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INFINITE DIMENSIONAL METAPOPULATION SIS MODEL WITH
GENERALIZED INCIDENCE RATE

JEAN-FRANÇOIS DELMAS, KACEM LEFKI, AND PIERRE-ANDRÉ ZITT

Abstract. We consider an infinite-dimension SIS model introduced by Delmas, Dronnier and Zitt,
with a more general incidence rate, and study its equilibria. Unsurprisingly, there exists at least one
endemic equilibrium if and only if the basic reproduction number is larger than 1. When the pathogen
transmission exhibits one way propagation, it is possible to observe different possible endemic equi-
libria. We characterize in a general setting all the equilibria, using a decomposition of the space into
atoms, given by the transmission operator. We also prove that the proportion of infected individuals
converges to an equilibrium, which is uniquely determined by the support of the initial condition.

We extend those results to infinite-dimensional SIS models with reservoir or with immigration.

1. Introduction

1.1. Model and relations with existing models. We consider an inhomogeneous SIS epidemic
model, where individuals are either susceptible or infected. The homogeneous model was introduced
by Kermack and McKendrick [28], we refer to the monograph of Brauer, Castillo-Chavez et Feng [9] for
an analysis of this homogeneous SIS model and some of its variants. Let us recast the model from [28]
in the constant population case: let Iptq and Sptq denote respectively the number of the infected and
susceptible) individuals at time t ě 0, in a population of constant size N “ Sptq ` Iptq ą 0. The
evolution of the number of infected is given by:

(1) I 1 “ k
SI

N
´ γI,

where k ě 0 is the infection rate and γ ą 0 the recovery rate.

The assumption of homogeneity of the population is not always satisfied in practice, see for example:
Trauer et al. [54] for a review on tuberculosis, [43] on the impact of health condition, [11] on the number
of sexual partners in a sexually transmissible infection, or the review [55] for more possible sources
of heterogeneity. The inhomogeneous SIS model from Lajmanovich and Yorke [32] generalizes the
Kermack-McKendrick model to a population divided in n sub-groups; the same equation appears also
when studying network of communities linked by dispersal, see Mouquet and Loreau [40] and more
generally [12]. Later, Thieme [53] and Delmas, Dronnier and Zitt [17] introduced a variant allowing an
infinite number (possibly uncountable) of sub-groups or features.

We follow the model given by [17] where the transmission operator can be non-irreducible, see the
discussion in Section 1.2 below and allowing furthermore a more general incidence rate, see Section 1.5.
The heterogeneity of the population is described as follow: pΩ,G, µq is a measured space with a non-zero
σ-finite measure µ: an element x P Ω corresponds to a particular feature (or trait) of individuals. We
assume that individuals with the same feature behave in the same way with respect to the epidemic,
and that features stay constant during the whole infection process. We also assume that for a given
feature x P Ω, the size of the population µpdxq of feature x remains constant over time.

Let upt, xq denote the proportion of individuals with feature x P Ω that are infected at time t ě 0
among the population of individuals with feature x. Let ∆ be the set of measurable functions defined
on Ω taking values in r0, 1s. The heterogeneous SIS dynamics is given, for an initial condition h P ∆, by
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the evolution equation on the Banach space L8 of measurable bounded real-valued functions defined
on Ω by:

"

u1 “ F puq,
up0q “ h P ∆,

(2)

with

(3) F puq “ φpuqTu´ γu,

where F depends on: a bounded linear transmission operator T on L8, a bounded real-valued positive
recovery rate function γ defined on Ω, and a real-valued function φ defined on R encoding the non-
bilinearity of the incidence rate. The hypotheses on the parameter pT, γ, φq are given in Assumptions 1
and 2. Let us stress that the usual law of mass action φ “ 1 ´ Id, with Id the identity map on R,
satisfies the corresponding hypothesis from Assumption 2 summarized in Condition (14).

Remark 1.1 (The kernel model from [17]). Let k : Ω2 Ñ R` be a kernel, that is a nonnegative
measurable function. The associated kernel operator Tk is defined as follow. For h P L8 and x P Ω,
we define:

Tkphqpxq “

ż

Ω

kpx, yqhpxqµpdyq.

The quantity kpx, yq represents the transmission rate from individuals with feature y P Ω to those with
feature x P Ω. The heterogeneous SIS model from [17] is then given by (2) and (3) with T “ Tk (under
some integral hypothesis on the kernel) and the usual law of mass action φ “ 1´ Id. This in particular
encompasses the Lajmanovich and Yorke model.

In epidemiology, equilibria are constant solutions of (2), that is, functions g P ∆ such that:

(4) F pgq “ 0.

They play a significant role in the long-time behavior of the dynamics of an outbreak, see Theorem 3
below. Obviously, the disease-free equilibrium (DFE) g “ 0 is an equilibrium. Any other equilibrium is
called endemic equilibrium (EE). The basic reproduction number denoted R0 is defined by Heesterbeek
and Dietz [27] as “the expected number of secondary cases produced by a typical infected individual
during its entire infectious period, in a population consisting of susceptibles only”. Following [17] (see
also the method of the next-generation operator in Diekmann, Heesterbeek and Metz [20]), the basic
reproduction number R0 for the SIS model (2) with the usual incidence rate associated to φ “ 1 ´ Id
is defined as the spectral radius of the operator TM1{γ , where the operator M1{γ is the multiplication
by 1{γ. There usually is a threshold behavior for the existence of EE according to the value of
R0: for R0 ď 1 only the DFE exists as an equilibrium, and for R0 ą 1 there exists an EE. This
is not universal: for example, models with imperfect vaccines or exogenous re-infections might lead
to backward bifurcation and produce multiple EE even in the regime R0 ă 1, see [24] and more
specifically [8] for a SIS model. Nevertheless, we check that threshold behavior holds for the SIS
model (2), see Theorem 2 below. A discussion of the uniqueness of EE is given in Section 1.2.

1.2. A taste of the main results in the finite setting. Except in the trivial case where the
population may be split in subpopulations that do not interact at all, the existence of multiple equilibria
is fundamentally linked to asymmetry in the transmission dynamics. In this section, we first explain
this phenomenon, and a related crucial decomposition of the space, in the simple case where Ω is finite,
to give a taste of the general results stated below.

We consider a finite set Ω, let G be the set of subsets of Ω, and µ a finite measure with support Ω.
The transmission operator T is identified with a matrix K “ pKx,yqx,yPΩ where Kx,y is the infection
rate from individuals with feature y to those with feature x; in particular it takes into account the
relative size of the sub-populations. When Ω is a singleton and φ “ 1 ´ Id, we recover Equation (1)
(with u “ I{N and K “ k). When Ω is finite, we recover the Lajmanovich and Yorke [32] model, and
the same framework can be used to describe households models [6] and multi-host and vector-borne
diseases [39].
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In this finite case, the study of the non-uniqueness for equilibria relies on the properties of the
oriented transmission graph GK “ pΩ, EKq with the set of edges EK “ tpy, xq P Ω2 : Kx,y ą 0u given
by the support of the transmission matrix K. An edge from y to x models the possibility of infection
from the sub-population with feature y to the sub-population with feature x; in particular the graph
may have self-loops. For transmission graph models see for example [25, 5].

Strongly connected components of GK will be called atoms — the notion will be generalized in the
infinite case. An atom is non-zero unless it is a singleton with no self loop. Notice the transmission
matrix/operator is irreducible if and only if the graph GK is strongly connected (that is, Ω is an atom),
and is said monatomic if there is a unique non-zero atom. For further result on monatomic operators
in the general case see [19] and references therein; we refer also to Corollary 4.11 for a characterization
of monatomic transmission matrix using the number of EE.

In many examples the transmission graph GK is symmetric (even though the transmission K might
not be symmetric). In this case, all (strongly) connected components behave independently and one
can study each connected components separately. Cases where GK is not strongly connected occur less
frequently in the literature; it has been mentioned for example in a multi-type SIR model by [29, 36].

Let us mention two examples of non symmetric transmission graphs.
(i) The West Nile Virus, presented in [7], infects three species, birds (B), humans (H) and

mosquitoes (M). It is a vector-borne disease where birds and mosquitoes serve as vectors for a
transmission to humans. In this model, mosquitoes infects birds and humans while biting them
and mosquitoes get infected by birds while biting them, and we assume there is no infection
from humans to mosquitoes, nor between birds and humans. The graph GK given in Fig. 1a
has only one non zero atom tB,Mu and a zero atom tHu. In particular K is monatomic.

(ii) In the zoonosis model from [46], a pathogen exists in wild animals (W), is transmitted to
domestic animals (D) that transmit themselves the pathogen to humans (H). The graph GK

given in Fig. 1b has three non-zero atoms: tW u, tDu and tHu.
In such cases where GK is not symmetric, the picture is richer: many endemic equilibria may

exist, they may be entirely characterized by the atoms contained in their support, and their basins of
attraction may be described explicitly.

Let us give a few additional definitions to state these results more precisely, before giving the general
statements below in Theorem 2 and 3. Define the future of a set A Ă Ω as the set FpAq of all the
vertices in GK reachable from A by a (possibly empty) path using edges in EK . For two atoms A and
B of GK , we write B ď A if B Ă FpAq; the relation ď is a partial order. An antichain of atoms is a
set of atoms which are pairwise unordered. The future of an antichain is the future of the union of its
elements.

In the West Nile Virus model (i), the antichains of non-zero atoms are H and tB,Mu; in the zoonosis
model (ii), the antichains of non-zero atoms are: H, tHu, tDu and tW u.

Finally, an atom is supercritical if the basic reproduction of the SIS-model restricted to the atom
is larger than 1; in particular a supercritical atom is non-zero and an atom A is trivially supercritical
if Kx,x{γpxq ą 1 for all x P A, where γ is the recovery rate function, and the function φ satisfies the
regularity Condition (14) below.

Our first main result, Theorem 2, states (in the general possibly infinite setting) that each equilibrium
is characterized by a (different) antichain of supercritical atoms, and the DFE is associated to the
antichain H. For example, assuming for simplicity that all non-zero atoms are supercritical, we deduce
that in the West Nile Virus model (i) there is only one EE and that in the zoonosis model (ii) there
are three EE.

Let us mention that a similar result on the existence of multiple EE is obtained in Waters et
al. [56] for a waterborne parasites that infect both humans and animals, such as Giardia infection
in rural Australia. In this model the animals and the humans can be seen as non-zero atoms for
the transmission, and the water as an environmental reservoirs. This model does not fit exactly the
metapopulation SIS model (2)-(3), nor the model with external disease reservoir presented in Section 1.4
because the reservoir is between the animal population and the human population.



4 JEAN-FRANÇOIS DELMAS, KACEM LEFKI, AND PIERRE-ANDRÉ ZITT

B M

H

(a) West Nile Virus

W D H

(b) Zoonosis model from [46]

Figure 1. Some examples of transmission graphs GK

Theorem 2 also states also that the support of an equilibrium is given by the future of its corre-
sponding antichain of supercritical atoms. Furthermore, Corollary 4.2 asserts that for two equilibria
g and g1, we have g ď g1 if and only if supppgq Ă supppg1q. This in particular allows to recover the
existence of a maximal equilibrium g˚, in the sense that if g is an other equilibrium, then g ď g˚.

For example, assuming again for simplicity that all non-zero atoms are supercritical, we deduce that
in the zoonosis model (ii), denoting by gx the equilibrium characterized by the antichain txu, we have:

supppgHq “ tHu Ă supppgDq “ tD,Hu Ă supppgW q “ tW,D,Hu and 0 ‰ gH š gD š gW “ g˚.

Our second main result is a full characterization of basins of attraction of the various equilibria:
we show in Theorem 3 that, starting with an initial condition up0q “ h, the epidemics converges in
long time towards the equilibrium associated to the maximal antichain in Fpsuppphqq the future of the
support of the initial condition.

In the example of the West Nile Virus model (i), assuming that all non-zero atoms are supercritical,
we deduce that starting with an initial condition where only the human population H is infected, the
epidemic converges to the DFE and thus dies out, but starting with an initial condition where the
populations H and M (or simply M or B) is infected, the epidemic converges to the unique EE g˚,
whose support is tB,M,Hu.

In the example of the zoonosis model (ii), assuming again that all the atoms are supercritical, we
deduce from Theorem 3, starting with an initial condition up0q “ h, the epidemics converges in long
time towards the equilibrium whose support is the support of h.

1.3. Assumptions and main results. Recall the SIS model (2)-(3) with parameter pT, γ, φq. We
shall consider the following assumptions on the parameters. For p P r1,`8s, let Lp denote the usual
Lebesque space of measurable function defined on the measured space pΩ,G, µq endowed with the Lp

norm ∥ ¨ ∥p, and Lp
` the subset of Lp of nonnegative functions.

Assumption 1. The measure µ is finite and non-zero; the map T is a bounded linear map on L8 and
there exists p P p1,`8q and a finite constant Cp such that for all f P L8:

(5) ∥Tf ∥p ď Cp ∥ f ∥p ;

the function γ belongs to L8 and γ ą 0 a.e.; and the function φ : R Ñ R is locally Lipschitz, nonnegative
on r0, 1s and φp1q “ 0.

