INFINITE DIMENSIONAL METAPOPULATION SIS MODEL WITH
GENERALIZED INCIDENCE RATE

JEAN-FRANCOIS DELMAS, KACEM LEFKI, AND PIERRE-ANDRE ZITT

ABsTrRACT. We consider an infinite-dimension SIS model introduced by Delmas, Dronnier and Zitt,
with a more general incidence rate, and study its equilibria. Unsurprisingly, there exists at least one
endemic equilibrium if and only if the basic reproduction number is larger than 1. When the pathogen
transmission exhibits one way propagation, it is possible to observe different possible endemic equi-
libria. We characterize in a general setting all the equilibria, using a decomposition of the space into
atoms, given by the transmission operator. We also prove that the proportion of infected individuals
converges to an equilibrium, which is uniquely determined by the support of the initial condition.
We extend those results to infinite-dimensional SIS models with reservoir or with immigration.

1. INTRODUCTION

1.1. Model and relations with existing models. We consider an inhomogeneous SIS epidemic
model, where individuals are either susceptible or infected. The homogeneous model was introduced
by Kermack and McKendrick [28], we refer to the monograph of Brauer, Castillo-Chavez et Feng [9] for
an analysis of this homogeneous SIS model and some of its variants. Let us recast the model from [28]
in the constant population case: let I(t) and S(¢) denote respectively the number of the infected and
susceptible) individuals at time ¢ > 0, in a population of constant size N = S(¢) + I(¢t) > 0. The
evolution of the number of infected is given by:

SI
! — _—
(1) I'=k 1,

where k > 0 is the infection rate and v > 0 the recovery rate.

The assumption of homogeneity of the population is not always satisfied in practice, see for example:
Trauer et al. [54] for a review on tuberculosis, [43] on the impact of health condition, [11] on the number
of sexual partners in a sexually transmissible infection, or the review [55] for more possible sources
of heterogeneity. The inhomogeneous SIS model from Lajmanovich and Yorke [32] generalizes the
Kermack-McKendrick model to a population divided in n sub-groups; the same equation appears also
when studying network of communities linked by dispersal, see Mouquet and Loreau [40] and more
generally [12]. Later, Thieme [53] and Delmas, Dronnier and Zitt [17] introduced a variant allowing an
infinite number (possibly uncountable) of sub-groups or features.

We follow the model given by [17] where the transmission operator can be non-irreducible, see the
discussion in Section 1.2 below and allowing furthermore a more general incidence rate, see Section 1.5.
The heterogeneity of the population is described as follow: (Q, G, 1) is a measured space with a non-zero
o-finite measure p: an element x € §) corresponds to a particular feature (or trait) of individuals. We
assume that individuals with the same feature behave in the same way with respect to the epidemic,
and that features stay constant during the whole infection process. We also assume that for a given
feature = € Q, the size of the population u(dz) of feature  remains constant over time.

Let u(t,z) denote the proportion of individuals with feature x €  that are infected at time ¢ = 0
among the population of individuals with feature xz. Let A be the set of measurable functions defined
on € taking values in [0, 1]. The heterogeneous SIS dynamics is given, for an initial condition h € A, by
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the evolution equation on the Banach space L® of measurable bounded real-valued functions defined
on ) by:

u = F(u),
2) { w(0) = he A,

with
(3) F(u) = ¢(u) Tu —yu,

where F' depends on: a bounded linear transmission operator T on L*, a bounded real-valued positive
recovery rate function v defined on (), and a real-valued function ¢ defined on R encoding the non-
bilinearity of the incidence rate. The hypotheses on the parameter (7,7, ¢) are given in Assumptions 1
and 2. Let us stress that the usual law of mass action ¢ = 1 — Id, with Id the identity map on R,
satisfies the corresponding hypothesis from Assumption 2 summarized in Condition (14).

Remark 1.1 (The kernel model from [17]). Let k& : Q> — R, be a kernel, that is a nonnegative
measurable function. The associated kernel operator T} is defined as follow. For h € L™ and x € €,
we define:

Ty(h)(x) = L ke, y)h() p(dy).

The quantity k(z, y) represents the transmission rate from individuals with feature y € Q to those with
feature x € 2. The heterogeneous SIS model from [17] is then given by (2) and (3) with T' = T}, (under
some integral hypothesis on the kernel) and the usual law of mass action ¢ = 1 —Id. This in particular
encompasses the Lajmanovich and Yorke model.

In epidemiology, equilibria are constant solutions of (2), that is, functions g € A such that:
(4) F(g) = 0.
They play a significant role in the long-time behavior of the dynamics of an outbreak, see Theorem 3
below. Obviously, the disease-free equilibrium (DFE) g = 0 is an equilibrium. Any other equilibrium is
called endemic equilibrium (EE). The basic reproduction number denoted Ry is defined by Heesterbeek
and Dietz [27] as “the expected number of secondary cases produced by a typical infected individual
during its entire infectious period, in a population consisting of susceptibles only”. Following [17] (see
also the method of the next-generation operator in Diekmann, Heesterbeek and Metz [20]), the basic
reproduction number Ry for the SIS model (2) with the usual incidence rate associated to ¢ =1 —Id
is defined as the spectral radius of the operator T'M,,,, where the operator M, is the multiplication
by 1/4. There usually is a threshold behavior for the existence of EE according to the value of
Ry: for Ry < 1 only the DFE exists as an equilibrium, and for Ry > 1 there exists an EE. This
is not universal: for example, models with imperfect vaccines or exogenous re-infections might lead
to backward bifurcation and produce multiple EE even in the regime Ry < 1, see [24] and more
specifically [8] for a SIS model. Nevertheless, we check that threshold behavior holds for the SIS
model (2), see Theorem 2 below. A discussion of the uniqueness of EE is given in Section 1.2.

1.2. A taste of the main results in the finite setting. Except in the trivial case where the
population may be split in subpopulations that do not interact at all, the existence of multiple equilibria
is fundamentally linked to asymmetry in the transmission dynamics. In this section, we first explain
this phenomenon, and a related crucial decomposition of the space, in the simple case where 2 is finite,
to give a taste of the general results stated below.

We consider a finite set €2, let G be the set of subsets of {2, and p a finite measure with support €.
The transmission operator T' is identified with a matrix K = (Kry)myeg where K, , is the infection
rate from individuals with feature y to those with feature x; in particular it takes into account the
relative size of the sub-populations. When Q is a singleton and ¢ = 1 — Id, we recover Equation (1)
(with w = I/N and K = k). When ( is finite, we recover the Lajmanovich and Yorke [32] model, and
the same framework can be used to describe households models [6] and multi-host and vector-borne
diseases [39].
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In this finite case, the study of the non-uniqueness for equilibria relies on the properties of the
oriented transmission graph Gk = (€2, Ex) with the set of edges Fx = {(y,x) € Q?: K, , > 0} given
by the support of the transmission matrix K. An edge from y to x models the possibility of infection
from the sub-population with feature y to the sub-population with feature z; in particular the graph
may have self-loops. For transmission graph models see for example [25, 5].

Strongly connected components of G will be called atoms — the notion will be generalized in the
infinite case. An atom is non-zero unless it is a singleton with no self loop. Notice the transmission
matrix/operator is irreducible if and only if the graph Gk is strongly connected (that is, €2 is an atom),
and is said monatomic if there is a unique non-zero atom. For further result on monatomic operators
in the general case see [19] and references therein; we refer also to Corollary 4.11 for a characterization
of monatomic transmission matrix using the number of EE.

In many examples the transmission graph G is symmetric (even though the transmission K might
not be symmetric). In this case, all (strongly) connected components behave independently and one
can study each connected components separately. Cases where G is not strongly connected occur less
frequently in the literature; it has been mentioned for example in a multi-type SIR model by [29, 36].

Let us mention two examples of non symmetric transmission graphs.

(i) The West Nile Virus, presented in [7], infects three species, birds (B), humans (H) and
mosquitoes (M). It is a vector-borne disease where birds and mosquitoes serve as vectors for a
transmission to humans. In this model, mosquitoes infects birds and humans while biting them
and mosquitoes get infected by birds while biting them, and we assume there is no infection
from humans to mosquitoes, nor between birds and humans. The graph Gk given in Fig. 1la
has only one non zero atom {B, M} and a zero atom {H}. In particular K is monatomic.

(ii) In the zoonosis model from [46], a pathogen exists in wild animals (W), is transmitted to
domestic animals (D) that transmit themselves the pathogen to humans (H). The graph Gg
given in Fig. 1b has three non-zero atoms: {W},{D} and {H}.

In such cases where Gk is not symmetric, the picture is richer: many endemic equilibria may
exist, they may be entirely characterized by the atoms contained in their support, and their basins of
attraction may be described explicitly.

Let us give a few additional definitions to state these results more precisely, before giving the general
statements below in Theorem 2 and 3. Define the future of a set A < Q as the set F(A) of all the
vertices in G reachable from A by a (possibly empty) path using edges in Ef. For two atoms A and
B of Gk, we write B < A if B < F(A); the relation < is a partial order. An antichain of atoms is a
set of atoms which are pairwise unordered. The future of an antichain is the future of the union of its
elements.

In the West Nile Virus model (i), the antichains of non-zero atoms are ¢§ and {B, M }; in the zoonosis
model (ii), the antichains of non-zero atoms are: ¢, {H}, {D} and {W}.

Finally, an atom is supercritical if the basic reproduction of the SIS-model restricted to the atom
is larger than 1; in particular a supercritical atom is non-zero and an atom A is trivially supercritical
if Ky ./v(z) > 1 for all = € A, where v is the recovery rate function, and the function ¢ satisfies the
regularity Condition (14) below.

Our first main result, Theorem 2, states (in the general possibly infinite setting) that each equilibrium
is characterized by a (different) antichain of supercritical atoms, and the DFE is associated to the
antichain (J. For example, assuming for simplicity that all non-zero atoms are supercritical, we deduce
that in the West Nile Virus model (i) there is only one EE and that in the zoonosis model (ii) there
are three EE.

Let us mention that a similar result on the existence of multiple EE is obtained in Waters et
al. [56] for a waterborne parasites that infect both humans and animals, such as Giardia infection
in rural Australia. In this model the animals and the humans can be seen as non-zero atoms for
the transmission, and the water as an environmental reservoirs. This model does not fit exactly the
metapopulation SIS model (2)-(3), nor the model with external disease reservoir presented in Section 1.4
because the reservoir is between the animal population and the human population.
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i)

(a) West Nile Virus Zoonosis model from [46]

FIGURE 1. Some examples of transmission graphs G g

Theorem 2 also states also that the support of an equilibrium is given by the future of its corre-
sponding antichain of supercritical atoms. Furthermore, Corollary 4.2 asserts that for two equilibria
g and ¢, we have g < ¢ if and only if supp(g) < supp(g’). This in particular allows to recover the
existence of a maximal equilibrium ¢*, in the sense that if g is an other equilibrium, then g < g*.

For example, assuming again for simplicity that all non-zero atoms are supercritical, we deduce that
in the zoonosis model (ii), denoting by g, the equilibrium characterized by the antichain {z}, we have:

supp(gu) = {H} < supp(gp) = {D, H} < supp(gw) = {W,D,H} and 0+# gy =9p 9w =g".

Our second main result is a full characterization of basins of attraction of the various equilibria:
we show in Theorem 3 that, starting with an initial condition u(0) = h, the epidemics converges in
long time towards the equilibrium associated to the maximal antichain in F(supp(h)) the future of the
support of the initial condition.

In the example of the West Nile Virus model (i), assuming that all non-zero atoms are supercritical,
we deduce that starting with an initial condition where only the human population H is infected, the
epidemic converges to the DFE and thus dies out, but starting with an initial condition where the
populations H and M (or simply M or B) is infected, the epidemic converges to the unique EE g*,
whose support is {B, M, H}.

In the example of the zoonosis model (ii), assuming again that all the atoms are supercritical, we
deduce from Theorem 3, starting with an initial condition w(0) = h, the epidemics converges in long
time towards the equilibrium whose support is the support of h.

1.3. Assumptions and main results. Recall the SIS model (2)-(3) with parameter (T,~,¢). We
shall consider the following assumptions on the parameters. For p € [1,+o0], let L? denote the usual
Lebesque space of measurable function defined on the measured space (9,7, 1) endowed with the LP
norm || - ||, and L% the subset of L” of nonnegative functions.

Assumption 1. The measure p is finite and non-zero; the map T is a bounded linear map on L* and
there exists p € (1,+m) and a finite constant C), such that for all f € L*:

(5) ITfl, <Gy LF s

the function «y belongs to L* and v > 0 a.e.; and the function ¢ : R — R is locally Lipschitz, nonnegative
on [0,1] and (1) = 0.

Assumption 2. Assumption 1 holds; there exists a finite constant C’Z’) such that for all f € L™:
(6) ITf Nl < Cp VS 5
and the map @ is decreasing on [0, 1] with ©(0) = 1.

The next two remarks are related to kernel operators. We also refer to Section 2.6 for further
properties of the operator T induced by those two assumptions.
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Remark 1.2 (The operator T is a kernel operator). Assume Condition (6) holds. Since v is bounded,
we deduce that there exists a finite constant C; such that || T'f ||, < Cp || f ||, for all f € L*, and also
that Condition (5) holds. According to [49, Theorem 4.2], we deduce that T is a kernel operator (and
the kernel is indeed nonnegative by Theorem 1.3 therein).

