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Inspired by Schwartz (1961) and Jang-Lewis and Victory (1993), who study
generalizations of triangularizations of matrices to operators, we shall give
equivalent definitions of atoms (maximal irreducible sets) for positive op-
erators on Lebesgue spaces. We also characterize positive power compact
operators having a unique nonzero atom which appear as a natural general-
ization of irreducible operators and are also considered in epidemiological
models. Using the different characterizations of atoms, we also provide a
short proof for the representation of the ascent of a positive power compact
operator as the maximal length in the graph of critical atoms.
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1. Introduction and main results

1.1. Setting and main goals. We consider the Lebesgue space L p
= L p(�,F, µ)

with p ∈ (1, +∞), and a state space � endowed with a σ -field F and a nonzero
σ -finite measure µ. In what follows, the inclusion of measurable sets will be
understood up to sets of µ-zero measure. Recall a map f ∈ L p is nonnegative if
µ( f < 0) = 0 and positive if µ( f ≤ 0) = 0. Let T be a positive bounded linear
operator on L p (that is, T f is nonnegative if f is nonnegative). For A ∈ F , we
denote by T (A) the support of T (1A) which is a measurable set defined up to sets
of µ-zero measure (if 1A does not belong to L p, then one can replace it by f 1A
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for any positive function f ∈ L p, see the first part of Section 3 for details). Then,
we say a set A ∈ F is invariant if T (A) ⊂ A. A set A is coinvariant if Ac is
invariant (or equivalently if A is invariant for the dual operator T ⋆). The collection
of admissible sets corresponds to the σ -field A ⊂ F generated by the invariant sets.
We define the atoms as the minimal admissible sets with positive measure. An atom
is nonzero if 1AT (1A) is nonzero. An atom is critical if the spectral radii of T and
of TA = 1AT (1A · ) are equal.

Building on works by Schwartz [27] and Jang-Lewis and Victory [19], which
study in particular generalizations of triangularizations of matrices to operators, our
aim in this work is threefold:

(1) Give several equivalent definitions of atoms.

(2) Describe all the nonnegative eigenfunctions of T using distinguished atoms,
allowing a characterization of operators T having a unique nonzero atom.

(3) Describe all the generalized eigenfunctions of T whose eigenvalue is the
spectral radius of T , and represent the ascent of T as the maximal length in
the graph of critical atoms.

Except the characterization of atoms, all our results are proved under the assumption
that T is power compact.

We now give details on each of these aspects, discussing the relevant literature
after each statement.

1.2. On atoms. For a measurable set A, let its future F(A) (or its past P(A))
be the smallest invariant (or coinvariant) set containing A. When T is seen as
the transmission operator for an epidemic propagation, see Delmas, Dronnier and
Zitt [9], the future F(A) can be interpreted as the subpopulation of � which might
be infected by an epidemic starting in A, and P(A) can be interpreted as the
subpopulation of � which may contaminate the population A. Motivated by the
point of view of successive infections, we prove the following interpretation of the
future in Corollary 5.7, for A ∈ F :

eT (A) =

⋃
n∈N

T n(A) = F(A).

We say the operator T on L p is irreducible if its only invariant sets are a.e. equal
to ∅ or �; in particular F(A) = P(A) = � for any measurable set A with positive
measure. We say that a set A ∈ F is irreducible if it has positive measure and the
operator TA = 1AT (1A · ) restricted to the set A is irreducible.

Motivated by the example of Volterra operator, see Example 4.4 below for details,
and by an analogy with order theory, we say that an admissible set A is convex if
A = P(A) ∩ F(A).
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Our first result gives equivalent characterizations of atoms using convex sets and
irreducible sets.

Theorem 1 (equivalent definitions of atoms). Let T be a positive operator on L p

with p ∈ (1, +∞). The following properties are equivalent.

(i) The set A is an atom.

(ii) The set A is minimal among convex sets with positive measure.

(iii) The set A is an admissible irreducible set.

(iv) The set A is a maximal irreducible set.

Notice that atoms are pairwise disjoint. Following [27], when T is power compact,
we can write � as an at most countable partition of the atoms and a (possibly empty)
set �0; furthermore T is irreducible on each atom and quasinilpotent on �0.

Remark 1.1 (related notions and results). Various definitions and properties of
atoms already appear in the literature. Our definition of invariance and atoms are
adapted from Schwartz [27], see also Victory [29; 30]. The past of a set appears
in Nelson [22] (as the closure) and in Jang-Lewis and Victory [19] (as closure for
bands in a Banach lattice). Irreducibility corresponds to ideal-irreducibility from
Schaefer [26, Chapter 2.8]. Maximal irreducible sets appear in [22] and [29] for
kernel operators (where they are called components), and Omladič and Omladič [23]
for more general Banach lattices (where they are called classes). Convexity of atoms
is used in the proof of [27, Lemma 12]; the irreducible bands used in the Frobenius
decomposition from Jang and Victory [18] are convex irreducible sets, and the
semiinvariant bands, considered by Bernik, Marcoux and Radjavi [5] are in particular
convex. However, to the best of our knowledge, convexity has not been studied for
its own sake in this setting, and the equivalence provided by Theorem 1 is new.

Finally, the decomposition of the space in atoms and a part where T is quasinilpo-
tent is essentially due to Schwartz [27]. It corresponds, for nonnegative matrices,
to the Frobenius normal form introduced by Victory [31], that is, a block triangu-
larization of the matrix according to the communication classes. Notice that the
triangularization of matrices has been extended to (bounded) operators in Banach
spaces by Ringrose [24] using invariant spaces, see also Dowson [10, Section 2].

To conclude this section, we also stress that the atoms of T and of its power,
say T n for some fixed n ≥ 1, might not coincide. More precisely, according to
Proposition 5.9, a T n-atom is included in a T -atom, and any T -atom is the union
of d T n-atoms where d divides n.

1.3. Nonnegative eigenfunctions. From now on we assume that the positive oper-
ator T is power compact with positive spectral radius ρ(T ) > 0. An eigenfunction
of T might be called a right eigenfunction to distinguish it from a left eigenfunction
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of T which corresponds to a right eigenfunction of the dual operator T ⋆. For
a (nonzero) eigenfunction v of T , let ρ(v) denote the corresponding eigenvalue:
T v = ρ(v)v (and similarly for left eigenfunctions). In what follows, uniqueness of
eigenfunctions is understood up to a multiplicative constant.

Let us recall briefly two key results on nonnegative eigenfunctions for positive
power compact operators, see Theorem 6.2. Let m(λ, T ) denote the algebraic multi-
plicity of λ∈C∗, that is, the dimension of

⋃
k∈N Ker (T −λ Id)k . Recall that λ∈C∗ is

an algebraically simple eigenvalue if m(λ, T ) = 1. According to the Krein–Rutman
theorem, ρ(T ) is an eigenvalue of T , and there exists corresponding nonnegative
right and left eigenfunctions. Furthermore, if ρ(T ) is positive and if T is irreducible,
the Perron–Jentzsch theorem states that the eigenvalue ρ(T ) is algebraically simple,
and the corresponding right and left eigenfunctions are in fact positive.

Our first result of this section characterizes monatomic operators, that is, operators
having a unique nonzero atom, in terms of nonnegative eigenfunctions. Take care
that a monatomic can have many atoms, only one of them being nonzero, see
Example 6.14 for a monatomic operator with two atoms.

In the next theorem, we say that there exists a unique right (or left) nonnegative
eigenfunctions of T related to a nonzero eigenvalue if there exists u ∈ L p a right
(or u ∈ Lq a left) nonnegative eigenfunction with ρ(u) ̸= 0 such that if u′ is a right
(or left) nonnegative eigenfunction with ρ(u′) ̸= 0, then u′

= c u for some c ∈ R.

Theorem 2 (characterization of monatomic operators). Let T be a positive power
compact operator on L p with p ∈ (1, ∞). Assume that its spectral radius is positive.
The following properties are equivalent.

(i) The operator T is a monatomic.

(ii) The spectral radius ρ(T ) is an algebraically simple eigenvalue of T and there
exist a unique right and a unique left nonnegative eigenfunctions of T related
to a nonzero eigenvalue.

(iii) There exist a unique right and a unique left nonnegative eigenfunctions of T
related to a nonzero eigenvalue, say u and v, and supp(u) ∩ supp(v) has
positive measure.

Furthermore, when the operator T is monatomic, if u and v denote its unique
right and unique left nonnegative eigenfunctions, then ρ(u) = ρ(v) = ρ(T ) and
supp(u) ∩ supp(v) is the nonzero atom.

Remark 1.2 (on monatomicity). Monatomicity is a natural extension of irreducibil-
ity which generalizes the notion of quasiirreducibility defined for symmetrical
operators, see Bollobás, Janson and Riordan [7, Definition 2.11]. Monatomic
operators naturally appear when studying the concavity property of the function
η 7→ ρ(TMη) where η is a [0, 1]-valued measurable function defined on � and Mη
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the multiplication by η operator defined on L p, see, e.g., Delmas, Dronnier and Zitt
[8, Lemma 5.10] and its discussion for additional references in epidemiology.

More generally, we may characterize nonnegative eigenfunctions in terms of
the atoms appearing in their support. Let us give a few more definitions. Let A
denote the set of atoms (which is at most countable and might be empty); and we
introduce a (partial) order ≼ and the corresponding strict order ≺ on this set (see
Proposition 4.22): for two atoms A, B, we write B ≺ A if B ⊂ F(A)\ A. A family
of atoms is an antichain if no two atoms in the family satisfy B ≺ A. For any
atom A, let ρ(A) be the spectral radius of the restriction of TA to A. Let us say that
an atom A is distinguished if, for any atom B, B ≺ A implies that ρ(B) < ρ(A),
and that an eigenvalue λ is distinguished if there exists a distinguished atom A with
ρ(A)=λ. For λ∈ R∗

+
, we consider the (finite but possible empty) set A(λ) of atoms

with spectral radius λ and the subset Adist(λ) of distinguished atoms associated to λ:

A(λ) = {A ∈ A : ρ(A) = λ} and Adist(λ) = {A ∈ A(λ) : A is distinguished}.

To any distinguished atom A, we may associate a unique (up to a multiplicative
constant) nonnegative eigenfunction denoted wA such that supp(wA) = F(A) and
furthermore ρ(wA) = ρ(A) (see Proposition 6.11(iii)); and then the following holds.

Theorem 3 (characterization of nonnegative right eigenfunctions). Let T be a
positive power compact operator on L p with p ∈ (1, +∞). Let λ > 0. We have the
following properties.

(i) There exists a nonnegative eigenfunction of T with eigenvalue λ if and only if
λ is a distinguished eigenvalue.

(ii) The set Adist(λ) is a (possibly empty) finite antichain of atoms, and the family
(wA)A∈Adist(λ) is linearly independent.

(iii) The cone of nonnegative right eigenfunctions of T with eigenvalue λ is the
conical hull of {wA : A ∈ Adist(λ)}, and more precisely: if v is a nonnegative
eigenfunction with ρ(v) = λ, then we have

v =

∑
A∈Adist(λ)

cAwA,

where cA ∈ R+, and cA > 0 if and only if A ⊂ supp(v).

Remark 1.3 (related results). The theorem is in essence a reformulation of results
by Jang-Lewis and Victory. More precisely, definitions and characterization of
distinguished atoms and eigenvalues appear in [17; 19; 28; 29]; statement (i) is in
[19, Theorem IV.1] in the more general context of power compact operators on a
Banach lattice with an order continuous norm, and (iii) appears in [29, Corollary 1]
for power compact kernel operators on L p. See also [14] which gives conditions
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for the kernel of T − ρ(T )Id to be spanned by nonnegative eigenfunctions in a
more general context.

The salient point of our approach is that it leverages the decomposition of the
multiplicities of the eigenvalues given in [27, Theorem 7] and our characterization
of atoms from Theorem 1 to provide simpler and shorter proofs.

1.4. Critical atoms and generalized eigenspace. We now give a particular attention
to the atoms associated to ρ(T ). We define the generalized eigenspace:

K (T ) =

⋃
k∈N

Ker (T − ρ(T )Id)k .

Following [11] and [20], we define, with the convention inf∅ = +∞, the ascent
of T at its spectral radius ρ(T ) by

αT = inf
{
k ∈ N : Ker (T − ρ(T )Id)k

= Ker (T − ρ(T )Id)k+1}.
It is well known, see [20], that when the operator T is power compact, the ascent αT

is finite.
An atom A is critical when we have ρ(A)=ρ(T ), and we denote Acrit =A(ρ(T ))

the set of the critical atoms. For n ≥1, a chain of length n is a sequence (A0, . . . , An)

of elements of Acrit such that Ai+1 ≺ Ai for all 0 ≤ i < n. The height h(A) of a
critical atom A is one plus the maximum length of a chain starting at A.

Our last result is the following.

Theorem 4 (ascent and maximal height). Let T be a positive power compact
operator on L p with p ∈ (1, +∞) with positive spectral radius. Then the ascent
of T at its spectral radius ρ(T ) is equal to the maximal height of the critical atoms:

αT = max
A∈Acrit

h(A).

This result is also stated in [18; 19] for positive power compact operators on
Banach lattices with order continuous norm, see also [16] for an example where
the norm is not order continuous. We provide here a shorter proof using properties
of convex sets.

1.5. Structure of the paper. After recalling basic notions on Banach spaces in
Section 2, we introduce the invariant/admissible/irreducible sets and the atoms
associated to a positive operator T on L p in Section 3. In Section 4, we first define
convex sets, which can be characterized as the intersection of an invariant set and a
coinvariant set (that is, an invariant set for the dual operator T ⋆). We then prove
our first main result, Theorem 1 (see Theorem 4.18), on equivalent definitions of
atoms. We compare in Section 5 the admissible/irreducible sets and atoms of T
and T n , see Proposition 5.9.
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In Section 6, considering a power compact positive operator, we characterize the
cone of nonnegative eigenfunctions with the same eigenvalue, proving Theorem 3
(see Theorem 6.12), and provide the equivalent characterizations of monatomic op-
erators from Theorem 2 (see Theorem 6.15). Section 7 is devoted to the generalized
eigenfunction associated to the eigenvalue ρ(T ) and Theorem 4 (see Theorem 7.3
and Corollary 7.4).

2. Notation

2.1. Ordered set. In what follows, an order relation is understood to be a partial
order relation. Let (E, ≤) be an ordered set, also called poset. Whenever it exists,
the supremum of A ⊂ E , denoted by sup(A), is the least upper bound of A (formally,
sup(A) ∈ E is defined by: for all x ∈ A, x ≤ sup(A) and if for some z ∈ E one has
x ≤ z for all x ∈ A, then sup(A) ≤ z). A collection (xi )i∈I of elements of E is an
antichain if for all distinct i, j ∈ I, the elements xi and x j are not comparable for
the order relation. A set D ⊂ E is a downset if for all x ∈ D, y ∈ E , the relation
y ≤ x implies y ∈ D.

2.2. Banach space and Banach lattice. Let (X, ∥ · ∥) be a complex Banach space
not reduced to {0}. An operator T on X is a bounded linear (and thus continuous)
map from X to itself. If Y ⊂ X is a subspace of X such that T (Y ) ⊂ Y , we denote
by T |Y the restriction of T to the subspace Y ; this is an operator on the normed
vector space (Y, ∥ · ∥). The operator norm of T is given by

∥T ∥X = sup{∥T (x)∥ : x ∈ X s.t. ∥x∥ = 1},

its spectrum by Sp(T ) = {λ ∈ C : T −λ Id is not bijective}, where Id is the identity
operator on X , and its spectral radius (see [25, Theorem 18.9]) by

(1) ρ(T ) = sup{|λ| : λ ∈ Sp(T )} = lim
n→∞

∥T n
∥

1/n
X .

By convention we set T 0
= Id.