Assumption 2. Assumption 1 holds; there exists a finite constant C 1
p such that for all f P L8:

(6) ∥Tf ∥8 ď C 1
p ∥ γf ∥p ;

and the map φ is decreasing on r0, 1s with φp0q “ 1.

The next two remarks are related to kernel operators. We also refer to Section 2.6 for further
properties of the operator T induced by those two assumptions.
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Remark 1.2 (The operator T is a kernel operator). Assume Condition (6) holds. Since γ is bounded,
we deduce that there exists a finite constant C2

p such that ∥Tf ∥8 ď C2
p ∥ f ∥p for all f P L8, and also

that Condition (5) holds. According to [49, Theorem 4.2], we deduce that T is a kernel operator (and
the kernel is indeed nonnegative by Theorem 1.3 therein).

Remark 1.3 (The SIS model from [17]). Recall the definition of the kernel operator Tk for k a kernel
given in Section 1.1. We check that the SIS model from [17], see Assumption 1 therein, satisfies our
Assumption 2. In [17], the measure µ is a probability measure on Ω, the function γ is positive and
bounded, and the mass-action incidence rate is associated to φ “ 1´ Id. So the conditions on φ, γ and
µ in Assumption 2 are clearly satisfied. Therein, we have T “ Tk for k : Ω2 Ñ R` a kernel such that:

(7) sup
xPΩ

ż

Ω

ˆ

kpx, yq

γpyq

˙q

µpdyq ă `8,

for some q P p1,`8q. It is then elementary to check that the conditions on the operator T “ Tk from
Assumption 2 are satisfied with p P p1,`8q given by 1{p` 1{q “ 1.

We now give our main results. Recall that ∆ “ tf P L8
` : 1 ´ f P L8

` u is the set of measurable
functions taking their value a.e. in r0, 1s. Proposition 3.1 below asserts that under Assumption 1, for
any initial condition h P ∆, Equation (2) has a unique global solution in L8 given by the semi-flow
pϕpt, hqqtPR`

and that ϕpt, hq belongs to ∆ for all t P R`. The following result on long time convergence
appears below as Theorem 5.1 (see Section 2.3 below for a precise definition of the convergence involved).

Theorem 1 (Longtime behavior). Let pT, γ, φq satisfy Assumption 2. The semiflow ϕ always converges
to an equilibrium: for any initial condition h P ∆, there exists g P ∆ such that F pgq “ 0 and

(8) limess
tÑ`8

ϕpt, hq “ g in L8.

Under Assumption 2, we define the basic reproduction number R0 as the spectral radius ρpT1{γq

of the power compact operator T1{γ on L8 given by T1{γf “ T pf{γq, see Lemma 2.8. It comes at
no surprise that if R0 ď 1, then the zero function 0 is the only equilibrium, so that all epidemic
disappear in the long run, see Proposition 4.3. However, if R0 ą 1, then there exists a maximal
endemic equilibrium, say g˚ ‰ 0, see Theorem 4.7. If furthermore T is irreducible (which is equivalent
to the existence and uniqueness, up to a scaling factor, of v P L8

` zt0u such that Tv “ R0 v and that
v is positive), the maximal equilibrium is the only endemic equilibrium and g in (8) is equal to g˚ as
soon as the initial condition h is non-zero, see again Proposition 4.3. Those results appear already in
[17] in a slightly less general framework for R0 ď 1 or T irreducible (or quasi-irreducible).

The main result of the paper is the description of all the endemic equilibria and their domain of
attraction: for any equilibrium g we give all the initial conditions h P ∆ such that (8) holds. To do so,
we shall rely on the decomposition of the state space in atoms associated to the operator T given by
Schwartz [50], see also our previous work [19], which is recalled in Section 2.4, and Section 1.2 for the
elementary case where Ω is finite. To summarize, a measurable set A P G is invariant if the support of
the function T1A is a subset of A (up to a set of zero measure); a set is admissible if it belongs to the
σ-field generated by the invariant sets; the atoms are the minimal admissible sets with positive measure
(that is A is an atom if A is admissible with µpAq ą 0 and if B Ă A is admissible then either µpBq “ 0
or µpBq “ µpAq). If T is irreducible, then Ω is an atom. For a measurable set A, its future FpAq is
the smallest invariant set containing A (up to a set of zero measure). The set of atoms (identifying
atoms which differ by a set of zero measure) can be endowed with an order relation ď: A ď B when
FpAq Ă FpBq (where the inclusion holds up to a set of zero measure). See Section 2.4 for further
details. We say that an atom A is supercritical if the spectral radius of the operator T1{γ restricted to
A, denoted R0pAq, is strictly larger than 1. The number of supercritical atoms is finite; it is positive
if and only if R0 ą 1, see [19]. A supercritical antichain is a finite set of supercritical atoms which are
pairwise unordered with respect to ď; we define its future as the future of the union of its atoms. For
example, with two supercrtical atoms, say A and B, the supercritical antichains are H, tAu and tBu,
with also tA,Bu if A and B are unordered. Notice that R0 ą 1 if and only if there exists a non empty
supercritical antichain.



6 JEAN-FRANÇOIS DELMAS, KACEM LEFKI, AND PIERRE-ANDRÉ ZITT

We give a complete characterization of equilibria, see Theorem 4.8 for a more complete statement.

Theorem 2 (Equilibria and supercritical antichains are in bijection). If pT, γ, φq satisfy Assumption 2,
then the set of supercritical antichains and the set of equilibria are in bijection. Furthermore the support
of the equilibrium associated to a supercritical antichain is given by its future.

The empty supercritical antichain corresponds to the DFE g “ 0. We deduce from this result that if
g and g1 are two equilibria, then g ď g1 if and only if supppgq Ă supppg1q (up to a set of zero measure)
and suppphq “ th ą 0u is the support of the function h, see Corollary 4.2.

To complete this theorem we fully describe basins of attraction. To state the result, we denote by
TA the projection of T on a measurable set A, that is, the operator on L8 defined by TAf “ 1AT p1Afq

for f P L8. Notice that if T satisfies Assumption 2, so does TA. When this is the case, we say that g
is the maximal equilibrium of A when g is the maximal equilibrium of the SIS model with T replaced
by TA. Intuitively, from an initial condition h P ∆, the epidemic converges to an equilibrium which
depends only on the support of the initial condition; it is the same as the one starting from the “worst
possible case” where the whole population in Fpsuppphqq Ă Ω is infected.

Theorem 3 (Basins of attraction of equilibria). The limiting equilibrium g of an epidemic with initial
condition h P ∆ from Theorem 1 is the maximal equilibrium of Fpsuppphqq.

This result appears below as Theorem 5.1. It is a full generalization of Theorem 4.13 in [17], which
only covers the irreducible case T where, if R0 ą 1, the endemic equilibrium g is unique and all
epidemic with initial condition h ‰ 0 converge to g in large time. Proposition 5.4 states that γ times
the epidemic converges uniformly to γg. Thus, when essinf γ ą 0, the epidemic converges uniformly to
g, see also Remark 4.4 when furthermore R0 ă 1. This uniform convergence is no longer true a priori
when essinf γ “ 0, see Remark 4.5 and Example 4.6.

1.4. Model with an external disease reservoir. We consider an infinite-dimensional SIS model
with an external disease reservoir, called SISκ model in [42]; it can be seen as an extension of the SIS
model (2). An external disease reservoir is a particular case of environmentally transmitted diseases
where the population of pathogens in the environment is assumed to be constant over time, see for
example [23, 34] and references therein. See also the example of the West Nile Virus, where birds and
mosquitoes form a reservoir that is not infected by humans, see [7]. It also encompasses some SIS
models with immigration from [10], see Remark 1.4 below.

Recall Iptq ě 0 and Sptq ě 0 denote respectively the number of infected individuals and suscpetible
individuals at time t ě 0. According to [42, Eq. (2.1-2)], the corresponding ordinary differential
equations model, including infection from the external disease reservoir, is given by:

(9)

$

’

&

’

%

S1 “ µ0N ´ µ0S ´ k
SI

N
´ κS ` γI,

I 1 “ k
SI

N
` κS ´ pµ0 ` γqI,

where N “ I ` S is the total population, µ0 is the healthy birth rate and the common death rate of
the susceptible and infected populations, κS is the rate of disease transmission from the reservoir, with
κ ą 0. Notice the total size population N is constant in time.

In an inhomogeneous setting, with the measured space of types pΩ,G, µq and µpΩq P p0,`8q,
the proportion of infected individuals among the individuals with feature x is given by upt, xq “

Ipt, xq{Npxq, where Ipt, xq denotes the number of infected individuals with feature x P Ω at time
t P R` and Npxq the total size of the population with feature x P Ω, assumed constant over time. In
the inhomogeneous SISκ model inspired by (9), the function u “ pupt, xqqtPR`,xPΩ is solution in L8 of
the ODE:

(10)
"

u1 “ Fκpuq,
up0q “ h,

with initial condition h P L8 and:

(11) Fκpuq “ φpuqpTu` κq ´ γu,
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where φ is a continuous function on R and κ P L8
` . The particular case of SISκ model given by (9)

corresponds to Ω “ tωu, µ a Dirac mass at ω, T the multiplication operator by k, γ and κ constant
functions, and φ “ 1 ´ Id.

This model can be related to SIS model with immigration, see the following remark.

Remark 1.4 (SIS model with immigration). For the homogeneous population, we link the SISκmodel (9)
with the SIS model with immigration of [10, Eq. (1)]. Assume initially that the total population Nptq
is not necessarily constant over time t. Let A ě 0 be the immigration rate, p P r0, 1s the proportion of
infected individuals among the immigrants, and d ą 0 the death rate among the population. All those
parameters are assumed to be constant over time. We assume that the epidemic induces no death (that
is α “ 0 in [10, Eq. (1)]) and that the incidence rate is the standard mass-action. Then, the SIS model
with immigration given in [10, Eq.(11)] reduces to:

(12)

$

&

%

I 1 “ pA` k
pN ´ IqI

N
´ pd` γqI,

N 1 “ A´ dN.

Since limtÑ8 Nptq “ A{d, and since we are interested in the long time equilibrium, it is natural to
assume that N start at its equilibrium, that is Np0q “ A{d, so that the population size is constant
over time. In this case, Equation (12) with uptq “ Iptq{Np0q reduces to:

(13) u1 “ p1 ´ uqpku` pdq ´ pγ ` p1 ´ pqdqu.

The same arguments applied to an inhomogeneous population would lead to a similar multi/infinite-
dimensional ODE with uptq replaced by a function upt, xq, with x P Ω the set of features, and ku
replaced by Tu with T the transmission operator, so that (13) becomes:

u1 “ p1 ´ uqpTu` pdq ´ pγ ` p1 ´ pqdqu.

This corresponds to the SISκ model (10)-(11) with φ “ 1 ´ Id, κ “ pd and γ replaced by γ ` p1 ´ pqd.
In conclusion the SIS model with immigration and the SIS model with an external disease reservoir
lead to the same ODE.

In Proposition 6.1 and Corollary 6.2, we prove that the SISκ model with reservoir of (10) can
be analyzed using the classical SIS model (2) by adding a new element r to the set of features Ω
corresponding to the reservoir. In particular we provide a full description of the equilibria and their
domain of attraction for the SISκ model.

1.5. Discussion on the incidence rate. In this section, we discuss different models for the infection
rate, and more precisely for the function φ in (3).

In an homogeneous population, Ross [45] considered the so called law of mass action βSI{N (which
corresponds to φ “ 1 ´ Id in the SIS model): the incidence rate is proportional to the product of the
proportion of susceptible individuals and the proportion of infected individuals. According to Wilson
and Worcester [57], it corresponds to the assumption that infected individuals are mixing uniformly
with the susceptible ones throughout the population, see also Heesterbeek [26] for an historical review.
Some epidemic models introduced in the literature replace the law of mass action by various incidence
rates, see in particular the survey McCallum, Barlow and Homeo [38]. Concerning the function φ,
Assumptions 1 and 2 below reduce to:

(14) φ is locally Lipschitz on R, decreasing on r0, 1s with φp1q “ 0 and φp0q “ 1.

In the examples below from the literature, the set Ω is a singleton and the transmission operator T
is thus a constant, which is assumed to be positive; so the condition φp0q “ 1 is a normalization
convention on the (constant) operator T and could be replaced here by the more relevant condition
φp0q ą 0.

(i) London and Yorke [58] consider the incidence rate βSIp1 ´ cIq, that is:

φpuq “ p1 ´ uqp1 ´ auq with a ą 0
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for measles epidemic (in New York City and Baltimore from 1928 to 1972) in order to eliminate
the systematic differences on data observed between years with many cases and years with
relatively few cases; however they do not provide a biologic or physical argument for such
modification. Notice that by considering u{a instead of u, one can assume that a ď 1, in which
case Condition (14) holds.

