
Stochastic Process (ENPC)
Monday, 27th of January 2025 (2h30)

Vocabulary (english/français): positive=strictement positif ; cumulative distribution func-
tion =fonction de répartition. [0, 1) = [0,1[.

Exercise 1 (Renewal process). We consider a machine working during a positive period of D1

days until its breaks down, and then it is immediately replaced by a new machine which will be
working for a positive period of D2 days and so on. Set S0 = 0 and Sk =

∑k
ℓ=1Dℓ for k ∈ N∗;

so that Sk is the replacement day of the k-th machine. We consider the associated age process
Y = (Yn, n ∈ N) of the current machine at work, see Fig. 1, defined by:

Yn = n− sup{Sk : Sk ≤ n}.

Notice that when a new machine is installed, its age is equal to zero: YSk
= 0 for all k ∈ N.
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Figure 1: A realization of the age process n 7→ Yn (with D1 = 4, D2 = 1 and D3 > 2).

Let D be an unbounded N∗-valued random variable. We assume that the random variables
(Dℓ, ℓ ∈ N∗) are independent and distributed as D. Set ρ = (ρ(ℓ) = P(D > ℓ |D ≥ ℓ), ℓ ∈ N∗).

1. Let n ∈ N and yn = (y0 = 0, y1, . . . , yn+1) such that yℓ+1 ∈ {0, yℓ + 1} for ℓ ∈ {0, . . . , n}.

(a) Using ∆ = {ℓ ∈ {1, . . . , n} : yℓ = 0} and k = card∆, check that:

P(Y0 = y0, . . . , Yn = yn) = P({S1, . . . , Sk} = ∆ and Dk+1 ≥ 1 + yn),

and:

P(Y0 = y0, . . . , Yn = yn, Yn+1 = 0) = P({S1, . . . , Sk} = ∆ and Dk+1 = 1 + yn).

(b) Prove there exists a stochastic matrix P (which can be written using ρ and which
does not depend on n and yn) such that:

P(Y0 = y0, . . . , Yn = yn, Yn+1 = yn+1) = P(Y0 = y0, . . . , Yn = yn)P (yn, yn+1).

(c) Deduce that Y is a Markov chain.

2. (a) Check that
∏n

ℓ=1 ρ(ℓ) = P(D ≥ n+ 1) for all n ∈ N∗.

(b) Is the Markov chain Y irreducible?

3. Prove that Y is recurrent, and give a necessary and sufficient condition for Y to be positive
recurrent.

4. When Y is positive recurrent, compute the invariant probability using the mean and the
cumulative distribution of D.



△

Exercise 2 (Searching a parking place). You still take your car to go to the opera, and you
want to park in the opera street as close as possible to the entrance of the opera. The opera
street is an infinite a one-way street (you can only go forward!) with parking places labeled by
N∗, starting with the place 1, and the opera is in front of the n0-th place, with n0 > 1. Set
Xn = 0 if the n-th place is empty and Xn = 1 otherwise.

At step n you are in front of the n-th place (unless you have already parked). If the place
is empty then you can park there which corresponds to a loss (or cost) |n0 − n| given by the
distance from this place to the opera; if the place is not empty then you can not park and for
this reason the loss is set to be infinity. So, with the convention that ∞∗ 0 = 0, the loss at step
n is:

Ln = |n0 − n|(1−Xn) +∞∗Xn.

We assume that the random variables (Xn, n ∈ N∗) are independent Bernoulli with known
parameter p ∈ (0, 1). Set q = 1 − p. For n ∈ N∗, consider the σ-field Fn = σ(X1, . . . , Xn)
corresponding to your observation of the first n places. Let T denote the set of stopping times
with respect to the filtration F = (Fn, n ∈ N∗). The aim of the problem is to find the minimal
loss E[Lτ ] over all the stopping times τ ∈ T , and determine, if it exists, an optimal stopping
time τ ′, that is, a stopping time such that:

E[Lτ ′ ] = inf
τ∈T

E[Lτ ].

To do so, we consider the minimal loss at the n-step (assuming we didn’t park before)
Sn = essinfτ∈Tn E[Lτ | Fn], where Tn is the set of stopping times τ ∈ T such that τ ≥ n.