Let X⋆ denote the (topological) dual Banach space of X , that is, the set of
all the bounded linear forms on X . For x ∈ X , x⋆

∈ X⋆, let ⟨x⋆, x⟩ denote the
duality product. For an operator T , the dual operator T ⋆ on X⋆ is defined by
⟨T ⋆x⋆, x⟩ = ⟨x⋆, T x⟩ for all x ∈ X , x⋆

∈ X⋆.
If λ ∈ C and v ∈ X\{0} satisfy T (v) = λv, we say that v is a right eigenfunction

of T , λ is a right eigenvalue of T , and, in view of the forthcoming Corollary 6.9,
shall write λ = ρ(v). Any right eigenvalue (or eigenfunction) of T ⋆ is called a left
eigenvalue (or eigenfunction) of T . Unless there is an ambiguity, we shall simply
write eigenvalue and eigenfunction for right eigenvalues and eigenfunctions.

An ordered real Banach space (X, ∥ · ∥, ≤) is a real Banach space (X, ∥ · ∥) with
an order relation ≤ satisfying:
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• For any x, y, z ∈ X, λ ≥ 0 such that x ≤ y, we have x + z ≤ y + z and λx ≤ λy.

For any x ∈ X , we define |x | = sup({x, −x}) the supremum of x and −x whenever
it exists. Following [26, Section 2], the ordered Banach space (X, ∥ · ∥, ≤) is a
Banach lattice if:

• For any x, y ∈ X , there exists a supremum of x and y in X .

• For any x, y ∈ X so that |x | ≤ |y|, we have ∥x∥ ≤ ∥y∥.

Let (X, ∥ · ∥, ≤) be a real Banach lattice. A vector subspace Y of X is an ideal if

x ∈ Y, y ∈ X, |y| ≤ |x | =⇒ y ∈ Y.

Let T be an operator on X . A set Z ⊂ X is T -invariant, or simply invariant when
there is no ambiguity, if T (Z) ⊂ Z . An operator T on X is positive if the positive
cone X+ = {x ∈ X : x ≥ 0} is invariant. The operator T is ideal-irreducible if the
only invariant closed ideals of X are {0} and X , see [26, Definition III.8.1].

Any Banach lattice X and any operator T on X admits a natural complex exten-
sion, see [1, Section 3.2]. The spectrum of T will be identified as the spectrum
of its complex extension and denoted by Sp(T ), furthermore by [1, Lemma 6.22],
the spectral radius of the complex extension is also given by limn→∞∥T n

∥
1/n
X .

Moreover, by [1, Corollary 3.23], if T is positive (seen as an operator on the real
Banach lattice X ), then T and its complex extension have the same norm. If S
and T are two operators on X , we write T ≤ S if the operator S − T is positive. If
T , S and S − T are positive, then we have ρ(T ) ≤ ρ(S), see [21, Theorem 4.2].

2.3. Lebesgue spaces. Let (�,F, µ) be a measured space with µ a σ -finite mea-
sure such that µ(�) > 0. For any A ⊂ F , we denote by σ(A) the σ -field generated
by A. If f, g are two real-valued measurable functions defined on �, we write
f ≤ g a.e. (or f = g a.e.) when µ({ f > g}) = 0 (or µ({ f ̸= g}) = 0), and
denote supp( f ) = { f ̸= 0} the support of f . We say that a real-valued measurable
function f is nonnegative when f ≥ 0 a.e., and we say that f is positive, denoted
f > 0 a.e., when µ({ f ≤ 0}) = 0. If A, B ⊂ � are measurable sets, we write A ⊂ B
a.e. (or A = B a.e.) when 1A ≤ 1B a.e. (or 1A = 1B a.e.). For the sake of clarity,
we will omit to write a.e. in the proofs. We shall consider the following definition
of minimal/maximal sets.

Definition 2.1 (minimal or maximal set for a property P). Let P ⊂ F be a class of
measurable sets. We say that A ∈ F is minimal for P if A ∈ P and for any B ∈ P
such that B ⊂ A a.e., we have B = ∅ a.e. or B = A a.e. We say that A ∈ F is
maximal for P if Ac is minimal for {Bc

: B ∈ P}.

We will usually say “minimal+property set” for a minimal (measurable) set for
the corresponding property. For example, an atom of µ is any minimal measurable
set with positive measure, that is, any minimal set of P = {A ∈ F : µ(A) > 0}.



ATOMS AND SPECTRAL PROPERTIES FOR POSITIVE OPERATORS ON L p 95

Lemma 2.2 (existence of a minimal set). Let P ⊂ F be a class of measurable sets
stable by countable intersection. Then there exists a measurable set minimal for P ,
and it is unique up to an a.e. equality.

Proof. Recall from [13, Appendix A.5] (where the result is stated for µ a probability
measure, but can be easily extended to a σ -finite measure) that if { fi : i ∈ I } is a
(possibly uncountable) family of [−∞, +∞]-valued measurable functions defined
on �, then there exists a [−∞, +∞]-valued measurable function f , called the
essential infimum of { fi : i ∈ I } such that:

(i) For all i ∈ I , fi ≥ f a.e.

(ii) If g is another [−∞, +∞]-valued measurable function satisfying (i), then a.e.
f ≥ g.

Furthermore, there exists an at most countable set I ′
⊂ I such that a.e. f = infi∈I ′ fi .

We consider f the essential infimum of {1B : B ∈ P}. Thus, there exists an at
most countable set P ′

⊂ P such that a.e. f = infB∈P ′ 1B , that is, a.e. f = 1B ′ with
B ′

=
⋂

B∈P ′ B. Since P is stable by countable intersection, we get that B ′ belongs
to P . Property (i) above on the essential infimum implies also that B ′

⊂ B a.e.
for all B ∈ P . Thus the set B ′ is minimal for P . This provides the existence of a
minimal set for P .

Let B ′′ be an other minimum of P . By property (ii), we get that B ′
⊂ B ′′ a.e.,

and thus B ′′
= B ′ a.e., that is, the minimum is unique up to an a.e. equality. □

For a measurable function f , we write µ( f ) =
∫

f dµ =
∫
�

f (x) µ(dx) the
integral of f with respect to µ when it is well defined. For p ∈ (1, +∞), the
Lebesgue space L p(�,F, µ) is the set of all real-valued measurable functions f
defined on � whose L p-norm, ∥ f ∥p = µ(| f |

p)1/p, is finite and where functions
which are a.e. equal are identified. When there is no ambiguity we shall simply
write L p(�) or L p. The set (L p, ∥ · ∥p) is a Banach space with dual (Lq , ∥ · ∥q),
where 1/p + 1/q = 1. The duality product is thus ⟨g, f ⟩ =

∫
f g dµ for f ∈ L p

and g ∈ Lq . The Banach space L p endowed with the usual order f ≤ g, that is,
µ({ f > g}) = 0, is a Banach lattice. The positive cone L p

+ is the subset of L p of
nonnegative functions. According to [32, Section 2] and [26, Theorem II.5.14], its
closed ideal are the sets

(2) L p
A = { f ∈ L p

: f 1Ac = 0},

where A ⊂ � is measurable. The support supp( f ) for f ∈ L p is understood up to
an a.e. equality, it is formally defined as a minimal set of P = {A ∈ F : 1Ac f = 0};
and since P is stable by countable intersection the minimal set is unique up to an
a.e. equality thanks to Lemma 2.2.
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Let T be an operator on L p. Thanks to [12, Corollary 1.3], T and its complex
extension on the natural complex extension of L p have the same L p-norm. Let
A ⊂ � be measurable. We define the projection operator of T on A, denoted TA, by

(3) TA = MATMA, where the operator MA is the multiplication by 1A,

and, if µ(A)>0, with a slight abuse of terminology, we define by T | A the restriction
of the operator TA to L p(A), where the set A is endowed with the trace of F on A
and the measure µ| A( · )=µ(A∩ · ). When there is no ambiguity on the operator T ,
we simply write ρ(A) for the spectral radius of TA (which is also the spectral radius
of T | A). In particular, we have ρ(�) = ρ(T ) and ρ(A) = 0 if µ(A) = 0. If the
operator T is positive, we also have that

A ⊂ B =⇒ ρ(A) ≤ ρ(B).

A kernel k is a measurable nonnegative function defined on (�2,F⊗2). We
define for a real-valued measurable function f defined on �, such that the map
k(x, · ) f ( · ) belongs to L1 for a.e. x ∈ �, the function Tk( f ) by

(4) Tk( f )(x) =

∫
�

k(x, y) f (y) µ(dy) for x ∈ �.

When it is well defined as an operator on L p, we call Tk the kernel operator
associated to k.

3. Invariant sets of a positive operator

We consider the Lebesgue space L p
= L p(�,F, µ) with µ a nonzero σ -finite

measure and p ∈ (1, +∞). In this preliminary section, we introduce the notion of
invariant sets, atoms, future and past of sets, and link invariance to irreducibility.

3.1. Invariance and atoms. The ideal-irreducibility of a positive operator can be
described in terms of sets rather than functions. We follow the presentation of
Schwartz [27] (notice µ is assumed to be finite therein). Recall we say a measurable
function f is positive if µ( f ≤ 0) = 0.

Let T be a positive operator on L p. Let f ∈ L p and g ∈ Lq be two positive
functions (with 1/p+1/q = 1). We define the nonnegative function k[g, f ]

T on F2 as,
for A, B ∈ F :

k[g, f ]

T (B, A) = ⟨g1B, T ( f 1A)⟩ =

∫
B

g(x) T ( f 1A)(x) µ(dx).

Notice that for A, B ∈ F we have

(5) k[ f,g]

T ⋆ (B, A) = k[g, f ]

T (A, B).
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We shall consider the zeros of k[g, f ]

T , that is, the set

(6) ZT = {(B, A) ∈ F2
: k[g, f ]

T (B, A) = 0}.

Let us stress that the set ZT does not depend on the choice of the positive functions
f ∈ L p and g ∈ Lq ; this is indeed a direct consequence of the following equivalences:

(7) k[g, f ]

T (B, A)=0 ⇐⇒ 1B T ( f 1A)=0 a.e. ⇐⇒ T ⋆(g1B)1A =0 a.e.,

where the first equivalence is a consequence of g positive, and the second of f
positive using that T ⋆ is the dual operator and ⟨g1B, T ( f 1A)⟩ = ⟨T ⋆(g1B), f 1A⟩.
For this reason, as long as we consider the zeros of k[g, f ]

T , when there is no ambiguity,
we shall simply write

(8) kT = k[g, f ]

T .

Notice that for any A ∈ F , the maps kT ( · , A) and kT (A, · ) on F are σ -additive
and nonnegative.

We denote by T (A) the support (which is defined a.e.) of T ( f 1A) for f ∈ L p a
positive function, which does not depend on the choice of the positive function f .
More formally, we have the following definition.

Definition 3.1 (T (A)). Let A ⊂ �. Let T be a positive operator on L p with
p ∈ (1, +∞). The set T (A) is the unique minimal set (up to an a.e. equality) of
P = {B ∈ F : kT (Bc, A) = 0}.

Notice the (unique) minimal set of P exists by Lemma 2.2, since the class P is
stable by countable intersection. By construction, we have T (A) = supp(T ( f 1A))

a.e. for all positive f ∈ L p.
We can now introduce the definition of invariant sets.

Definition 3.2 (invariant and coinvariant sets). Let T be a positive operator on L p

with p ∈ (1, +∞). A set A is T -invariant or simply invariant if it is measurable
and k(Ac, A) = 0; it is T -coinvariant or simply coinvariant if Ac is T -invariant.
We denote by I the class of the invariant sets.

If A is an invariant set and B = A a.e., then B also is invariant. Note also that A
is T -coinvariant if and only if A is T ⋆-invariant thanks to (5), and that the following
equivalences hold:

(9) A is invariant ⇐⇒ ∃h ∈ L p
+, supp(h) = A, and T (h) = 0 on Ac.

The next lemma is a direct consequence of the σ -additivity of kT .

Lemma 3.3 (countable union and intersection of invariant sets). Let T be a positive
operator on L p with p ∈ (1, +∞). Any at most countable union or intersection of
invariant (or coinvariant) sets is invariant (or coinvariant).
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We have the following characterization of invariance using closed ideals.

Lemma 3.4 (invariant sets and invariant closed ideals). Let T be a positive operator
on L p with p ∈ (1, +∞), and A a measurable set. The set A is T -invariant if and
only if the closed ideal L p

A is T -invariant.

Proof. We first assume that A is invariant. Let h ∈ L p
A, that is, h ∈ L p and h1Ac = 0.

Let f ′
∈ L p and g ∈ Lq be positive and set f = f ′

+ |h|. Since A is invariant, we
have k[g, f ]

T (Ac, A) = 0. This gives

0 = ⟨g1Ac , T ( f 1A)⟩ ≥ ⟨g1Ac , T (|h|)⟩ ≥ ⟨g1Ac , |T (h)|⟩ ≥ 0,

where we used the positivity of T for the inequalities. We get that T (h)1Ac = 0,
that is, T (h) ∈ L p

A. Thus the ideal L p
A is invariant.

We now assume that the ideal L p
A is invariant. For f ∈ L p and g ∈ Lq positive,

we have that g1Ac T ( f 1A) = 0. Therefore k[g, f ]

T (Ac, A) = 0, thus the set A is
invariant. □

Example 3.5 (the Volterra operator). Consider
(
�=[0, 1],F =B([0, 1]), Leb

)
, the

measured space with F the Borel subsets of [0, 1] and Leb the Lebesgue measure
on [0, 1], and the kernel k on [0, 1] defined by

k(x, y) = 1{x≥y} for x, y ∈ [0, 1].

The corresponding kernel operator Tk given by (4) is the so-called Volterra operator
(see [4] for some spectral and compactness properties of Volterra operators). One
can see that a measurable set A ⊂ [0, 1] is Tk-invariant (or Tk-coinvariant) if and
only if A = [a, 1] a.e. (or A = [0, a] a.e.) with a ∈ [0, 1].

We give an immediate application of Lemma 3.4.

Lemma 3.6 (T and T n invariant sets). Let T be a positive operator on L p with
p ∈ (1, +∞) and n ∈ N∗. Any T -invariant set is T n-invariant.

We give another example of invariant sets, which will be useful later on.

Lemma 3.7 (the support of a nonnegative eigenfunction is invariant). Let T be a pos-
itive operator on L p with p ∈ (1, +∞) and v be a nonnegative right eigenfunction
of T . Then the support of v is an invariant set: supp(v) ∈ I.

Proof. Let f ∈ L p be positive such that f 1{v>0} = v, and g ∈ Lq positive. We have

k[g, f ]

T (supp(v)c, supp(v)) = ⟨g1{v=0}, T ( f 1{v>0})⟩

= ⟨g1{v=0}, T (v)⟩ = ρ(v)⟨g1{v=0}, v⟩ = 0,

where we used that f 1{v>0} =v for the second equality and that v is an eigenfunction
of T with eigenvalue ρ(v) for the third one. This proves that the set supp(v) is
T -invariant as the zeros of the map k[g, f ]

T does not depend on the choice of the
positive functions f and g. □
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In some cases, invariance is the same for an operator and its resolvent.

Lemma 3.8 (resolvent of a positive operator). Let T be a positive operator on L p

with p ∈ (1, +∞). If λ ∈ R satisfies λ > ρ(T ), then the operator λ Id −T is
invertible, and its inverse is a positive operator on L p. Moreover, the (λ Id −T )−1-
invariant sets are exactly the T -invariant sets.

Proof. Since we have λ > ρ(T ), the operator (λ Id −T ) is invertible, and its inverse
is given by its Neumann series

(λ Id −T )−1
=

+∞∑
n=0

λ−n−1T n.