(ii) We recall that in the SIR model, once infected, the individuals recover with a permanent
immunity. Rose et al. [44] incorporate in the SIR model (with constant population N “

S` I `R) a population-level heterogeneity for the infection susceptibility given by the gamma
probability distribution; in [44, Section 4] they consider the incidence rate βISα. Using data
from the 2009 H1N1 influenza outbreak, they observe that the higher-order models are more
consistent with the data than the case α “ 1. In our setting, this model would correspond to
the following function φ with satisfies Condition (14):

φpuq “ p1 ´ uqα with α ě 1.

(iii) Capasso and Serio [13] study a SIR model (with constant population N “ S ` I ` R) taking
into account saturation and “psychological” effects. They consider the incidence rate gpIqS. In
our setting, this model would correspond to:

φpuq “ p1 ´ uq
gpuq

u
,

where the conditions on g translated into our framework correspond to: the function g is
defined on r0, 1s, nonnegative, bounded, differentiable with g1 bounded and such that gp0q “ 0,
g1p0q “ 1 and gpuq ď u on R`. Under those assumption, the function φ is Lipschitz on r0, 1s,
with φp1q “ 0 and φp0q “ 1. However the monotonicity condition on φ on r0, 1s, which amounts
to gpuq ě up1 ´ uq g1puq on r0, 1s, is not satisfied in general.

Notice that Condition (14) is indeed satisfied for the following functions g, where c ą 0:
u{p1` cuq in [13, Section 6], p1´ expp´cuqq{c in [30] on SIR model for Covid19 outbreak, and
logp1` cuq{c in Table 1 of the survey [38] on pathogen transmission models. They respectively
correspond to:

φpuq “
1 ´ u

1 ` cu
, φpuq “ p1 ´ uq

1 ´ expp´cuq

cu
and φpuq “ p1 ´ uq

logp1 ` cuq

cu
¨

(iv) We recall that in the SIRS model, once infected, the individuals recover with a temporary
immunity. To exhibit qualitatively different dynamical behaviors, Liu, Lewin and Iwasa [35]
introduced a SIRS model (with constant population N “ S ` I `R) where the incidence rate
is given by IHpI, Sq for some differentiable function H such that HpI, 0q “ 0 and BSH ą 0 for
all I ą 0. The latter condition reflects the biologically intuitive requirement that the incidence
rate be an increasing function of the number of susceptibles. In our setting, this model would
correspond to:

φpuq “ Hpu, 1 ´ uq,

with φ differentiable and φp1q “ 0. Notice that φ is decreasing on r0, 1s if BSH ą BIH. The
authors consider the particular case φpuq “ p1 ´ uqα uβ´1 with α, β ą 0. Condition (14) holds
for β “ 1 and α ě 1, which is already considered in Point (ii).

2. Notations

2.1. Ordered set. Let pE,ďq be a (partially) ordered set. Whenever it exists, the supremum of
A Ă E, denoted by suppAq, is the least upper bound of A: for all x P A, x ď suppAq and if for some
z P E one has x ď z for all x P A, then suppAq ď z. A collection pxiqiPI of elements of E is an antichain
if for all distinct i, j P I, the elements xi and xj are not comparable for the order relation.
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2.2. Banach space and Banach lattice. Let pX, ∥ ¨ ∥q be a complex Banach space not reduced
to t0u. An operator T on X is a bounded linear (and thus continuous) map from X to itself. If Y Ă X
is a subspace of X such that T pY q Ă Y , we denote T |Y the restriction of T to the subspace Y , that is
an operator on the Banach space pY, ∥ ¨ ∥q. The operator norm of T is given by:

(15) ∥T ∥X “ sup t∥Tx ∥ : x P X s.t. ∥x ∥ “ 1u ,

its spectrum by SppT q “ tλ P C : T ´ λ Id has no bounded inverseu, where Id is the identity operator
on X. If λ P C and x P Xzt0u satisfy Tx “ λx, then the element x is an eigenvector of T and λ, which
belongs to SppT q, is an eigenvalue of T . The spectral radius of T is defined by (see [47, Theorem 18.9]):

(16) ρpT q “ sup t|λ| : λ P SppT qu “ lim
nÑ8

∥Tn ∥1{n
X .

By convention, we set T 0 “ Id. The spectral radius is commutative in the sense that if T and S are
two operators on X, we have:

(17) ρpTSq “ ρpST q.

We define the spectral bound of the operator T by:

(18) spT q “ suptRepλq : λ P SppT qu.

Let X‹ denote the (continuous or topological) dual Banach space of X, that is the set of all the
continuous linear forms on X. For x P X, x‹ P X‹, let xx‹, xy denote the duality product and the norm
of x‹ in X‹ is defined by ∥x‹ ∥ “ suptxx‹, xy : ∥x ∥ “ 1u. For an operator T , the dual operator T ‹ on
X‹ is defined by xT ‹x‹, xy “ xx‹, Txy for all x P X, x‹ P X‹. It is well known that ∥T ‹ ∥X‹ “ ∥T ∥X
and SppT ‹q “ SppT q.

An ordered real Banach space pX, ∥ ¨ ∥ ,ďq is a real Banach space pX, ∥ ¨ ∥q with an order relation ď.
For any x P X, we define |x| “ supptx,´xuq the supremum of x and ´x whenever it exists. Following
[48, Section 2], the ordered Banach space pX, ∥ ¨ ∥ ,ďq is a Banach lattice if:

(1) For any x, y, z P X,λ ě 0 such that x ď y, we have x` z ď y ` z and λx ď λy.
(2) For any x, y P X, there exists a supremum of x and y in X.
(3) For any x, y P X such that |x| ď |y|, we have ∥x ∥ ď ∥ y ∥.

Let pX, ∥ ¨ ∥ ,ďq be a real Banach lattice. We denote X` “ tx P X : x ě 0u the positive cone of X.
Recall it is a closed set. We shall also consider the dual cone X‹

` “ tx‹ P X‹ : xx‹, xy ě 0 for all x P

X`u. A linear map T on X is positive if T pX`q Ă X`. According to [2, Theorem 4.3] positive linear
maps on Banach lattices are bounded (and thus are operators).

If S and T are two operators on X, we write T ď S if the operator S´T is positive. If the operators
T, S and S ´ T are positive, then we have, see [37, Theorem 4.2]:

(19) ρpT q ď ρpSq.

Any real Banach lattice X and any operator T on X admits a natural complex extension. The spec-
trum of T will be identified as the spectrum of its complex extension and denoted by SppT q, furthermore
by [1, Lemma 6.22], the spectral radius of the complex extension is also given by limnÑ8 ∥Tn ∥1{n

X ,
with ∥ ¨ ∥X still defined by (15). Moreover, by [1, Corollary 3.23], if T is positive (seen as an operator
on the real Banach lattice X), then T and its complex extension have the same norm.

2.3. Lebesgue spaces and essential limits. Let pΩ,G, µq be a measured space with µ a σ-finite
measure. For any A Ă G, we denote by σpAq the σ-field generated by A. If f, g are two real-valued
measurable functions defined on Ω, we write f ď g a.e. (resp. f “ g a.e.) when µptf ą guq “ 0
(resp. µptf ‰ guq “ 0), and denote supppfq “ tf ‰ 0u the support of f . We say that a real-valued
measurable function f is nonnegative when f ě 0 a.e., we say that f is positive, denoted f ą 0 a.e.,
when µptf ď 0uq “ 0, and we say that f is bounded if there exists M ě 0 such that |f | ď M a.e..
If A,B Ă Ω are measurable sets, we write A Ă B a.e. (resp A “ B a.e.) when 1A ď 1B a.e. (resp.
1A “ 1B a.e.). Let L0pΩ,G, µq, simply denoted L0, be the set of r´8,`8s-valued measurable functions
defined on Ω, where functions which are a.e. equal are identified. The elements 1 and 0 of L0 denote
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the functions which are a.e. equal respectively to 1 and to 0. For the sake of clarity, we will omit to
write a.e. in the proofs.

Let pftqtPT be a family of measurable functions defined on Ω taking values in r´8,`8s. We recall
that f˚ “ esssuptPT ft is a measurable function such that ft ď f˚ a.e. for all t P T and if f is
measurable function such that ft ď f a.e. for all t P T then f˚ ď f a.e. (if T is at most countable,
then one can take esssuptPT ft “ suptPT ft). We now consider T “ R`. Let pftqtPR`

be a non-
decreasing sequence, in the sense that for all t ď s we have ft ď fs a.e., then if ptnqnPN is a sequence
converging to `8, we have that the sequence pftnqnPN converges a.e. towards f˚ “ esssuptPR`

ft, and
thus we shall simply write f˚ “ limesstÑ`8 ft. We leave to the reader the definition of essinf and
the limit of a non-increasing sequence of measurable functions. For the family pftqtPR`

, we consider
f˚
t “ esssupsět fs for all t P R`, and get that the sequence pf˚

t qtPR` is non-increasing and write
limesssuptÑ8 ft “ limesstÑ8 f˚

t . We define in a similar way limessinftÑ8 ft. Notice that if gt “ ft
a.e. for all t P R`, then the essential supremum/infimum limits of pftqtPR` and pgtqtPR` are a.e. equal.
Therefore, the essential supremum/infimum limits of sequences is well defined on the space L0. We
say the sequence of functions pftqtPR`

in L0 essentially converges if limesssuptÑ8 ft “ limessinftÑ8 ft
in L0, and write limesstÑ`8 ft for this common limit (which is an element of L0). When considering
T “ N instead of T “ R`, the analog of the essential convergence is the a.e. convergence, that is the
usual convergence in L0.

For a measurable function f , we write µpfq “
ş

f dµ “
ş

Ω
fpxqµpdxq the integral of f with respect

to µ when it is well defined. When f is measurable and a.e. finite and nonnegative, we denote fµ
the measure on pΩ,Gq defined by fµpAq “ µp1Afq for any measurable set A. For p P r1,`8s, the
Lebesgue space LppΩ,G, µq is the set of all real-valued measurable functions f P L0 defined on Ω whose
Lp-norm, ∥ f ∥p “ µp|f |pq1{p if p ă `8 and ∥ f ∥8 “ esssupp|f |q if p “ `8, is finite. When there is
no ambiguity we shall simply write LppΩq, Lppµq or Lp for LppΩ,G, µq. The Banach space Lp endowed
with the usual order f ď g, that is µptf ą guq “ 0, is a Banach lattice. The positive cone Lp

` is the
subset of Lp of nonnegative functions; it is normal (as the norm ∥ ¨ ∥ is monotonic, that is, 0 ď f ď g
implies ∥ f ∥p ď ∥ g ∥p, see [15, Proposition 19.1]) and reproducing (that is, Lp

` ´ Lp
` “ Lp). Since the

supports of two functions which are a.e. equal are also a.e. equal, we get that the support of f P Lp is
well defined up to the a.e. equality; it will still be denoted by supppfq. For p P r1,`8q, the dual of Lp

is Lq where 1{p ` 1{q “ 1, with the duality product xg, fy “
ş

fg dµ for f P Lp and g P Lq (for p “ 1,
we use that the measure µ is σ-finite).

For any f P L8, we denote by Mf the multiplication by f , which can be seen as an operator on Lp

for p P r1,`8s. For A P G a measurable set, we denote:

(20) MA “ M1A
.

Let T be an operator on Lp. The projection of T on A, denoted TA, is the operator defined by:

(21) TA “ MA T MA,

and, if µpAq ą 0, we denote by T |A the operator T restricted to LppAq, where the set A is endowed
with the trace of G on A and the measure µ|Ap¨q “ µpAX ¨q.

We now assume that µpΩq ą 0, so that LppΩq is not reduced to a singleton. When there is no
ambiguity on the operator T , we simply write ρpAq for the spectral radius of TA (and of T |A when
µpAq ą 0). In particular, we have ρpΩq “ ρpT q and ρpAq “ 0 if µpAq “ 0. If the operator T is positive,
we also have that:

A Ă B ùñ ρpAq ď ρpBq.

2.4. Decomposition of positive operators on Lp, with p P p1,`8q. Recall the measure µ is
σ-finite and non-zero. We recall the atomic decomposition from Schwartz [50] of a positive operator
T on Lp, see also [19]. A measurable set A P G is T -invariant, or simply invariant when there is no
ambiguity, if MAcTMA “ 0, which, see [19, Eq. (7)], is equivalent to:

(22) xg, Tfy “ 0.
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for all f P Lp
` and g P Lq

` such that supppfq Ă A a.e. and supppgq Ă Ac a.e.. The operator T is
irreducible if its only invariant sets are a.e. equal to Ω or H. A measurable set A with positive measure
is irreducible if the operator T |A on LppAq is irreducible. The future of a set A Ă Ω, denoted FpAq, is
the smallest invariant set that contains A. If C is an at most countable collection of subsets of Ω, then
we denote by FpCq the future of the union of the elements of C:

(23) FpCq “ F

˜

ď

APC
A

¸

“
ď

APC
FpAq,

where the last equality is [19, Lemma 3.13].
A set is admissible if it belongs to the σ-field generated by the invariant sets. An atom is a minimal

admissible set with a positive measure (that is, A is an atom if A is admissible, µpAq ą 0 and if B is
an admissible set such that B Ă A a.e. then a.e. B “ H or B “ A), and we identify two atoms that
are a.e. equal. In particular, if the set A is an atom and B is admissible then we have:

µpAXBq ą 0 ùñ A Ă B a.e..