Remark 1.3 (The SIS model from [17]). Recall the definition of the kernel operator T} for k a kernel
given in Section 1.1. We check that the SIS model from [17], see Assumption 1 therein, satisfies our
Assumption 2. In [17], the measure p is a probability measure on {2, the function ~ is positive and
bounded, and the mass-action incidence rate is associated to ¢ = 1 —Id. So the conditions on ¢, v and
p in Assumption 2 are clearly satisfied. Therein, we have T = T}, for k : Q2 — R, a kernel such that:

g s [ (B50) waw < e

for some g € (1, +00). It is then elementary to check that the conditions on the operator T' = T} from
Assumption 2 are satisfied with p € (1,400) given by 1/p+ 1/¢ = 1.

We now give our main results. Recall that A = {f € LY : 1 — f € LT} is the set of measurable
functions taking their value a.e. in [0,1]. Proposition 3.1 below asserts that under Assumption 1, for
any initial condition h € A, Equation (2) has a unique global solution in L® given by the semi-flow
(o(t, h))tem and that ¢(¢, h) belongs to A for all ¢t € R;. The following result on long time convergence
appears below as Theorem 5.1 (see Section 2.3 below for a precise definition of the convergence involved).

Theorem 1 (Longtime behavior). Let (T,, @) satisfy Assumption 2. The semiflow ¢ always converges
to an equilibrium: for any initial condition h € A, there exists g € A such that F(g) =0 and

eSS _ 7o
(8) ltlglfsob o(t,h) =g in L”.

Under Assumption 2, we define the basic reproduction number Ry as the spectral radius p(7}/,)
of the power compact operator Ty, on L* given by T/, f = T(f/v), see Lemma 2.8. It comes at
no surprise that if Ry < 1, then the zero function O is the only equilibrium, so that all epidemic
disappear in the long run, see Proposition 4.3. However, if Ry > 1, then there exists a maximal
endemic equilibrium, say g* # 0, see Theorem 4.7. If furthermore T is irreducible (which is equivalent
to the existence and uniqueness, up to a scaling factor, of v € LL\{0} such that Tv = Ryv and that
v is positive), the maximal equilibrium is the only endemic equilibrium and g in (8) is equal to g* as
soon as the initial condition h is non-zero, see again Proposition 4.3. Those results appear already in
[17] in a slightly less general framework for Ry < 1 or T irreducible (or quasi-irreducible).

The main result of the paper is the description of all the endemic equilibria and their domain of
attraction: for any equilibrium g we give all the initial conditions h € A such that (8) holds. To do so,
we shall rely on the decomposition of the state space in atoms associated to the operator T' given by
Schwartz [50], see also our previous work [19], which is recalled in Section 2.4, and Section 1.2 for the
elementary case where € is finite. To summarize, a measurable set A € G is invariant if the support of
the function T'14 is a subset of A (up to a set of zero measure); a set is admissible if it belongs to the
o-field generated by the invariant sets; the atoms are the minimal admissible sets with positive measure
(that is A is an atom if A is admissible with ;(A) > 0 and if B c A is admissible then either p(B) =0
or u(B) = pu(A)). If T is irreducible, then 2 is an atom. For a measurable set A, its future F(A) is
the smallest invariant set containing A (up to a set of zero measure). The set of atoms (identifying
atoms which differ by a set of zero measure) can be endowed with an order relation <: A < B when
F(A) ¢ F(B) (where the inclusion holds up to a set of zero measure). See Section 2.4 for further
details. We say that an atom A is supercritical if the spectral radius of the operator T}, restricted to
A, denoted Ry(A), is strictly larger than 1. The number of supercritical atoms is finite; it is positive
if and only if Ry > 1, see [19]. A supercritical antichain is a finite set of supercritical atoms which are
pairwise unordered with respect to <; we define its future as the future of the union of its atoms. For
example, with two supercrtical atoms, say A and B, the supercritical antichains are ¢, {A} and {B},
with also {A, B} if A and B are unordered. Notice that Ry > 1 if and only if there exists a non empty
supercritical antichain.
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We give a complete characterization of equilibria, see Theorem 4.8 for a more complete statement.

Theorem 2 (Equilibria and supercritical antichains are in bijection). If (T, 7, ¢) satisfy Assumption 2,
then the set of supercritical antichains and the set of equilibria are in bijection. Furthermore the support
of the equilibrium associated to a supercritical antichain is given by its future.

The empty supercritical antichain corresponds to the DFE g = 0. We deduce from this result that if
g and ¢’ are two equilibria, then g < ¢’ if and only if supp(g) < supp(¢’) (up to a set of zero measure)
and supp(h) = {h > 0} is the support of the function h, see Corollary 4.2.

To complete this theorem we fully describe basins of attraction. To state the result, we denote by
T4 the projection of T' on a measurable set A, that is, the operator on L® defined by Taf = 1aT(14f)
for f € L®. Notice that if T" satisfies Assumption 2, so does T4. When this is the case, we say that g
is the maximal equilibrium of A when g is the maximal equilibrium of the SIS model with T replaced
by T4. Intuitively, from an initial condition h € A, the epidemic converges to an equilibrium which
depends only on the support of the initial condition; it is the same as the one starting from the “worst
possible case” where the whole population in F(supp(h)) < €2 is infected.

Theorem 3 (Basins of attraction of equilibria). The limiting equilibrium g of an epidemic with initial
condition h € A from Theorem 1 is the mazimal equilibrium of F(supp(h)).

This result appears below as Theorem 5.1. Tt is a full generalization of Theorem 4.13 in [17], which
only covers the irreducible case T where, if Ry > 1, the endemic equilibrium ¢ is unique and all
epidemic with initial condition h # O converge to ¢ in large time. Proposition 5.4 states that v times
the epidemic converges uniformly to yg. Thus, when essinf v > 0, the epidemic converges uniformly to
g, see also Remark 4.4 when furthermore Ry < 1. This uniform convergence is no longer true a priori
when essinfy = 0, see Remark 4.5 and Example 4.6.

1.4. Model with an external disease reservoir. We consider an infinite-dimensional SIS model
with an external disease reservoir, called SISk model in [42]; it can be seen as an extension of the SIS
model (2). An external disease reservoir is a particular case of environmentally transmitted diseases
where the population of pathogens in the environment is assumed to be constant over time, see for
example [23, 34| and references therein. See also the example of the West Nile Virus, where birds and
mosquitoes form a reservoir that is not infected by humans, see [7]. It also encompasses some SIS
models with immigration from [10], see Remark 1.4 below.

Recall I(t) = 0 and S(¢) = 0 denote respectively the number of infected individuals and suscpetible
individuals at time ¢ > 0. According to [42, Eq. (2.1-2)], the corresponding ordinary differential
equations model, including infection from the external disease reservoir, is given by:

I
S'=u0N7uokaS—fnS+fyI,
(9) N

ST
[/=kW+I€S—(MO+’y)[,

where N = I + S is the total population, pg is the healthy birth rate and the common death rate of
the susceptible and infected populations, S is the rate of disease transmission from the reservoir, with
k > 0. Notice the total size population IV is constant in time.

In an inhomogeneous setting, with the measured space of types (,G,u) and u(92) € (0,+400),
the proportion of infected individuals among the individuals with feature x is given by u(t,z) =
I(t,x)/N(z), where I(t,xz) denotes the number of infected individuals with feature z €  at time
t € Ry and N(z) the total size of the population with feature z € Q, assumed constant over time. In

the inhomogeneous SISk model inspired by (9), the function u = (u(t,x))ier, zeq is solution in L* of
the ODE:

e Ers

with initial condition h € L* and:

(11) Fe(u) = ¢(u)(Tu + k) = yu,
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where ¢ is a continuous function on R and x € LY. The particular case of SISk model given by (9)
corresponds to Q = {w}, p a Dirac mass at w, T the multiplication operator by k, v and k constant
functions, and ¢ =1 —1Id.

This model can be related to SIS model with immigration, see the following remark.

Remark 1.4 (SIS model with immigration). For the homogeneous population, we link the SISk model (9)
with the SIS model with immigration of [10, Eq. (1)]. Assume initially that the total population N ()
is not necessarily constant over time ¢. Let A > 0 be the immigration rate, p € [0, 1] the proportion of
infected individuals among the immigrants, and d > 0 the death rate among the population. All those
parameters are assumed to be constant over time. We assume that the epidemic induces no death (that
is @ = 01in [10, Eq. (1)]) and that the incidence rate is the standard mass-action. Then, the SIS model

with immigration given in [10, Eq.(11)] reduces to:

N-I)I

1= pAg DI
pA+ N

N' = A—dN.

Since lim; o, N(t) = A/d, and since we are interested in the long time equilibrium, it is natural to
assume that N start at its equilibrium, that is N(0) = A/d, so that the population size is constant
over time. In this case, Equation (12) with u(t) = I(¢)/N(0) reduces to:

(13) v = (1 —u)(ku+ pd) — (v + (1 — p)d)u.

The same arguments applied to an inhomogeneous population would lead to a similar multi/infinite-
dimensional ODE with u(t) replaced by a function u(¢,z), with € Q the set of features, and ku
replaced by T'u with T' the transmission operator, so that (13) becomes:

v =(1—=u)(Tu+pd) — (y+ (1 —p)d)u.

This corresponds to the SISk model (10)-(11) with ¢ = 1 —1Id, k = pd and 7 replaced by v+ (1 — p)d.
In conclusion the SIS model with immigration and the SIS model with an external disease reservoir
lead to the same ODE.

In Proposition 6.1 and Corollary 6.2, we prove that the SISk model with reservoir of (10) can
be analyzed using the classical SIS model (2) by adding a new element r to the set of features Q
corresponding to the reservoir. In particular we provide a full description of the equilibria and their
domain of attraction for the SISk model.

1.5. Discussion on the incidence rate. In this section, we discuss different models for the infection
rate, and more precisely for the function ¢ in (3).

In an homogeneous population, Ross [45] considered the so called law of mass action 3ST/N (which
corresponds to ¢ = 1 —Id in the SIS model): the incidence rate is proportional to the product of the
proportion of susceptible individuals and the proportion of infected individuals. According to Wilson
and Worcester [57], it corresponds to the assumption that infected individuals are mixing uniformly
with the susceptible ones throughout the population, see also Heesterbeek [26] for an historical review.
Some epidemic models introduced in the literature replace the law of mass action by various incidence
rates, see in particular the survey McCallum, Barlow and Homeo [38]. Concerning the function ¢,
Assumptions 1 and 2 below reduce to:

(14) ¢ is locally Lipschitz on R, decreasing on [0, 1] with ¢(1) = 0 and ¢(0) = 1.

In the examples below from the literature, the set 2 is a singleton and the transmission operator T
is thus a constant, which is assumed to be positive; so the condition ¢(0) = 1 is a normalization
convention on the (constant) operator 7' and could be replaced here by the more relevant condition
©(0) > 0.

(i) London and Yorke [58] consider the incidence rate SST(1 — cI), that is:
ou)=(1—-u)(l—au) with a>0
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for measles epidemic (in New York City and Baltimore from 1928 to 1972) in order to eliminate
the systematic differences on data observed between years with many cases and years with
relatively few cases; however they do not provide a biologic or physical argument for such
modification. Notice that by considering u/a instead of u, one can assume that a < 1, in which
case Condition (14) holds.

(ii) We recall that in the SIR model, once infected, the individuals recover with a permanent
immunity. Rose et al. [44] incorporate in the SIR model (with constant population N =
S+ I + R) a population-level heterogeneity for the infection susceptibility given by the gamma
probability distribution; in [44, Section 4] they consider the incidence rate SI5¢. Using data
from the 2009 HIN1 influenza outbreak, they observe that the higher-order models are more
consistent with the data than the case « = 1. In our setting, this model would correspond to
the following function ¢ with satisfies Condition (14):

pu)=01—-u)* with a>1.

(iii) Capasso and Serio [13] study a SIR model (with constant population N = S + I + R) taking
into account saturation and “psychological” effects. They consider the incidence rate g(I)S. In
our setting, this model would correspond to:

plu) = (1) 2,
u
where the conditions on ¢ translated into our framework correspond to: the function g is
defined on [0, 1], nonnegative, bounded, differentiable with g’ bounded and such that g(0) = 0,
g'(0) =1 and g(u) < v on Ry. Under those assumption, the function ¢ is Lipschitz on [0, 1],
with ¢(1) = 0 and ¢(0) = 1. However the monotonicity condition on ¢ on [0, 1], which amounts
to g(u) = u(l —u) ¢'(u) on [0,1], is not satisfied in general.

Notice that Condition (14) is indeed satisfied for the following functions g, where ¢ > 0:
u/(1+ cu) in [13, Section 6], (1 — exp(—cu))/c in [30] on SIR model for Covid19 outbreak, and
log(1 + cu)/c in Table 1 of the survey [38] on pathogen transmission models. They respectively
correspond to:

1—u 1 — exp(—cu) log(1 + cu)

pl) = T o) = (1—u) — TN and () = (1) 2E

(iv) We recall that in the SIRS model, once infected, the individuals recover with a temporary
immunity. To exhibit qualitatively different dynamical behaviors, Liu, Lewin and Iwasa [35]
introduced a SIRS model (with constant population N = S + I + R) where the incidence rate
is given by TH (I, S) for some differentiable function H such that H(I,0) = 0 and dsH > 0 for
all I > 0. The latter condition reflects the biologically intuitive requirement that the incidence
rate be an increasing function of the number of susceptibles. In our setting, this model would
correspond to:

o(u) = H(u,1 —u),

with ¢ differentiable and (1) = 0. Notice that ¢ is decreasing on [0,1] if 0sH > 0;H. The
authors consider the particular case ¢(u) = (1 —u)* v~ with o, 8 > 0. Condition (14) holds
for =1 and a > 1, which is already considered in Point (ii).