This proves that the operator (λ Id −T )−1 is positive as sum of positive operators.
Thanks to Lemma 3.6, T -invariant sets are (λ Id −T )−1-invariant sets; and using
the Neumann series, for any (λ Id −T )−1-invariant set A, we get

0 =

∫
1Ac(λ Id −T )−1(1A) ≥ λ−2

∫
1Ac T (1A) ≥ 0,

and thus A is T -invariant. Therefore, the (λ Id −T )−1-invariant sets are exactly the
T -invariant sets. □

Following [27], we consider the atoms associated to T .

Definition 3.9 (admissible set and atoms). Let T be a positive operator on L p

with p ∈ (1, +∞). A set which belongs to the σ -field A = σ(I) generated by
the family I of invariant sets is called admissible. A minimal admissible set with
positive measure is called an atom of the operator T or a T -atom.

Notice that a set of positive measure A is a T -atom if and only if it is an atom
for the measured space (�,A, µ). We denote by A the set of atoms:

A = {A ∈ A : A is a T -atom}.

Since atoms have positive measure and the measure µ is σ -finite, we deduce that
the set A is at most countable. When there is no ambiguity on the operator T , we
shall simply write atom for T -atom. We present Example 3.10 below where there
is no atom, and Example 3.11 where not all measurable sets are admissible.

Example 3.10 (the Volterra operator). In Example 3.5 on the Volterra operator Tk ,
the admissible σ -field is the Borel σ -field on [0, 1]: A = F . Notice that the
operator Tk has no atom A = ∅.

Example 3.11 (A ̸= F). Consider
(
� = [0, 1],F = B([0, 1]), Leb

)
, the measured

space with F the Borel subsets of [0, 1] and Leb the Lebesgue measure on [0, 1],
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and the kernel k on [0, 1] defined by (see Figure 1, left)

(10) k(x, y) = 1{x≤1/2≤y≤x+1/2} + 1{x≥1/2} 1{y≤x−1/2}.

Let A ⊂ [0, 1] be a measurable set. Then A is Tk-invariant if and only if
for a.e. x ∈ Ac

∩ [0, 1/2], we have Leb([1/2, x + 1/2] ∩ A) = 0 and for a.e.
x ∈ Ac

∩ [1/2, 1], we have Leb([0, x − 1/2] ∩ A) = 0. Thus, A is Tk-invariant if
and only if for a.e. x ∈ Ac

∩ [0, 1/2], we have [1/2, x + 1/2] ⊂ Ac a.e. and for a.e.
x ∈ Ac

∩ [1/2, 1], we have [0, x − 1/2] ⊂ Ac a.e. Thus A is Tk-invariant if and
only if A = [a, 1/2] ∪ [a + 1/2, 1] a.e. with a ∈ [0, 1/2]. Therefore the σ -field A
of Tk-admissible sets consists in all the measurable sets which are a.e. equal to
A ∪ (A + 1/2) where A ⊂ [0, 1/2] is a Borel set. In particular, we have A ̸= F .
Notice the operator Tk has no atom: A = ∅.

3.2. Future and past. We now consider the future and past of a set, and refer to
Remark 4.1 below for an epidemiological interpretation. Recall the Definition 2.1
on minimal and maximal set.

Definition 3.12 (future and past). Let T be a positive operator on L p with p ∈

(1, +∞). Let A be a measurable set. We define its future, F(A), as the minimal
invariant set containing A (that is, the minimal set of P = {B ∈ I : A ⊂ B a.e.})
and its past, P(A), as the minimal coinvariant set containing A.

We shall use later on the following notation for the future and past of a set A
without A:

(11) F∗(A) = F(A) ∩ Ac and P∗(A) = P(A) ∩ Ac.

The next lemma ensures the existence of the future and the past.

Lemma 3.13 (existence of future and past). Let T be a positive operator on L p

with p ∈ (1, +∞). Let A ∈F , then its future and its past exist and are unique, up to
an a.e. equality.

Figure 1. Example of some [0, 1]-valued kernels on [0, 1]: kernel k
defined in (10) (left) and kernel k⊗2 defined in (15) (right).
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Proof. We only consider the future, as the proof concerning the past is similar. The
set P ={B ∈ I : A ⊂ B a.e.} is stable by countable intersection thanks to Lemma 3.3.
Lemma 2.2 ensures the existence of a minimal set for P . The uniqueness is also
clear. This provide the existence of the future of A. □

Let us mention that the “k-closure” of a set for a kernel operator Tk introduced
by Nelson [22, p. 714] correspond to its past (with respect to the invariant sets
associated to Tk). Let us gather without proof a number of elementary facts.

Lemma 3.14 (basic properties of the future of a measurable set). Let T be a positive
operator on L p with p ∈ (1, +∞). For any measurable sets A and B, and for any
at most countable family of measurable sets (Ai )i∈I , the following properties hold:

(i) F(∅) = ∅ a.e. and F(�) = � a.e.

(ii) A set A is invariant if and only if F(A) = A a.e.

(iii) If A ⊂ B a.e., then F(A) ⊂ F(B) a.e.

(iv) F
(⋃

i∈I Ai
)
=

⋃
i∈I F(Ai ) a.e.

(v) F
(⋂

i∈I Ai
)
⊂

⋂
i∈I F(Ai ) a.e. the reverse inclusion does not hold in general.

(vi) F(F(A)) = F(A) a.e.

The properties (i)–(vi) also hold with F replaced by P.

Futures and pasts are related by the following elementary result; by contrast,
note that the inclusion A ⊂ F(B) does not imply that B ⊂ P(A) in general, see
Example 4.2.

Lemma 3.15 (intersection of a future and a past). Let T be a positive operator
on L p with p ∈ (1, +∞). Let A, B be two measurable sets. We have

A ∩ P(B) = ∅ a.e. ⇐⇒ F(A) ∩ P(B) = ∅ a.e. ⇐⇒ F(A) ∩ B = ∅ a.e.

Proof. If A ∩ P(B) = ∅, then A is included in P(B)c. Since P(B)c is invariant,
we have F(A) ⊂ P(B)c by minimality, which means that F(A)∩ P(B) = ∅. The
converse is clear since A ⊂ F(A). The second equivalence is proved similarly. □

3.3. Irreducibility. Similarly to Schaefer [26, Definition III.8.1], we can define
the irreducibility of an operator in terms of invariance.

Definition 3.16 (irreducible operators and invariant sets). Let T be a positive
operator on L p with p ∈ (1, +∞).

(i) The operator T is irreducible if its only invariant sets are a.e. equal to ∅ or �.

(ii) The measurable set A is T -irreducible or simply irreducible if it is measur-
able with positive measure and if the restricted operator T | A on L p(A) is
irreducible.
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We stress that an irreducible positive operator on L p is nonzero if dim(L p) > 1
(that is, if there exists B ∈ F such that µ(B) and µ(Bc) are positive).

We refer to Lemma 4.14 and Theorem 4.18 for relations between irreducible sets
and atoms. See Example 5.4 for a comment on the irreducible sets of T and of T 2.
We now state explicitly the relation between invariance and irreducibility from
Section 2.2 and from Definitions 3.2 and 3.16. Recall the definition of the closed
ideal in (2).

Lemma 3.17. Let T be a positive operator on L p with p ∈ (1, +∞). Then the
operator T is irreducible if and only if it is ideal-irreducible.

Proof. It is a direct consequence of Lemma 3.4 and the fact that the closed ideals
of L p are exactly given by L p

A for A measurable, see [32, Section 2] and [26,
Theorem II.5.14]. □

4. Convex sets and characterization of atoms

We first present a countable example with an epidemiological interpretation and
also introduce the notion of convex set; then we study the properties of convex
sets in a more general framework. Then provide one of the main results of this
paper on equivalent characterizations of atoms of a positive bounded operator on
the Lebesgue space L p

= L p(�,F, µ) with µ a nonzero σ -finite measure and
p ∈ (1, +∞). We keep notation from Section 3.

4.1. The countable case and an underlying preorder. We assume in this section
only that � is at most countable, and without loss of generality that µ({x}) > 0 for
all x ∈ �. Let T be a positive operator on L p. The map kT is entirely defined by the
values of kT ({x}, {y}), denoted kT (x, y) for x, y ∈ �. The notions of admissibility,
atoms, invariance and irreducibility may in that case be completely understood by
studying a particular binary relation on � given in terms of kT . To see this, we write
x ≼ y if x = y or if there exists n ∈ N∗ and (x = x0, x1, . . . , xn−1, xn = y) ∈ �n+1

such that
∏n

i=1kT (xi−1, xi ) > 0. The relation ≼ defines a preorder on � (that is, a
reflexive transitive binary relation). The relation x ∼ y, given by x ≼ y and y ≼ x ,
is then an equivalence relation. The equivalence classes of ∼ correspond to atoms
of the operator T , and the preorder ≼ naturally induces an order on them: for two
atoms A, B, we have A ≼ B if x ≼ y for all x ∈ A and y ∈ B. The admissible sets
are the sets A that may be written as unions of atoms (the σ -field A is generated by
the set of atoms). Furthermore, a set A is invariant if and only if the two following
conditions hold:

• A is the union of atoms {Ai : i ∈ I } (in particular, A is admissible).

• The family {Ai : i ∈ I } is a downset for the order induced by ≼ on atoms,
that is, for all i ∈ I and for all atom A, if A ≼ Ai then A ∈ {Ai : i ∈ I }.
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For a set A, its future corresponds to the downward closure of A, that is, the
smallest downset containing A, and its future and past are given by

F(A) =

⋃
x∈A

{y ∈ � : y ≼ x} and P(A) =

⋃
x∈A

{y ∈ � : x ≼ y}.

Notice that the definition of atoms, invariant sets, future and past of a set depends
only on the support {kT > 0} ⊂ �2 of the kernel kT .

Remark 4.1 (epidemiological interpretation). In the epidemiological interpretation
where each element of � is seen as an individual or an homogeneous subpopulation
and T can be assimilated to the next generation operator, we have:

• kT (x, y) > 0 means that individual y can directly infect individual x .

• x ≼ y when there may be a chain of infections from individual y to individual x .

• The set A is invariant if an epidemic started in A stays within A.

• The future F(A) of A is the set of all individuals that might get infected by an
epidemic starting at every individual of A.

• The past P(A) of A is the set of all individuals that might infect an individual
of A.

In Section 4.2 we consider convex sets, that is, sets A such that A = F(A)∩ P(A).
They have a simple representation when � is at most countable. Following the
terminology of [6, Section I.4, p. 7] we define the interval [x, y]={z ∈� : x ≼ z≼ y}

for x, y ∈ �, and say that a set A ⊂ � is (order-)convex if

x, y ∈ A =⇒ [x, y] ⊂ A.

It is easily checked that an order-convex set corresponds to being the union of atoms
(Ai )i∈I where the family (Ai )i∈I is order convex, that is, if A is an atom such that
Ai ≼ A ≼ Ai ′ for some i, i ′

∈ I , then A belongs to the family (Ai )i∈I .

Example 4.2 (a finite elementary case). We consider the finite case: �={1, . . . , n}

with n ∈ N∗, µ is the counting measure, L p(�) is identified with Rn and operators
on L p with n × n real matrices. A matrix M = (Mi, j )1≤i, j≤n with nonnegative
entries is alternatively represented by the oriented weighted graph G = (V, E) with
V = {1, . . . , n} and with a weight Mi, j to the edge ( j, i) ∈ E .

To illustrate, consider the case n = 6 with the matrix given in Figure 2 (left)
where the ⋆ correspond to positive terms. The corresponding communication graph
(an oriented edge is represented for each positive entry of the matrix) is given in
Figure 2 (right). The atoms are: {1, 2, 3}, {4}, {5} and {6}. The invariant sets are: �,
{4, 5, 6}, {4, 6}, {5, 6}, {6} and ∅. For example, the sets {1, 2, 3}, {1, 2} and {1} are
irreducible, and among those three only the first one is admissible. For example, the
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21 3

4 5

6



0 ⋆ 0 0 0 0
⋆ 0 ⋆ 0 0 0
0 ⋆ 0 0 0 0
0 ⋆ 0 0 0 0
0 ⋆ 0 0 0 0
0 0 0 ⋆ ⋆ 0


Figure 2. Matrix on {1, . . . , 6} with ⋆ > 0 (left) and associated commu-
nication graph (right) from Example 4.2.

sets {1, 2, 3, 4}, {5} and {5, 6} are convex. Even though the set {5}
c is admissible,

it is not convex.
Let us notice that the inclusion in Lemma 3.14(v) is not an equality in general;

indeed we have F({4} ∩ {5}) = F(∅) = ∅ whereas F({4})∩ F({5}) = {6}. Notice
also that {5} belongs to the future of {1, 2, 3, 4}, but the latter does not belong to
the past of {5}.

The countable state space � and the above representation of convex sets will
guide many definitions and proofs below. The general case is at the same time
more technical (invariant sets are defined up to an a.e. equality), and more subtle:
for example, the union of all atoms may be a strict subset of the whole space; it
may even be empty, as in Example 3.10 where there exists no atom of the Volterra
operator. For this reason we will work only on invariant and coinvariant sets,
viewing them intuitively as down- and up-sets of an underlying order that we will
not write down formally.

4.2. Order-convex subsets. By construction of the future and the past, a measurable
set A is always included in F(A)∩ P(A). The set A is convex when there is equality.

Definition 4.3 (order-convex subset). Let T be a positive operator on L p with
p ∈ (1, +∞). A set A is order-convex for T , or T -convex, if it is measurable and
A = F(A) ∩ P(A) a.e.

When there is no ambiguity on the operator T , we shall simply write convex for
T -convex.

Example 4.4 (convex sets of the Volterra operator). We continue Example 3.5 on
the Volterra operator. Using the description therein of invariant and coinvariant sets,
we get that a set A is convex if and only if A = [a, b] a.e. with 0 ≤ a ≤ b ≤ 1.

Remark 4.5 (atoms, irreducibility and convexity coincide for T and T ⋆). Notice
that the admissible σ -field is the same for the operator T and its dual T ⋆. Thanks
to (5), the operator T is irreducible if and only if T ⋆ is irreducible. Thus a set A is a
T -atom (or T -irreducible, T -convex) if and only if it is a T ⋆-atom (or T ⋆-irreducible,
T ⋆-convex).
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P∗(A)

A

F∗(A)

A0

Figure 3. Past and future for a T -convex set A. The three sets A, F∗(A)

and P∗(A) are disjoint as A is convex. Let A0 = (P(A)∪ F(A))c, so that
the four sets A, F∗(A), P∗(A) and A0 form a partition of � in admissible
sets. The possible connections between the four sets are depicted in the
picture: if there is no arrow from B to C then kT (C, B) = 0.

Remark 4.6 (convex sets on a countable measurable set). We go back to the
framework of Section 4.1, where � is an at most countable set. Then A is a convex
set in the sense of Definition 4.3 if and only if A is order-convex in the sense of the
definition of Section 4.1. Therefore the two definitions are coherent.

Recall (11), where we set F∗(A) = F(A) ∩ Ac and P∗(A) = P(A) ∩ Ac.

Lemma 4.7 (characterization of convexity). Let T be a positive operator on L p with
p ∈ (1, +∞). Let A be a measurable set. The following properties are equivalent:

(i) A is convex.

(ii) F∗(A) ∩ P∗(A) = ∅ a.e.

(iii) F∗(A) is invariant.

(iv) P∗(A) is coinvariant.

(v) There exist an invariant set B and a coinvariant set C such that A = B ∩C a.e.

As a particular consequence of (v), if A is measurable then F(A) ∩ P(A) is
convex. We illustrate in Figure 3 the possible connections between the sets A,
F∗(A), P∗(A) and the complementary of their union, when A is convex.

Proof. Use the definition of convexity and that Lemma 4.7(ii) is equivalent to
P(A)∩ F(A)∩ Ac

=∅ to get that (i) and (ii) are equivalent. Clearly (i) implies (v).
The proofs involving (iii) are similar to the ones involving (iv), so the latter are left
to the reader.