According to [19, Theorem 1], a measurable set is admissible and irreducible with positive measure if
and only if it is an atom. Since the atoms have positive measure, we get that the set of atoms (up
to the a.e. equality), A, is at most countable. We shall also consider the (at most countable) set of
non-zero atoms:

A˚ “ tA P A : ρpAq ą 0u.

The relation ď on A, defined by A ď B if FpAq Ă FpBq a.e. (or equivalently A Ă FpBq a.e.), is
an order relation. We end this section by noticing that antichains of atoms are characterized by their
future.

Lemma 2.1 (Antichains with same future). Let C and C1 be two antichains of atoms. Then, we have:

FpCq “ FpC1q ðñ C “ C1.

Proof. Assume that FpCq “ FpC1q. Consider an atom A P C. Since A Ă FpCq “ FpC1q, there exists
A1 P C1 such that we have µpAX FpA1qq ą 0, which implies A ď A1 as A is an atom. Conversely there
exists B P C such that A1 ď B, and by transitivity A ď B. Since C is an antichain, we obtain A “ B
and thus A “ A1 is an element of C1. The reverse implication is trivial by (23). □

2.5. Power compact operators on Lp. A linear map T on a Banach space is compact if the image
of the unit ball is relatively compact; it is then bounded. An operator T on a Banach space is power
compact if there exists k P N˚ such that T k is compact. We recall some well-known properties of power
compact operators, see [21, 31] for instance.

Lemma 2.2 (Spectrum of power compact operators). Let T be an operator on a Banach space.
(i) The operator T ‹ is power compact if and only if the operator T is power compact.
(ii) If T is power compact, then the set SppT q is at most countable and has no accumulation points

except possibly 0 (it is thus totally disconnected).

It is well known that the spectral radius (and more generally the spectra) is a continuous function
on the set of compact operators with respect to the operator norm, see [41, Theorem 11]. We shall
however use a weaker result from Anselone [3]. We say a family V of operators on X is collectively
compact if

Ť

V PV V pBq is relatively compact, where B is the unit ball of X. The following result is a
direct consequence of Proposition 4.1 and Theorem 4.16 in [3].

Lemma 2.3 (Collectively compact operators). Let I be an interval of R and pVtqtPI be a family of
collectively compact operators on a Banach space X. If t P I is such that limsÑt ∥ pVs ´ Vtqx ∥ “ 0 for
all x P X, then we have limsÑt ρpVsq “ ρpVtq.

We give a result on compact operators in Lebesgue space. Recall that µ is a non-zero σ-finite
measure on Ω, and that Lp denote LppΩ,G, µq.
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Lemma 2.4 (On compactness). Let p P p1,`8q. A positive operator on Lp which is dominated by a
compact operator is compact.

Proof. Notice that Lp has an order continuous norm for p P r1,8q, see [2, Definition 4.7], that is,
according to [2, Theorem 4.9], if pfnqnPN is a non-decreasing sequence of Lp

` such that supnPN fn “ f P

Lp, then limnÑ8 ∥ fn ´ f ∥p “ 0. In particular, when p P p1,`8q, the dual of Lp, that is isomorphic
to Lq with 1{p` 1{q “ 1, also has an order continuous norm. The lemma is then a direct consequence
of [2, Theorem 5.20]. □

We recall in our framework some classical results, see [19, Theorem 6.2 and Lemma 6.5].

Theorem 2.5. Let T be a positive power compact operator on Lp with p P p1,`8q.
(i) Krein-Rutman. If ρpT q is positive then ρpT q is an eigenvalue of T , and there exists a

corresponding nonnegative right eigenfunction denoted vT .
(ii) de Pagter. If T is irreducible then ρpT q is positive unless T “ 0 and dimpLpq “ 1, that is, if

A is measurable then either µpAq “ 0 or µpAcq “ 0.
(iii) Schwartz. We have that for any admissible set A:

(24) ρpAq “ max
BPA˚, BĂA

ρpBq.

Following [18, Lemma 4.2], we now state a technical result based on Collatz-Wielandt inequality
and the Krein-Rutman theorem, giving a bound on the spectral radius given a strict supersolution of
the eigenvalue equation.

Lemma 2.6 (Supersolutions and spectral radius). Let S be a positive operator on Lp with p P p1,`8q.
If there exists λ ą 0 and a non-null nonnegative function v P Lp

` such that Sv ě λv, then:

ρpSq ě ρpSAq ě λ,

where A “ supppvq. Furthermore, if S is power compact, then we have:
(i) If Sv “ λv on A, then ρpSAq “ λ.
(ii) If Sv ´ λv is positive on A, then ρpSAq ą λ.

Proof. We first note that ρpSq ě ρpSAq by (19). Multiplying the inequality Sv ě λv by 1A yields
that SAv ě λv. The fact that ρpSAq ě λ, and thus ρpSq ě λ, is then a direct consequence of the
Collatz-Wielandt inequality [22, Propositions 2.1 and 2.2].

We now assume that S is power compact. Since pSAq‹ “ pS‹qA, we shall denote them simply by S‹
A.

Since SA ď S, we deduce from Lemma 2.4 that the operator SA, and thus S‹
A, is power compact. We

apply the Krein-Rutman theorem (Theorem 2.5 (i)) to the power compact operator S‹
A, which has a

positive spectral radius ρpS‹
Aq “ ρpSAq ą 0: there exists w P Lq

` a non-null eigenfunction of S‹
A related

to the eigenvalue ρpSAq. Since ρpSAqw “ S‹
Aw “ 1AS

‹p1Awq, we deduce that supppwq Ă A and thus
xw, vy ą 0.

We now consider the following duality product:

(25) xw, SAv ´ λvy “ xS‹
Aw, vy ´ λ xw, vy “ pρpSAq ´ λq xw, vy .

Under the hypothesis that Sv “ λv on A “ supppvq, the left hand side of (25) is zero, and thus
ρpSAq “ λ. This gives Point (i).

To prove Point (ii), since SAv´λv is by hypothesis positive on A, and w1A “ w is nonnegative and
not identically equal to zero, we get xw, SAv ´ λvy ą 0. Then use (25) again to get that ρpSAq ą λ. □

2.6. Operators related to the SIS model. Let pΩ,G, µq be a measured space with finite non-zero
measure µ, that is, µpΩq P p0,`8q. Recall we simply write Lp for LppΩ,G, µq. Observe that L8 Ă Lp

for p P p1,`8q and that the identity map ι from L8 to Lp is a bounded injection.

Lemma 2.7 (On compactness). Let p P p1,`8q. Let T be an operator from Lp to L8. The linear
map ιT is a compact operator on Lp.
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L8 Lp
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ι

ι

T̂
T̃
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T̂1{γ
T̃1{γT1{γ

Figure 2. Operators related to T in the SIS model pT, γ, φq.

Proof. Since Lp is reflexive, see [21, Corollary IV.8.2], we get by [21, Corollary VI.4.3] that T and ι are
weakly compact. By [2, Theorem 5.85], as the space L8 is an AM-space, it satisfies the Dunford-Pettis
property, thus, by [2, Theorem 5.87], the operator ιT on Lp is then compact. □

Let p P p1,`8q and γ P L8 such that γ ą 0 a.e.. Let T be a positive operator on L8 such that (5)
holds for all f P L8. In particular, as L8 is dense in Lp (for the Lp-norm), we can extend T by density
into a bounded linear map T̂ on Lp. Recall that M1{γ denotes the multiplication by 1{γ. Notice that
under Assumption 2, see (6), the linear map TM1{γ , denoted by T1{γ , can be seen as a bounded linear
map on L8, and it can also be extended by density into a bounded linear map T̂1{γ on Lp, see also
Fig. 2.

Lemma 2.8 (Properties of operators related to T ). Let pT, γ, φq satisfy Assumption 1. Then T̂ is an
operator on Lp. If Assumption 2 holds, then we have:

(a) T̂ is a compact operator on Lp;
(b) T 2 is a compact operator on L8;
(c) T̂1{γ is a compact operator on Lp;
(d) T1{γ is an operator on L8 and T 2

1{γ is compact;
(e) SppT q “ SppT̂ q and SppT1{γq “ SppT̂1{γq.

Proof. Suppose Assumption 2 holds. We deduce from (6) that there exists a finite constant C such
that ∥Tf ∥8 ď C ∥ f ∥p for all f P L8. By density, we can extend T into an operator T̃ from Lp

to L8. This gives that T̂ “ ι T̃ and Point (a) on the compactness property of T̂ is a consequence
of Lemma 2.7. As T “ T̃ ι and thus T 2 “ T̃ T̂ ι, we also get that T 2 is compact, that is Point (b).
Using (6), we can also extend TM1{γ into an operator T̃1{γ from Lp to L8. Arguing as above gives
Points (c) and (d).

We now prove Point (e). Two complex Banach spaces pE, ∥ ¨ ∥q and pE1, ∥ ¨ ∥1
q are compatible if

pE2, ∥ ¨ ∥ ` ∥ ¨ ∥1
q, with E2 “ E X E1, is a Banach space, and E2 is dense in E and in E1. Given

two compatible spaces E and E1, two operators A on E and A1 on E1 are said to be consistent if
ApE2q Ă E2, A1pE2q Ă E2 and Ax “ A1x for all x P E2. If furthermore A and A1 are compact, then
[14, Theorem 4.2.15] gives that SppAq “ SppA1q. The proof therein relies on the spectrum to be at
most countable and with no accumulation points except possibly 0 and that the spectral projections
have finite rank, see Theorems 5 and 6 p.579 in [21]. Since this also holds for power compact operators,
the results can be extended to A and A1 being power compact operators.

As µ is a finite measure, the spaces Lp and L8 are pairwise compatible. Notice also the operators
T and T̂ , as well as T1{γ and T̂1{γ , are consistent. Then the equalities follow. □

3. Equilibria and restriction

We consider the SIS model (2)-(3) on L8 “ L8pΩ,G, µq with parameter pT, γ, φq such that Assump-
tion 1 holds. In particular the measure µ is finite and non-zero. We consider the following subset of
L8:

∆ “ tf P L8 : 0 ď f ď 1u.
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Recall that g is an equilibrium if g belongs to ∆ and solves (4), that is:

F pgq “ 0.

In particular, the function 0 is an equilibrium. We say that g˚ P L8 is the maximal equilibrium if g˚

is an equilibrium and all other equilibrium g P L8 are such that g ď g˚.
The existence result of the semi-flow and the maximal equilibrium follows [17, Propositions 2.7 and

2.15] with slightly more general hypothesis on T and is obtained similarly, see a proof in Section 8 for
completeness. We shall refer to this section for notations and definitions/properties of the semi-flow.

Proposition 3.1 (Existence of a global solution and of the maximal equilibrium). Let pT, γ, φq be
parameters of the SIS model satisfying Assumption 1. The following properties hold.

(i) Equation (2) in L8 with initial condition h P ∆ has a unique global solution given by the
semi-flow ϕp¨, hq “ pϕpt, hqqtPR`

. The semi-flow belongs to C1pR`q.
(ii) For all t ě 0 and h P ∆, we have ϕpt, hq P ∆.
(iii) The sequence pϕpt,1qqtPR`

is non-increasing and converges essentially to a limit, g˚, which is
the maximal equilibrium:

limess
tÑ`8

ϕpt,1q “ g˚.

The convergence in Point (iii) is not uniform in general, see Remarks 4.4 and 4.5 and Example 4.6.
The proof of the monotonicity of the maximal equilibrium in the parameters is given in Section 8

for consistency of the arguments.

Lemma 3.2 (Monotonicity of the maximal equilibrium). For i “ 1, 2, let pTi, γi, φiq be parameters
of the SIS model satisfying Assumption 1 and denote g˚

i the corresponding maximal equilibrium. If
T1 ě T2, φ1 ě φ2 and γ1 ď γ2, then we have g˚

1 ě g˚
2 .

Let A be a measurable set. Since pT, γ, φq satisfy Assumption 1, so does pTA, γ, φq, where TA “

TA “ MATMA is the projection of T on A. We shall now focus on this restricted pTA, γ, φq-SIS model.
We set for u P L8:

(26) FApuq “ φpuqTApuq ´ γu,

and call g P ∆ an equilibrium of A if FApgq “ 0. In this case, notice that supppgq Ă A a.e.. We also
denote ϕA the corresponding semi-flow and g˚

A the corresponding maximal equilibrium of A given by
Proposition 3.1.

Lemma 3.3 (Maximal equilibria). Let pT, γ, φq satisfy Assumption 1. Let A Ă B a.e. be measurable
sets. We have g˚

A ď g˚
B.

Proof. Apply Lemma 3.2 with T1 “ TB ě TA “ T2, φ1 “ φ2 “ φ and γ1 “ γ2 “ γ. □

We now provide results on equilibria and semi-flows associated to T and TA.