1. What is the best strategy if n ≥ n0. Deduce that Sn0 = Xn0/q. (Recall q = 1− p.)

2. Recall the optimal equations satisfied by (Sn, n ∈ N∗). Prove that for n ∈ {1, . . . , n0}:

Sn = αnXn +min(n0 − n, αn)(1−Xn), (1)

where αn0 = 1/q and for n ∈ {1, . . . , n0}:

αn = pαn+1 + qmin(n0 − n− 1, αn+1). (2)

3. Check there exists optimal stopping times and recall the expression of one of them. Check
all of them are a.s. finite.

4. Assume p ≤ 1/2.

(a) Prove that αn = p/q for all n ∈ {1, . . . , n0 − 1}.
(b) Prove that Sn = p/q for all n ∈ {1, . . . , n0−1} and explicit an optimal stopping time.

5. We consider the general case p ∈ (0, 1). Set n∗ = inf{n ∈ {1, . . . , n0} : αn ≥ n0 − n}.

(a) Prove that if αn+1 ≤ n0 − n− 1 then αn < n0 − n, and then that αn > n0 − n for all
n ∈ {n∗ + 1, . . . , n0}.

(b) Deduce that the following stopping time is optimal:

τ∗ = inf{n ≥ n∗ : Xn = 0}.

(c) Prove that αn = n0 − n+ q−1 (2pn0−n − 1) for n ∈ {n∗ − 1, . . . , n0} ∩ N∗.

(d) Check that if p ∈ (0, 1) belongs to [2−1/r, 2−1/(r+1)) for r ∈ {0, . . . , n0 − 2}, then
n∗ = n0 − r, and if p belongs to [2−1/(n0−1), 1) then n∗ = 1.

6. (Open question.) How to model the problem if p is unknown (and still use the optimal
stopping time framework to solve it)?

△



Correction

Exercise 1

1. (a) By construction of the process Y and the definition of yn, we have:

{Y0 = y0, . . . , Yn = yn} =
{
{SA, . . . , Sk} = ∆ and Dk+1 ≥ 1 + yn

}
,

{Y0 = y0, . . . , Yn = yn, Yn+1 = 0} =
{
{S1, . . . , Sk} = ∆ and Dk+1 = 1 + yn

}
.

(b) We have:

P(Y0 = y0, . . . , Yn = yn, Yn+1 = 0)

= P({S1, . . . , Sk} = ∆ and Dk+1 = 1 + yn)

= P({S1, . . . , Sk} = ∆ and Dk+1 ≥ 1 + yn)

P(Dk+1 = 1 + yn | {S1, . . . , Sk} = ∆ and Dk+1 ≥ 1 + yn)

= P({S0, . . . , Sk} = ∆ and Dk+1 ≥ 1 + yn) (1− ρ(yn))

= P(Y0 = y0, . . . , Yn = yn) (1− ρ(yn)),

where we used that Dk+1 is independent of D1, . . . , Dk and thus of S1, . . . , Sk for the
third equality. Since Yn+1 ∈ {0, Yn + 1} a.s., we deduce that:

P(Y0 = y0, . . . , Yn = yn, Yn+1 = yn+1) = P(Y0 = y0, . . . , Yn = yn)P (yn, yn+1)

with P (ℓ, 0) = 1−ρ(1+ℓ), P (ℓ, ℓ+1) = ρ(1+ℓ) and P (ℓ, ℓ′) = 0 for all ℓ′ ∈ N\{0, ℓ+1}
and for all ℓ ∈ N.

(c) By backward recursion, we deduce that P(Y0 = y0, . . . , Yn = yn, Yn+1 = yn+1) =∏n
k=0 P (yk, yk+1) for all (y0, . . . , yn+1) ∈ Nn+2 and n ∈ N (the quantity is zero if

(y0, y1, . . . , yn+1) is not such that y0 = 0 and yℓ+1 ∈ {0, yℓ + 1} for ℓ ∈ {0, . . . , n}).
This gives that Y is a Markov chain on N with transition matrix P starting from 0.

2. (a) Use that ρ(1) = P(D ≥ 2) to deduce the result.