We assume (ii) and prove (iii). As F∗(A)∩ P∗(A) =∅, the set F∗(A) is a subset
of P∗(A)c. Therefore, the set F∗(A)= (A∪F∗(A))∩(A∪P∗(A))c

= F(A)∩P(A)c

is invariant as the intersection of two invariant sets. Thus (iii) holds.
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Conversely, assuming (iii), the set F∗(A) is invariant, so the set P(A) ∩ F∗(A)c

is a coinvariant set containing A and included in P(A). By minimality of P(A),
this set is equal to P(A), thus P(A) ⊂ F∗(A)c. This gives (ii).

Finally let us assume (v) and prove (i). By assumption, we have A = B ∩ C
with B invariant and C coinvariant. By minimality, we get that F(A) ⊂ B and
P(A) ⊂ C , and thus

A ⊂ F(A) ∩ P(A) ⊂ B ∩ C = A.

This gives that A is convex, that is, (i). □

We end this section with an auxiliary result on convexity.

Lemma 4.8 (intersection of convex and invariant sets). Let T be a positive operator
on L p with p ∈ (1, +∞). Let A be a convex set and B an invariant set. Then the
set A ∩ B is convex.

Proof. We have A ∩ B = P(A) ∩ F(A) ∩ B by definition of convexity. So by
Lemma 4.7 it is convex as the intersection of the coinvariant set P(A) with the
invariant set F(A) ∩ B. □

4.3. Properties of the projected operators. Let �′
⊂ � be a measurable set with

positive measure. Let T be a positive operator on L p with p ∈ (1, +∞). We start
with a result of stability of invariant/irreducible sets and atoms by projection. Recall
T�′ is the projection of T on �′ given by (3).

Lemma 4.9 (projection and invariance/irreducibility). Let T be a positive operator
on L p with p ∈ (1, +∞), �′

⊂ � a measurable set with positive measure, and
T ′

= T�′ the projection of T on �′. We have the following properties.

(i) The set �′ is T ′-invariant and T ′-coinvariant.

(ii) Every T -invariant set is T ′-invariant.

(iii) One can replace invariant in (ii) by coinvariant and by admissible.

(iv) The set A ⊂ �′ is T -irreducible if and only if it is T ′-irreducible.

(v) If �′ is T -invariant and A ⊂ �′, then A is T -invariant if and only if it is
T ′-invariant.

Proof. Since kT ′(�′c, · ) = kT ′( · , �′c) = 0, we obtain (i). Recall the definition
of ZT , the set of zeros of kT , given in (6). Since T is positive, we clearly have
kT ≥ kT ′ and thus ZT ⊂ ZT ′ . This gives (ii) and the coinvariant case in (iii). As
the invariant sets generates the σ -field of the admissible sets, we get the admissible
case of (iii). Point (iv) is immediate. For A ⊂ �′ we have

kT (Ac, A) = kT (Ac
∩ �′, A) + kT (Ac

∩ �′c, A) ≤ kT ′(Ac, A) + kT (�′c, �′).



ATOMS AND SPECTRAL PROPERTIES FOR POSITIVE OPERATORS ON L p 107

If �′ is invariant, and thus kT (�′c, �′) = 0, we deduce that if A is T ′-invariant,
then it is T -invariant. This and (ii) give (v). □

We now study the stability of convexity and future by projection. Let F ′(A)

denote the future of the measurable set A for the operator T ′
= T�′ .

Lemma 4.10 (projection and convexity/future). Let T be a positive operator on L p

with p ∈ (1, +∞), �′
⊂ � be a measurable set with positive measure, and T ′

= T�′

be the projection of T on �′. For any measurable set A ⊂ �′, the following
properties hold.

(i) If A is T -convex then it is T ′-convex.

(ii) We have a.e.

(12) F(A) = F(F(A) ∩ �′c) ∪ F ′(A).

(iii) If �′ is T -convex, then we have F ′(A) = F(A) ∩ �′ a.e. In particular, T ′-
invariant subsets of �′ are exactly the trace on �′ of T -invariant sets.

Proof. Let A ⊂ �′ be measurable sets. As F(A) is T -invariant, by Lemma 4.9(ii),
we then get that the set F(A)∩�′ is T ′-invariant, and similarly the set P(A)∩�′

is T ′-coinvariant. Since they both contain A, we deduce by the definition of the
future and past of a set, that

(13) F ′(A) ⊂ F(A) ∩ �′ and P ′(A) ⊂ P(A) ∩ �′.

If A is T -convex, we deduce that A ⊂ P ′(A) ∩ F ′(A) ⊂ P(A) ∩ F(A) = A. This
implies that A is T ′-convex, that is, (i).

We prove (ii). Setting B = F(A) ∩ �′c and C = F(B) ∪ F ′(A), the goal is to
prove that C = F(A). We shall first prove that C is T -invariant. Thanks to (13),
we have F(A) ∩ (�′

∩ F ′(A)c)c
= (F(A) ∩ �′c) ∪ F ′(A) ⊂ C , that is,

(14) Cc
⊂ F(A)c

∪ (�′
∩ F ′(A)c).

We deduce that

kT (Cc, C) ≤ kT (Cc, F(B)) + kT (F(A)c, F ′(A)) + kT (�′
∩ F ′(A)c, F ′(A))

≤ kT (F(B)c, F(B)) + kT (F(A)c, F(A)) + kT ′(F ′(A)c, F ′(A)) = 0,

where we used the additivity and monotonicity of kT and (14) for the first inequality;
the monotonicity of kT , F(B) ⊂ C , equation (13) (twice) and the definition of T ′

for the second; that F(B) and F(A) are T -invariant, and F ′(A) is T ′-invariant for
the last equality. Thus, the set C is T -invariant. As we have A ⊂ C ⊂ F(A) (use
A ⊂ F ′(A) ⊂ C for the first inclusion, and C ⊂ F(F(A)) ∪ F(A) = F(A) for the
second, see Lemma 3.14(vi) and (13)), we deduce by minimality of the future that
C = F(A). This gives (ii).
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We now prove (iii). Since �′ is T -convex, we have

F(A) ∩ �′c
= F(A) ∩ (F(�′) ∩ P(�′))c

= F(A) ∩ (F(�′)c
∪ P(�′)c).

Since F(A) ⊂ F(�′), we deduce that

F(A) ∩ �′c
= F(A) ∩ P(�′)c,

which is invariant as intersection of two invariant sets. Now, using (ii), we get
that F(A) = (F(A) ∩ �′c) ∪ F ′(A). Taking the intersection with �′ yields that
F(A) ∩ �′

= F ′(A). □

4.4. Properties of atoms. We first prove that atoms are convex and irreducible.

Lemma 4.11. Let T be a positive operator on L p with p ∈ (1, +∞). Then atoms
are convex.

Proof. Let A be an atom and set B = F(A) ∩ P(A). We consider the family of
measurable sets A′

= {C ∈F : C ∩ A =∅ a.e. or B ⊂ C a.e.}. For simplicity we do
not write a.e. anymore in this proof. Let C be an invariant set. As A is a minimal
admissible set, we have C ∩ A = ∅ or A ⊂ C . In the latter case, by minimality
of F(A), as C is invariant, we deduce that F(A) ⊂ C , and thus B ⊂ C . In any
case, we get that C belongs to A′, and thus A′ contains all the invariant sets, that is,
I ⊂ A′. A similar argument implies that A′ contains all the coinvariant sets, that is,
the complementary of all the invariant sets.

It is clear that A′ is stable by countable union and countable intersection. There-
fore, by [2, Theorem 4.2, p. 130], A′ contains the σ -field generated by I, that is,
A ⊂ A′. In particular, the set A belongs to A′. As A is an atom it has positive
measure. This gives that B ⊂ A. As A ⊂ F(A) ∩ P(A), we deduce that B = A,
that is, the set A is convex. □

Lemma 4.12. Let T be a positive operator on L p with p ∈ (1, +∞). Then atoms
are irreducible.

Proof. Let A be an atom. It is convex according to Lemma 4.11. Set T ′
= TA. Let

B ⊂ A be T ′-invariant (and thus T | A-invariant), and denote its future with respect
to T ′ by F ′(B). By Lemma 4.10(iii), we deduce that B = F ′(B) = F(B)∩ A. This
implies that B is T -admissible. Since A is an atom, we get that B = A or B = ∅.
This implies that T | A on L p(A) is irreducible, that is, A is irreducible. □

We then prove that intersections of irreducible sets with admissible sets are
trivial.

Lemma 4.13 (intersection of irreducible and admissible sets). Let T be a positive
operator on L p with p ∈ (1, +∞). If A is admissible and B irreducible, then either
A ∩ B = ∅ a.e. or B ⊂ A a.e.
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Proof. Let B be irreducible. Assume first the set A is invariant. According to
Lemma 4.9(i)–(ii) with �′

= B and Lemma 3.3, the intersection A ∩ B is invariant
for the operator TB , and thus also for its restricted operator T | B on L p(B). Since B
is irreducible, we deduce that A ∩ B =∅ a.e. or A ∩ B = B a.e. Thus the collection
of sets whose intersection with B is trivial, that is,

A′
= {C ∈ F : C ∩ B = ∅ a.e. or B ⊂ C a.e.},

contains all invariant sets.
It is clear that A′ is stable by countable union and complement, so it contains

the σ -field A of the admissible sets which is generated by the invariant sets, that is,
A ⊂ A′. Thus the set A belongs to A′ and satisfies A ∩ B = ∅ or B ⊂ A. □

We directly deduce from the previous lemma the following result.

Lemma 4.14 (irreducibility and atoms, I). Let T be a positive operator on L p with
p ∈ (1, +∞). Then all irreducible admissible sets are atoms.

We then prove that any irreducible set is a subset of an atom.

Lemma 4.15 (irreducibility and atoms, II). Let T be a positive operator on L p with
p ∈ (1, +∞). If A is irreducible, then F(A) ∩ P(A) is an atom (which contains A
a.e.).

Proof. Let A be irreducible (and thus measurable with positive measure). Set
A′

= P(A) ∩ F(A). Let B ⊂ A′ be T -invariant. Then by Lemma 4.9(i)–(ii), we
obtain that A ∩ B is TA-invariant, so by irreducibility of A we have either A ⊂ B
or A ∩ B = ∅. If A ⊂ B, then we have F(A) ⊂ F(B) = B ⊂ A′

⊂ F(A) as B
is a T -invariant set contained in A′, so we have B = A′. If A ∩ B = ∅, then the
set P(A) ∩ Bc is T -coinvariant and contains A, so we have P(A) ∩ Bc

= P(A)

which implies that B = ∅ as B ⊂ A′
⊂ P(A) by hypothesis. This proves that A′

is irreducible. Since A′ is admissible, we deduce from Lemma 4.14 that A′ is an
atom. □

To end this section we complete the statement of Lemma 4.9 by considering
atoms. Recall T�′ is the projection of T to �′ given by (3).

Proposition 4.16 (projection and atoms). Let T be a positive operator on L p with
p ∈ (1, +∞), �′

⊂ � a measurable set with positive measure, and T ′
= T�′ = the

projection of T on �′. Let A ⊂ �′ be measurable.

(i) If A is a T -atom then it is a T ′-atom.

(ii) Assume �′ is admissible. Then A is a T ′-atom if and only if it is a T -atom.

Remark 4.17 (open question). We conjecture the following result, which would
imply (ii): if �′ is admissible, then A ⊂ �′ is T ′-admissible if and only if it is
T -admissible.
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Proof. We first prove (i). Let A ⊂ �′ be a T -atom. It has a positive measure, and it
is T -irreducible and T -convex by Lemmas 4.11 and 4.12. It is then T ′-irreducible
and T ′-convex (and thus T ′-admissible) by Lemmas 4.9(iv) and 4.10(i). Thus, it is
a T ′-atom by Lemma 4.14.

We now prove (ii). Let A be a T ′-atom. It has a positive measure, and it
is T ′-irreducible. It is also T -irreducible by Lemma 4.9(iv). This implies that
F(A) ∩ P(A) is a T -atom by Lemma 4.15. Since �′ is admissible and A ⊂ �′,
we deduce that F(A) ∩ P(A) ⊂ �′. Thus F(A) ∩ P(A) is a T ′-atom by (i). It
contains A, thus it is equal to A. This proves that A is a T -atom. □

4.5. A characterization of atoms. The main goal of this subsection is to prove the
following theorem, that links the definitions of atoms, convex and irreducible sets.

Theorem 4.18 (equivalent definitions of atoms). Let T be a positive operator on L p

with p ∈ (1, +∞). The following properties are equivalent.

(i) The set A is an atom.

(ii) The set A is a minimal convex set with positive measure.

(iii) The set A is an admissible irreducible set.

(iv) The set A is a maximal irreducible set.

We first give another link between convexity and irreducibility before proving
the theorem.

Lemma 4.19 (convexity and irreducibility). Let T be a positive operator on L p

with p ∈ (1, +∞). Then a minimal convex set with positive measure is irreducible.

Proof. Assume that A is minimal convex. Let B ⊂ A be a TA-invariant set. By
Lemma 4.10(iii) (with �′

= A), we have B = F(B) ∩ A, and thus B is convex by
Lemma 4.8. Therefore we have B = A or B = ∅ by minimality. This proves that
the set A is irreducible. □

Proof of Theorem 4.18. Assume (i), that is, the set A is an atom. By definition it has
positive measure. By Lemma 4.11, it is convex. Since A is a minimal admissible
set with positive measure, we get (ii).

Assume (ii), that is, the set A is minimal convex with positive measure. It is irre-
ducible thanks to Lemma 4.19. As it is also admissible (as a convex set), we get (iii).

Notice that (iii) implies (i) by Lemma 4.14.
Assume (i) (and thus (i)–(iii) by the previous proofs). So the set A is irreducible.

Let us check it is maximal irreducible. Let A′
⊃ A be another irreducible set. As the

set F(A) is T -invariant, we get that F(A)∩ A′ is TA′-invariant. So by irreducibility
of A′, we have F(A)∩ A′

= A′ as A ⊂ F(A)∩ A′ has positive measure. We deduce
that A′

⊂ F(A), and similarly A′
⊂ P(A). This gives A′

⊂ F(A) ∩ P(A) = A as
A is convex. Therefore A is a maximal irreducible set, which proves (iv).
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Assume (iv), that is, A is a maximal irreducible set. Thanks to Lemma 4.15, the
set P(A)∩ F(A) is an atom and thus irreducible by Lemma 4.12. By maximality
of A, we have A = P(A) ∩ F(A), and thus A is an atom. This gives (i). □

4.6. An intuitive order on atoms. Nelson [22] introduced an order relation on atoms
(therein called k-components, and which correspond to maximal irreducible sets, so
to atoms by Theorem 4.18) using the past of measurable sets (therein k-closures).
We rewrite this order relation, using futures instead of pasts for convenience.

Definition 4.20 (order relation between atoms). Let T be a positive operator on L p

with p ∈ (1, +∞). Let A, B be two T -atoms. We denote A ≼ B if A ⊂ F(B) a.e.
(that is, if F(A) ⊂ F(B) a.e.).

We write A ≺ B when A ≼ B and A, B are not a.e. equal.

In the epidemiological interpretation of Remark 4.1, we have A ≼ B if A may be
infected by an epidemics starting on B. We first give some equivalent definitions
of this relation ≼. Recall F∗(A) = F(A) ∩ Ac and similarly for P∗.

Lemma 4.21 (equivalent definitions of ≼). Let T be a positive operator on L p with
p ∈ (1, +∞). Let A, B be two atoms such that A and B are not a.e. equal. The
following properties are equivalent.

(i) A ⊂ F(B) a.e.

(ii) A ⊂ F∗(B) a.e.

(iii) B ⊂ P(A) a.e.

(iv) B ⊂ P∗(A) a.e.