Lemma 3.4 (Equilibrium and restriction). Let pT, γ, φq satisfy Assumption 1. Let A be a measurable
set and g P ∆.

(i) If g is an equilibrium and supppgq Ă A a.e., then g is an equilibrium of A.
(ii) If A is invariant and g is an equilibrium of A, then g is an equilibrium (and supppgq Ă A a.e.).
(iii) If A is invariant and g is an equilibrium, then 1Acg is an equilibrium of Ac and of AcXsupppgq.

Proof. If supppgq Ă A and g is an equilibrium, then we get that g is an equilibrium of A as:

FApgq “ φpgq1AT p1Agq ´ γg “ 1A

`

φpgqT pgq ´ γg
˘

“ 0.

Let A be an invariant set and h P ∆. Since 1AcT p1Ahq “ 0, we deduce that:

(27) FAcp1Achq “ 1AcF phq.

If furthermore suppphq Ă A, then we have:

(28) FAphq “ F phq ´ φphq1AcT p1Ahq “ F phq.
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If g is an equilibrium of A, then we get supppgq Ă A and, since A is invariant, we deduce from (28)
that g is an equilibrium. If g is an equilibrium, we deduce from (27) that 1Acg is an equilibrium of Ac.
Then use (i) with T replaced by TAc and A by supppgq to deduce that 1Acg is also an equilibrium of
Ac X supppgq. □

Lemma 3.5 (Semi-flow and restriction). Let pT, γ, φq satisfy Assumption 1. Let A be a measurable
set and h P ∆. The following properties hold:

(i) limesstÑ`8 ϕApt,1Aq “ g˚
A.

(ii) If A is invariant, then we have 1Ac ϕp¨, hq “ ϕAc p¨,1Ac hq.
(iii) If A is invariant and suppphq Ă A a.e., then we have ϕp¨, hq “ ϕA p¨, hq.

Proof. As g˚
A is an equilibrium of A, we get supppg˚

Aq Ă A and thus we have g˚
A ď 1A ď 1. By the

monotonicity of the semi-flow, see Lemma 8.5 (i), we have g˚
A “ ϕApt, g˚

Aq ď ϕApt,1Aq ď ϕApt,1q for
all t P R`. Then Proposition 3.1 (iii) gives Point (i).

Let A be invariant. For simplicity, we write ϕ instead of ϕpt, hq and ϕ1 for its derivative. By definition
of the semi-flow ϕ, we deduce from (27) that:

1Acϕ1 “ 1AcF pϕq “ FAcp1Acϕq.

The map t ÞÑ 1Acϕpt, hq is thus a solution of Equation (2), with F replaced by FAc and initial condition
1Ac h. By the uniqueness of the semi-flow, we get 1Acϕp¨, hq “ ϕAc p¨,1Achq, that is Point (ii).

We now assume that suppphq Ă A. By Point (ii), we have supppϕq Ă A. We deduce from (28) that:

ϕ1 “ F pϕq “ FApϕq.

Then, the same argument as above yields Point (iii). □

4. Characterization of equilibria

In this section, we assume that Assumption 2 holds for the SIS model pT, γ, φq. In particular the
map φ restricted to r0, 1s is a decreasing bijection onto r0, 1s. Recall the operators related to T defined
in Section 2.6 and their properties.

4.1. Equilibria, supports and spectral radius. For any g P ∆, let Lg denote the compact operator
on Lp defined by:

(29) Lg “ Mφpgq T̂1{γ .

This operator is associated to the linearization MφpgqT ´ γ of the dynamics near g in the same way as
T̂1{γ is associated to the linearization T ´ γ of the dynamics near 0 (as φp0q “ 1). Notice that when
pT, γ, φq satisfy Assumption 2, then pMφpgqT, γ, φq also does. It is immediate to check that for g P ∆:

(30) g is an equilibrium ðñ Lg pγgq “ γg.

Lemma 4.1 (Equilibria as nonnegative eigenfunctions). Let pT, γ, φq satisfy Assumption 2. Let g P ∆
be an equilibrium. We have the following properties.

(i) φpgq ą 0 a.e..
(ii) The operators T̂ , T̂1{γ and Lg have the same invariant sets, irreducible sets, atoms and non-zero

atoms.
(iii) The set supppgq is invariant.

If g ‰ 0, then the following additional properties hold. Let h P ∆ be an equilibrium. Set A “ supppgq.
(iv) ρpLgq ě ρppLgqAq “ 1.
(v) If h ď g, then either ρppLhqAq “ 1 and h “ g, or ρppLhqAq ą 1 and suppphq ‰ supppgq a.e..
(vi) h ď g ðñ suppphq Ă supppgq a.e..

As a consequence of Point (vi) we directly get the following corollary.

Corollary 4.2 (Equilibria and their support). Let pT, γ, φq that satisfy Assumption 2. Two equilibria
with the same support are equal.
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Proof of Lemma 4.1. Since φpgqT pgq “ γg, φpgq does not vanish on supppgq. On the complement set,
g “ 0 so φpgq “ 1 does not vanish either. Since φ is nonnegative, we get Point (i).

Point (ii) is a direct consequence of the characterization of invariant sets given by (22) as 1{γ and
φpgq are positive by Point (i) and Thereom 2.5 (ii) on non-zero atoms. Point (iii) is a direct consequence
of (30), [19, Lemma 3.6] (which state that the support of the eigenfunction γg is Lg-invariant) and
Point (ii).

Point (iv) follows directly from Lemma 2.6 with S “ Lg, v “ γg and λ “ 1.
The proof of Point (v) follows similar lines. Let h ď g be two equilibria with h ‰ 0. The two

eigenvalue equations written for h and g yield pLg ´ Lhqpγgq ` Lhpγpg ´ hqq “ γpg ´ hq, which we
rewrite as:

Lhpγpg ´ hqq “ γpg ´ hq ` pφphq ´ φpgqqTg.

On the right hand side, φphq ´φpgq and Tg are nonnegative, and by strict monotonicity of φ they are
both positive on B “ supppg ´ hq Ă supppgq. If B is empty, then g “ h and we are back to Point (iv).
If not, we apply Lemma 2.6 (ii) to S “ Lh, λ “ 1 and v “ γpg ´ hq ‰ 0 which is non-negative:
ρppLhqBq ą 1. If B was a subset of suppphq this would imply ρppLhqsuppphqq ą 1, a contradiction with
Point (iv). So B is not a subset of suppphq, or in other words suppphq ‰ supppgq.

Finally let us prove Point (vi). Clearly h ď g implies that suppphq Ă supppgq. To prove the reverse
implication, let us assume that suppphq Ă supppgq. Since F pmaxpg, hqq ě 0, by Lemmas 8.5 (ii)
and 8.6, the semi-flow starting from maxpg, hq is non-decreasing and converges to an equilibrium g̃,
which therefore satisfies maxpg, hq ď g̃. Since supppmaxpg, hqq “ supppgq is invariant by Point (iii), we
deduce from Lemma 3.5 (iii) that supppg̃q Ă supppgq and thus supppg̃q “ supppgq. Since g ď g̃, by the
previous point, the functions g and g̃ must be equal, so g “ maxpg, hq, or in other words h ď g. □

4.2. Maximum equilibria and critical vaccination. Recall the notations of Section 2.6. Let A be
a measurable set. Notice the linear map pT̂1{γqA “ zpTAq1{γ is an operator on Lp. Following [17], we then
define the basic reproduction number of A as the spectral radius of this operator R0pAq “ ρppT̂1{γqAq,
and simply write R0 for R0pΩq. Notice that, by (19), the map A ÞÑ R0pAq is non-decreasing, that is,
for any A,B measurable sets with A Ă B a.e., we have R0pAq ď R0pBq.

The following result generalizes [17, Theorems 4.7 and 4.13], and is proved similarly, see Section 9
for details.

Proposition 4.3. Let pT, γ, φq satisfy Assumption 2. Then we have the following properties.
(i) If R0 ď 1, then we have g˚ “ 0, and for all h P ∆:

limess
tÑ`8

ϕpt, hq “ 0.

(ii) If R0 ą 1, then the maximal equilibrium g˚ is non-null, (that is, µpsupppg˚qq ą 0).
(iii) If R0 ą 1 and T is quasi-irreducible, that is, T “ TA with A an irreducible set, then we have

supppg˚q “ A a.e. and g˚ is the unique non-null equilibrium.
(iv) If R0 ą 1, T is quasi-irreducible, that is, T “ TA with A an irreducible set, and h P ∆, then

we have limesstÑ`8 ϕpt, hq “ 0 if suppphq XA “ H a.e. and:

limess
tÑ`8

ϕpt, hq “ g˚ if µpsuppphq XAq ą 0.

In the next remarks and examples, we explore the uniformity of the convergence in Point (i) and
Proposition 3.1 (iii).

Remark 4.4 (Exponential rate of convergence to 0 when R0 ă 1 and essinf γ ą 0). Assume pT, γ, φq

satisfies Assumption 2, R0 ă 1 and essinf γ ą 0. By Lemma 9.2 we also have spT ´ γq ă 0. Then,
mimicking the proof of [17, Theorem 4.6] and using that 1´φ ě 0, we get that for all c P p0,´spT´γqq,
there exists θ P R` such that, for all h P ∆, t ě 0, we have:

∥ϕpt, hq ∥8 ď θ ∥h ∥8 e´ct.
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Remark 4.5 (Non uniform convergence when R0 ď 1 and essinf γ “ 0). We assume that R0 ď 1 and
essinf γ “ 0. Consider the function v defined by vptq “ expp´tγq P ∆ for t ě 0. As v1ptq ´ F pvptqq “

´φpvptqqTvptq ď 0, we deduce from Lemma 8.2 and Proposition 7.2 that ϕpt,1q ě vptq for all t ě 0.
We obtain 1 ě ∥ϕpt,1q ∥8 ě ∥ vptq ∥8 “ 1 as essinf γ “ 0. Thus the semi-flow pϕpt,1qqtPR`

does not
converge to g˚ “ 0 in L8.

Notice the same conclusion holds (with the same arguments) if R0 ď 1 is replaced by the more
general condition esssup g˚ ă 1.

Example 4.6 (A uniform convergence when essinf γ “ 0). If esssup g˚ “ 1 and essinf γ “ 0 it is possible
for the semi-flow pϕpt, 1qqtPR`

to converge to g˚ in L8. Consider the particular case: Ω “ p0, 1s

with µ “ ν ` δ1, where ν is the Lebesgue measure and δ1 the Dirac mass at 1; Tf “ fp1q1 for all
f P Lp; γpxq “ x{2 and φprq “ 1 ´ r. In this case, t1u is the only atom, and R0pt1uq “ 2. We get
g˚pxq “ 1{p1 ` xq and thus esssup g˚ “ 1. (Notice that g˚p0`q “ esssup g˚ and γp0`q “ essinf γ.)
Elementary calculus give that, for t ě 0, ϕpt, 1qp1q “ 1{p2 ´ e´t{2q and for x P p0, 1q:

ϕpt,1qpxq “
2 ` px´ 1qe´px`1qt{2

x` 1
ϕpt,1qp1q,

so that ∥ϕpt,1q ´ g˚ ∥8 ď e´t{2. So the semi-flow pϕpt,1qqtPR`
converges to g˚ in L8.

We now focus on critical vaccination. Let φ0 defined by φ0prq “ 1 ´ r and Tk the kernel operator
form Remark 1.3 with k and γ satisfying (7) so that pTk, γ, φ0q satisfies Assumption 2. Let η P ∆ seen
as a perfect vaccination strategy: the SIS model pTkMη, γ, φ0q (which indeed satisfies Assumption 2)
corresponds to the initial SIS model, where for x P Ω, a proportion 1´ ηpxq of the population is vacci-
nated and thus does not spread the disease, see [16] and references therein. In this setting vaccinating
the population amounts to replace the measure µ by ηµ.

Motivated by this example, we shall consider the effective reproduction number defined by:

Repηq “ ρpT̂1{γMηq,

for η P ∆ (notice that pTMη, γ, φq satisfies Assumption 2 and T̂1{γMη “ {pTMnq1{γ). Following [16],
we shall be interested in critical vaccination η for which Repηq “ 1. It is observed in [18] that for the
SIS model pTk, γ, φ0q, the vaccination strategy η “ φ0pg˚q is critical. We generalize this result (with
a shorter proof based on the fact that Repφpgqq “ ρpLgq, see (29)) for more general operators T and
functions φ.

Theorem 4.7 (Equilibria and critical vaccination). Let pT, γ, φq that satisfy Assumption 2. Let h P ∆
be an equilibrium. Then we have h “ g˚ ðñ Repφphqq ď 1. If furthermore R0 ą 1, then we have:

h “ g˚ ðñ Repφphqq “ 1.