2. NOTATIONS

2.1. Ordered set. Let (EF,<) be a (partially) ordered set. Whenever it exists, the supremum of
A c E, denoted by sup(A), is the least upper bound of A: for all x € A, x < sup(A4) and if for some
z € Eonehas z < z for all x € A, then sup(A) < z. A collection (x;);ez of elements of E is an antichain
if for all distinct 7, j € Z, the elements x; and z; are not comparable for the order relation.
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2.2. Banach space and Banach lattice. Let (X,||-||) be a complex Banach space not reduced
to {0}. An operator T on X is a bounded linear (and thus continuous) map from X to itself. If Y < X
is a subspace of X such that T(Y) ¢ Y, we denote T|y the restriction of T to the subspace Y, that is
an operator on the Banach space (Y, || -||). The operator norm of T is given by:

(15) | T x =sup{||Tz| : x€ X st. ||z] =1},

its spectrum by Sp(T) = {A € C: T — AId has no bounded inverse}, where Id is the identity operator
on X. If A € C and x € X\{0} satisfy Tz = Az, then the element x is an eigenvector of T' and A, which
belongs to Sp(T'), is an eigenvalue of T'. The spectral radius of T is defined by (see [47, Theorem 18.9]):

(16) p(T) = sup{|A| = Ae Sp(T)} = lim | 77 [

By convention, we set 79 = Id. The spectral radius is commutative in the sense that if 7" and S are
two operators on X, we have:

(17) p(TS) = p(ST).
We define the spectral bound of the operator T' by:
(18) s(T) = sup{Re(X) : Ae Sp(T)}.

Let X* denote the (continuous or topological) dual Banach space of X, that is the set of all the
continuous linear forms on X. For x € X, 2* € X*, let (2*, z) denote the duality product and the norm
of * in X* is defined by || z* || = sup{{z*,x): ||z || = 1}. For an operator T, the dual operator T™* on
X* is defined by (T*z*,z) = (x*,Tx) for all z € X, 2* € X*. It is well known that ||T* [|y. = || T ||
and Sp(T*) = Sp(T).

An ordered real Banach space (X, || -], <) is a real Banach space (X, || - ||) with an order relation <.
For any x € X, we define |z| = sup({z, —z}) the supremum of z and —z whenever it exists. Following
[48, Section 2|, the ordered Banach space (X, |||, <) is a Banach lattice if:

(1) For any x,y,z € X, A = 0 such that z < y, we have z + z < y + z and Az < Ay.
(2) For any z,y € X, there exists a supremum of z and y in X.
(3) For any z,y € X such that |z| < |y|, we have ||z | < | y||

Let (X, -], <) be a real Banach lattice. We denote X = {x € X : x > 0} the positive cone of X.
Recall it is a closed set. We shall also consider the dual cone X} = {z* € X*: (z*,z) > 0 forall z €
X+}. A linear map T on X is positive if T(X ) < X;. According to [2, Theorem 4.3] positive linear
maps on Banach lattices are bounded (and thus are operators).

If S and T are two operators on X, we write T' < S if the operator S —7T is positive. If the operators
T,S and S — T are positive, then we have, see [37, Theorem 4.2]:

(19) p(T) < p(9).

Any real Banach lattice X and any operator 7" on X admits a natural complex extension. The spec-
trum of T' will be identified as the spectrum of its complex extension and denoted by Sp(T'), furthermore
by [1, Lemma 6.22], the spectral radius of the complex extension is also given by lim, o || T" H%n,
with | - ||y still defined by (15). Moreover, by [1, Corollary 3.23], if T' is positive (seen as an operator

on the real Banach lattice X), then T and its complex extension have the same norm.

2.3. Lebesgue spaces and essential limits. Let (£2,G, ) be a measured space with p a o-finite
measure. For any A4 < G, we denote by o(A) the o-field generated by A. If f, g are two real-valued
measurable functions defined on Q, we write f < g a.e. (resp. f = g a.e.) when p({f > g}) =0
(resp. p({f # g}) = 0), and denote supp(f) = {f # 0} the support of f. We say that a real-valued
measurable function f is nonnegative when f > 0 a.e., we say that f is positive, denoted f > 0 a.e.,
when p({f < 0}) = 0, and we say that f is bounded if there exists M > 0 such that |f| < M a.e..
If A,B c ) are measurable sets, we write A ¢ B a.e. (rtesp A = B a.e.) when 14 < 1p a.e. (resp.
14 =1pae.). Let L°(Q, G, i), simply denoted L, be the set of [—00, +-00]-valued measurable functions
defined on €, where functions which are a.e. equal are identified. The elements 1 and 0 of L° denote
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the functions which are a.e. equal respectively to 1 and to 0. For the sake of clarity, we will omit to
write a.e. in the proofs.

Let (f;)ier be a family of measurable functions defined on 2 taking values in [—o0, +0]. We recall
that f* = esssup,cp fi is a measurable function such that f; < f* a.e. for all t € T and if f is
measurable function such that f; < f a.e. for all t € T then f* < f a.e. (if T is at most countable,
then one can take esssup,er fi = sup,er ft). We now consider T = Ry. Let (fi)wr, be a non-
decreasing sequence, in the sense that for all ¢t < s we have f; < f; a.e., then if (¢,)nen iS @ sequence
converging to +00, we have that the sequence (f, )nen converges a.e. towards f* = esssupyer, ft, and
thus we shall simply write f* = limess; ., f;. We leave to the reader the definition of essinf and
the limit of a non-increasing sequence of measurable functions. For the family (f;)r, , we consider
J{f = esssup,s, fs for all t € Ry, and get that the sequence (f;*);cg+ is non-increasing and write
limesssup,_, ., fi = limess;_,o f;*. We define in a similar way limessinf, ,, f;. Notice that if g; = f;
a.e. for all t € R, , then the essential supremum/infimum limits of (f;);cg+ and (g¢);eg+ are a.e. equal.
Therefore, the essential supremum /infimum limits of sequences is well defined on the space L’. We
say the sequence of functions (f)ier, in LY essentially converges if limesssup,_, ., f; = limessinf; o, f;
in L, and write limess;_, o f; for this common limit (which is an element of L°). When considering
T = N instead of T' = R, the analog of the essential convergence is the a.e. convergence, that is the
usual convergence in L°.

For a measurable function f, we write u(f) = § fdu = §, f(x) p(dz) the integral of f with respect
to pu when it is well defined. When f is measurable and a.e. finite and nonnegative, we denote fu
the measure on (2,G) defined by fu(A) = p(laf) for any measurable set A. For p € [1, +], the
Lebesgue space LP(£2, G, 11) is the set of all real-valued measurable functions f € L° defined on § whose
LP-norm, [ f ||, = u(|fIP)YP if p < +o0 and || f]|,, = esssup(|f|) if p = +o0, is finite. When there is
no ambiguity we shall simply write LP (), LP(u) or LP for LP(€2, G, ). The Banach space LP endowed
with the usual order f < g, that is pu({f > g}) = 0, is a Banach lattice. The positive cone L* is the
subset of L? of nonnegative functions; it is normal (as the norm || - || is monotonic, that is, 0 < f < g
implies || f ||, < /g, see [L5, Proposition 19.1]) and reproducing (that is, L — L, = L?). Since the
supports of two functions which are a.e. equal are also a.e. equal, we get that the support of f e L? is
well defined up to the a.e. equality; it will still be denoted by supp(f). For p € [1, +0), the dual of L?
is L9 where 1/p + 1/¢q = 1, with the duality product (g, f) = { fgdp for f € L? and g € L? (for p =1,
we use that the measure u is o-finite).

For any f € L, we denote by My the multiplication by f, which can be seen as an operator on L”
for p € [1, +]. For A € G a measurable set, we denote:

(20) My = M,
Let T be an operator on LP. The projection of T" on A, denoted T4, is the operator defined by:
(21) Ty =MAaT My,

and, if u(A) > 0, we denote by T'|4 the operator T restricted to LP(A), where the set A is endowed
with the trace of G on A and the measure pu|a(-) = u(An ).

We now assume that u(Q) > 0, so that LP(Q) is not reduced to a singleton. When there is no
ambiguity on the operator T, we simply write p(A) for the spectral radius of T4 (and of T|4 when
w1(A) > 0). In particular, we have p(Q2) = p(T) and p(A) = 0 if u(A) = 0. If the operator T is positive,
we also have that:

AcB = p(A) <p(B).

2.4. Decomposition of positive operators on LP, with p € (1,+o). Recall the measure p is
o-finite and non-zero. We recall the atomic decomposition from Schwartz [50] of a positive operator
T on LP, see also [19]. A measurable set A € G is T-invariant, or simply invariant when there is no
ambiguity, if Ma.TM, = 0, which, see [19, Eq. (7)], is equivalent to:

(22) {9, Tf)=0.
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for all f € LY and g € L% such that supp(f) c A a.e. and supp(g) < A° a.e.. The operator T is
irreducible if its only invariant sets are a.e. equal to 2 or J. A measurable set A with positive measure
is #rreducible if the operator T'|4 on LP(A) is irreducible. The future of a set A < Q, denoted F(A), is
the smallest invariant set that contains A. If C is an at most countable collection of subsets of €2, then
we denote by F(C) the future of the union of the elements of C:

(23) F(C)=F (U A) = J F),
AeC AeC
where the last equality is [19, Lemma 3.13].

A set is admissible if it belongs to the o-field generated by the invariant sets. An atom is a minimal
admissible set with a positive measure (that is, A is an atom if A is admissible, u(A) > 0 and if B is
an admissible set such that B < A a.e. then a.e. B = J or B = A), and we identify two atoms that
are a.e. equal. In particular, if the set A is an atom and B is admissible then we have:

wWANB)>0 = Ac B ae.

According to [19, Theorem 1], a measurable set is admissible and irreducible with positive measure if
and only if it is an atom. Since the atoms have positive measure, we get that the set of atoms (up
to the a.e. equality), 2, is at most countable. We shall also consider the (at most countable) set of
non-zero atoms:
A*={AeA: p(A) > 0}.

The relation < on 2, defined by A < B if F(A) < F(B) a.e. (or equivalently A ¢ F(B) a.e.), is
an order relation. We end this section by noticing that antichains of atoms are characterized by their
future.

Lemma 2.1 (Antichains with same future). Let C and C' be two antichains of atoms. Then, we have:
FlC)=F(C) = c=C.

Proof. Assume that F(C) = F(C'). Consider an atom A € C. Since A ¢ F(C) = F(C'), there exists
A" € €' such that we have u(A n F(A")) > 0, which implies A < A" as A is an atom. Conversely there
exists B € C such that A’ < B, and by transitivity A < B. Since C is an antichain, we obtain A = B
and thus A = A’ is an element of C’. The reverse implication is trivial by (23). O

2.5. Power compact operators on LP. A linear map T on a Banach space is compact if the image
of the unit ball is relatively compact; it is then bounded. An operator T on a Banach space is power
compact if there exists k € N* such that 7% is compact. We recall some well-known properties of power
compact operators, see [21, 31] for instance.

Lemma 2.2 (Spectrum of power compact operators). Let T' be an operator on a Banach space.

(i) The operator T* is power compact if and only if the operator T is power compact.
(i) If T is power compact, then the set Sp(T) is at most countable and has no accumulation points
except possibly 0 (it is thus totally disconnected).

Tt is well known that the spectral radius (and more generally the spectra) is a continuous function
on the set of compact operators with respect to the operator norm, see [41, Theorem 11]. We shall
however use a weaker result from Anselone [3]. We say a family V of operators on X is collectively
compact if | o, V(B) is relatively compact, where B is the unit ball of X. The following result is a
direct consequence of Proposition 4.1 and Theorem 4.16 in [3].

Lemma 2.3 (Collectively compact operators). Let I be an interval of R and (Vy)ier be a family of
collectively compact operators on a Banach space X. If t € I is such that lims_¢ || (Vs — Vi)a || = 0 for
all z € X, then we have lims_; p(Vy) = p(V).

We give a result on compact operators in Lebesgue space. Recall that p is a non-zero o-finite
measure on {2, and that L? denote LP(Q,G, p).
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Lemma 2.4 (On compactness). Let p € (1,+0). A positive operator on LP which is dominated by a
compact operator is compact.

Proof. Notice that LP has an order continuous norm for p € [1,), see [2, Definition 4.7], that is,
according to |2, Theorem 4.9], if (f,)nen is a non-decreasing sequence of L% such that sup,,cn fn = f €
L?) then lim, o || frn — f ||p = 0. In particular, when p € (1, +0), the dual of LP, that is isomorphic
to LY with 1/p + 1/q = 1, also has an order continuous norm. The lemma is then a direct consequence
of [2, Theorem 5.20]. O

We recall in our framework some classical results, see [19, Theorem 6.2 and Lemma 6.5].

Theorem 2.5. Let T be a positive power compact operator on LP with p € (1, +0).

(i) Krein-Rutman. If p(T) is positive then p(T) is an eigenvalue of T, and there exists a
corresponding nonnegative right eigenfunction denoted vr.
(ii) de Pagter. If T is irreducible then p(T') is positive unless T = 0 and dim(LP) = 1, that is, if
A is measurable then either u(A) =0 or u(A°) = 0.
(iii) Schwartz. We have that for any admissible set A:
24 A) = B).
(24) pA) = | max  p(B)
Following [18, Lemma 4.2], we now state a technical result based on Collatz-Wielandt inequality
and the Krein-Rutman theorem, giving a bound on the spectral radius given a strict supersolution of
the eigenvalue equation.