Proof. The equivalences between (i) and (ii) and between (iii) and (iv) are direct
consequences of the fact that two atoms are always equal a.e. or disjoint a.e. We
also have that A ⊂ F(B) is equivalent to A ∩ F(B) ̸= ∅ as A is an atom. By
Lemma 3.15, as B is also an atom, the property A ∩ F(B) ̸= ∅ is also equivalent
to B ⊂ P(A). □

We can now check that this indeed defines an order relation (recall that an order
relation is understood to be a partial order relation.)

Proposition 4.22 (≼ is a order relation). Let T be a positive operator on L p with
p ∈ (1, +∞). Then the relation ≼ is a order relation on the set of atoms.

Proof. The relation ≼ is clearly reflexive and transitive by definition of ≼ and by
the monotony of the future, see Lemma 3.14(iii).

Let A, B be two atoms such that A ≼ B and B ≼ A. By definition A ⊂ F(B),
which implies F(A) ⊂ F(B). A symmetry argument yields F(B) ⊂ F(A), so
that both are equal. Similarly we have P(A) = P(B). Since A and B are convex,
A = P(A) ∩ F(A) = P(B) ∩ F(B) = B, so relation ≼ is an order relation. □
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5. Admissible/irreducible sets and atoms for T and T n

We compare the admissible/irreducible sets and atoms of T and of T n , with n ≥ 2.
We denote by A(S) the set of S-admissible sets, where S is a positive operator. We
keep the notation from Sections 3 and 4.

5.1. Elementary results on admissible sets of powers of T . We first point out that
in the next elementary lemma, one can replace T n by eT for example.

Lemma 5.1 (admissible sets of T n). Let T be a positive operator on L p with
p ∈ (1, +∞) and n ∈ N∗.

(i) Any T -admissible set is T n-admissible, that is, A(T ) ⊂ A(T n).

(ii) Any T -convex set is T n-convex.

(iii) If the operator T n is irreducible, then T is irreducible.

Proof. Lemma 3.6 gives (i). If a set A is T -convex, then A = F(A) ∩ P(A). We
use Lemma 3.6 to deduce that F(A) (or P(A)) is T n-invariant (or T n-coinvariant)
and then Lemma 4.7(v) to get that A is thus T n-convex. Point (iii) is immediate
using Lemma 3.6. □

We illustrate in the next example that the operator T and its powers may have
different atoms.

Example 5.2 (different atoms of T and T 2). We consider the finite state space
� = {1, 2} endowed with the uniform probability µ, and the kernel operator Tk

associated to the kernel (or matrix as the space is finite), given in Figure 4 (left).
The operator Tk has only one atom {1, 2}, whereas its square T 2

k admits two atoms
{1} and {2}. The fact that {1, 2} may be partitioned in T 2-atoms is in fact generic,
see Proposition 5.9 below.

The admissible sets of T and its power might differ even if there is no atom.

Example 5.3 (no atoms and A(T ) ̸= A(T 2)). We continue Example 3.11. The
operator T 2

k is a kernel operator with a kernel k⊗2 on [0, 1], see Figure 1 (right),
defined by

(15) k⊗2(x, y) = (x − y)(1{y≤x≤1/2} + 1{1/2≤y≤x}).

1 2

(
0 1
1 0

)
Figure 4. Example of matrix (left) and associated communication graph
(right) on � = {1, 2} for which the atoms of the matrix and its square are
distinct.
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Figure 5. Support of some {0, 1}-valued kernels: kernel k defined in (16)
and kernel 2k⊗2 (right).

The T 2
k -invariants sets are a.e. equal to [a, 1/2] ∪ [b, 1] with a ∈ [0, 1/2] and

b ∈ [1/2, 1], whereas the Tk invariant sets, see Example 3.11, corresponds to those
sets with b = a +1/2. Therefore the σ -field of the T 2

k admissible sets is exactly the
Borel σ -field of [0, 1]; it does not coincide with the σ -field of the Tk admissible
sets given in Example 3.11.

We now check that the irreducible sets of T and those of T 2 are not always the
same.

Example 5.4 (T 2-irreducibility does not imply T -irreducibility). We consider the
measured space (�=[0, 1],F, Leb), with F the Borel subsets of [0, 1] and Leb the
Lebesgue measure on [0, 1], and the kernel k on [0, 1] defined by (see Figure 5, left)

(16) k(x, y) = 1{x≤1/2≤y} + 1{y≤1/2≤x}.

Then T 2
k is a kernel operator with kernel k⊗2 given by (see Figure 5, right)

k⊗2(x, y) = 2−1 1{max(x,y)≤1/2} + 2−1 1{min(x,y)≥1/2}.

Then the set [0, 1/2] is T 2
k -irreducible, T 2

k -admissible (and thus a T 2
k -atom), and

T 2
k invariant, but it is neither Tk-irreducible (as T[0,1/2] = 0) nor Tk-admissible (as

[0, 1] is a Tk-atom).

Let S be a positive operator on L p and A a measurable set. Recall that S(A)

denote the support of S( f 1A) for f ∈ L p a positive function, which does not depend
on the choice of the positive function f , see Definition 3.1. We now state some
corresponding preliminary properties in the next two lemmas.

Lemma 5.5 (basic properties of T (A)). Let T, S be positive operators on L p with
p ∈ (1, +∞), and A a measurable set. We have the following properties.

(i) supp(T ( f )) = T (supp( f )) a.e. for any f ∈ L p
+. In particular, if 1A belongs

to L p, then we have T (A) = supp(T (1A)) a.e.

(ii) T (S(A)) = (T S)(A) a.e. and (T + S)(A) = T (A) ∪ S(A) a.e.
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(iii) If A ⊂ B a.e., with B a measurable set, then we have T (A) ⊂ T (B) a.e.

(iv) Let (Ai )i∈I be an at most countable family of measurable sets. We have

T
(⋃

i∈I

Ai

)
=

⋃
i∈I

T (Ai ) a.e. and T
(⋂

i∈I

Ai

)
⊂

⋂
i∈I

T (Ai ) a.e.

Proof. Let f ′
∈ L p such that f ′ >0 and 1supp( f ) f ′

= f . Then, by (7), for any measur-
able set B we have kT (B, supp( f )) = 0 if and only if B ∩supp(T (1supp( f ) f ′)) =∅.
This gives (i). Point (ii) is a direct consequence of (i) applied to f 1A for any
positive function f ∈ L p. Point (iii) is a direct consequence of the positivity of T .

We now prove (iv). Let B be a measurable set. As the map kT (B, · ) is
nondecreasing and σ -additive on F , we have kT

(
B,

⋃
i∈I Ai

)
= 0 if and only

if for all i ∈ I , we have kT (B, Ai ) = 0. Thus the maximal set B that satisfies
kT

(
B,

⋃
i∈I Ai

)
= 0 is

⋂
i∈I T (Ai )

c, that is, T
(⋃

i∈I Ai
)
=

⋃
i∈I T (Ai ). The prop-

erty T
(⋂

i∈I Ai
)
⊂

⋂
i∈I T (Ai ) is a direct consequence of (iii). We thus have (iv). □

Lemma 5.6 (T k(A) and invariance/irreducibility). Let T be a positive operator
on L p with p ∈ (1, +∞). Let A be a measurable set, and n ∈ N∗. We have the
following properties.

(i) The set A is T -invariant if and only if T (A) ⊂ A a.e.

(ii) If the set A is T n-invariant, then for all k ∈ N, the set T k(A) is T n-invariant.

(iii) If T is a nonzero irreducible operator and µ(A)>0, then we have µ(T (A))>0.
Moreover, we have T (�) = � a.e.

Proof. By definition the set A is T -invariant if and only if Ac
∩ T A = ∅; this

gives (i). Let the set A be T n-invariant and k ∈ N. Then by Lemma 5.5(ii),
we have T n(T k(A)) = T k(T n(A)). Since we have T n(A) ⊂ A, we deduce that
T n(T k(A)) ⊂ T k(A). This gives (ii).

Assume that T is a nonzero irreducible operator and that µ(T (A)) = 0. The
latter condition implies that A is T -invariant, and by irreducibility of T , that A =∅
or A = �. As T is a nonzero operator, we get the latter case is impossible and
thus we have µ(A) = 0. As the set T (�) is T -invariant with positive measure, we
deduce that T (�) = � by the previous argument. This gives (iii). □

5.2. Future sets of eT and atoms of powers of T . The following corollary provides
an interesting link between the future of a set and the exponential of T .

Corollary 5.7 (future and eT ). Let T be a positive operator on L p with p ∈ (1, +∞)

and A a measurable set. We have

eT (A) =

⋃
n∈N

T n(A) = F(A) a.e.
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Proof. Using the same arguments as for Lemma 5.5(ii) the first equality is elementary.
Now we prove the second equality. The set

⋃
n∈N T n(A) is clearly T -invariant by

Lemma 5.6(i) and contains A, so F(A) ⊂
⋃

n∈N T n(A). As F(A) is a T -invariant
set, it is a T n-invariant set for any n ∈ N by Lemma 3.6. We get T n(F(A)) ⊂ F(A)

for any n ∈ N by Lemma 5.6(i), and thus
⋃

n∈N T n(A) ⊂
⋃

n∈N T n(F(A)) ⊂ F(A).
This gives the second equality. □

We give the following result on the projection of T n on a convex set.

Lemma 5.8 (power of a projected operator on a convex set). Let T be a positive
operator on L p for p ∈ (1, +∞) and A a convex set. Then we have (TA)n

= (T n)A

for any n ∈ N∗.

For n ∈ N∗, we use the notation T n
A for (TA)n

= (T n)A when A is a convex set.

Proof. Let n ∈ N∗. We have

(T n)A = MAT n MA = MAT n−1 MATMA + MAT n−1 MF∗(A)TMA = (T n−1)ATA,

where we used that T (A) ⊂ F(A) = A ∪ F∗(A) for the second equality, and that
F∗(A) is T -invariant (as A is convex, see Lemma 4.7) and thus T n−1-invariant, so
that MAT n−1 MF∗(A) = 0 for the last. We conclude by iteration. □

The following result on the decomposition of atoms is also related to [27, Theo-
rem 8] which states that the eigenvalues of T (when T is compact) whose modulus
are equal to the spectral radius of T are roots of unity multiplied by the spectral
radius. We say that a family of measurable sets (Ai )i∈I forms an a.e. partition of a
measurable set B if we have: Ai ∩ A j = ∅ a.e. for any i ̸= j , and B =

⋃
i∈I Ai a.e.

Proposition 5.9 (atoms of powers of T ). Let T be a positive operator on L p with
p ∈ (1, +∞) and n ∈ N∗. We have the following properties.

(i) If A is a T n-atom, then there exists a T -atom B such that A ⊂ B.

(ii) Let B be a T -atom. There exists a T n-atom A ⊂ B and a divisor d of n such
that the family (Ak)0≤k≤d−1, where Ak = T k(A) ∩ B, forms an a.e. partition
of A in T n-atoms.

The second point is slightly more technical; its proof is given separately.

Proof. (i) Let A be a T n atom. The family P = {B ∈ A(T ) : A ⊂ B} of measur-
able sets is clearly stable by countable intersection. Let A′ denote a minimal set
for P , given by Lemma 2.2. Let B ∈ A(T ) such that B ⊂ A′. As B ∈ A(T n) by
Lemma 5.1(i), we get that either A ⊂ B or A ∩ B = ∅. By the minimality of A′,
we deduce in the former case that A′

= B and in the latter case that A′
∩ B = ∅,

and thus B = ∅. This gives that A′ is a T -atom which contains A.
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(ii) Thanks to Lemma 5.8 (with A replaced by B), it is enough to consider the case
where � is a T -atom, that is, T is irreducible. The case T = 0 being trivial, we
shall assume in this section only that T is a positive irreducible operator on L p for
p ∈ (1, +∞) and T ̸= 0. In particular, we have T (�) = � a.e. (see Lemma 5.6(iii))
and F(A) = � a.e. for any measurable set A with positive measure. Motivated
by Corollary 5.7, we define, for any measurable set A with positive measure, the
quantity

n A = inf
{

m ∈ N∗
∪{∞} :

m−1⋃
j=0

T j (A) = � a.e.
}
.

If A is a T n invariant set with positive measure, the set
⋃n−1

j=0 T j A is T -invariant and
contains A; by irreducibility it must be equal to �, so n A ≤ n. It is also elementary
to check that if A ⊂ B a.e. for a measurable set B, then n A ≥ nB ≥ 1. □

Let I∗
n be the family of T n-invariant sets with positive measure. This set is

nonempty as it contains �, and we have n ≥ n A ≥ 1 for all A ∈ I∗
n . We have the

following technical properties.

Lemma 5.10 (elementary properties). Let n ∈ N∗ and A ∈ I∗
n (i.e., a nontrivial

T n-invariant set).

(i) Let ℓ ∈ N. For k ∈ N∗ we have

k+ℓ−1⋃
j=ℓ

T j (A) = � a.e. ⇐⇒ n A ≤ k.

In particular, we have nT ℓ(A) = n A.

(ii) Set B = A
⋂(⋃n A−1

j=1 T j (A)
)

(notice the indices j are positive). We have

µ(B) > 0 H⇒ nB > n A.

Proof. We prove (i). The set B =
⋃k−1

j=0 T j (A) is T n-invariant as union of T n-
invariant sets, see Lemma 5.6(ii), and thus T n(B) ⊂ B. If T ℓ(B) = �, then we get,
as (ℓ + 1)n − ℓ ≥ 0 and T (�) = �,

� = T (ℓ+1)n−ℓ(�) = T (ℓ+1)n(B) ⊂ B,

and thus B = � and n A ≤ k. On the other hand, if n A ≤ k, then we have B = �

and T ℓ(B) = �.
We prove (ii). The set B = A

⋂(⋃n A−1
j=1 T j (A)

)
is T n-invariant, and thus belongs

to I∗
n as µ(B) > 0. Using B ⊂ A and thus T j (B) ⊂ T j (A) for all the terms j ≥ 0,

we get
n A−1⋃
j=0

T j (B) ⊂

n A−1⋃
j=1

T j (A).
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By (i) (with ℓ = 1), the latter set is not a.e. equal to �, which in turns, using (i)
again (but with ℓ = 0), implies that nB > n A. □

Let n ≥ 2. The supremum nmax = sup{n A : A ∈ I∗
n } is less or equal than n and is

thus a maximum.
We can directly deduce Proposition 5.9(ii) from the next lemma.

Lemma 5.11. Let A be a T n-invariant set with positive measure such that n A =nmax.
We have, with Ak = T k(A) for k ∈ N:

(i) n A is a divisor of n.

(ii) T n A(Ak) = Ak a.e. for all k ∈ N.

(iii) Ak ∩ Aℓ = ∅ a.e. for all k ̸= ℓ in {0, . . . , n A − 1}.

(iv) The sets (Ak)k∈{0,...n A−1} are T n-atoms.

Proof. Let A be T n-invariant such that n A = nmax. Set A∗

k =
⋃

j∈{0,...,n A−1}\{k}
A j

for k ∈ {0, . . . , n A − 1} (so that Ak ∪ A∗

k = � by definition of n A) and B = A ∩ A∗

0.
The set B is invariant. We assume that µ(B) > 0. Since B ⊂ A, we get nB ≥ n A and
thus nB = n A by maximality of n A. Then, Lemma 5.10(ii) implies that µ(B) = 0.
By contradiction, we deduce that µ(B) = 0, that is,

A ∩ A∗

0 = ∅.

Using that T (�) = � as T is irreducible, we get

A ⊔ A∗

0 = � = T (�) = T n A(A) ∪ A∗

0.

This implies A ⊂ T n A(A). Writing n = kn A + r with r ∈ {0, . . . , n A − 1}, we get

T r (A) ⊂ T r+n A(A) ⊂ T r+kn A(A) = T n(A) ⊂ A.