Proof. First, remark that ρpLgq “ Repφpgqq, where Lg is defined by (29).
If R0 ď 1, then by Proposition 4.3, we have g˚ “ 0. As Repφp0qq “ R0 ď 1 by Assumption 2, we

directly get the equivalence h “ g˚ ðñ Repφphqq ď 1.
If R0 ą 1, then we have g˚ ‰ 0 by Proposition 4.3. According to Lemma 4.1 (iv), if h ‰ 0, we

have Repφphqq “ ρpLhq ě 1, and by (19) and (v) that if h ‰ g˚ then ρpLhq ě ρ
`

pLhqA
˘

ą 1 with
A “ supppg˚q.

To complete the proof, that is, Repφpg˚qq “ 1, we shall assume that ρpLhq ą 1 and show that h ‰ g˚.
Informally the idea is to follow the unstable direction at the equilibrium h to construct a trajectory
leading to another equilibrium. Since Lh is a positive compact operator, thanks to the Krein-Rutman
theorem (Theorem 2.5 (i)), we can consider an eigenvector u P Lp

`zt0u of Lh related to ρpLhq. Since
the set A “ suppphq is invariant by Lemma 4.1 (iii), we have:

(31) ρpLhqu “ Lhu “ pLhqAu` Lhp1Acuq.

If u1Ac was equal to 0, ρpLhq ą 1 would be an eigenvalue of pLhqA, contradicting Lemma 4.1 (iv). As
A is invariant and u1Ac ‰ 0, multiplying (31) by 1Ac gives ρpLhqu1Ac “ pLhqAcpu1Acq, showing that
u1Ac is an eigenvector of pLhqAc , so ρppLhqAcq “ ρpLhq ą 1.
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Since pLhqAc “ MφphqpT̂1{γqAc “ {pTAcq1{γ (as h “ 0 on Ac and φp0q “ 1), we may apply Proposi-
tion 9.3 with T “ TAc : there exists a λ ą 0 and w P L8

` zt0u such that TAcw´ γw “ λw. Without loss
of generality, we can assume that ∥w ∥8 is small enough to ensure that w P ∆ and, as φ is continuous
with φp0q “ 1, that φp∥w ∥8q ě 1 ´ δ with δ ą 0 small enough so that δpλ ` ∥ γ ∥8q ď λ. Note that
supppwq Ă Ac. Since h`w “ h1A`w1Ac , and A “ suppphq is invariant, we get φph`wqTh “ φphqTh.
Since h is an equilibrium, we obtain that:

F ph` wq “ φph` wqT ph` wq ´ γph` wq “ φph` wqTw ´ γw

ě p1 ´ δqTAcw ´ γw

ě pλ´ δpλ` ∥ γ ∥8qq w

ě 0.

By Lemmas 8.5 (ii) and 8.6, this implies that the trajectory starting from h`w converges monotonously
to an equilibrium g. Since h ď h` w ď g ď g˚ and w ‰ 0, we get that h ‰ g˚ as claimed. □

4.3. Equilibria and antichains of atoms. We now focus on the characterization of equilibria. We
recall from (23) that the the future of an antichain C of atoms (which is at most countable) is given
by FpCq “ F p

Ť

APC Aq “
Ť

APC F pAq. The set of supercritical atoms:

Asup “ tA P A : R0pAq ą 1u

is finite by [19, Lemma 6.5]. We say an antichain C of atoms is supercritical if all its elements are
supercritical atoms, that is, C Ă Asup. We denote by S the (finite) set of supercritical antichains. For
a set A, let CA denote the (possibly empty) supercritical antichain given by the maximal elements of
tB P Asup : B Ă A a.e.u. Notice that when A is admissible, we get by (24) that CA is non-empty if
and only if R0pAq ą 1. For h P ∆, we simply write Ch for Csuppphq.

The following theorem generalizes the uniqueness result of Proposition 4.3 when the operator T is
not necessarily quasi-irreducible. Recall that, by Lemma 4.1 (vi), equilibria are characterized by their
support.

Theorem 4.8 (Equilibria and supercritical antichains are in bijection). Let pT, γ, φq satisfy Assump-
tion 2. The set of the equilibria and the set of supercritical antichains are in bijection through the
equivalent relations:

(32) supppgq “ FpCq ðñ Cg “ C,
where g P ∆ is an equilibrium and C P S a supercritical antichain. Furthermore, if g ‰ 0, then the
equilibrium g is the maximal equilibrium of FpCgq.

We divide the proof in two lemmas.

Lemma 4.9 (Support of an equilibrium and related supercritical antichain). If g P ∆ is an equilibrium,
then we have supppgq “ F pCgq a.e.. In particular if g and h are two equilibria, we get:

Cg “ Ch ðñ g “ h.

Proof. As the set supppgq is invariant by Lemma 4.1 (iii) and as every element of Cg is included in
supppgq, we have FpCgq Ă supppgq.

By construction of Cg, every atom B Ă supppgq with R0pBq ą 1 is included in FpCgq. This implies
by (24) that, with A “ supppgq X FpCgqc an invariant (by Lemma 4.1 (iii)) and thus admissible set:

R0pAq “ max
BĂA,BPA

R0pBq ď 1.

Then Lemma 3.4 (iii) gives that 1FpCgqcg is an equilibrium of FpCgqc and of A. Then Proposition 4.3 (i)
(with the SIS model pTA, γ, φq) implies that 1FpCgqc g “ 0, that is supppgq Ă FpCgq. Thus, we get
supppgq “ FpCgq. The second part of the lemma is then a direct consequence of Corollary 4.2 and
Lemma 2.1. □

Lemma 4.10. For any supercritical antichain C, there exists an equilibrium g P ∆ such that C “ Cg.
If C is non empty, then g ‰ 0 is the maximal equilibrium of FpCq.
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Proof. If C is empty, then taking the equilibrium g “ 0, we get C “ Cg. We assume now that C is
not empty. Let g be the maximal equilibrium on FpCq. It is also an equilibrium by Lemma 3.4 (ii)
and supppgq Ă FpCq. For any A P C, we have g˚

A ď g by Lemma 3.3, and g˚
A is positive on A by

Proposition 4.3 (iii) since A is a supercritical atom and thus an irreducible set with R0pAq ą 1. This
implies that A Ă supppgq and thus FpAq Ă supppgq as supppgq is invariant. Then use (23) to get
FpCq Ă supppgq, so that FpCq “ supppgq, and thus FpCq “ FpCgq by Lemma 4.9. The two antichains
C and Cg have the same future and are thus equal by Lemma 2.1. The proof is then complete. □

Let E Ă ∆ denote the set of equilibria of the SIS model pT, γ, φq.

Proof of Theorem 4.8. The map g ÞÑ Cg from E to S is one-to-one by Lemma 4.9 and onto by
Lemma 4.10. The equivalence given by (32) is a direct consequence of Lemmas 2.1 and 4.9. Use
the last part of Lemma 4.10 to get the last part of the theorem. □

4.4. Monatomicity and order relation via equilibria. Let pT, γ, φq that satisfy Assumption 2.
Consider the SIS model pT, λγ, φq with recovery rate γ multiplied by a real parameter λ ą 0. The
reproduction number of a measurable set A for this model is ρppT̂1{λγqAq “ ρppT̂1{γqAM1{λq “ R0pAq{λ.
We deduce from Theorem 4.8 that the number of equilibria of the SIS model pT, λγ, φq is decreasing
with λ.

We say that the operator T on Lp for p P p1,`8q is monatomic if it has exactly one non-zero
atom, that is, cardpA˚q “ 1. Monatomicity is a natural extension of (quasi-)irreducibility, see [19,
Remark 1.2] and references therein. We complete the characterization of monatomic operator T given
in [19, Theorem 2] using the number of equilibria of the SIS models pT, λγ, φq.

Corollary 4.11 (Criterium of monatomicity). Let pT, γ, φq satisfy Assumption 2. The operator T is
monatomic if and only if the two following properties hold:

(i) For λ ą 0, the SIS model pT, λγ, φq has at most one non-null equilibrium.
(ii) There exists λ ą 0 such that the SIS model pT, λγ, φq has a non-null equilibrium.

Proof. By Theorem 4.8, we deduce that if C is a finite antichain of non-zero atoms then, for all λ P

p0,minAPC R0pAqq there exists an equilibrium gλ for the model pT, λγ, φq such that FpCq “ supppgλq.
Then, Point (i) means that the number of finite antichains of non-zero atoms is at most two, and

Point (ii) that it is at least two: so the two points are equivalent to the number of antichains being
exactly two (one being empty), that is T is monatomic. □

5. Convergence and attraction domains

In this section, we are interested in the behavior of the semi-flow pϕpt, hqqtPR`
of Equation (2) when

t goes to infinity for an initial condition h P ∆. If T is a quasi-irreducible kernel positive operator, then
according to Proposition 4.3 (iv), see also [17, Theorem 4.13] when T is an irreducible kernel operator,
the semi-flow pϕpt, hqqtPR`

converges essentially to g˚ if µpsuppphq X supppg˚qq ą 0 and 0 otherwise.
We generalize this result to general operators, see Section 10 for a proof.

Theorem 5.1 (Convergence to an equilibrium). Let pT, γ, φq satisfy Assumption 2. The semi-flow
pϕpt, hqqtPR`

with initial condition h P ∆ converges essentialy to a limit, say g P ∆; and g is an
equilibrium and more precisely the maximal equilibrium of the set Fpsuppphqq:

limess
tÑ8

ϕpt, hq “ g and Cg “ CFpsuppphqq.

We derive directly the next corollary, where the maximal equilibrium g˚ is possibly equal to 0.

Corollary 5.2 (Attraction domain of the maximum equilibrium). Let pT, γ, φq satisfy Assumption 2.
The semi-flow with initial condition h P ∆ converges essentially to the maximal equilibrium g˚, that
is, limesstÑ8 ϕpt, hq “ g˚, if and only if Fpsuppphqq contains all the supercritical atoms.

In particular, we recover Proposition 4.3 as R0 ď 1 means there is no supercritical atom, and R0 ą 1
and T quasi-irreducible means there is only one supercritical atom. In the previous corollary, it may
however happen that none of the supercritical atoms is included in suppphq, see the next example.



20 JEAN-FRANÇOIS DELMAS, KACEM LEFKI, AND PIERRE-ANDRÉ ZITT

Example 5.3. Let Ω “ ta, bu with the counting measure, and consider the SIS model pT, γ, φq with

T identified with the matrix
ˆ

1 0
‹ 2

˙

(with ‹ ą 0), γ “ 1, φprq “ 1 ´ r. Notice that tau and tbu

are non-zero atoms, the former being critical with Fptauq “ Ω and the latter being supercritical and
invariant. Thus, there exists only two equilibria: 0 “ p0, 0q and g˚ “ p0, 1{2q. If h ‰ 0, then we
have limtÑ8 ϕpt, hq “ g˚. For h “ p0, 1q, we have suppphq “ supppg˚q, but for h “ p1, 0q we have
suppphq X supppg˚q “ H.

Proposition 5.4 (Uniform convergence to an equilibrium). Let pT, γ, φq satisfy Assumption 2. For
h P ∆ and g the maximal equilibrium of Fpsuppphqq, we have that:

(33) lim
tÑ8

∥∥ `

ϕpt, hq ´ g
˘

γ
∥∥

8
“ 0.

In particular, when essinf γ ą 0, the convergence given by Theorem 5.1 is uniform. Notice we have
a stronger result if furthermore R0 ă 1 (and thus g “ 0), see Remark 4.4.

Proof. We start with a preliminary result. Set M the norm of the operator T̃ from Lp to L8, which
coincide with T on L8, see the proof of Lemma 2.8; it is finite by Assumption 2. Let m ą 0. Let
h1 ě h2 be elements of ∆, and for t P R` set fptq “ ϕpt, h1q ´ ϕpt, h2q. We claim that:

(34) lim sup
tÑ8

∥∥ fptq1tγěmu

∥∥
8

ď
M

m
lim sup
tÑ8

∥ fptq ∥p .

Indeed, by monotonicity of the semi-flow (see Lemma 8.5), we have ϕpt, h1q ě ϕpt, h2q and thus fptq ě 0.
We also have, as φ is decreasing on r0, 1s and T is positive that for t P R`:

f 1ptq “ φpϕpt, h1qqTϕpt, h1q ´ φpϕpt, h2qqTϕpt, h2q ´ γfptq

ď φpϕpt, h1qqTfptq ´ γfptq

ď Tfptq ´ γfptq.

On tγ ě mu, we get for vptq “ emtfptq that for all t ě 0:

(35) v1ptq ď pm´ γqvptq ` Tvptq ď

∥∥∥ T̃ ιvptq
∥∥∥

8
ď M ∥ vptq ∥p .

By (39) and (40) on the Bochner integral, we deduce that vptq ď vp0q `M
şt

0
∥ vpsq ∥p ds on tγ ě mu.

Since f is nonnegative, we get:∥∥ fptq1tγěmu

∥∥
8

ď e´mt ∥h1 ´ h2 ∥8`M

ż t

0

e´mpt´sq ∥ fpsq ∥p dt ď 2e´mt`M

ż t

0

e´ms ∥ fpt´ sq ∥p dt.

This gives (34).

