. We remark its covariance kernel KX =
(KX(s, t); s, t ∈ [0, 1]) is given by, for 0 ≤ s ≤ t ≤ 1 :

KX(s, t) = KW (1− s, 1− t) = (1− t)(1− (1− s)) = KW (s, t).

Thus, we get KX = KW (as the covariance kernel is symmetric). We deduce that X and
W have the same distribution.

2. By construction Y is a centered Gaussian process. We remark its covariance kernel KY =
(KY (s, t); s, t ∈ [0, 1]) is given by, for 0 ≤ s ≤ t < 1 :

KY (s, t) = (1− t)(1− s)KW (s/(1− s), t/(1− t)) = (1− t)s = KW (s, t),

as s/(1− s) ≤ t/(1− t). If 0 ≤ s ≤ t = 1, then as Y1 = 0, we get KY (s, 1) = 0 = KW (s, 1).
Thus, we get KY = KW (as the covariance kernel is symmetric). We deduce that Y and
W have the same distribution.

3. Notice that Zt = Y1−t for t ∈ [0, 1]. Since Y is distributed as W according to Question 2,
we deduce that Z is distributed as X and thus as W according to Question 1.
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