If r > 0, this would imply that n A ≤ r . As r < n A, we deduce that r = 0, that is, (i),
and then that A = T n A(A). This gives (ii) for k = 0 and thus for any k, as the T n-
invariant set Ak is also maximal in the sense that n Ak = n A = nmax by Lemma 5.10(i).

Using again that Ak is maximal and that T n A(A j ) = A j , we can apply the
previous argument to get that Ak ∩ A∗

k =∅ for all k ∈ {0, . . . , n A −1}. This readily
implies that the Ak for k ∈ {0, . . . , n A − 1} are pairwise disjoint, that is, (iii).

To conclude, it is enough to check (iv) for k = 0. As A is T n-invariant, to prove it
is a T n-atom, it is enough to check that if B ⊂ A is a T n-invariant set with positive
measure, then B = A. Consider such a set B. Notice that nB is finite (as B ∈ I∗

n )
and that nB ≥ n A, that is nB = n A by maximality of n A. We thus have

A ⊔ A∗

0 = � = B
⋃(n A−1⋃

j=1

T j (B)

)
⊂ B ∪ A∗

0.

This readily implies that A ⊂ B and thus B = A. □
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6. Atoms and nonnegative eigenfunctions

Until the end of this section, T is a power compact (that is, there exists k ∈ N∗

such that the operator T k is compact) positive operator on L p, where p ∈ (1, +∞)

and (�,F, µ) is a measured space with µ σ -finite and nonzero. The purpose of
this section is to study the intricate links between the ordered set of atoms and
spectral properties of T . Especially, we study links between atoms and nonnegative
eigenfunctions of T . We also provide some criteria of monatomicity of T . The power
compactness hypothesis opens access to different results, giving the existence and
uniqueness under irreducibility of nonnegative eigenfunctions for a positive operator.

6.1. On positive power compact operators. Recall that ρ(T ) defined in (1) denote
the spectral radius of the operator T . The algebraic multiplicity of λ ∈ C of T is
defined by

(17) m(λ, T ) = dim
( ⋃

k∈N∗

Ker (T − λ Id)k
)

.

The complex number λ ∈ C is an eigenvalue of T when m(λ, T ) ≥ 1, it is alge-
braically simple when m(λ, T ) = 1. When T is power compact, the multiplicity
m(λ, T ) is finite for λ ∈ C∗, see [20, Theorem p. 21]. For power compact operators
the multiplicity of λ∈ C∗ is also the dimension of the range of the spectral projection
(which is the definition used in [11] and [27]) thanks to [11, Theorems VII.4.5–6].

For a measurable set A ⊂ �, when there is no ambiguity on the operator T ,
we simply write ρ(A) = ρ(TA), see Section 2.3, and m(λ, A) = m(λ, TA) for the
spectral radius and multiplicity of λ for TA = MATMA, see (3), the operator T
projected to A.

The following lemma proves that the projection of a power compact operator is
also power compact.

Lemma 6.1 (projection of a power compact operator). Let T be a positive power
compact operator on L p. Then there exists k ∈ N∗ such that for any measurable
set �′, the operator (T�′)k is compact.

Proof. Let n ∈ N∗ such that T n is compact. We have 0 ≤ (T�′)n
≤ T n . Since T n

is compact and L p is reflexive (and thus the norms on L p and its dual are order
continuous by [3, Exercise 4.1.19]), thanks to [3, Theorem 5.20] we get that (T�′)n

is compact. □

We say that the atom A ⊂ � is nonzero if ρ(A) > 0, and denote by A∗ be the (at
most countable) set of nonzero atoms:

(18) A∗
= {A ∈ A : ρ(A) > 0}.

Notice that m(λ, A) = 0 for all atoms A ∈ A \A∗ and λ ∈ C∗.
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We recall in our framework the classical results related to power compact op-
erators. In what follows, uniqueness of eigenfunctions is understood up to a
multiplicative constant.

Theorem 6.2. Let T be a positive power compact operator on L p with p ∈ (1, +∞).

(i) Krein–Rutman: If ρ(T ) is positive then ρ(T ) is an eigenvalue of T , and there
exists a corresponding nonnegative right eigenfunction denoted vT .

(ii) de Pagter: If T is irreducible then ρ(T ) is positive unless T =0 and dim(L p)=1,
that is, if A is measurable then either µ(A) = 0 or µ(Ac) = 0.

(iii) Perron–Jentzsch: If T is irreducible with ρ(T ) > 0, then ρ(T ) is algebraically
simple, vT is positive a.e., and vT is the unique nonnegative right eigenfunction of
T : if T v = λv for some λ ∈ C and v nonnegative, then v = cvT for some c ∈ R+.

(iv) Schwartz: For λ ∈ C∗ we have

(19) m(λ, T ) =

∑
A∈A∗

m(λ, A) and ρ(T ) = max
A∈A∗

ρ(A).

Remark that, using Theorem 6.2(ii), an atom A has a zero spectral radius if and
only if it satisfies dim(L p

A) = 1 and TA = 0.

Proof. We first recall the vocabulary used in [15]. For any v ∈ L p, the smallest
closed ideal (therefore the smallest subspace of the form L p

A with A ∈ F) that
contains v is L p

supp(v). We say that v ∈ L p
+ is quasiinterior if the closure of L p

supp(v)

is equal to L p, that is, if v > 0 a.e.
Point (i) is given by [15, Theorem 3], and (ii) by [15, Theorem 12(1)]. To

prove (iii), by [15, Theorem 12(1)], since T is irreducible, ρ(T ) is an algebraically
simple eigenvalue and the corresponding eigenfunction is a quasiinterior point of L p,
that is, a positive eigenfunction. By [26, Theorem V.5.2(iv)] (that can be applied
as T is power compact, see [26, Corollary, p. 329]), ρ(T ) is the only eigenvalue
related to a nonnegative eigenfunction. As ρ(T ) is algebraically simple, vT is the
unique nonnegative eigenfunction of T .

Point (iv) is an extension of [27, Theorem 7] (stated for µ finite and T compact),
and its proof is very similar. We provide a short proof for completeness. Let h ∈ L1

with 1 ≥ h > 0 a.e.; thus the measure h.µ, defined by h.µ(A) =
∫

A h(s)µ(ds) for
A ∈ F , is finite. Following the proof of [27, Theorem 7], it is enough to check that
Lemmas 4, 11 and 12 therein also hold by replacing µ by h.µ in their statement
and when the operator T is power compact.

For Lemma 11, the proof given by [27] is also valid when the operator V given
therein is power compact, as every point of Sp(V )\{0} is isolated and as for any
λ ̸= 0, the quantity m(λ, V ) is finite, see [11, Section VII.4]. For Lemma 12,
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the proof given by [27] holds for any positive operator, and also holds when we
replace µ in the statement by the finite measure h.µ.

Lemma 4 of [27] states that if µ is finite and T is a positive compact operator,
then for all λ > 0 there exists δ > 0 such that for all measurable set A ∈ F such
that µ(A) < δ we have ρ(TA) < λ. An elementary adaptation of the proof of [27,
Lemma 4], gives that the result also holds if µ is σ -finite provided we replace
the condition µ(A) < δ by h.µ(A) < δ. We now assume that the operator T is
power compact, and let k ∈ N∗ be such that the operator T k is compact. For λ > 0,
there exists δ > 0 such that for all measurable set A ∈ F with h.µ(A) < δ we have
ρ((T k)A)<λk . Since 0≤ (TA)k

≤ (T k)A, we deduce that ρ((TA)k)≤ρ((T k)A)<λk ,
that is, ρ(TA) < λ thanks to [20, Theorem p. 21]. This readily gives the extension
of [27, Lemma 4] to µ σ -finite and T positive power compact. This concludes the
proof of (iv). □

Let us stress that Theorem 6.2 also applies to T ⋆. Indeed, the operator T
is irreducible (or positive, or power compact) if and only if the operator T ⋆ is
irreducible (or positive, or power compact). By [20, Theorem, p. 21], when T is
power compact, we have ρ(T ⋆) = ρ(T ) and m(λ, T ⋆) = m(λ, T ) for all λ ∈ C∗.

The following result is a direct consequence of Theorem 6.2, as any atom is
irreducible by Theorem 4.18. The function vA below will be called the Perron-like
eigenfunction of TA.

Corollary 6.3 (Perron-like eigenfunctions for TA). Let T be a positive power
compact operator on L p with p ∈ (1, +∞) and A a nonzero atom. Then ρ(A)

is an algebraically simple positive eigenvalue of TA and there exists a unique
nonnegative right eigenfunction of TA, say vA; furthermore its support is A, that is,
supp(vA) = A a.e., and we have ρ(vA) = ρ(A): TAvA = ρ(A)vA.

For λ > 0, let A(λ) be the set of atoms with spectral radius λ:

(20) A(λ) = {A ∈ A∗
: ρ(A) = λ}.

We have the following elementary result, with the convention max∅ = 0.

Lemma 6.4 (spectral radius of projected operators). Let T be a positive power
compact operator on L p with p ∈ (1, +∞).

(i) For any λ > 0, there exists at most a finite number of atoms with spectral radius
larger than λ.

(ii) If �′ is admissible, then we have

(21) ρ(�′) = max
A∈A∗, A⊂�′

ρ(A).

(iii) If ρ(T ) is positive, then we have m(ρ(T ), T ) = card(A(ρ(T )).
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Proof. By Corollary 6.3, any atom with a spectral radius ρ(A) > 0 satisfies
m(ρ(A), A) = 1. If λ is positive, then the set {z ∈ C, |z| ≥ λ, m(z, T ) ̸= 0} is
finite by [11] (notice that m(z, T ) ∈ N by [20, Theorem, p. 21]). Therefore, by
Theorem 6.2(iv), only a finite number of atoms A may satisfy ρ(A) ≥ λ, that is, (i).
Point (ii) then follows from (19), since the atoms of T�′ are precisely the atoms
of T that are included in �′, by Proposition 4.16(ii).

Finally, for any atom A, we have ρ(A) ≤ ρ(T ), therefore the only atoms with
m(ρ(T ), A) > 0 are exactly those with ρ(A) = ρ(T ). By Corollary 6.3, these
atoms satisfy m(λ, A) = 1, thus we deduce (iii) from (19). □

We directly deduce from (ii) the following result.

Lemma 6.5 (the operator is quasinilpotent outside the nonzero atoms). Let T be
a positive power compact operator on L p. The projection T�′ of T to �′, the
complement set of

⋃
A∈A∗ A, is quasinilpotent, that is, ρ(�′) = 0.

6.2. Nonnegative eigenfunctions. The goal of this section is to describe exactly the
set of nonnegative eigenfunctions and prove Theorem 3. We start by two elementary
results.

Lemma 6.6. Let T be a positive operator on L p. If C is convex and supp(v)⊂ F(C),
then we have TCv = 1C T v.

Proof. Since C is convex, we have F(C) = C ⊔ F∗(C) where F∗(C) is invariant by
Lemma 4.7. Since supp(v) ⊂ F(C), we have v = v1C + v1F∗(C). The statement
follows by checking that, by Lemma 3.4, 1C T (v1F∗(C)) = 0. □

Lemma 6.7 (nonnegative eigenfunctions on an atom). Let T be a positive operator
on L p for p ∈ (1, +∞) and A a nonzero atom. If v is a nonnegative right eigen-
function with A ⊂ supp(v) ⊂ F(A), then v coincides on A with the Perron like right
eigenfunction: 1Av = cvA for some c > 0, and ρ(v) = ρ(A), that is, T v = ρ(A)v.

Proof. Let λ ≥ 0 with T v = λv. Since supp(v) ⊂ F(A), we may apply Lemma 6.6
to the atom A (convex by Theorem 4.18), to get TA(1Av) = TAv = 1AT v = λ1Av,

that is, 1Av is a nonnegative eigenfunction of TA. Since A ⊂ supp(v), we get 1Av

is nonzero. By Corollary 6.3, we have λ = ρ(A) and 1Av = cvA for some c > 0, as
claimed. □

We give a short proof of the following standard result on subsolutions to the
eigenvalue equation, that is, functions f satisfying

(22) T f ≤ λ f.

Proposition 6.8 (nonnegative subsolutions are Perron eigenfunctions). Let T be a
positive power compact irreducible operator on L p with p ∈ (1, +∞). If f ∈ L p

+

satisfies (22) for some λ ∈ (0, ρ(T )], then we have T f = ρ(T ) f .
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Proof. Let f ∈ L p
+ be a solution of (22). Without loss of generality we may assume

λ = ρ(T ). By the Perron–Jentzsch theorem (see Theorem 6.2(iii)), there exists a
nonnegative left eigenfunction h ∈ Lq

+ with left eigenvalue ρ(T ) such that h > 0
a.e. Taking the bracket of (22) with the nonnegative function h, and using the fact
that it is a left eigenfunction of T , we get

ρ(T )⟨h, f ⟩ = ⟨h, T f ⟩ ≤ ⟨h, ρ(T ) f ⟩ = ρ(T )⟨h, f ⟩,

where the inequality holds by positivity of T and nonnegativity of f and h. Therefore
we have ⟨h, T f ⟩ = ⟨h, ρ(T ) f ⟩, so ⟨h, ρ(T ) f − T f ⟩ = 0. Since ρ(T ) f − T f is
nonnegative and h > 0 a.e., this implies T f = ρ(T ) f . □

As a first consequence, we give details on which atoms may appear in the support
of a nonnegative eigenfunction. Recall that, for a nonzero atom A, the Perron-like
eigenfunction vA is the right eigenfunction of TA given by Corollary 6.3. For v ∈ L p

+

a nonnegative eigenfunction of T , we consider the following subset of the atoms
A(ρ(v)):

Am(v) := {A ∈ A : A ⊂ supp(v) and ρ(v) = ρ(A)}.

Corollary 6.9 (a dichotomy for atoms and nonnegative eigenfunctions). Let T be
a positive power compact operator on L p with p ∈ (1, +∞). Let v ∈ L p

+ be a
nonnegative eigenfunction of T with λ = ρ(v) > 0.

(i) For any atom A with A ⊂ supp(v) a.e., exactly one of the following holds:
• ρ(A) < λ.
• ρ(A) = λ, that is, A ∈ Am(v), 1Av = cvA for some c > 0 and supp(v) ∩

P∗(A) = ∅ a.e.

(ii) The set of atoms Am(v) is a nonempty finite antichain, and

ρ(v) = ρ(supp(v)).

(iii) If A ∈ Am(v), B ∈ A and B ≺ A, then we have ρ(B) < ρ(A).

Proof. We start by proving (i). Let v, λ satisfy the hypotheses, and consider an
atom A such that A ⊂ supp(v). If ρ(A) < λ we are in the first case and there is
nothing to prove. We now assume λ ≤ ρ(A). Since T is a positive operator and v

is nonnegative, we have

(23) TA(v1A) = 1AT (v1A) ≤ 1AT (v1A) + 1AT (v1Ac) = 1AT v = λ1Av.

Since λ ≤ ρ(A) and A is irreducible, Proposition 6.8 applied to T | A implies
TAvA = ρ(A)vA. Since we have A ⊂ supp(v), vA is not the zero function, thus,
by Corollary 6.3, we have λ = ρ(A) and 1Av = cvA for some c > 0. Going back
to (23), we see that the inequality there is in fact an equality, so 1AT (v1Ac) = 0.
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By (7), we thus have kT (A, supp(v)∩ Ac) = 0. By Lemma 3.7, the set supp(v) is
invariant, thus by additivity of the kernel we also have

kT (A ∪ supp(v)c, supp(v) ∩ Ac) = 0,

so that supp(v) ∩ Ac is invariant. We then write

F(supp(v) ∩ Ac) ∩ A = (supp(v) ∩ Ac) ∩ A = ∅,

which by Lemma 3.15 implies that

(24) supp(v) ∩ P∗(A) = supp(v) ∩ Ac
∩ P(A) = ∅.