Let h P ∆ and g be the maximal equilibrium of A “ Fpsuppphqq. By Lemma 9.1, we have
supppϕp1, hqq “ A. Let h1 “ maxpϕp1, hq, gq and h2 “ minpϕp1, hq, gq. We thus have h1 ď h2 and
supppgq “ suppph2q Ă suppph1q “ A. By Theorem 5.1 (and using that g is the maximal equilibrium
on the invariant set Fpsuppphiqq for i “ 1, 2), we get that limesstÑ8 ϕpt, hiq “ g for i “ 1, 2. With
fptq “ ϕpt, h1q ´ϕpt, h2q, we get by the dominated convergence theorem that limtÑ8 ∥ fptq ∥p “ 0, and
by (34) that limtÑ8

∥∥ fptq1tγěmu

∥∥
8

“ 0 for all m ą 0 and thus limtÑ8 ∥ fptq γ ∥8 “ 0 as ∥ f ∥8 ď 1.
Use the monotonicity of the semi-flow to get ϕpt, h1q ě ϕpt ` 1, hq ě ϕpt, h2q and deduce that (33)
holds. □

6. SIS model with an external disease reservoir

In this section, we consider the infinite-dimensional inhomogeneous SIS model with an external
disease reservoir, called SISκ model, presented in Section 1.4. The function u “ pupt, xqqtPR`,xPΩ,
where upt, xq is the proportion of infected population among the population with feature x, is solution
in L8 of the ODE:

(36)
"

u1 “ Fκpuq,
up0q “ h,
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with initial condition h P L8 and:

(37) Fκpuq “ φpuqpTu` κq ´ γu,

where φ is a continuous function on R and κ P L8
` . To study solutions of (36) and the corresponding

equilibria, that is functions g P ∆ such that Fκpgq “ 0, we shall use the formalism of Section 3 by
adding a sub-population corresponding to the reservoir with type r. Notice the case φpr0, 1sq “ t0u

(which is not possible under Assumption 2) is trivial, and thus we shall assume there exists a P p0, 1q

such that φpaq ą 0.

We set Ωr “ Ω \ tru (assuming without loss of generality that r R Ω), Gr “ σpG, truq and µr a
measure on pΩr,Grq which coincides with µ on Ω and with positive finite weight on r. For a function
fr defined on Ωr, we simply write f for its restriction to Ω (and similarly, for a function f defined on
Ω, we write fr for a function defined on Ωr which coincides with f on Ω, the value of fr on r being
given when needed). We simply write Lp

r for LppΩr,Gr, µrq, where p P r1,`8s. We define the positive
operator Tr on L8

r , as an extension of T on Ωr, by:

Trfrpxq “ 1ΩpxqTfpxq ` frprqαrpxq,

with αr P pL8
r q` such that α “ κ{a on Ω, with a P p0, 1q, and αrprq “ b ą 0. For p P p1,`8q, we

define similarly the operator T̂r on Lp
r based on the operator T̂ on Lp, see Lemma 2.8. We also define

the function γr (which coincides with γ on Ω by definition) such that γrprq “ bφpaq is assumed to be
positive (that is, φpaq ą 0). Let ∆r “ tfr P pL8

r q` : 1 ´ fr P pL8
r q`u be the analogue of ∆ for Ωr. It

is elementary to check the following result.

Proposition 6.1 (Solution to the SISκ model). Let pT, γ, φq satisfy Assumption 1. Assume further-
more there exists a P p0, 1q such that φpaq ą 0, and let κ P L8

` . A function pupt, xqqtPR`,xPΩ is a
solution to (36) related to the SISκ model with initial condition h P ∆ if and only if the function
purpt, xqqtPR`,xPΩr , where urpt, rq “ a for all t P R`, is a solution to (2) related to the SIS model with
parameter pTr, γr, φq on Ωr and with initial condition hr P ∆r such that hrprq “ a.

We shall consider the supercritical atoms out of the individuals infected by the reservoir:

Asup
r “ tA P Asup : AX Fpsupppκqq “ H a.e.u.

Based on Theorems 4.8 and 5.1 for the pTr, γr, φq SIS model we can give a representation of the
equilibria of SISκ model, that is, of the solutions to Fκpgq “ 0 in ∆, prove that the equilibria are
characterized by their support, and explicit their attraction domain. For a function h P L8

` , we shall
denote Cr,h the antichain given by the maximal elements of tB P Asup

r : B Ă Fpsuppphqq a.e.u. Notice
that Assumption 2 implies that φ is positive on r0, 1q.

Corollary 6.2 (Equilibria of the SISκ model). Let pT, γ, φq satisfy Assumption 2 and κ P L8
` . The

set of equilibria and the set of antichains in Asup
r are in bijection through the equivalent relations:

supppgq “ FpCq Y Fpsupppκqq a.e. ðñ Cr,g “ C,
where C Ă Asup

r is an antichain and g P ∆ an equilibrium, that is, Fκpgq “ 0.
Furthermore, the semi-flow pϕpt, hqqtPR`

solution of (36) with initial condition h P ∆ is well defined
and it converges a.e. to a limit, say g P ∆; and g is an equilibrium and more precisely:

limess
tÑ8

ϕpt, hq “ g and Cr,g “ Cr,h.

Remark 6.3. We deduce the following properties under the hypothesis of Corollary 6.2.
(1) Notice that Asup

r is empty if and only if there exists a unique equilibrium g P ∆ for the SISκ
model. In this case, we have supppgq “ Fpsupppκqq a.e. and limesstÑ8 ϕpt, hq “ g for all h P ∆.

(2) If essinf κ ą 0, then Asup
r is empty.

(3) If g is an equilibrium for the SISκ model, then g is positive on Fpsupppκqq and thus on supppκq.

Proof of Corollary 6.2. If A P G is invariant for T̂ , then A seen as an element of Gr is also invariant
for T̂r. Furthermore, the reservoir tru is an atom of µr and, as Ω is T̂r-invariant, we get that tru is a
T̂r-atom. We deduce that a set B P Gr is admissible for T̂r if and only if B X Ω is admissible for T̂ .
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In particular a set A is an atom of T̂r if and only if either A “ tru or A Ă Ω and A is an atom of T̂ .
We denote by FrpAq the future of a set A Ă Ωr with respect to T̂r. Notice that FrpAq “ FpAq for any
A Ă Ω and that the future of the reservoir is:

(38) Frptruq “ tru Y Fpsupppκqq.

Recall the basic reproduction number R0pAq of a measurable set for the SIS model pT, γ, φq given
in Section 4.2. We simply write RrpAq when considering the basic reproduction number of A P Gr for
the SIS model pTr, γr, φq. Since pTrqA “ TA for A Ă Ω measurable, we deduce that RrpAq “ R0pAq

for any A Ă Ω measurable. We also have:

Rrptruq “
αrprq

γrprq
“

1

φpaq
¨

Note that under Assumption 2, we have φpp0, 1qq “ p0, 1q and thus the atom tru is super-critical for
the pTr, γr, φq SIS model.

We deduce from Proposition 6.1. that a function g P ∆ is an equilibrium for the SISκ model if and
only if gr P ∆r, such that grprq ą 0 is an equilibrium for the pTr, γr, φq SIS model on Ωr. Notice that
necessarily grprq “ a. The equilibria of the pTr, γr, φq SIS model whose support contains the reservoir
tru are according to Theorems 4.8 in bijection will all the supercritical antichains containing the atom
tru. Those supercritical antichains are exactly the antichains of Asup

r with the atom tru added to them.
Then, use (38) and Theorems 4.8 and 5.1 to conclude. □
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7. A short reminder on integration, derivation and ODE in Banach space

This section is devoted to the definition and properties of the Bochner integral, the differentiation
and differential equations in Banach spaces. We consider pX, ∥ ¨ ∥q a real Banach space.

7.1. Integration in Banach spaces. We give a short summary on the Bochner integral, and refer to
[4] and [51] for a more detailed presentation. We consider the Borel σ-field on R and write νpdtq “ dt
for the Lebesgue measure. Let I be an interval of R. A function f : I ÞÑ X is simple if f “

řn
k“1 ak1Ak

where n P N, the ak’s belong to X and the Ak’s are Borel subsets of I with finite Lebesgue measure.
We define its Bochner integral as:

ż

I

f dν “

n
ÿ

k“1

ak νpAkq.

Notice the integral belongs to X and does not depend on the representation of the simple function
f . A function f : I ÞÑ X is Bochner measurable (simply called measurable in [4]) if there exists a
sequence of simple functions pfnqnPN, with fn : I ÞÑ X, such that ν-a.e. limnÑ8 fn “ f (that is,
limnÑ8 ∥ fptq ´ fnptq ∥ “ 0 dt-a.e. on I); it is furthermore Bochner integrable if one can find such
approximating sequence pfnqnPN so that limnÑ8

ş

I
∥ fptq ´ fnptq ∥ dt “ 0. In this case the Bochner

integral of f is defined as:
ż

I

f dν “ lim
nÑ8

ż

I

fn dν,

where the limit holds in the Banach space. The Bochner integrable
ş

I
f dν does not depend on the

approximating sequence pfnqnPN; we shall also denote it by
ş

I
fptqdt. Thanks to [4, Corollary 1.1.2]

X-valued continuous function are Bochner measurable and a.e. limits of Bochner measurable function
are Bochner measurable. According to [4, Corollary 1.1.2], a function f : I ÞÑ X is Bochner integrable
if and only if it is Bochner measurable and ∥ f ∥ : I ÞÑ R` is integrable; in this case we have:

(39)
∥∥∥∥ ż

I

f dν

∥∥∥∥ ď

ż

I

∥ f ∥ dν.

When Ī “ ra, bs with ´8 ď a ă b ď `8 and f is Bochner integrable on I, we simply write the
Bochner integral as:

ż

I

f dν “

ż b

a

fdν.

The Bochner integral enjoy many properties as the usual Lebesgue integral, as such we shall use the
dominated convergence, see [4, Theorem 1.1.8], which we recall.

Theorem 7.1 (Dominated convergence theorem). Let I be a non-empty interval of R. Let pfnqnPN be
a sequence of Bochner-integrable functions defined on I which converges ν-a.e. to f : I Ñ X. Assume
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there exists a Lebesgue-integrable function g : I Ñ R` such that ∥ fn ∥ ď g ν-a.e. for all n P N. Then
the function f is Bochner-integrable and:

ż

I

f dν “ lim
nÑ8

ż

I

fn dν in X.

7.2. Differential equations in Banach spaces. We now consider the derivation of functions on a
Banach space. Let I be an interval of R with non-empty interior. We say that a function f : I ÞÑ X
is differentiable at a point t P I if the following limit, f 1ptq, exists in pX, ∥ ¨ ∥q:

f 1ptq “ lim
sÑ0
t`sPI

fpt` sq ´ fptq

s
¨

Notice that if f is differentiable at t, then it is continuous at t. We say that f is differentiable on I
if it is differentiable at any point of I, and that f belongs to C1pIq if it is differentiable on I and f 1

is continuous on I. We have the following fundamental theorem of calculus, see [4, Proposition 1.2.2]
and [51, Corollary 3.1.7]. Assume I “ ra, bs with ´8 ă a ă b ă `8 and that f : I Ñ X belongs to
C1pIq, then f 1 is Bochner-integrable on I and we have:

(40) fpbq ´ fpaq “

ż b

a

f 1 dν.

We now recall some results on differential equations in Banach spaces. Let F : X Ñ X be locally-
Lipschitz, that is, for all x P X, there exists η ą 0 and C finite such that for all y P X, we have:

∥x´ y ∥ ď η ùñ ∥F pxq ´ F pyq ∥ ď C ∥x´ y ∥ .

The Picard-Lindelöf theorem, see [33, Corollaries IV 1.6-8], ensures the existence of pu, τq, with τ P

p0,`8s and u P C1pr0, τqq taking values in X, that is a solution to the Cauchy problem:

(41)
"

u1 “ F puq,
up0q “ x,

where the first equality in (41) holds in r0, τq and x P X is the so-called initial condition, and fur-
thermore the solution pu, τq is unique and maximal (that is, if pu1, τ 1q is another solution to (41), then
τ 1 ď τ and u1 “ u on r0, τ 1q). We say the solution is global if τ “ `8.

We end this section with a comparison theorem. Let pX, ∥ ¨ ∥ ,ďq be a real Banach lattice. Let
D1, D2 Ă X. A map F : X ÞÑ X is cooperative on D1 ˆD2 if for any px, yq P D1 ˆD2 with x ď y and
any ν P X‹

`, we have:

(42) xν, x´ yy “ 0 ùñ xν, F pxq ´ F pyqy ď 0.

We recall [17, Theorem 2.4].

Proposition 7.2 (Comparison). Assume that X` has non-empty interior. Let F : X Ñ X be locally-
Lipschitz, D1, D2 Ă X and τ P p0,`8s. Let u : r0, τq Ñ D1 and v : r0, τq Ñ D2 be two C1 maps.
Suppose that F is cooperative on D1 ˆ X or on X ˆ D2, that up0q ď vp0q, and that u1ptq ´ F puptqq ď

v1ptq ´ F pvptqq for all t P r0, τq. Then, we have uptq ď vptq for all t P r0, τq.