Lemma 2.6 (Supersolutions and spectral radius). Let S be a positive operator on LP with p € (1, +0).
If there exists A > 0 and a non-null nonnegative function v € LY such that Sv = Av, then:

p(S) = p(Sa) = A,

where A = supp(v). Furthermore, if S is power compact, then we have:

(i) If Sv = Av on A, then p(Sa) = A.
(i) If Sv — \v is positive on A, then p(Sa) > A.

Proof. We first note that p(S) = p(Sa) by (19). Multiplying the inequality Sv > Av by 14 yields
that Sqv > Av. The fact that p(S4) = A, and thus p(S) = A, is then a direct consequence of the
Collatz-Wielandt inequality [22, Propositions 2.1 and 2.2].

We now assume that S is power compact. Since (S4)* = (5*) 4, we shall denote them simply by S%.
Since S4 < 5, we deduce from Lemma 2.4 that the operator S4, and thus S%, is power compact. We
apply the Krein-Rutman theorem (Theorem 2.5 (i)) to the power compact operator S%, which has a
positive spectral radius p(S%) = p(Sa) > 0: there exists w € L% a non-null eigenfunction of S% related
to the eigenvalue p(S4). Since p(Sa)w = SHw = 145*(1aw), we deduce that supp(w) < A and thus

{w, vy > 0.
We now consider the following duality product:
(25) (w, Sav — M)y = (Sw, vy — A{w, vy = (p(Sa) — N){w,v).

Under the hypothesis that Sv = Av on A = supp(v), the left hand side of (25) is zero, and thus
p(Sa) = A. This gives Point (i).

To prove Point (ii), since S4v — Av is by hypothesis positive on A, and wls = w is nonnegative and
not identically equal to zero, we get (w, Sav — Av) > 0. Then use (25) again to get that p(S4) > A. O

2.6. Operators related to the SIS model. Let (2, G, 1) be a measured space with finite non-zero
measure u, that is, u(€2) € (0, +0). Recall we simply write LP for LP(Q, G, u). Observe that L* < LP
for p € (1,4+0) and that the identity map ¢ from L® to LP is a bounded injection.

Lemma 2.7 (On compactness). Let p € (1,+00). Let T be an operator from LP to L*. The linear
map (T is a compact operator on LP.
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FIGURE 2. Operators related to T in the SIS model (T, ).

Proof. Since LP is reflexive, see [21, Corollary IV.8.2], we get by [21, Corollary VI1.4.3] that T and ¢ are
weakly compact. By [2, Theorem 5.85], as the space L® is an AM-space, it satisfies the Dunford-Pettis
property, thus, by [2, Theorem 5.87|, the operator (7" on L? is then compact. g

Let p € (1, +0) and v € L® such that v > 0 a.e.. Let T be a positive operator on L® such that (5)
holds for all f € L®. In particular, as L™ is dense in L? (for the LP-norm), we can extend T by density
into a bounded linear map T on LP. Recall that M, denotes the multiplication by 1/. Notice that
under Assumption 2, see (6), the linear map T'Mj /., denoted by T/, can be seen as a bounded linear

map on L®, and it can also be extended by density into a bounded linear map Tl /v on LP, see also
Fig. 2.

Lemma 2.8 (Properties of operators related to T). Let (T,~, ) satisfy Assumption 1. Then T is an
operator on LP. If Assumption 2 holds, then we have:

(a) T is a compact operator on LP;

(b) T? is a compact operator on L*;

(c) T, is a compact operator on LP;

(d) Ty, is an operator on L™ and le/v is compact;

(e) Sp(T) = Sp(T) and Sp(T1/,) = Sp(T1/,).-

Proof. Suppose Assumption 2 holds. We deduce from (6) that there exists a finite constant C' such
that |Tf]l, < C | fll, for all f € L*. By density, we can extend 7" into an operator 7' from L”

to L®. This gives that T = T and Point (a) on the compactness property of Tis a consequence
of Lemma 2.7. As T = T and thus 72 = TT1, we also get that T? is compact, that is Point (b).
Using (6), we can also extend T'M ., into an operator T /v from LP to L. Arguing as above gives
Points (¢) and (d).

We now prove Point (e). Two complex Banach spaces (E, | -||) and (E’,|-||') are compatible if
(E", |- +II-1"), with E” = E n E’, is a Banach space, and E” is dense in F and in E’. Given
two compatible spaces E and E’, two operators A on E and A’ on E’ are said to be consistent if
A(E") c E", A/(E") c E"” and Ax = A’z for all x € E”. If furthermore A and A’ are compact, then
[14, Theorem 4.2.15] gives that Sp(A) = Sp(A’). The proof therein relies on the spectrum to be at
most countable and with no accumulation points except possibly 0 and that the spectral projections
have finite rank, see Theorems 5 and 6 p.579 in [21]. Since this also holds for power compact operators,
the results can be extended to A and A’ being power compact operators.

As p is a finite measure, the spaces LP and L® are pairwise compatible. Notice also the operators
T and T, as well as Ty, and Tl /~» are consistent. Then the equalities follow. O

3. EQUILIBRIA AND RESTRICTION

We consider the SIS model (2)-(3) on L® = L*(Q, G, u) with parameter (T,~, ¢) such that Assump-
tion 1 holds. In particular the measure p is finite and non-zero. We consider the following subset of
L*™:

A={feLl®:0< f<1}.
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Recall that g is an equilibrium if g belongs to A and solves (4), that is:
F(g) = 0.

In particular, the function O is an equilibrium. We say that g* € L® is the maximal equilibrium if g*
is an equilibrium and all other equilibrium g € L* are such that g < g*.

The existence result of the semi-flow and the maximal equilibrium follows [17, Propositions 2.7 and
2.15] with slightly more general hypothesis on T' and is obtained similarly, see a proof in Section 8 for

completeness. We shall refer to this section for notations and definitions/properties of the semi-flow.
Proposition 3.1 (Existence of a global solution and of the maximal equilibrium). Let (T,~, ) be
parameters of the SIS model satisfying Assumption 1. The following properties hold.

(i) Equation (2) in L* with initial condition h € A has a unique global solution given by the
semi-flow ¢(-, h) = (¢(t, h))ser, . The semi-flow belongs to C*(Ry).
(i) For allt =0 and h € A, we have ¢(t,h) € A.
(11i) The sequence (¢(t,1))er, is non-increasing and converges essentially to a limit, g*, which is
the maximal equilibrium:
ltimess o(t, 1) = g*.

—+0

The convergence in Point (iii) is not uniform in general, see Remarks 4.4 and 4.5 and Example 4.6.
The proof of the monotonicity of the maximal equilibrium in the parameters is given in Section 8
for consistency of the arguments.

Lemma 3.2 (Monotonicity of the maximal equilibrium). For ¢ = 1,2, let (T;,7i,p:) be parameters
of the SIS model satisfying Assumption 1 and denote g¥ the corresponding mazimal equilibrium. If
Ty = To, 1 = @2 and y1 < 72, then we have gF > g¥.

Let A be a measurable set. Since (7,7, ) satisfy Assumption 1, so does (T4,~, ), where Ty =
Ta = MATMy, is the projection of T on A. We shall now focus on this restricted (T4, v, ¢)-SIS model.
We set for u e L*:

(26) Fa(u) = ¢(u)Ta(u) —yu,
and call g € A an equilibrium of A if F4(g) = 0. In this case, notice that supp(g) — A a.e.. We also

denote ¢4 the corresponding semi-flow and g% the corresponding maximal equilibrium of A given by
Proposition 3.1.

Lemma 3.3 (Maximal equilibria). Let (T, @) satisfy Assumption 1. Let A B a.e. be measurable
sets. We have g% < g%.

Proof. Apply Lemma 3.2 with 77 =T = Ta =15, 1 = p2 = p and y1 = 72 = 7. O
We now provide results on equilibria and semi-flows associated to T" and T'y4.

Lemma 3.4 (Equilibrium and restriction). Let (T,~, @) satisfy Assumption 1. Let A be a measurable
set and g € A.

(i) If g is an equilibrium and supp(g) < A a.e., then g is an equilibrium of A.
(ii) If A is invariant and g is an equilibrium of A, then g is an equilibrium (and supp(g) € A a.e.).
(iii) If A is invariant and g is an equilibrium, then 14cg is an equilibrium of A¢ and of A°nsupp(g).

Proof. If supp(g) < A and ¢ is an equilibrium, then we get that g is an equilibrium of A as:
Fa(g) = ¢(9)1aT(1ag) — 79 = 1a(v(9)T(9) — 79) = 0.
Let A be an invariant set and h € A. Since 14.T'(14h) = 0, we deduce that:
(27) Fac(lach) = 14-F(R).
If furthermore supp(h) < A, then we have:
(28) Fa(h) = F(h) = @(h)14:T(1ah) = F ().
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If ¢ is an equilibrium of A, then we get supp(g) — A and, since A is invariant, we deduce from (28)
that ¢ is an equilibrium. If g is an equilibrium, we deduce from (27) that 14c¢ is an equilibrium of A€.
Then use (i) with T replaced by T4. and A by supp(g) to deduce that 14¢g is also an equilibrium of
A° nsupp(g). O

Lemma 3.5 (Semi-flow and restriction). Let (T,~, ) satisfy Assumption 1. Let A be a measurable
set and h € A. The following properties hold:

(1) limess; 10 da(t,1a) = g%
(i) If A is invariant, then we have 1 e ¢(-,h) = dac (-, Lac h).
(i11) If A is invariant and supp(h) € A a.e., then we have ¢(-,h) = ¢ (-, h).
Proof. As g% is an equilibrium of A, we get supp(g%) < A and thus we have g% < 14 < 1. By the
monotonicity of the semi-flow, see Lemma 8.5 (i), we have g% = ¢a(t,9%) < ¢a(t,14) < ¢a(t,1) for
all £ € Ry. Then Proposition 3.1 (iii) gives Point (i).
Let A be invariant. For simplicity, we write ¢ instead of ¢(¢, h) and ¢’ for its derivative. By definition
of the semi-flow ¢, we deduce from (27) that:

1Ac¢/ = 1ACF(¢) = FAC(lACQS)'
The map t — 14:¢(t, h) is thus a solution of Equation (2), with F replaced by F4. and initial condition
14c h. By the uniqueness of the semi-flow, we get 14cé (-, h) = dac (-, Lach), that is Point (ii).
We now assume that supp(h) < A. By Point (ii), we have supp(¢) < A. We deduce from (28) that:
¢ = F(¢) = Fa().

Then, the same argument as above yields Point (iii). O

4. CHARACTERIZATION OF EQUILIBRIA

In this section, we assume that Assumption 2 holds for the SIS model (7,7, ). In particular the
map ¢ restricted to [0,1] is a decreasing bijection onto [0, 1]. Recall the operators related to T defined
in Section 2.6 and their properties.

4.1. Equilibria, supports and spectral radius. For any g € A, let L, denote the compact operator
on LP defined by:

(29) Lg = Myg) Ty

This operator is associated to the linearization M, ,)T —~ of the dynamics near g in the same way as
Tl/w is associated to the linearization T' — 7 of the dynamics near 0 (as ¢(0) = 1). Notice that when
(T',7, ) satisty Assumption 2, then (M T, ) also does. It is immediate to check that for g € A:
(30) g is an equilibrium <= L, (vg9) = 9.

Lemma 4.1 (Equilibria as nonnegative eigenfunctions). Let (T,~, ) satisfy Assumption 2. Let g € A
be an equilibrium. We have the following properties.
(i) o(g) >0 a.e.
(ii) The operatorsT', Ty, and Ly have the same invariant sets, irreducible sets, atoms and non-zero
atoms.

(iii) The set supp(g) is invariant.
If g # 0, then the following additional properties hold. Let h € A be an equilibrium. Set A = supp(g).

(iv) p(Lg) = p((Lg)a) = 1.

(v) If h < g, then either p((Lp)a) =1 and h = g, or p((Lp)a) > 1 and supp(h) # supp(g) a.e..

(vi) h < g < supp(h) < supp(g) a.e..

As a consequence of Point (vi) we directly get the following corollary.

Corollary 4.2 (Equilibria and their support). Let (T, @) that satisfy Assumption 2. Two equilibria
with the same support are equal.
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Proof of Lemma 4.1. Since ¢(g)T(g) = g, ¢(g) does not vanish on supp(g). On the complement set,
g = 00 ¢(g) = 1 does not vanish either. Since ¢ is nonnegative, we get Point (i).

Point (ii) is a direct consequence of the characterization of invariant sets given by (22) as 1/y and
©(g) are positive by Point (i) and Thereom 2.5 (ii) on non-zero atoms. Point (iii) is a direct consequence
of (30), [19, Lemma 3.6] (which state that the support of the eigenfunction vg is Lg-invariant) and
Point (ii).

Point (iv) follows directly from Lemma 2.6 with S = Ly, v = yg and A = 1.

The proof of Point (v) follows similar lines. Let h < g be two equilibria with h # 0. The two
eigenvalue equations written for i and g yield (Ly — Ly)(vg) + Lr(v(g — h)) = v(g — h), which we
rewrite as:

Lu(v(g = h)) = (g = ) + (p(h) — ¢(9)) Ty
On the right hand side, ¢(h) — ¢(g) and T'g are nonnegative, and by strict monotonicity of ¢ they are
both positive on B = supp(g — h) < supp(g). If B is empty, then g = h and we are back to Point (iv).
If not, we apply Lemma 2.6 (ii) to S = Lp, A = 1 and v = v(g — h) # 0 which is non-negative:
p((Ln)p) > 1. If B was a subset of supp(h) this would imply p((Ln)supp(r)) > 1, @ contradiction with
Point (iv). So B is not a subset of supp(h), or in other words supp(h) # supp(g).