This completes the proof of (i)
We now turn to the proof of (ii). If two atoms A and B are in Am(v), equation (24)

shows that B cannot be a subset of P∗(A); symmetrically A cannot be included
in P∗(B). By the alternate formulation of ≼ from Lemma 4.21, A and B are not
comparable, so Am(v) is an antichain. It is finite by Lemma 6.4(i). Moreover,
as T (v) = λv, we get that Tsupp(v)(v) = λv, and thus ρ(supp(v)) ≥ λ. As the set
supp(v) is invariant by Lemma 3.7 (and thus admissible), by (21), there exists an
atom A ⊂ supp(v) with ρ(A) ≥ λ, and thus ρ(A) = λ by (i). This implies that the
finite antichain Am(v) is not empty.

Finally, if A ∈Am(v) and B ≺ A, then we get B ⊂ F(A)⊂ supp(v) since supp(v)

is invariant. Applying the dichotomy from (i), and noting that B cannot be in Am(v)

since it is an antichain, we deduce that ρ(B) < ρ(A) = λ. □

The last statement of Corollary 6.9 motivate the following definition, we refer to
Figure 6 for a pictorial representation.

Definition 6.10 (distinguished atoms and eigenvalues). Let T be a positive power
compact operator on L p with p ∈ (1, +∞). A nonzero atom A of T is called right
distinguished if ρ(B) < ρ(A) for any atom B such that B ≺ A.

The set of right distinguished atoms of radius λ > 0 is denoted by Adist(λ).
An eigenvalue λ is called right distinguished if Adist(λ) ̸= ∅.

One has a similar definition for left distinguished atoms/eigenvalues. When there
is no ambiguity, we shall simply write distinguished for right distinguished.

By Corollary 6.9(ii), if v is a nonnegative eigenvalue, all atoms in Am(v) are
distinguished:

(25) Am(v) ⊂ Adist.

In the other direction, we now show that for any distinguished atom, we may
associate a nonnegative eigenfunction. For a nonzero atom A, recall that vA denotes
the Perron-like eigenfunction of TA given by Corollary 6.3.
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Figure 6. Diagram of the ordered set of distinguished atoms. Following
the classical convention (see [6, p. 4]), each circle represents an atom A,
and is labeled with its radius ρ(A). An arrow from atom A to atom B
signifies that B ≺ A and there is no atom in between. The distinguished
atoms are those circled in a thick line. Note that a family of similar “finite”
pictures may always be drawn in the general case, by considering only
atoms with radius larger than a positive constant λ.

Proposition 6.11 (nonnegative eigenfunctions associated to distinguished atoms).
Let T be a positive power compact operator on L p with p ∈ (1, +∞), and A a
nonzero atom. The following statements are equivalent:

(i) A is a distinguished atom.

(ii) ρ(F∗(A)) < ρ(A).

(iii) There exists a nonnegative eigenfunction wA ∈ L p
+ such that supp(wA)= F(A)

and 1AwA = vA.

If they hold, then we have ρ(wA) = ρ(A).

The condition 1AwA = vA in (iii) corresponds to a particular choice of normaliz-
ing constant, see Lemma 6.7.

Proof. Suppose that (iii) holds, and let wA be a nonnegative eigenfunction with
supp(wA) = F(A). By Lemma 6.7, we have ρ(wA) = ρ(A), so A ∈ Am(wA), and
by (25), it is distinguished. Therefore (iii) implies (i).

Suppose that (i) holds. By (21), either ρ(F∗(A)) = 0, or there exists an atom
B ⊂ F∗(A) such that ρ(F∗(A)) = ρ(B). By Lemma 4.21, this B satisfies B ≺ A.
Since A is distinguished, ρ(B) < ρ(A), so (ii) holds.

We now prove that (ii) implies (iii). We set B = F∗(A). By assumption, the
invariant set B satisfies ρ(B) < ρ(A). By Lemma 3.8, the operator (ρ(A)Id −TB)

is invertible and its inverse is a positive operator. Let wA = vA + fB , where
fB = (ρ(A)Id −TB)−1(1B T vA). Note that, by the expression of (ρ(A)Id −TB)−1

as a Neumann series, we have supp( fB) ⊂ B, and thus 1AwA = vA. Then we have

(26) T wA = T vA + T fB = 1AT vA + 1Ac T vA + T fB .



ATOMS AND SPECTRAL PROPERTIES FOR POSITIVE OPERATORS ON L p 125

As supp( fB) is a subset of the invariant set B, by Lemma 3.4 we get T fB = TB fB .
Moreover, as supp(vA)⊂ A, we have 1AT vA = TAvA =ρ(A)vA by definition of vA.
Finally, as the set F(A) is invariant and as we have supp(vA) ⊂ A ⊂ F(A), we
have 1F(A)c T vA = 0, thus 1Ac T vA = 1B T vA. Plugging this in (26) yields

T wA = ρ(A)vA + 1B T vA + ρ(A) fB − ρ(A) fB + TB fB

= ρ(A)wA + 1B T vA − (ρ(A)Id −TB)( fB)

= ρ(A)wA

by definition of fB . So wA is a nonnegative eigenfunction (with ρ(wA) = ρ(A)). In
particular, supp(wA) is an invariant set that contains A, so F(A)⊂ supp(wA). Since
supp(vA) and supp( fB) ⊂ B are both subsets of F(A), we get F(A) = supp(wA).
This proves (iii). □

The previous result shows that, to any distinguished λ, we may associate a
family (wA)A∈Adist(λ) composed of nonnegative eigenfunctions. We now completely
describe the set of nonnegative eigenfunctions associated to λ, say V+(λ), as the
conical hull of this family (that is, linear combinations with nonnegative coeffi-
cients).

Theorem 6.12 (characterization of nonnegative right eigenfunctions). Let T be a
positive power compact operator on L p with p ∈ (1, +∞). Let λ > 0. We have the
following properties.

(i) There exists a nonnegative eigenfunction of T associated to λ if and only if λ

is a distinguished eigenvalue.

(ii) The set Adist(λ) is a (possibly empty) finite antichain of atoms, and the family
(wA)A∈Adist(λ) is linearly independent.

(iii) If v is a nonnegative eigenfunction with ρ(v) = λ, then λ = ρ(supp(v)) and

v =

∑
A∈Am(v)

cAwA with cA > 0.

So the cone V+(λ) is the conical hull of {wA : A ∈ Adist(λ)}.

Remark 6.13. The last point implies that the cone V+(λ) is spanned by a finitely
many vectors (because the set Adist(λ) is finite according to Lemma 6.4(i)), that is,
it is polyhedral.

It also shows that if w is a nonnegative eigenfunction such that supp(w) = F(A),
where A is a nonzero atom (see Lemmas 3.7 and 6.7), then A is distinguished,
ρ(w) = ρ(supp(w)) = ρ(A) and w = cwA with c > 0.

The elementary adaptation of Theorem 6.12 to nonnegative left eigenfunction is
left to the reader.



126 JEAN-FRANÇOIS DELMAS, KACEM LEFKI AND PIERRE-ANDRÉ ZITT

Proof. If λ is distinguished, then by definition there is an atom A ∈Adist(λ), and wA

provides a nonnegative eigenfunction associated to λ. Conversely, if there is a
nonnegative eigenfunction w associated to λ, then Am(w) is nonempty and consists
of distinguished atoms by Corollary 6.9, so λ is distinguished. This proves (i).

Let us prove (ii). If A and B belongs to Adist(λ), then ρ(A) = ρ(B), so they
are not comparable by definition of distinguished atoms. Therefore Adist(λ) is an
antichain. It is also finite by Lemma 6.4(i). To prove the linear independence
property, assume that

∑
B∈Adist(λ)cBwB = 0. Multiplying by 1A for A ∈ Adist(λ)

yields cAvA = 0, since for B ̸= A, supp(wB) = F(B) is disjoint from A. Since vA

is positive, cA = 0. Since this is true for all A, the family (wA)A∈Adist(λ) is linearly
independent.

We now prove (iii). Since the wA are all in the cone V+(λ), their conical hull is
included in V+(λ), so that we only need to prove the reverse inclusion. Let v∈ V+(λ).
By Corollary 6.9, there is an antichain Am(v) ⊂ Adist(λ) of distinguished atoms of
radius λ in the support of w, and all other atoms in this support satisfy ρ(B) < λ.
Define

B = supp(v) ∩

( ⋃
A∈Am(v)

P(A)

)c

= supp(v) ∩

( ⋃
A∈Am(v)

A
)c

,

where the second equality follows from the fact that supp(v) ∩ P∗(A) = ∅ for all
A ∈ Am(v) by Corollary 6.9. The first equality shows that B is invariant.

Still following Corollary 6.9, there exist cA > 0 such that v1A = cAvA for
A ∈ Am(v). Consider the function w = v −

∑
A∈Am(v)cAwA. Since we have

supp(wA)= F(A)⊂ supp(v), supp(w) is included in supp(v). Since w vanishes by
construction on all atoms A ∈Am(v), we have in fact supp(w)⊂ B. Now, T w =λw

since v and the wA are eigenfunctions. Since B is invariant and supp(w) ⊂ B, we
get that TBw = λw. However, by construction, B cannot contain atoms of radius
greater than or equal to λ, so ρ(B) < λ. Therefore λ cannot be an eigenvalue of TB ,
and w must be identically zero, so that v =

∑
A∈Am(v)cAwA. Since Am(v)⊂Adist(λ),

we get that v is in the conical hull of the (wA)A∈Adist . This finishes the proof. □

6.3. Monatomic operators: definition and characterization. Here we consider
positive power compact operators having only one nonzero atom, which are called
monatomic operators (T is monatomic if cardA∗

= 1 with A∗ defined in (18)).

Example 6.14 (a monatomic operator with two atoms). Consider R2
= L p({1, 2}, µ),

with µ the counting measure and the operator

T =

(
1 1
0 0

)
.
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1 2
1

1 1 (
1 0
1 1

)
Figure 7. Example of associated graph (left) and associated matrix (right)
of a kernel operator on � = {1, 2}.

The set {1} is invariant and the set {2} is coinvariant, so both sets are atoms. The
atom {1} has spectral radius 1 and the atom {2} has spectral radius 0, so T has only
one nonzero atom and is thus monatomic.

We give in the next theorem a characterization of the monatomic positive power
compact operators, see Theorem 2. Recall we say that there exists a unique right
(or left) nonnegative eigenfunctions of T related to a nonzero eigenvalue if there
exists u ∈ L p a right (or u ∈ Lq a left) nonnegative eigenfunction with ρ(u) ̸= 0
such that if u′ is a right (or left) nonnegative eigenfunction with ρ(u′) ̸= 0, then
u′

= cu for some c ∈ R.

Theorem 6.15 (characterization of monatomic operators). Let T be a positive power
compact operator on L p with p ∈ (1, +∞) such that ρ(T ) > 0. The following
properties are equivalent.

(i) The operator T is monatomic.

(ii) There exist a unique right and a unique left nonnegative eigenfunctions of T
with nonzero eigenvalues, and ρ(T ) is an algebraically simple eigenvalue
of T .

(iii) There exist a unique right and a unique left nonnegative eigenfunctions of T
with nonzero eigenvalues, say u and v, and supp(u) ∩ supp(v) has positive
measure.

Furthermore, when the operator T is monatomic, we have ρ(u) = ρ(v) = ρ(T ) and
supp(u) ∩ supp(v) is the nonzero atom of T .

Example 6.16 (ρ(T ) algebraically simple and supp(u) ∩ supp(v) with positive
measure). If T has a unique right and a unique left eigenfunction, then T might
not be monatomic. Indeed, consider the example given by Figure 7 with � = {1, 2}

endowed with the counting measure. The positive kernel operator T associated to
the matrix given in Figure 7 (right) has only one right eigenfunction u = (0, 1) and
one left eigenfunction v = (1, 0), but it is not monatomic, as its nonzero atoms
are {1} and {2}. Here, we have supp(u) ∩ supp(v) = ∅ and ρ(T ) = 1 is not an
algebraically simple eigenvalue.

To prove Theorem 6.15, we use the following lemma.
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Lemma 6.17 (existence of minimal distinguished atoms). Let T be a positive power
compact operator on L p. Let A be a nonzero atom. Then there exists a right (or left)
distinguished atom smaller (or larger) than A for ≼, say B, such that ρ(B) ≥ ρ(A).

Proof. Recall that T and T ⋆ have the same spectral radius and that they share the
same atoms, so we only need to prove the lemma for right distinguished atoms for T ,
as it will then hold for left distinguished atoms for T as they are right distinguished
atoms for T ⋆.

Since A is a nonzero atom, ρ(A) is positive. The set

A = {C ∈ A∗
: ρ(C) ≥ ρ(A), C ≼ A}

is finite thanks to Lemma 6.4(i) and is nonempty as it contains A. Thus it has at
least one minimal element for the order ≼, say B. If an atom C satisfies C ≺ B, then
C ≼ A by transitivity, but C cannot be in A by minimality of B, so ρ(C) < ρ(A).
Since B ∈ A, we have ρ(B) ≥ ρ(A), and so ρ(C) < ρ(B). Since this holds for
any C such that C ≺ B, we obtain the atom B is distinguished. □

Proof of Theorem 6.15. We assume that T is monatomic and prove (ii). Let A be
the only nonzero atom. By Lemma 6.4(iii), as m(ρ(T ), T ) ≥ 1 and A∗ is reduced
to {A}, we get that ρ(T ) is algebraically simple and ρ(A) = ρ(T ) by (21).

We now prove the existence and uniqueness of a nonnegative right eigenfunction.
Since there is no other nonzero atom, using directly Definition 6.10 we see that A is
distinguished, and is the only distinguished atom. Still by definition, ρ(A) is the only
distinguished eigenvalue. By Theorem 6.12, the set of nonnegative eigenfunctions is
the cone R+wA, which proves uniqueness (up to a positive multiplicative constant).
Applying the same proof to T ⋆ gives (ii) and the first part of the last sentence of
the theorem.

We assume (ii) and prove (iii). Since ρ(T ) > 0 is algebraically simple, we
deduce from (19) that there exists a unique atom, say A, such that ρ(A) = ρ(T ).
In particular, all other atoms must satisfy ρ(B) < ρ(A), so that A is right (and left)
distinguished. Therefore, by Proposition 6.11, the unique right (or left) nonnegative
eigenfunction, whose existence is given by our Assumption, is in fact wA (or the
nonnegative eigenfunction w⋆

A obtained from T ⋆). Since supp(wA) ∩ supp(w⋆
A) =

F(A) ∩ P(A) = A by convexity of the atom A, we obtain (iii) and the last part of
the last sentence of the theorem.

We assume (iii) and prove that the operator T is monatomic. Since ρ(T ) > 0,
there exists an atom, say A, such that ρ(A) = ρ(T ). Looking for a contradiction,
we assume there exists an other nonzero atom B and without loss of generality
that it is not smaller than B for ≼ (that is, either A ≼ B or A and B are not
comparable), equivalently F(A)∩ B = ∅. By Lemma 3.15, this is also equivalent
to F(A) ∩ P(B) = ∅.
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Then, using Lemma 6.17, there exists a right (or left) distinguished atom A′ (or B ′)
such that A′ ≼ A (or B ≼ B ′). By Proposition 6.11, the unique nonnegative right
eigenfunction v must satisfy supp(v)= F(A′), and similarly the unique nonnegative
left eigenfunction u must satisfy supp(u) = P(B ′). By construction, we have
F(A′) ⊂ F(A) and P(B ′) ⊂ P(B), and thus supp(v)∩supp(u) = F(A′)∩ P(B ′) ⊂

F(A) ∩ P(B) = ∅. As this is in contradiction with the assumption of (iii), we
deduce that A is the only nonzero atom, that is T is monatomic. □

7. Generalized eigenspace at the spectral radius

7.1. Framework and main theorem. The purpose of this section is to restate [19,
Theorem V.1(2)] on the ascent of T in our framework of L p-spaces, with a shorter
proof based on convex sets.