(b) Let n ∈ N∗. We deduce from the previous question that Pn(0, n) = P(D ≥ n+1), and
this quantity is positive as D is unbounded. Since D is unbounded and takes values
in N∗, we deduce that {ℓ ∈ N∗ : 1− ρ(ℓ) = P(D = ℓ |D ≥ ℓ) > 0} is unbounded. We
deduce that for all k ∈ N, there is n ≥ 0 such that P (n+ k, 0) > 0, and thus:

Pn+1(k, 0) ≥

(
n−1∏
ℓ=0

P (k + ℓ, k + ℓ+ 1)

)
P (n+ k, 0) > 0.

We deduce that Y is irreducible.

3. Notice that D1 is the first return time to 0 for Y . Since D1 takes values in N∗, it is finite
a.s., and we get that P(D1 < ∞) = 1 and thus Y is recurrent. It is positive recurrent if
and only if D1 (or equivalently D) is integrable.

4. Let π be the invariant probability measure (on N∗), which exists and is unique as Y is
irreducible positive recurrent. We first notice that π(0) = 1/E[D] as D is distributed as
D1 the first return time to 0 for Y .

Denote by F the cumulative distribution of D and by m = E[D] its the mean. Since
πP = π, we deduce that π(n) = ρ(n)π(n − 1) for all n ∈ N∗, and thus, thanks to
Question 2a, π(n) = π(0)

∏n−1
ℓ=1 ρ(ℓ) = P(D ≥ n+ 1)/E[D]. This gives that:

π(n) =
1− F (n)

m
for all n ∈ N.



Exercise 2

1. Once n ≥ n0, there is no better strategy than to stop at the first empty place. So,
if Xn0 = 0 the optimal loss at step n0 is 0, and if Xn0 = 1, then the optimal loss is
E[T | Fn0 ] with T = inf{k ≥ 1 : Xn0+k = 0}. Since T is independent of Fn0 and is a
geometric random variable with parameter q, we deduce that E[T | Fn0 ] = 1/q and thus
Sn0 = Xn0/q.

2. Notice that a loss can be seen as minus a gain. We recall the Snell envelope (Sn, n ∈ N∗)
satisfies the optimal equations:

Sn = min(Ln,E[Sn+1| Fn]) for all n ∈ N∗.

We prove (1) by a backward induction. Clearly (1) is satisfied for n = n0. Assume (1)
holds at step n+ 1 for n ∈ {1, . . . , n0 − 1}, and let us prove it holds at step n. According
to the optimal equation, we have:

Sn = min((n0 − n),E[Sn+1| Fn])(1−Xn) +XnE[Sn+1| Fn].

Since (1) holds at step n+1, we get E[Sn+1| Fn] = pαn+1 + qmin(n0 − n− 1, αn+1) = αn,
and thus:

Sn = αnXn +min((n0 − n), αn)(1−Xn).

This proves that (1) holds for n ∈ {1, . . . , n0}.

3. Setting L∞ = ∞ and taking the gain Gn equal to −Ln for n ∈ N̄∗, we deduce that
E[supn∈N̄∗ max(Gn, 0)] = 0 and a.s. lim supn↑∞Gn = G∞. We deduce from the optimal
stopping theorem that the following stopping times (with the convention that inf ∅ = ∞)
are optional:

τ∗ = inf{n ∈ N∗ : Sn = Ln} and τ∗∗ = inf{n ∈ N∗ : Sn < E[Sn+1| Fn]}. (3)

Notice all the optimal stopping times are bounded from above by n0+T and thus are finite
a.s.. Since the loss corresponding to taking the first empty place is finite, we deduce that
the optimal loss is finite, and thus a stopping time τ is optimal if and only if τ∗ ≤ τ ≤ τ∗∗
and Sτ = Lτ .

4. (a) As p ≤ 1/2, we deduce that p/q ≤ 1. By (2), we get αn0−1 = p/q ≤ 1. Thus by an
immediate backward induction, we deduce that αn = p/q ≤ 1 for n ∈ {1, . . . , n0−1}.