Finally let us prove Point (vi). Clearly h < g implies that supp(h) < supp(g). To prove the reverse
implication, let us assume that supp(h) < supp(g). Since F(max(g,h)) = 0, by Lemmas 8.5 (ii)
and 8.6, the semi-flow starting from max(g, h) is non-decreasing and converges to an equilibrium g,
which therefore satisfies max(g, h) < g. Since supp(max(g, h)) = supp(g) is invariant by Point (iii), we
deduce from Lemma 3.5 (iii) that supp(g) < supp(g) and thus supp(g) = supp(g). Since g < g, by the
previous point, the functions g and § must be equal, so g = max(g, h), or in other words h < g. O

4.2. Maximum equilibria and critical vaccination. Recall the notations of Section 2.6. Let A be
a measurable set. Notice the linear map (7} jv)a = (T'a)y,, is an operator on LP. Following [17], we then
define the basic reproduction number of A as the spectral radius of this operator Ro(A) = p((Ty /v)A),
and simply write Ry for Ro(€2). Notice that, by (19), the map A — Ry(A) is non-decreasing, that is,
for any A, B measurable sets with A c B a.e., we have Ry(A) < Ro(B).

The following result generalizes [17, Theorems 4.7 and 4.13], and is proved similarly, see Section 9
for details.

Proposition 4.3. Let (T,~,¢) satisfy Assumption 2. Then we have the following properties.
(i) If Ry < 1, then we have g* =0, and for all h € A:

ltlinfgos o(t,h) = 0.

(i) If Ry > 1, then the mazimal equilibrium g* is non-null, (that is, p(supp(g*)) > 0).

(iii) If Ry > 1 and T is quasi-irreducible, that is, T = Ty with A an irreducible set, then we have
supp(g*) = A a.e. and g* is the unique non-null equilibrium.

(iv) If Ry > 1, T is quasi-irreducible, that is, T = T with A an irreducible set, and h € A, then
we have limess;—, 1o, ¢(t,h) = 0 if supp(h) N A = & a.e. and:

ltimfss o(t,h) =g* if p(supp(h) N A) > 0.
—+00

In the next remarks and examples, we explore the uniformity of the convergence in Point (i) and
Proposition 3.1 (iii).

Remark 4.4 (Exponential rate of convergence to O when Ry < 1 and essinfy > 0). Assume (7,7, )
satisfies Assumption 2, Ry < 1 and essinfy > 0. By Lemma 9.2 we also have s(T' — ) < 0. Then,
mimicking the proof of [17, Theorem 4.6] and using that 1—¢ > 0, we get that for all ¢ € (0, —s(T—7)),
there exists # € Ry such that, for all h e A, ¢ > 0, we have:

ot n) [l < Ol Al ™.
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Remark 4.5 (Non uniform convergence when Ry < 1 and essinf v = 0). We assume that Ry < 1 and
essinf v = 0. Consider the function v defined by v(t) = exp(—ty) € A for t = 0. As v'(t) — F(v(t)) =
—p(v(t)) To(t) < 0, we deduce from Lemma 8.2 and Proposition 7.2 that ¢(¢,1) = v(t) for all t = 0.
We obtain 1 > || ¢(t,1) ||, = [[v(t) ||, = 1 as essinfy = 0. Thus the semi-flow (¢(¢,1))er, does not
converge to g* = 0 in L*.

Notice the same conclusion holds (with the same arguments) if Ry < 1 is replaced by the more
general condition esssup g* < 1.

Ezample 4.6 (A uniform convergence when essinf y = 0). If esssup g* = 1 and essinf v = 0 it is possible
for the semi-flow (4(t,1))wer, to converge to g* in L*. Consider the particular case: Q = (0,1]
with 4 = v + §1, where v is the Lebesgue measure and ¢; the Dirac mass at 1; Tf = f(1)1 for all
feLP; y(x) = /2 and ¢(r) = 1 —r. In this case, {1} is the only atom, and Ro({1}) = 2. We get
g*(z) = 1/(1 + z) and thus esssup g* = 1. (Notice that g*(0+) = esssup g* and v(0+) = essinf~.)
Elementary calculus give that, for t > 0, ¢(t,1)(1) = 1/(2 — e *?) and for z € (0,1):

z— 1e—(@+Dt/2
ot (@) = VT ),

so that || ¢(t,1) — g* ||, < e /2. So the semi-flow (¢(t,1))ier, converges to g* in L*.

We now focus on critical vaccination. Let g defined by ¢o(r) = 1 — r and T}, the kernel operator
form Remark 1.3 with k and v satisfying (7) so that (Tk,y, wo) satisfies Assumption 2. Let n € A seen
as a perfect vaccination strategy: the SIS model (TyM,;;, v, o) (which indeed satisfies Assumption 2)
corresponds to the initial SIS model, where for = € Q, a proportion 1 — () of the population is vacci-
nated and thus does not spread the disease, see [16] and references therein. In this setting vaccinating
the population amounts to replace the measure p by npu.

Motivated by this example, we shall consider the effective reproduction number defined by:

Re(n) = p(Tl/'yMn)v

for n € A (notice that (T'M,,~,y) satisfies Assumption 2 and Tl/,yMn = (T'My),,,). Following [16],
we shall be interested in critical vaccination 7 for which R.(n) = 1. It is observed in [18] that for the
SIS model (T, 7, o), the vaccination strategy n = ¢o(g*) is critical. We generalize this result (with
a shorter proof based on the fact that R.(v(g)) = p(Lg), see (29)) for more general operators T' and
functions .

Theorem 4.7 (Equilibria and critical vaccination). Let (T, @) that satisfy Assumption 2. Let h € A
be an equilibrium. Then we have h = g* <= R.(p(h)) < 1. If furthermore Ry > 1, then we have:

h=g" < Re(p(h)) = 1.

Proof. First, remark that p(Ly) = Re(¢(g)), where L, is defined by (29).

If Ry < 1, then by Proposition 4.3, we have g* = 0. As R.(¢(0)) = Ry < 1 by Assumption 2, we
directly get the equivalence h = g* <= R.(¢(h)) < 1.

If Ry > 1, then we have g* # 0 by Proposition 4.3. According to Lemma 4.1 (iv), if h # 0, we
have R.(¢(h)) = p(Lp) = 1, and by (19) and (v) that if h # ¢* then p(Lj) = p((Ln)a) > 1 with
A = supp(g*).

To complete the proof, that is, R.(¢(g*)) = 1, we shall assume that p(L;,) > 1 and show that h # g*.
Informally the idea is to follow the unstable direction at the equilibrium h to construct a trajectory
leading to another equilibrium. Since L; is a positive compact operator, thanks to the Krein-Rutman
theorem (Theorem 2.5 (i)), we can consider an eigenvector u € L% \{0} of Lj, related to p(Ly). Since
the set A = supp(h) is invariant by Lemma 4.1 (iii), we have:

(31) p(Lh)u = Lyu = (Lh)AU + Lh(lAcu).

If ul e was equal to 0, p(Ly) > 1 would be an eigenvalue of (L) 4, contradicting Lemma 4.1 (iv). As
A is invariant and ul4e # 0, multiplying (31) by 1ac gives p(Lp)ul gc = (Lp)ac(ulac), showing that
ul e is an eigenvector of (Lp)ac, so p((Lp)ac) = p(Ly) > 1.
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Since (Lp)ae = Mw(h)(TAlh)Ac = (/f;)y»y (as h = 0 on A° and ¢(0) = 1), we may apply Proposi-
tion 9.3 with T" = Tge: there exists a A > 0 and w € LL\{0} such that Tqew —yw = Aw. Without loss
of generality, we can assume that || w||, is small enough to ensure that w € A and, as ¢ is continuous
with ¢(0) = 1, that ¢(||w||,) =1 — ¢ with § > 0 small enough so that 6(A+ || v||,,) < A. Note that
supp(w) < A€. Since h+w = hls+wlye, and A = supp(h) is invariant, we get @(h+w)Th = @(h)Th.
Since h is an equilibrium, we obtain that:
F(h+w)=ph+w)T(h+w)—vh+w)=ph+w)Tw-—yw
(1—08)Tacw — yw

WV

=2 A=0A+7lle) w

= 0.
By Lemmas 8.5 (ii) and 8.6, this implies that the trajectory starting from h+w converges monotonously
to an equilibrium ¢. Since h < h +w < g < ¢* and w # 0, we get that h # ¢g* as claimed. O

4.3. Equilibria and antichains of atoms. We now focus on the characterization of equilibria. We
recall from (23) that the the future of an antichain C of atoms (which is at most countable) is given
by F(C) = F (Usec A) = Usce F (A). The set of supercritical atoms:

AP = (A eA: Ry(A) > 1}

is finite by [19, Lemma 6.5]. We say an antichain C of atoms is supercritical if all its elements are
supercritical atoms, that is, C < A%"P. We denote by & the (finite) set of supercritical antichains. For
a set A, let C4 denote the (possibly empty) supercritical antichain given by the maximal elements of
{B e2A"P: B c Aa.e.}. Notice that when A is admissible, we get by (24) that C4 is non-empty if
and only if Ro(A) > 1. For h e A, we simply write Cy, for Coupp(n)-

The following theorem generalizes the uniqueness result of Proposition 4.3 when the operator T is
not necessarily quasi-irreducible. Recall that, by Lemma 4.1 (vi), equilibria are characterized by their
support.

Theorem 4.8 (Equilibria and supercritical antichains are in bijection). Let (T, ) satisfy Assump-
tion 2. The set of the equilibria and the set of supercritical antichains are in bijection through the
equivalent relations:

(32) supp(g) = F(C) <= C4=C,
where g € A is an equilibrium and C € & a supercritical antichain. Furthermore, if g # 0, then the
equilibrium g is the mazimal equilibrium of F(Cg).

We divide the proof in two lemmas.
Lemma 4.9 (Support of an equilibrium and related supercritical antichain). If g € A is an equilibrium,
then we have supp(g) = F (Cq) a.e.. In particular if g and h are two equilibria, we get:

Cg = Ch g = h.

Proof. As the set supp(g) is invariant by Lemma 4.1 (iii) and as every element of C4 is included in
supp(g), we have F(C4) < supp(g).

By construction of C,, every atom B < supp(g) with Ro(B) > 1 is included in F(Cy). This implies
by (24) that, with A = supp(g) n F(C,)¢ an invariant (by Lemma 4.1 (iii)) and thus admissible set:

= < L.
Hold) = g TP <1

Then Lemma 3.4 (iii) gives that 1z(c,)-g is an equilibrium of F(C,)¢ and of A. Then Proposition 4.3 (i)
(with the SIS model (74,7, )) implies that 1z y- g = 0, that is supp(g) = F(Cy). Thus, we get
supp(g) = F(Cq4). The second part of the lemma is then a direct consequence of Corollary 4.2 and
Lemma 2.1. 0

Lemma 4.10. For any supercritical antichain C, there exists an equilibrium g € A such that C = Cy.
If C is non empty, then g # 0 is the mazimal equilibrium of F(C).
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Proof. If C is empty, then taking the equilibrium g = 0, we get C = C;. We assume now that C is
not empty. Let g be the maximal equilibrium on F(C). It is also an equilibrium by Lemma 3.4 (ii)
and supp(g) < F(C). For any A € C, we have g% < g by Lemma 3.3, and g% is positive on A by
Proposition 4.3 (iii) since A is a supercritical atom and thus an irreducible set with Ry(A) > 1. This
implies that A < supp(g) and thus F(A) < supp(g) as supp(g) is invariant. Then use (23) to get
F(C) < supp(g), so that F(C) = supp(g), and thus F(C) = F(Cq4) by Lemma 4.9. The two antichains
C and C4 have the same future and are thus equal by Lemma 2.1. The proof is then complete. O

Let £ c A denote the set of equilibria of the SIS model (7,7, ¢).

Proof of Theorem 4.8. The map g — C,4 from £ to & is one-to-one by Lemma 4.9 and onto by
Lemma 4.10. The equivalence given by (32) is a direct consequence of Lemmas 2.1 and 4.9. Use
the last part of Lemma 4.10 to get the last part of the theorem. g

4.4. Monatomicity and order relation via equilibria. Let (7,7, ) that satisfy Assumption 2.
Consider the SIS model (T, Ay, ) with recovery rate v multiplied by a real parameter A > 0. The
reproduction number of a measurable set A for this model is p((Tl/A'y)A) = p((Tl/'y)A My)5) = Ro(A)/A.
We deduce from Theorem 4.8 that the number of equilibria of the SIS model (T, Ay, ¢) is decreasing
with A.

We say that the operator T on LP for p € (1,+0) is monatomic if it has exactly one non-zero
atom, that is, card(2*) = 1. Monatomicity is a natural extension of (quasi-)irreducibility, see [19,
Remark 1.2] and references therein. We complete the characterization of monatomic operator 7' given
in [19, Theorem 2] using the number of equilibria of the SIS models (7', \v, ¢).

Corollary 4.11 (Criterium of monatomicity). Let (T,~, ) satisfy Assumption 2. The operator T is
monatomic if and only if the two following properties hold:

(i) For A >0, the SIS model (T, Ay, ) has at most one non-null equilibrium.