Let us first recall a few classical definitions, see [11] and [20]. For T an bounded
operator on a Banach space and λ ∈ C, we call generalized eigenspace of T at λ,
and denote by K (λ, T ), the linear subspace

K (λ, T ) =

⋃
k∈N

Ker (T − λ Id)k .

We now focus on the spectral radius λ = ρ(T ), and write K (T ) = K (ρ(T ), T )

the corresponding generalized eigenspace. We define the index of a generalized
eigenvector u ∈ K (T ), as inf{k ∈ N : u ∈ Ker (T − ρ(T )Id)k

}, and, with the
convention inf∅ = +∞, the ascent (or Riesz index) of T at ρ(T ) as

αT = inf{k ∈ N : Ker (T − ρ(T )Id)k
= Ker (T − ρ(T )Id)k+1

}.

Notice that αT is positive if ρ(T ) is an eigenvalue and K (T ) = Ker (T −ρ(T )Id)αT

if αT is finite. When the operator T is power compact, then the ascent αT is
finite, see [20, Lemma 1.a.2, Theorem, p. 21] (it is also equal to the descent
δT = inf{k ∈ N : Im(T − ρ(T )Id)k

= Im(T − ρ(T )Id)k+1
}).

Let T be a positive power compact operator on L p with p ∈ (1, +∞), and assume
ρ(T ) > 0, and thus αT ∈ N∗. By Lemma 6.4(iii), K (T ) is finite dimensional, and

dim(K (T )) = m(ρ(T ), T ) = card(Acrit),

where Acrit is the set of critical atoms:

(27) Acrit = {A ∈ A : ρ(A) = ρ(T )}.

By definition of αT , the sequence
(
dim(Ker ((T − ρ(T )Id)k))

)
1≤k≤αT

is (strictly)
increasing, so we have the trivial bounds

(28) dim
(
Ker (T − ρ(T )Id)k)

≥ k for all 1 ≤ k ≤ αT ,

and in particular dim(K (T )) = card(Acrit) ≥ αT .
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The set Acrit may be equipped with the order ≼. Recall that we write B ≺ A if
B ≼ A and B ̸= A. We recall a few classical definitions for posets, that is, partially
ordered sets (see, e.g., [6, Section I.3, p. 4]).

Definition 7.1 (covering). Let T be a positive power compact operator on L p with
p ∈ (1, +∞) with a spectral radius ρ(T ) > 0. Let A and B be critical atoms. If
B ≺ A, and if there is no critical atom C such that B ≺ C ≺ A, then A is said to
cover B.

For n ≥ 1, a chain of length n is a sequence (A0, . . . , An) of elements of Acrit

such that Ai+1 ≺ Ai for all 0 ≤ i < n. The height h(A) of a critical atom A, is one
plus the maximum length of a chain starting at A.

Remark 7.2 (terminology “off by one”). Our definition of length is consistent
with the one in [6, Section I.3]. The “off by one” is due to the fact that height,
in [6], is formally defined for posets with a least element. Our height coincides
with Birkhoff’s height on the poset (Acrit ⊔{0},≼) where 0 is an additional element
that satisfies 0 ≼ A for all A ∈ Acrit.

We now restate [19, Theorem V.1(1), (2)] in our framework; its proof is given in
Section 7.2. Recall vA the Perron-like eigenfunction of TA and the set of critical
atoms Acrit from (27). We also refer to [16, Theorems 3.2, 3.5] and the iteration
procedure given in Section 3.4 therein for a similar result where the operator T
is a positive quasicompact on the Banach lattice space of continuous functions
vanishing at infinity. Notice that the sets (Bi , 1 ≤ i ≤ N0) in Theorem 3.5 therein
denote the maximal critical atoms in our framework. Our approach emphasizes the
graph structure of the critical atoms.

Theorem 7.3 (a basis of K (T )). Let T be a positive power compact operator
on L p with p ∈ (1, +∞) with a spectral radius ρ(T ) > 0. Then there exists a basis
W = (wA)A∈Acrit of K (T ) satisfying the following properties:

(i) For all A, we have A ⊂ supp(wA) ⊂ F(A) and 1AwA = vA; moreover,
if A is distinguished then wA is the nonnegative eigenfunction introduced
in Proposition 6.11.

(ii) If M = (MA,B) is the matrix representing, on the basis W , the endomorphism
induced on K (T ) by T , then for A, B ∈ Acrit, we have

MAB =


0 if B ę A,

ρ(T ) if A = B,

> 0 if A covers B.

(iii) For any A ∈ Acrit, the index of wA is the height h(A).

Moreover, (ii) and (iii) hold for any basis of K (T ) satisfying (i).
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Since the ascent is the maximum index of functions in K (T ), we easily get the
following result.

Corollary 7.4 (ascent and maximal height). Let T be a positive power compact
operator on L p with p ∈ (1, +∞) with a spectral radius ρ(T ) > 0. The ascent of T
at its spectral radius ρ(T ) is equal to the maximal height of the critical atoms

αT = max
A∈Acrit

h(A).

7.2. Existence of an adapted basis and proof of Theorem 7.3. We first state a key
technical result.

Lemma 7.5 (generalized eigenspaces for projected operators). Let T be a positive
power compact operator on L p with p ∈ (1, +∞) with a spectral radius ρ(T ) > 0.
Let A be a convex set and λ ∈ C.

(i) If v ∈ K (λ, T ) and supp(v) ⊂ F(A), then we have (1A v) ∈ K (λ, TA).

(ii) If furthermore A is invariant, and λ ̸= 0, then we have K (λ, TA) ⊂ K (λ, T ).

Proof. If supp(v) ⊂ F(A), then by Lemma 6.6, we have 1AT v = TA(1A v). An
easy induction using the identity (T j )A = (TA) j from Lemma 5.8 yields that
1AT jv = T j

A(1A v) for all j ≥ 1, and since this still holds for j = 0, we get

(29) 1A(T − λ Id) jv = (TA − λ Id) j (1A v).

This proves the first item.
If (TA − λ Id)kv = 0, the expression (−λ)kv = −

∑k
j=1

(k
j

)
(−λ)k− j T j

Av shows
that supp(v) ⊂ A. By invariance this implies supp(T jv) ⊂ A, therefore we have
(T − λ Id)kv = 1A(T − λ Id)kv. We may now apply (29), as invariant sets are
convex, and get 1A(T −λ Id)kv = (TA −λ Id)kv = 0, which concludes the proof. □

Corollary 7.6. Suppose that T is a positive power compact operator on L p with
p ∈ (1, +∞) and a spectral radius ρ(T ) > 0. Let A ∈ Acrit, B =

⋃
C∈Acrit,C≺A C ,

and Ã = F(A) \ F(B).

(i) The set Ã contains A, it is convex, F∗( Ã) = F(B) and F(A) = Ã ⊔ F∗( Ã).

(ii) There exists a nonnegative eigenfunction w Ã of TÃ such that supp(w Ã) = Ã,
1A w Ã = vA, and ρ(w Ã) = ρ(T ).

(iii) If w ∈ K (T ) satisfies supp(w) ⊂ F(A), then there exists c ∈ R such that
1 Ãw = cw Ã.

Proof. The set Ã is convex, since it is the intersection of the invariant set F(A)

with the coinvariant set F(B)c. The set A cannot intersect F(B), since this would
imply A ≺ A, so Ã contains A. By definition of F(B), Ã contains no other critical
atoms. Therefore A is distinguished for TÃ, which yields the existence of w Ã
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by Proposition 6.11; moreover K (ρ(T ), TÃ) = Vect(w Ã) as ρ(T ) is algebraically
simple for TÃ. By Lemma 7.5(i), the function 1 Ã w belongs to K (ρ(T ), TÃ) and is
therefore proportional to w Ã, as claimed. □

We are now in a position to prove Theorem 7.3. We proceed in several steps.

7.2.1. Existence of a basis satisfying (i). We prove the existence of a basis satisfying
Theorem 7.3(i) by induction on the number of critical atoms of T .

If T has one critical atom A, then A is necessarily distinguished. The non-
negative eigenfunction wA given by Proposition 6.11 is a nonzero vector in the
one-dimensional vector space K (T ), so it is indeed a basis.

For the induction step, assume that for any positive power compact operator U
on L p with at most n critical atoms, there exists a basis of K (U ) satisfying (i).
Let T be a positive power compact operator on L p with n + 1 critical atoms.

We first claim that, for each critical atom A of T , there exists wA ∈ K (T ) such
that A ⊂ supp(wA) ⊂ F(A). Indeed, there are two cases. If TF(A) has n atoms
or less, then the induction hypothesis applied to U = TF(A) gives the existence
of wA ∈ K (U ) such that A ⊂ supp(wA)⊂ F(A), 1AwA =vA, and by Lemma 7.5(ii),
wA is in fact in K (T ), proving the claim in this case. If TF(A) has n+1 atoms, then all
critical atoms of T are in the future of A. Notice that ρ(TF(A)) = ρ(F(A)) = ρ(T )

and by Lemma 7.5(ii), K (TF(A)) ⊂ K (T ). Furthermore, all the critical atoms
of T belongs to F(A) and are thus the critical atoms of TF(A); this implies that
dim(K (TF(A))) = card(Acrit) = dim(K (T )). We deduce that K (TF(A)) = K (T ).
Let Ã be defined by Corollary 7.6, and let U = TF∗( Ã). Let w ∈ K (T ) = K (TF(A)).
We thus have supp(w) ⊂ F(A). By Corollary 7.6(ii)–(iii), if w vanishes on A,
then it must be identically zero on Ã. Therefore we get supp(w) ⊂ F∗( Ã) and
w ∈ K (U ) by Lemma 7.5(i) since F∗( Ã) is convex. As a consequence, since
by Lemma 6.4(iii), dim(K (T )) = n + 1 > n = dim(K (U )), at least one element
of K (T ) is nonzero on A. By Corollary 7.6(iii) we may assume without loss of
generality that 1 Ã w = w Ã. In particular, 1A w = vA, and the claim is proved.

Now, a family W = (wA)A∈Acrit satisfying the claim must be linearly independent.
Indeed, assume that

∑
A∈Acrit

cAwA = 0. If the cA do not vanish, let B be a maximal
element (for ≼) among the atoms for which cB ̸= 0. For any atom A ̸= B, either
B ę A and wA is zero on B, or B ≺ A and cA = 0 by maximality of B. Therefore
0 = 01B =

(∑
A cAwA

)
1B = cBwB1B , so cB = 0, a contradiction. Therefore all cA

must vanish, and the family W is linearly independent.
This independence and the fact that card(Acrit) = dim(K (T )) ensure that W is a

basis: this completes the induction and proves (i).

7.2.2. Proof of (ii): the two-atoms case. We first prove Theorem 7.3(ii) under the
additional assumption that T has only two critical atoms A and B, and that B ≺ A.
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By the trivial bound (28), the ascent is either equal to 1, in which case we
have that Ker (T −ρ(T )) = K (T ) is two-dimensional, or equal to 2, in which case
1 = dim(Ker (T −λ Id))< dim(Ker ((T −λ Id)2))= dim(K (T ))= 2. Let (wA, wB)

be a basis of K (T ) given by (i).
Note that K (T ) is stable by T , so there exist four coefficients such that

T wA = MAA wA + MAB wB, T wB = MB A wA + MB B wB .

Since B is distinguished, wB is the nonnegative eigenvector from Proposition 6.11,
so MB B = ρ(T ) and MB A = 0.

The support of wA is included in the future of the convex set A, so by Lemma 6.6
we get TA(1AwA) = TA(wA) = 1AT wA = MAA1A wA since wB = 0 on A. Since
wA = vA on A, we see that MAA = ρ(T ). We may therefore write

(30) (T − ρ(T )Id)wA = MAB wB,

and establishing Theorem 7.3(ii) in this case consists in proving that MAB is positive.
Let v⋆

B be a positive Perron eigenvector of T ⋆
B . Since the future of B for T ⋆ is P(B),

we have

T ⋆v⋆
B = T ⋆

Bv⋆
B + 1P∗(B)T ⋆v⋆

B = ρ(T )v⋆
B + 1P∗(B)T ⋆v⋆

B .

Taking the scalar product with v⋆
B in (30) yields

MAB⟨v⋆
B, wB⟩ = ⟨v⋆

B, (T − ρ(T ))wA⟩

= ⟨T ⋆v⋆
B − ρ(T )v⋆

B, wA⟩

= ⟨1P∗(B)T ⋆v⋆
B, wA⟩

= ⟨v⋆
B, T (1P∗(B)wA)⟩.

By Corollary 7.6, 1P∗(B)wA is nonnegative, and positive on Ã = F(A)\F(B), so
the last expression is nonnegative. Since ⟨v⋆

B, wB⟩ is positive, MAB is nonnegative.
Assume for a moment that MAB = 0, so that ⟨v⋆

B, T (wA1P∗(B))⟩ = 0, and by (7),
kT (B, Ã) = 0. Using the partition � = F(A)c

⊔ Ã ⊔ B ⊔ F∗(B) and the invariance
of F(A), we easily check that kT (B ∪ F(A)c, Ã ∪ F∗(B)) = 0, so Ã ∪ F∗(B) is
invariant. Since it contains A, it must contain F(A), and therefore B, a contradiction.
This shows that MAB > 0, concluding the proof of the two-atoms case. Note that
MAB ̸= 0 also shows that wA /∈ Ker (T − ρ(T )Id), so that the ascent is necessarily
equal to two.

7.2.3. Proof of (ii): general case. By definition, for all A, we have

(31) T wA =

∑
B∈Acrit

MAB wB =

∑
B∈Acrit,B≺A

MAB wB+MAA wA+

∑
B∈Acrit,BęA

MAB wB .
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Since supp(wA) ⊂ F(A), we have wA ∈ K (ρ(T ), TF(A)), so (i) applied to TF(A)

shows that MAB = 0 if B ę A. Then, multiplying (31) by 1A and applying
Corollary 7.6 yields ρ(T )vA = MAAvA, so MAA = ρ(T ).

Assume now that A covers B0, and let C be the convex set F(A) ∩ P(B0): by
definition, the only critical atoms in C are A and B0. For any other atom B, either
B ⊀ A and MAB = 0, or B ≺ A but B0 ⊀ B, so F(B) ∩ C = ∅, and wB is zero
on C . Therefore, multiplying by 1C in (31) yields

1C T wA = ρ(T )1C wA + MAB01C wB0 .

Using Lemma 6.6 and the fact that 1C wB0 = 1B0 wB0 = vB0 , we get the equality
TC(1CwA)= ρ(T )(1CwA)+ MAB0vB0 , so MAB0 is a term of the matrix of TC in the
basis (1CwA, vB0) of K (TC , ρ(TC)), and its positivity follows from the two-atoms
case.

7.2.4. Conclusion. To check that (iii) of Theorem 7.3 holds, note that the matrix N
of S = T − ρ(T )Id on the basis W satisfies NAB = 0 unless B ≺ A, and NAB > 0
if A covers B. Thus, we get

(N k)AB =

∑
A=A0≻A1···≻Ak=B

∏
j

NA j ,A j+1 .

If k > h(A), there is no chain of length k starting down from A, so N kwA = 0.
If k = h(A), the sum is nonempty, the only chains appearing in the sum are of
maximal length so A j must cover A j+1, the corresponding products are all positive,
so N kwA =

∑
B cBwB for some nonzero numbers cB , and N kwA ̸= 0. Therefore

the index of wA is h(A).
Notice the proof of (ii) and (iii) are done under the condition that the basis only

satisfies (i). This completes the proof of Theorem 7.3.
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