(b) For all n ∈ {1, . . . , n0 − 1}, we get from (1) that Sn = αn = p/q as n0 − n ≥ αn. If
p < 1/2, we observe that Sn < Ln for all n < n0, and thus τ∗ = inf{n ≥ n0 : Xn =
0} (that, is wait until you are in front of the opera and then take the first empty
parking place). If p = 1/2, then we get that Sn < Ln for all n < n0 − 1 and thus
τ∗ = inf{n ≥ n0 − 1 : Xn = 0} (that is, the same strategy plus the fact that you
can take the parking place just before the one in front of the opera). Since p ≤ 1/2
and E[Sn+1|Fn] = p/q ≤ 1 for n ∈ {1, . . . , n0 − 1}, we deduce that τ∗∗ = inf{n ≥
n0 : Xn = 0}.
In conclusion, if p ≤ 1/2, an optimal strategy is to wait to be in front of the opera
and then take the first empty parking place. Furthermore this strategy is the only
optimal one if p < 1/2.

5. (a) If αn+1 ≤ n0−n− 1, then we deduce from (2) that αn = αn+1 and thus αn < n0−n.
By contraposition, we get that αn > n0 − n implies that αn+1 > n0 − n − 1. Then
use the definition of n∗ to get the last part.



(b) We consider the optimal stopping time τ∗ defined in (3). For n < k∗ and n ≥ 1,
we have Sn = αn < Ln. This gives that τ∗ ≥ n∗. For n ≥ n∗, we have Sn =
αnXn + (n0 − n)(1 − Xn) ≤ Ln with an equality if and only if Xn = 0. This gives
that τ∗ = inf{n ≥ n∗ : Xn = 0}.

We consider the optimal stopping time τ∗∗ defined in (3). We have τ∗∗ ≥ τ∗ ≥ n∗.
For n ≥ n∗, we have Sn = αnXn + (n0 − n)(1−Xn) < αn if and only if Xn = 0 and
n0 − n < αn. This latter condition is satisfied for all n > n∗. So if αn∗ > n0 − n∗,
then τ∗∗ = τ∗ (and thus τ∗ is the only optimal stopping time). If αn∗ = n0 −n∗, then
τ∗∗ = inf{n > n∗ : Xn = 0}, and thus τ∗∗ > τ∗ on {Xn∗ = 0}.

(c) Use that αn = pαn+1 + q(n0 − n − 1) for n ≥ max(n∗ − 1, 1) to get the result by
backward induction.

(d) Using that αn∗ ≥ n0−n∗ and, provided that n∗ > 1, αn∗−1 < n0−n∗+1, we deduce
that for n∗ = n0 − r ∈ {2, . . . , n0} we have p ∈ [2−1/r, 2−1/(r+1)) and that n∗ = 1 for
p ∈ [2−1/(n0−1), 1).

(Notice the result is consistent with Question 4 where n∗ = 0 if p < 1/2 and n∗ = 1
if p = 1/2. Notice also that the stopping times τ∗ and τ∗∗ are not equal if and only
if p is equal to 2−1/r for some r ∈ {1, . . . , n0 − 1}.)

6. This is more delicate. One can assume that the parameter is a random (0, 1)-valued
random variable P , and that the random variable Xn is written as 1{Un≤P}, where (Un, n ∈
N∗) are independent random variables uniformly distributed on [0, 1] and independent
of P . We still keep Fn = σ(X1, . . . , Xn), so that P is F∞ measurable (as a.s. P =
limm→∞ n−1

∑n
k=1Xk).

Arguing as in Question 1, we deduce that Sn0 = Xn0R, whereR = E[T | Fn0 ] = E[P−1| Fn0 ].
We can again use the optimal equations to get (Sn, n ∈ {1, . . . , n0}), but there will be no
closed formula as (1), as one as to take into account the random term R in the definition
of Sn.

Let us mention that taking P following a β distribution will give a closed formula for R,
but certainly not nice enough to have a simple formula for τ∗ and τ∗∗ (which should not
belong to the family of stopping times inf{k ≥ k′ : Xk = 0} with k′ deterministic).

Lastly, the optimal stopping times will depend on the law of P which has to be known.
Informally this prior distribution of P corresponds to knowledge of previous experiences.