(ii) There exists A > 0 such that the SIS model (T, Ny, p) has a non-null equilibrium.

Proof. By Theorem 4.8, we deduce that if C is a finite antichain of non-zero atoms then, for all A €
(0, minacc Ro(A)) there exists an equilibrium g* for the model (7', My, ¢) such that F(C) = supp(g*).

Then, Point (i) means that the number of finite antichains of non-zero atoms is at most two, and
Point (ii) that it is at least two: so the two points are equivalent to the number of antichains being
exactly two (one being empty), that is T is monatomic. O

5. CONVERGENCE AND ATTRACTION DOMAINS

In this section, we are interested in the behavior of the semi-flow (¢(t, h))ter, of Equation (2) when
t goes to infinity for an initial condition h € A. If T' is a quasi-irreducible kernel positive operator, then
according to Proposition 4.3 (iv), see also [17, Theorem 4.13] when T is an irreducible kernel operator,
the semi-flow (¢(t,h))wer, converges essentially to g* if p(supp(h) N supp(g*)) > 0 and O otherwise.
We generalize this result to general operators, see Section 10 for a proof.

Theorem 5.1 (Convergence to an equilibrium). Let (T,~,¢) satisfy Assumption 2. The semi-flow
(6(t, h))ter, with initial condition h € A converges essentialy to a limit, say g € A; and g is an
equilibrium and more precisely the mazimal equilibrium of the set F(supp(h)):

litHj)%SS d)(t, h) =g and Cg = C}'(supp(h))-
We derive directly the next corollary, where the maximal equilibrium ¢* is possibly equal to O.

Corollary 5.2 (Attraction domain of the maximum equilibrium). Let (T, p) satisfy Assumption 2.
The semi-flow with initial condition h € A converges essentially to the maximal equilibrium g*, that
is, limess; o ¢(t, h) = g*, if and only if F(supp(h)) contains all the supercritical atoms.

In particular, we recover Proposition 4.3 as Ry < 1 means there is no supercritical atom, and Ry > 1
and T quasi-irreducible means there is only one supercritical atom. In the previous corollary, it may
however happen that none of the supercritical atoms is included in supp(h), see the next example.
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Ezample 5.3. Let Q = {a,b} with the counting measure, and consider the SIS model (7,7, ) with

2
are non-zero atoms, the former being critical with F({a}) = € and the latter being supercritical and
invariant. Thus, there exists only two equilibria: 0 = (0,0) and ¢g* = (0,1/2). If h # 0, then we
have lim;_,o, ¢(t,h) = g*. For h = (0,1), we have supp(h) = supp(g*), but for b = (1,0) we have
supp(h) N supp(g*) = .

T identified with the matrix (1 O) (with * > 0), v = 1, ¢(r) = 1 —r. Notice that {a} and {b}

Proposition 5.4 (Uniform convergence to an equilibrium). Let (T,~,¢) satisfy Assumption 2. For
h e A and g the mazimal equilibrium of F(supp(h)), we have that:

(33) Jim [ (ot 7) = g) 7. = 0.

In particular, when essinf v > 0, the convergence given by Theorem 5.1 is uniform. Notice we have
a stronger result if furthermore Ry < 1 (and thus g = 0), see Remark 4.4.

Proof. We start with a preliminary result. Set M the norm of the operator T from LP to L*, which
coincide with 7" on L%, see the proof of Lemma 2.8; it is finite by Assumption 2. Let m > 0. Let
hi = hsy be elements of A, and for t € Ry set f(t) = ¢(t, h1) — ¢(t, he). We claim that:

M
34 lim s 1 < i ol
(34) I?f;lpr() trzmy |l < — imsup || f(£) ],

Indeed, by monotonicity of the semi-flow (see Lemma 8.5), we have ¢(t, h1) = ¢(t, ho) and thus f(¢) = 0.
We also have, as ¢ is decreasing on [0, 1] and T is positive that for ¢t € R,:

F'(t) = e(o(t, b)) TH(t, ha) — p(B(t, ha))T(t, ha) — v f(t)
< @(o(t, h))Tf(t) —vf(¢)
<Tf() —~f(t).
On {y = m}, we get for v(t) = ™ f(t) that for all ¢ > 0:
(35) V(t) < (m—)o(t) + To(t) < H T oo(t) H < Mv@®)],.

o0]

By (39) and (40) on the Bochner integral, we deduce that v(¢) < v(0) + Mg(t) lv(s) Hp ds on {y = m}.
Since f is nonnegative, we get:

t t
7L || < €™ | i — B ||00+Mf 9| f(s) |, dt < 2e*mt+Mf e | (- 8)]| dt.
0 0

This gives (34).

Let h € A and g be the maximal equilibrium of A = F(supp(h)). By Lemma 9.1, we have
supp(¢(1,h)) = A. Let hy = max(¢4(1,h),g) and he = min(é(1, k), g). We thus have hy < hg and
supp(g) = supp(ha) < supp(hy) = A. By Theorem 5.1 (and using that g is the maximal equilibrium
on the invariant set F(supp(h;)) for i = 1,2), we get that limess; .o ¢(t, h;) = g for i = 1,2. With
f(t) = ¢(t, h1) — ¢(t, h2), we get by the dominated convergence theorem that lim; o || f(¢) ||, = 0, and
by (34) that limy_o || f(¢)1y5my HOO =0 for all m > 0 and thus limy_« || f(t) 7|, =0as || f|, <1
Use the monotonicity of the semi-flow to get ¢(¢t,h1) = &(t + 1,h) = ¢(t, he) and deduce that (33)
holds. O

6. SIS MODEL WITH AN EXTERNAL DISEASE RESERVOIR

In this section, we consider the infinite-dimensional inhomogeneous SIS model with an external
disease reservoir, called SISk model, presented in Section 1.4. The function u = (u(t,2))ier, zeqs
where u(t, z) is the proportion of infected population among the population with feature x, is solution
in L*® of the ODE:

u' = Fi(u),
(36) { w(0) = h,
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with initial condition h € L* and:
(37) F(u) = o(u)(Tu + k) — yu,

where ¢ is a continuous function on R and x € LY. To study solutions of (36) and the corresponding
equilibria, that is functions g € A such that F}(g) = 0, we shall use the formalism of Section 3 by
adding a sub-population corresponding to the reservoir with type r. Notice the case ¢([0,1]) = {0}
(which is not possible under Assumption 2) is trivial, and thus we shall assume there exists a € (0, 1)
such that p(a) > 0.

We set Q, = Q u {r} (assuming without loss of generality that r ¢ Q), G, = o(G,{r}) and p, a
measure on (2, G,) which coincides with p on 2 and with positive finite weight on r. For a function
fr defined on .., we simply write f for its restriction to © (and similarly, for a function f defined on
Q, we write f, for a function defined on €2, which coincides with f on €2, the value of f, on r being
given when needed). We simply write L for LP(Qy, Gy, f1r), where p € [1, +00]. We define the positive
operator T, on L, as an extension of T on 2, by:

T: fe(z) = Lo(z) Tf(z) + fe(r) ax(z),
with o, € (L¥), such that o = k/a on , with a € (0,1), and ay(r) = b > 0. For p € (1,+00), we
define similarly the operator T, on L? based on the operator T on LP, see Lemma 2.8. We also define
the function 7, (which coincides with v on Q by definition) such that ~,(r) = by(a) is assumed to be
positive (that is, p(a) > 0). Let Ay = {fr € (LL)+ : 1 — fr € (L¥)+} be the analogue of A for Q,. It
is elementary to check the following result.

Proposition 6.1 (Solution to the SISk model). Let (T,7, ) satisfy Assumption 1. Assume further-
more there exists a € (0,1) such that p(a) > 0, and let Kk € LY. A function (u(t,))ier, ceq i5 @
solution to (36) related to the SISk model with initial condition h € A if and only if the function
(ur(t,2))ter, weq, » where ur(t,r) = a for allt € Ry, is a solution to (2) related to the SIS model with
parameter (Ty, Y, ) on Q. and with initial condition hy € Ay such that hy(r) = a.

We shall consider the supercritical atoms out of the individuals infected by the reservoir:
AP = {AeAP . An F(supp(k)) = & a.e.}.

Based on Theorems 4.8 and 5.1 for the (7,7, ) SIS model we can give a representation of the
equilibria of SISk model, that is, of the solutions to F.(g) = 0 in A, prove that the equilibria are
characterized by their support, and explicit their attraction domain. For a function h € LY, we shall
denote Cy j, the antichain given by the maximal elements of {B € 2;"? : B < F(supp(h)) a.e.}. Notice
that Assumptlon 2 implies that ¢ is positive on [0, 1).

Corollary 6.2 (Equilibria of the SISk model). Let (T,v, ) satisfy Assumption 2 and v € LT. The
set of equilibria and the set of antichains in AP are in bijection through the equivalent relations:
supp(g) = F(C) u F(supp(k)) ae. <= Cpr4=0C,

where C < AP is an antichain and g € A an equilibrium, that is, F(g) = 0.
Furthermore, the semi-flow (¢(t, h))ier, solution of (36) with initial condition h € A is well defined
and it converges a.e. to a limit, say g € A; and g is an equilibrium and more precisely:

litm%oss o(t,h) =g and Cprg=Crp.

Remark 6.3. We deduce the following properties under the hypothesis of Corollary 6.2.
(1) Notice that 3"P is empty if and only if there exists a unique equilibrium g € A for the SISk
model. In this case, we have supp(g) = F(supp(k)) a.e. and limess; .o, ¢(t,h) = g for all h € A.
(2) If essinf k > 0, then 2A"P is empty.
(3) If g is an equilibrium for the SISk model, then g is positive on F(supp(x)) and thus on supp(x).

Proof of Corollary 6.2. If A € G is invariant for T, then A seen as an element of G, is also invariant
for T,.. Furthermore, the reservoir {r} is an atom of y, and, as Q is Tp-invariant, we get that {r} is a
T -atom. We deduce that a set B € G, is admissible for T if and only if B n § is admissible for T.
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In particular a set A is an atom of T} if and only if either A = {r} or A c Q and A is an atom of 7.
We denote by Fp(A) the future of a set A c . with respect to 7. Notice that Fp(A) = F(A) for any
A < Q and that the future of the reservoir is:

(38) Fr({r}) = {r} v F(supp(x))-

Recall the basic reproduction number Ry(A) of a measurable set for the SIS model (T, v, ¢) given
in Section 4.2. We simply write R.(A) when considering the basic reproduction number of A € G, for
the SIS model (Ty,¥r, ). Since (Ty)a = T4 for A < Q measurable, we deduce that R.(A) = Ro(A)
for any A < 2 measurable. We also have:

Ro((ry = =0 _ 1

%) pla)
Note that under Assumption 2, we have ¢((0,1)) = (0,1) and thus the atom {r} is super-critical for
the (T, Y, ) SIS model.

We deduce from Proposition 6.1. that a function g € A is an equilibrium for the SISk model if and
only if g, € Ay, such that g.(r) > 0 is an equilibrium for the (7}, 7y, ¢) SIS model on 2,. Notice that
necessarily gr(r) = a. The equilibria of the (T}, ¢, ) SIS model whose support contains the reservoir
{r} are according to Theorems 4.8 in bijection will all the supercritical antichains containing the atom
{r}. Those supercritical antichains are exactly the antichains of A"P with the atom {r} added to them.
Then, use (38) and Theorems 4.8 and 5.1 to conclude. O
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7. A SHORT REMINDER ON INTEGRATION, DERIVATION AND ODE IN BANACH SPACE

This section is devoted to the definition and properties of the Bochner integral, the differentiation
and differential equations in Banach spaces. We consider (X, || -||) a real Banach space.

7.1. Integration in Banach spaces. We give a short summary on the Bochner integral, and refer to
[4] and [51] for a more detailed presentation. We consider the Borel o-field on R and write v(dt) = dt
for the Lebesgue measure. Let I be an interval of R. A function f: I — X is simple if f = 22:1 arla,
where n € N, the a’s belong to X and the A;’s are Borel subsets of I with finite Lebesgue measure.
We define its Bochner integral as:

J fdv = Z ay V(Ag).
I k=1

Notice the integral belongs to X and does not depend on the representation of the simple function
f. A function f: I — X is Bochner measurable (simply called measurable in [4]) if there exists a
sequence of simple functions (fp)nen, With f, : I — X, such that v-a.e. lim, o f, = f (that is,
lim, oo || f(t) = fn(t) || = 0 dt-a.e. on I); it is furthermore Bochner integrable if one can find such
approximating sequence (fy)nen 80 that limy, o §, || f(t) — fu(t) || dt = 0. In this case the Bochner
integral of f is defined as:

j fdv = lim | f,dv,
I n—oJr

where the limit holds in the Banach space. The Bochner integrable SI fdv does not depend on the
approximating sequence (fy,)nen; we shall also denote it by SI f(t)dt. Thanks to [4, Corollary 1.1.2]
X-valued continuous function are Bochner measurable and a.e. limits of Bochner measurable function
are Bochner measurable. According to [4, Corollary 1.1.2], a function f : I — X is Bochner integrable
if and only if it is Bochner measurable and || f || : I — Ry is integrable; in this case we have:

<JI||fHdu.

When I = [a,b] with —0 < a < b < +0o0 and f is Bochner integrable on I, we simply write the

Bochner integral as:
b
f fdv = f fdv.
1 a

The Bochner integral enjoy many properties as the usual Lebesgue integral, as such we shall use the
dominated convergence, see [4, Theorem 1.1.8], which we recall.

(39) H J1 Fdv

Theorem 7.1 (Dominated convergence theorem). Let I be a non-empty interval of R. Let (fn)nen be
a sequence of Bochner-integrable functions defined on I which converges v-a.e. to f: I — X. Assume
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there exists a Lebesgue-integrable function g : I — Ry such that || f,, || < g v-a.e. for alln € N. Then
the function f is Bochner-integrable and:

del/—hm frndr in X.

7.2. Differential equations in Banach spaces. We now consider the derivation of functions on a
Banach space. Let I be an interval of R with non-empty interior. We say that a function f: I — X
is differentiable at a point t € I if the following limit, f’(t), exists in (X, |- ||):

J(t+5) = f(1).

Notice that if f is differentiable at ¢, then it is continuous at t. We say that f is differentiable on I
if it is differentiable at any point of I, and that f belongs to C!(I) if it is differentiable on I and f’
is continuous on I. We have the following fundamental theorem of calculus, see [4, Proposition 1.2.2]
and [51, Corollary 3.1.7]. Assume I = [a,b] with —00 < a < b < 400 and that f: I — X belongs to
CY(I), then f’ is Bochner-integrable on I and we have:

b
(40) F(b) — f(a) = f £ dv.

We now recall some results on differential equations in Banach spaces. Let F': X — X be locally-
Lipschitz, that is, for all z € X, there exists > 0 and C finite such that for all y € X, we have:

lz—yl<n = [F@)-Fyl<Clz-yl.

The Picard-Lindel6f theorem, see [33, Corollaries IV 1.6-8|, ensures the existence of (u,7), with 7 €
(0, +o0] and u € C1([0, 7)) taking values in X, that is a solution to the Cauchy problem:

“ Lo 2

where the first equality in (41) holds in [0,7) and « € X is the so-called initial condition, and fur-
thermore the solution (u, 7) is unique and maximal (that is, if (v/,7’) is another solution to (41), then
7' <7 and ' =won [0,7)). We say the solution is global if 7 = +c0.

We end this section with a comparison theorem. Let (X,| -|,<) be a real Banach lattice. Let
Dy,Dyc X. Amap F: X — X is cooperative on Dy x Ds if for any (z,y) € D1 x Dy with < y and
any v € X7}, we have:

(42) r—y=0 = @FE)-Fy)

We recall [17, Theorem 2.4].

0.

N

Proposition 7.2 (Comparison). Assume that X has non-empty interior. Let F': X — X be locally-
Lipschitz, D1, Dy < X and 7 € (0,+]. Let u: [0,7) — Dy and v: [0,7) — Do be two C* maps.
Suppose that F is cooperative on D1 x X or on X x Da, that u(0) < v(0), and that v'(t) — F(u(t)) <
v'(t) — F(v(t)) for allt € [0,7). Then, we have u(t) < v(t) for all t € [0, 7).

8. EXISTENCE AND REGULARITY OF THE SEMI-FLOW FOR THE SIS MODEL

We prove Proposition 3.1 and Lemma 3.2 in this section assuming that (7,7, ¢) satisfies Assump-
tion 1. The results and proofs are very close to those in [17].
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8.1. Existence of the semi-flow. Recall that Assumption 1 holds with the function F' defined in (3)
by F(h) = @(h)Th —vh for h e L*. Recall also the set A ={fe L*: 0< f <1}.
Lemma 8.1 (Regularity of F). Let F be the function from L* to L* defined by (3).
(i) The function F is locally-Lipschitz on (L™, | -||,,)-
(i1) There exists a finite constant C,, such that for g,h € A, we have:
1E(g) = F) |, <Cpllg=hl,-
(iii) Let (hp)nen be a monotonous sequence of elements of A. Then the sequence (F(hy))nen con-
verges a.e. to F'(h), where h is the a.e. limit of (hy)nen.
Proof. Since ¢ is locally Lipschitz, we denote by K, the corresponding (finite) Lipschitz constant of ¢
on [_7', ’I"] and M, = Sup[—r,r] |@| < ‘(P(O)| +rK,.
We prove Point (i). Let r > 0 and u,v € L® with ||u||, <7 and [[v], <r. We have:
[ F(u) = F(v) | = [[o(u)Tu = @) Tv —y(u—wv) ||,
Fo(u) Il 1T (w = ) [lo + Ho(w) = @) lloe [TV ||, + 17 Nl 1=l
(M I T | e + B [[ T[] oo + 7 ) e = 0l
This concludes the proof of Point (i).

<
<

We prove Point (ii) in a similar way. Let u,v € A. We have:
1F(u) = F@) [, = le(w)Tu = @) Tv = y(u—v) ||,

< el [T (w=v) I, + [1e(w) =@ I, 1Tvll + 71l [u =210,

< (|| 7|+ KTl + 171l u—o]

b
This concludes the proof of Point (ii).

For simplicity, we assume that (A, )nen is non-decreasing. Thus it converges a.e. (that is, in L°) to a
limit, say h, and this limit belongs to A. Since T is positive, we also get that the sequence (T'h,,)nen is
non-decreasing and bounded by T'1 € L®, thus it converges a.e. (that is, in L) to a limit, say w € L®.
On the other hand, by dominated convergence, we also get that (hy),en converges to h in LP, and
thus, as T is bounded on L?, we get that (Thy,)nen converges to Th in LP. We thus deduce that
w = Th = Th. Then use that ¢ is continuous, to deduce that (F(h,))nen converges a.e. to F'(h). This
gives Point (iii). O

We now prove that F is cooperative, see (42), using that ¢ is non-negative on [0, 1].

Lemma 8.2 (F is cooperative). The map F is cooperative on A x L* and on L* x A.

Proof. We first prove that F' is cooperative on A x L®. Let u € A and v € L™ withu <wv. Let v e Lf’*
such that (v,u —v) = 0. Since v — u > 0, we deduce that for any h e L*:

(43) vy(u—v)hy =0
(see [17, Lemma 2.6] for a proof in a very similar setting). Then, using (43) with h = 7, we get:
@, P(u) — F(0)) = @, 9()Tu — p(0)To — 1(u — v)) = , 9()Tu — p(0)To).
For s,t € Ry, we set ®(s,t) = (¢(s) —¢(t))/(s —t) if s #t and ®(s,s) = 0. We have:
o(u)Tu —p)Tv = pu)T(u—2v)+ (u—v)h with h=®(u,v)Tv.

As ¢ is locally-Lipschitz by Assumption 1 and as u,v and Tv belongs to L*, we deduce that h € L*.
We deduce from (43) that:

(44) W, F(u) = F(v)) = v, p(u)T(u = v)).

As we have ¢ > 0 on [0,1] by Assumption 1 and u < v, we have ¢(u)T(u —v) < 0. Thus, as v is
a positive linear form on L®, we have (v, F'(u) — F'(v)) < 0. Therefore the map F' is cooperative on
A x L™,
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If (u,v) € L® x A satisfy v < v, then using similar computations with h = ®(v,u)Tu, one get
instead of (44) that (v, F(u) — F(v)) = (v, o(v)T (u —v)). Similar arguments yields then that F' is also
cooperative on L* x A. O

Mimicking the proof of [17, Proposition 2.7 (i)] (which in particular uses that ¢(1) = 0), we get that
any solution of (2) with an initial condition in A remains in A.

Lemma 8.3. The domain A is forward invariant for the differential equation v’ = F(u) in L®.
We then conclude on the existence of global solutions in A.

Lemma 8.4 (Maximal solutions are global). Any mazimal solution of ' = F(u) in L* with initial
condition u(0) = h € A is global.

Proof. The bounded openset U = {f € L* : || f|,, <2} of L® contains A, and the map F is Lipschitz
on U by Lemma 8.1 (i). As the set A is forward invariant by Lemma 8.3, one can apply [33, Corollary
IV 1.8] to conclude that any maximal solution to ' = F'(u) with initial condition in A is global. [

Under Assumption 1, using Picard-Lindel6f theorem [33, Corollaries IV 1.6-8] and Lemma 8.4, which
ensure the existence and uniqueness of maximal solution to ' = F(u) in L* with initial condition in
A, we can define the semi-flow ¢ : Ry xA — A, where the L*-valued function ¢(-,h) = (¢(t, h))ser,
is the global solution to (2) with initial condition ug = h € A. Notice that ¢(-, h) belongs to C*'(R;)
and statisfies the semi-group property:

(45) d(t+ s,h) = o(t,P(s,h)) forall s,teR; and heA.

8.2. Properties of the semi-flow. We now establish the following properties of the semi-flow. We
stress in the next lemmas that Assumption 1 holds.

Lemma 8.5 (Properties of the semi-flow). Let (T,v, ) satisfy Assumption 1.
(i) If hy < ha belong to A, then we have ¢(t,h1) < ¢(t, ha) for allt € R;.
(ii) Let h € A. The function t — ¢(t,h) from RY to L® is non-decreasing (resp. non-increasing)
if and only if we have F(h) = 0 (resp. F(h) <0) in L®.
(11i) Lett € Ry. The function h — ¢(t,h) defined on A is Lipschitz with respect to || ||, .
(iv) Let t € Ry. The function h — ¢(t,h) defined on A is continuous with respect to the a.e.
convergence, and, more generally, if (hy)rer, 15 a sequence of elements of A such that h =
limess,— 1+ hy exists (and thus belongs to A), then limess,_, o @(t, hy) = @(t, h).

Proof. For all the Points but (iv), the proof mimic respectively the proofs of Propositions 2.8, 2.10 and
2.11 (ii) from [17]. Following the proof of Proposition 2.11 (iii) in [17], we see that to get Point (iv), it
is enough to check the following claim: if (h,,),en is a monotonous sequence of elements of A, which
thus converges a.e. to a limit, say h € A, then (¢(t, hy,))nen converges also a.e. to ¢(t, h) for all ¢ = 0.

For simplicity, we assume that the sequence (h;)nen is non-decreasing. From Point (i), we get that
the sequence (P(s, hy))nen is also non-decreasing and thus converges a.e. to a limit say f, € A for all
s € Ry. We deduce from Lemma 8.1 (iii) that (F(¢(s,hn)))nen converges a.e. towards F(fs). Since F
is bounded on A (as it is locally Lipschitz on L*) we deduce that the convergence also holds in L?.
Since the identity map from (L%, | -[|,,) to (LP, | -[,) is continuous, we deduce that a solution to (2)
in L* is also a solution to (2) in LP. By the fundamental Theorem of calculus, see (40), we get that
for all s > 0:

(s, hp) = hy, +J

0

S S

F(¢(r,hy))dr and ¢(s,h) =h+ L F(é(r,h))dr hold in LP.

By the dominated comvergence Theorem 7.1 (with X = LP and g the constant function on Ry equal
to 1), we deduce that (fs)ser, is Bochner integrable on bounded intervals of R and for all s > 0:

fs = h-&-f F(f,)dr holds in L”.
0
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We deduce from (39) and Lemma 8.1 (ii) that for all s >

= f | e — 6(r, 1) |, dr.

Since f. and @(r,h) belong to A, we get that || f — ¢(r,h) ||, < 2, so that r — || f — ¢(r,h) ||, is
locally v-integrable. We deduce from the Grénwall’s inequality that || fs — ¢(s, h) ||, = 0 for all s > 0.
This gives that fs; = ¢(s,h) for all s = 0, which proves the claim. O

Following [17, Proposition 2.13], we prove that the limit of the semi-flow is an equilibrium.

Lemma 8.6 (Limits of the semi-flow are equilibria). Let (T, ) satisfy Assumption 1. Let he A. If
limess; 1o ¢(t, h) exists, then it belongs to A and is an equilibrium.

Proof. Let h* = limess;, o ¢(t,h). By Lemma 8.5 (iv) and by (45), we have for all s € R, that:
* _ . _ . _ . _ *
¢(57 h ) - d)(saltlinfgg’ ¢(ta h)) - ltlinfcsx)s d)(sa ¢(t7 h)) - ltlglfgg’ ¢(ta h) =h".
Then use Lemma 8.5 (ii) to get that F(h*) = 0. O
8.3. Proof of Proposition 3.1 and Lemma 3.2.

Proof of Proposition 3.1. The solution to Equation (2) in L* with initial condition in A is given by
the semi-flow ¢, see Section 8.1 and Lemma 8.4 therein. This gives Point (i). Point (ii) is Lemma 8.3.

Since F(1) = p(1)T(1)—v = —y < 0 by Assumptlon 1, we get by Lemma 8.5 (ii) that the semi-flow
t — ¢(t,1) is non-increasing. This implies that g* = hmesst_,Jroo ¢(t,1) exists. By Lemma 8.6, we get
that ¢g* is an equilibrium. Let h € A be an equilibrium. We have h < 1, thus by Lemma 8.5 (i) we have
h = ¢(t,h) < ¢(t,1) for all t = 0. Taking the essential limit, we get h < ¢g*. This gives Point (iii). O

Proof of Lemma 3.2. For he L* and i = 1,2, let F;(h) = ¢;(h)T;(h)—~;h and let ¢; be the semi-flow of
Equation (2) with the parameters (T3, v;, »;). By assumption, we have Fy(g3) = Fa(g3) = 0. Thus, by
Lemma 8.5 (ii), the semi-flow t — ¢1 (¢, g%) is non-decreasing. By Lemma 8.6, since the essential limit
g = limess;—, 1o ¢1(t, g3) exists, it belongs to A and is an equilibrium (for the parameters (71,71, ¢1)).
As g¥ is the maximal equilibrium, we have g¥ > g, and thus ¢g§ > ¢4 as the semi-flow ¢ — ¢1 (¢, g5) is
non-decreasing. O

9. PROOF OF PROPOSITION 4.3

9.1. On the support of the semi-flow. The following lemma is a generalization of [17, Lemma 4.10]
where T is assumed to be irreducible.

Lemma 9.1 (Support of the semi-flow). Let (T,~, ) that satisfies Assumption 1 with ¢(0) > 0. Let
he A. We have supp(¢(t, h)) = F(supp(h)) a.e. for allt > 0.

Proof. Since ¢(0) > 0, there exists a,n € (0,1) such that a — p(r) < 0 for all r € [0,7]. Notice the
operator @ = aT —~ + | 7|, on L* is positive and that the invariant sets for Q and T" are the same.
Set f =nh/2 and A = supp(h) = supp(f). There exists ¢ > 0 small enough such that for all ¢ € [0, ]:

(46) exp(at | T ) < 2.
Set for t = 0:
(47) u(t) = etT=7 f = =17t otQ ¢,

By [19, Corollary 5.7] applied to the operator @, we get that supp(u(t)) = supp(u(t)el 7let) = F(A)
for t > 0. Differentiating (47) leads to:

(48) u'(t) = Fu(t) = (a— @(u(t)Tu(t).

We deduce from (46) and (47) that || u(t) ||, < for t € [0,¢], and thus, by definition of a and 7, that
uw'(t) — F(u(t)) < 0 for ¢t € [0,c]. Then, since u(0) = f < h, Theorem 7.2 implies that u(t) < ¢(¢, h)
for t € [0,c], and thus F(A) < supp(¢(t,h)) for t € (0,¢]. Then, use the semi-flow equation (45) to
propagate the result to all £ > 0.
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We deduce from Lemma 3.5 (iii) that supp(é(t, h)) = supp(¢r(a)(t, h)) = F(A) for all t > 0. This
gives that supp(¢(t, h)) = F(A) for all ¢t > 0. O

9.2. Preliminary results on the spectral radius and bound. We refer to [52, Section 3] for
results on the spectral bound on Banach lattices defined by (18).

Lemma 9.2 (Spectral radius and spectral bound). Let (T,v, ) that satisfy Assumption 2. Let § :
Q) — R be a measurable positive function with 6 = v and essinf § > 0. Then the quantities s(T — 0),
s(T —6), p(Tys) — 1 and p(Tl/(;) — 1 have the same sign.

Proof. Notice that (7,9, ¢) also satisfies Assumption 2. By Lemma 2.8 (e) with ~ replaced by 4, we
have that p(T1/5) = p(T1s). So it is enough to prove that s(T' —6) and p(Tl/(;) — 1 have the same sign,
and that s(T'—d) and p(7T'5) — 1 have the same sign. This can be done by mimicking the proof of [17,
Proposition 4.1] based on [52], noticing that the cone L% is normal and reproducing for p € [1, +0], and
that, by Lemma 2.8, the operators Tl 5 and T 5 are respectively compact on LP and power compact
on L®, and that the linear maps T—6and T —§ are operators respectively on LP and L®. O

Adapting the proof of [17, Proposition 4.2] on kernel operators, we provide a weaker link between
p(T1/y) — 1 and s(T — ) without the condition essinf~y > 0.

Proposition 9.3 (Positive spectral bound and Krein-Rutman theorem). Let (T,7v,¢) that satisfy
Assumption 2. Then the following assertions are equivalent:
(i) s(T —~) > 0 or equivalently s(T —~) > 0.
(ii) p(Ty/y) > 1 or equivalently p(T7,,) > 1.
(1ii) There exists A > 0 and w € LL\{0} such that we have Tw — yw = Aw.

Proof. Recall Assumption 2 holds and p € (1, 400). Since s(A — (v +¢)) = s(A —~) — e for € € R and
A equal to T or T', we deduce from Lemma 9.2 that the two conditions in Point (i) are equivalent. We
also deduce from Lemma 2.8 (e) that the two conditions in Point (ii) are equivalent. So, we shall only
consider the second ones. It is immediate that Point (iii) implies Point (i) as L® < L? and T and T
coincide on L.

We assume Point (i) and prove Point (ii). For any a € R4, we denote ¥(a) = p(V,) with V, =
Tl/(’y+a)' Notice that V, = TMl/(AHa) for a > 0. By Assumption 2, the operator V, on LP is positive
and that V,, >V, for 0 < a < b. Thus the map v is non-increasing on Ry by (19). By Point (i), there
exists € > 0 such that s(T — (y +¢)) = s(T' — ) — & > 0, therefore we have ¢(¢) > 1 by Lemma 9.2
applied to 6§ = v + . We thus get (0) = p(Tl/A/) > 1, that is Point (ii).

We assume Point (ii) and prove Point (iii). By Point (ii), we have ¢(0) > 1. As for all a > 0, we
have ¥(a) < || Vo |l ;» <a™! H T HL . We deduce that lim,_,4 ¥ (a) = 0.

We now prove that ¢ is continuous on R,. Let B denote the unit ball of LP. Notice that
Mi/(y1a)(B) = My, (B) for a € Ry and thus (g, Va(B) = Vo(B) = Ty/,(B) is relatively com-
pact in LP, and thus the family (V,)uer, is collectively compact. Thanks to Lemma 2.3, the continuity

of ¢ holds if lim,_pj—o || (Vo — Vi) f Hp = 0 for any f € LP. This is indeed the case as, for f € LP, we

have: b a) b a)
- —a)y —a)y
1011, = |0 (5 ) CEnEEDL
and the right members goes to 0 as |a — b| goes to 0 using |b — aly/(y + a)(y + b) < 1 and dominated
convergence. In conclusion, the function % is continuous on R, .

Since ¥(0) > 1 and lim,_,, ¥ (a) = 0, we deduce from the continuity of ¢, that there exists A > 0 such
that ¢(A) = 1. Thus by the Krein-Rutman Theorem 2.5 (i) applied to the positive compact operator
Vy on LP, there exists v € L% \{0} such that Vyv = v. Thanks to (6), we have ||v]| = | Vav|, <
[ T(v/v) [l < Cp [[v]],, we deduce that v belongs also to L. Setting w = v/(y + A) € LT\{0}, we

get that Tw — yw = Aw. As T and T coincide on L®, we get Point (iii). O

f

|
p\HTl/W’Lp
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9.3. Proof of Proposition 4.3 (i). Let g be a non-zero equilibrium. By Assumption 2, ¢(g) < 1 on
supp(g) (as (r) < 1 for r € (0,1]). Recall the operator S = T, is compact on L?, see Lemma 2.8 (c).
Since g € A is an equilibrium, we obtain that:

S(vg) = % >7g on supp(g).

We deduce from Lemma 2.6 (i), with A = 1, and (19) that Ry = p(S) = p (Ssupp(g)) > 1. In other
words, Ry < 1 implies that O is the only equilibrium. The last part of Point (i) is a consequence of
Proposition 3.1 (iii) and the monotonicity of the semi-flow from Lemma 8.5 (i).

9.4. Proof of Proposition 4.3 (ii). We assume that we have Ry > 1. Similarly to [17, Section 4.4],
we will prove that there exists a non-zero initial condition w € A such that the semi-flow ¢(.,w) is

non-decreasing. As Ry > 1, there exists a € (0,1) such that p (CLT1/7) > 1. Thus, by Proposition 9.3

(with (aT,7,¢)), there exists A > 0 and w € LT\{0} such that aTw — yw = Aw. By Assumption 2,
the map ¢ is continuous with ¢(0) = 1; thus there exists n € (0,1) such that for all r € [0,7], we have
¢(r) = a. Without loss of generality, we assume that || w ||, <n, and thus w € A. We deduce that:

F(w) = p(w)Tw — yw = aTw — yw = Aw = 0.

By Lemma 8.5 (ii), the semi-flow ¢ — ¢(¢,w) is thus non-decreasing on R, and its essential limit, say
g, exists and belongs to A. It is an equilibrium by Lemma 8.6. Let g* denote the maximal equilibrium.
As we have g* > ¢ > w and p(supp(w)) > 0, we deduce that u(supp(g*)) > 0.

9.5. Proof of Proposition 4.3 (iii). We now assume that 7' = T4 with A an irreducible set. Notice
the set A is invariant and thus admissible; and it has positive measure as Ry > 0. It is thus a (non-zero)
atom by [19, Theorem 1|. Let g be a non-zero equilibrium. We have supp(g) < A by (4). Since supp(g)
is invariant, see Lemma 4.1 (iii), and A is an atom, we deduce that supp(g) = A. Then use that the
support of g characterizes g, see Corollary 4.2 to deduce that g is the only non-zero equilibrium.

9.6. Proof of Proposition 4.3 (iv). By Point (iii), we have supp(g*) = A. On A, we have ¢(t,h)’ =
—v(t, h), so that limess; o ¢(t,h)1ac = 0. So it is enough to prove the result when supp(h) <
supp(g*) = A. As supp(h) is a non-empty set included in the invariant and irreducible set A, its future
is equal to A. Thus, by Lemma 9.1 and considering ¢(1, k) instead of h, one can assume without loss
of generality that supp(h) = supp(g*) = A.

For ¢ € (0, 1], we consider the operator U, = <,0(<€)M{h;€}f’1/V on LP(u), and set Uy = M{h>0}T1/v.
Let B be the unit ball in LP. Since Tl/v is compact and lime 0 ¢(€)1{n>e} = L{n>0y a-e., we deduce that
Uee[m] U:(B) is relatively compact. Thus the family of operators (Us).e[o,1] is collectively compact.
By dominated convergence, we also get that lim._o || (Us — Up) f ||, = 0. We deduce from Lemma 2.3
that the map e — p(U.) is continuous at 0. Thus, there exists ¢ € (0, 1) such that p(U.) > 1. Notice
that (¢(e)1inzey 7,7, ) satisfies Assumption 2. By Proposition 9.3 with T replaced by ¢(g)1(p=T,
there exists A > 0 and w € LL\{0} such that:

(49) 0(e)lipzeyTw — yw = Aw.

Without loss of generality, we can assume that || w ||, < e. We also have:
(50) supp(w) € {h = ¢} c A.

Using (49) we get that:

(51) Flw) = ¢(w)Tw — 7w > o(e)Tw — yw > Xw > 0.

We deduce that the map ¢t — ¢(¢,w) is non-decreasing by Lemma 8.5 (ii) and, as g* is the only
non-zero equilibrium, that limess;—, o, ¢(t, w) = ¢g* by Lemma 8.6. As the semi-flow is monotone by
Lemma 8.5 (i), we deduce that ¢(t,w) < ¢(t,h) < ¢(t,1) for all ¢ € R. Then use Proposition 3.1 (iii)
to conclude that limess; .o (¢, h) = g*.
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10. PROOF OF THEOREM 5.1

Let (T, 7, ¢) that satisfy Assumption 2. We keep notations from Section 4; so C4 is the supercritical
antichain given by the maximal elements of the supercritical atoms included in the set A.

Proof of Theorem 5.1. Let A = F(supp(h)) and g% be the maximal equilibrium on A (notice that
A= if h=0). Since A is invariant, g% is also an equilibrium by Lemma 3.4 (ii).

We will, as in the proof of Proposition 4.3 (iv), prove the existence of w € A with w < h such
that the semi-flow (¢(¢,w))ser, is non-decreasing and converges essentially to g%. By Lemma 9.1 and
considering ¢(1, h) instead of h, one can assume without loss of generality that supp(h) = A. If C4 is
empty, we get that g% = 0 and by Lemma 3.5 (i) and (iii), we have limess;—, o, ¢(t,14) = 0, and by
monotonicity of the semi-flow that limess;_, o ¢(¢, h) = 0, which proves Theorem 5.1 in this case.

We now assume that C4 is not empty. Let B € C4. By considering Tz instead of T, mimicking the
proof of Proposition 4.3 (iv), see (50) and (51), we deduce that there exists a function wp € A such
that supp(wp) € B, wg < h, F(wp) = 0 and limess;_,o, ¢p(t,wp) = ¢g%. Since C4 is an antichain
of atoms, we deduce that F(supp(wg)) n supp(wp') € F(B) n B’ = ¢ for all B’, B € C4 such that
B # B'. Set w =} ., wp < h. We have:

F(w) = Z F(wp) + 17 (p(w) — o(wp)) Twp = Z F(wg) =0,
BeCa BeCa
where for the first equality we used that F(B) is invariant and supp(wp) < B < F(B), and for the
second that ¢(w) — p(wg) = 0 on F(B) for B € C4. Arguing as in the end of the proof of Proposi-
tion 4.3 (iv), we deduce that the semi-flow (¢(¢, w))ser, is non-decreasing and that limess; .o, ¢(t, w) =
g € A with g an equilibrium.

We now prove the equality C4 = C4 = ng- Since w < g, we deduce that C4 < C,. Since supp(w) < A
and A is invariant, we have supp(g) € A by Lemma 9.1. In particular, g is an equilibrium of A by
Lemma 3.4 (i), thus we get g < g% and deduce that C, Cgﬁ < Cy4 as supp(g?) < A. This proves the
claim and that g = g% by Corollary 4.2.

By monotonicity of the semi-flow, we have that ¢(t,w) < ¢(t,h) < ¢(t,14) for all t = 0. The
left term converges essentially to g = g%, and the right term to g% by Lemma 3.5. This gives
limess; o ¢(t, h) = ¢g%. This ends the proof. O
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