8. Existence and regularity of the semi-flow for the SIS model

We prove Proposition 3.1 and Lemma 3.2 in this section assuming that pT, γ, φq satisfies Assump-
tion 1. The results and proofs are very close to those in [17].
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8.1. Existence of the semi-flow. Recall that Assumption 1 holds with the function F defined in (3)
by F phq “ φphqTh´ γh for h P L8. Recall also the set ∆ “ tf P L8 : 0 ď f ď 1u.

Lemma 8.1 (Regularity of F ). Let F be the function from L8 to L8 defined by (3).
(i) The function F is locally-Lipschitz on pL8, ∥ ¨ ∥8q.
(ii) There exists a finite constant Cp such that for g, h P ∆, we have:

∥F pgq ´ F phq ∥p ď Cp ∥ g ´ h ∥p .
(iii) Let phnqnPN be a monotonous sequence of elements of ∆. Then the sequence pF phnqqnPN con-

verges a.e. to F phq, where h is the a.e. limit of phnqnPN.

Proof. Since φ is locally Lipschitz, we denote by Kr the corresponding (finite) Lipschitz constant of φ
on r´r, rs and Mr “ supr´r,rs |φ| ď |φp0q| ` rKr.

We prove Point (i). Let r ą 0 and u, v P L8 with ∥u ∥8 ď r and ∥ v ∥8 ď r. We have:

∥F puq ´ F pvq ∥8 “ ∥φpuqTu´ φpvqTv ´ γpu´ vq ∥8

ď ∥φpuq ∥8 ∥T pu´ vq ∥8 ` ∥φpuq ´ φpvq ∥8

∥∥T 1v
∥∥

8
` ∥ γ ∥8 ∥u´ v ∥8

ď pMr ∥T ∥L8 `Krr
∥∥T 1

∥∥
L8 ` ∥ γ ∥8q ∥u´ v ∥8 .

This concludes the proof of Point (i).

We prove Point (ii) in a similar way. Let u, v P ∆. We have:

∥F puq ´ F pvq ∥p “ ∥φpuqTu´ φpvqTv ´ γpu´ vq ∥p
ď ∥φpuq ∥8 ∥T pu´ vq ∥p ` ∥φpuq ´ φpvq ∥p ∥Tv ∥8 ` ∥ γ ∥8 ∥u´ v ∥γp,p

ď

´

M1

∥∥∥ T̂ ∥∥∥
Lp

`K1 ∥T ∥L8 ` ∥ γ ∥8

¯

∥u´ v ∥p .

This concludes the proof of Point (ii).

For simplicity, we assume that phnqnPN is non-decreasing. Thus it converges a.e. (that is, in L0) to a
limit, say h, and this limit belongs to ∆. Since T is positive, we also get that the sequence pThnqnPN is
non-decreasing and bounded by T1 P L8, thus it converges a.e. (that is, in L0) to a limit, say w P L8.
On the other hand, by dominated convergence, we also get that phnqnPN converges to h in Lp, and
thus, as T̂ is bounded on Lp, we get that pT̂ hnqnPN converges to T̂ h in Lp. We thus deduce that
w “ T̂ h “ Th. Then use that φ is continuous, to deduce that pF phnqqnPN converges a.e. to F phq. This
gives Point (iii). □

We now prove that F is cooperative, see (42), using that φ is non-negative on r0, 1s.

Lemma 8.2 (F is cooperative). The map F is cooperative on ∆ ˆ L8 and on L8 ˆ ∆.

Proof. We first prove that F is cooperative on ∆ˆL8. Let u P ∆ and v P L8 with u ď v. Let ν P L8,‹
`

such that xν, u´ vy “ 0. Since v ´ u ě 0, we deduce that for any h P L8:

(43) xν, pu´ vqhy “ 0

(see [17, Lemma 2.6] for a proof in a very similar setting). Then, using (43) with h “ γ, we get:

xν, F puq ´ F pvqy “ xν, φpuqTu´ φpvqTv ´ γpu´ vqy “ xν, φpuqTu´ φpvqTvy.

For s, t P R`, we set Φps, tq “ pφpsq ´ φptqq{ps´ tq if s ‰ t and Φps, sq “ 0. We have:

φpuqTu´ φpvqTv “ φpuqT pu´ vq ` pu´ vqh with h “ Φpu, vqTv.

As φ is locally-Lipschitz by Assumption 1 and as u, v and Tv belongs to L8, we deduce that h P L8.
We deduce from (43) that:

(44) xν, F puq ´ F pvqy “ xν, φpuqT pu´ vqy.

As we have φ ě 0 on r0, 1s by Assumption 1 and u ď v, we have φpuqT pu ´ vq ď 0. Thus, as ν is
a positive linear form on L8, we have xν, F puq ´ F pvqy ď 0. Therefore the map F is cooperative on
∆ ˆ L8.



INFINITE DIMENSIONAL METAPOPULATION SIS MODEL WITH GENERALIZED INCIDENCE RATE 27

If pu, vq P L8 ˆ ∆ satisfy u ď v, then using similar computations with h “ Φpv, uqTu, one get
instead of (44) that xν, F puq ´F pvqy “ xν, φpvqT pu´ vqy. Similar arguments yields then that F is also
cooperative on L8 ˆ ∆. □

Mimicking the proof of [17, Proposition 2.7 (i)] (which in particular uses that φp1q “ 0), we get that
any solution of (2) with an initial condition in ∆ remains in ∆.

Lemma 8.3. The domain ∆ is forward invariant for the differential equation u1 “ F puq in L8.

We then conclude on the existence of global solutions in ∆.

Lemma 8.4 (Maximal solutions are global). Any maximal solution of u1 “ F puq in L8 with initial
condition up0q “ h P ∆ is global.

Proof. The bounded open set U “ tf P L8 : ∥ f ∥8 ă 2u of L8 contains ∆, and the map F is Lipschitz
on U by Lemma 8.1 (i). As the set ∆ is forward invariant by Lemma 8.3, one can apply [33, Corollary
IV 1.8] to conclude that any maximal solution to u1 “ F puq with initial condition in ∆ is global. □

Under Assumption 1, using Picard-Lindelöf theorem [33, Corollaries IV 1.6-8] and Lemma 8.4, which
ensure the existence and uniqueness of maximal solution to u1 “ F puq in L8 with initial condition in
∆, we can define the semi-flow ϕ : R` ˆ∆ Ñ ∆, where the L8-valued function ϕp¨, hq “ pϕpt, hqqtPR`

is the global solution to (2) with initial condition u0 “ h P ∆. Notice that ϕp¨, hq belongs to C1pR`q

and statisfies the semi-group property:

(45) ϕpt` s, hq “ ϕpt, ϕps, hqq for all s, t P R` and h P ∆.

8.2. Properties of the semi-flow. We now establish the following properties of the semi-flow. We
stress in the next lemmas that Assumption 1 holds.

Lemma 8.5 (Properties of the semi-flow). Let pT, γ, φq satisfy Assumption 1.
(i) If h1 ď h2 belong to ∆, then we have ϕpt, h1q ď ϕpt, h2q for all t P R`.
(ii) Let h P ∆. The function t ÞÑ ϕpt, hq from R` to L8 is non-decreasing (resp. non-increasing)

if and only if we have F phq ě 0 (resp. F phq ď 0) in L8.
(iii) Let t P R`. The function h ÞÑ ϕpt, hq defined on ∆ is Lipschitz with respect to ∥ ¨ ∥8.
(iv) Let t P R`. The function h ÞÑ ϕpt, hq defined on ∆ is continuous with respect to the a.e.

convergence, and, more generally, if phrqrPR`
is a sequence of elements of ∆ such that h “

limessrÑ`8 hr exists (and thus belongs to ∆), then limessrÑ`8 ϕpt, hrq “ ϕpt, hq.

Proof. For all the Points but (iv), the proof mimic respectively the proofs of Propositions 2.8, 2.10 and
2.11 (ii) from [17]. Following the proof of Proposition 2.11 (iii) in [17], we see that to get Point (iv), it
is enough to check the following claim: if phnqnPN is a monotonous sequence of elements of ∆, which
thus converges a.e. to a limit, say h P ∆, then pϕpt, hnqqnPN converges also a.e. to ϕpt, hq for all t ě 0.

For simplicity, we assume that the sequence phnqnPN is non-decreasing. From Point (i), we get that
the sequence pϕps, hnqqnPN is also non-decreasing and thus converges a.e. to a limit say fs P ∆ for all
s P R`. We deduce from Lemma 8.1 (iii) that pF pϕps, hnqqqnPN converges a.e. towards F pfsq. Since F
is bounded on ∆ (as it is locally Lipschitz on L8) we deduce that the convergence also holds in Lp.
Since the identity map from pL8, ∥ ¨ ∥8q to pLp, ∥ ¨ ∥pq is continuous, we deduce that a solution to (2)
in L8 is also a solution to (2) in Lp. By the fundamental Theorem of calculus, see (40), we get that
for all s ě 0:

ϕps, hnq “ hn `

ż s

0

F pϕpr, hnqqdr and ϕps, hq “ h`

ż s

0

F pϕpr, hqq dr hold in Lp.

By the dominated comvergence Theorem 7.1 (with X “ Lp and g the constant function on R` equal
to 1), we deduce that pfsqsPR`

is Bochner integrable on bounded intervals of R` and for all s ě 0:

fs “ h`

ż s

0

F pfrqdr holds in Lp.
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We deduce from (39) and Lemma 8.1 (ii) that for all s ě 0:

∥ fs ´ ϕps, hq ∥p ď Cp

ż s

0

∥ fr ´ ϕpr, hq ∥p dr.

Since fr and ϕpr, hq belong to ∆, we get that ∥ fr ´ ϕpr, hq ∥p ď 2, so that r ÞÑ ∥ fr ´ ϕpr, hq ∥p is
locally ν-integrable. We deduce from the Grönwall’s inequality that ∥ fs ´ ϕps, hq ∥p “ 0 for all s ě 0.
This gives that fs “ ϕps, hq for all s ě 0, which proves the claim. □

Following [17, Proposition 2.13], we prove that the limit of the semi-flow is an equilibrium.

Lemma 8.6 (Limits of the semi-flow are equilibria). Let pT, γ, φq satisfy Assumption 1. Let h P ∆. If
limesstÑ`8 ϕpt, hq exists, then it belongs to ∆ and is an equilibrium.

Proof. Let h˚ “ limesstÑ`8 ϕpt, hq. By Lemma 8.5 (iv) and by (45), we have for all s P R` that:

ϕps, h˚q “ ϕps, limess
tÑ`8

ϕpt, hqq “ limess
tÑ`8

ϕps, ϕpt, hqq “ limess
tÑ`8

ϕpt, hq “ h˚.

Then use Lemma 8.5 (ii) to get that F ph˚q “ 0. □

8.3. Proof of Proposition 3.1 and Lemma 3.2.

Proof of Proposition 3.1. The solution to Equation (2) in L8 with initial condition in ∆ is given by
the semi-flow ϕ, see Section 8.1 and Lemma 8.4 therein. This gives Point (i). Point (ii) is Lemma 8.3.

Since F p1q “ φp1qT p1q ´γ “ ´γ ď 0 by Assumption 1, we get by Lemma 8.5 (ii) that the semi-flow
t ÞÑ ϕpt, 1q is non-increasing. This implies that g˚ “ limesstÑ`8 ϕpt, 1q exists. By Lemma 8.6, we get
that g˚ is an equilibrium. Let h P ∆ be an equilibrium. We have h ď 1, thus by Lemma 8.5 (i) we have
h “ ϕpt, hq ď ϕpt, 1q for all t ě 0. Taking the essential limit, we get h ď g˚. This gives Point (iii). □

Proof of Lemma 3.2. For h P L8 and i “ 1, 2, let Fiphq “ φiphqTiphq´γih and let ϕi be the semi-flow of
Equation (2) with the parameters pTi, γi, φiq. By assumption, we have F1pg˚

2 q ě F2pg˚
2 q “ 0. Thus, by

Lemma 8.5 (ii), the semi-flow t ÞÑ ϕ1pt, g˚
2 q is non-decreasing. By Lemma 8.6, since the essential limit

g “ limesstÑ`8 ϕ1pt, g˚
2 q exists, it belongs to ∆ and is an equilibrium (for the parameters pT1, γ1, φ1q).

As g˚
1 is the maximal equilibrium, we have g˚

1 ě g, and thus g˚
1 ě g˚

2 as the semi-flow t ÞÑ ϕ1pt, g˚
2 q is

non-decreasing. □

9. Proof of Proposition 4.3

9.1. On the support of the semi-flow. The following lemma is a generalization of [17, Lemma 4.10]
where T is assumed to be irreducible.

Lemma 9.1 (Support of the semi-flow). Let pT, γ, φq that satisfies Assumption 1 with φp0q ą 0. Let
h P ∆. We have supppϕpt, hqq “ Fpsuppphqq a.e. for all t ą 0.

Proof. Since φp0q ą 0, there exists a, η P p0, 1q such that a ´ φprq ă 0 for all r P r0, ηs. Notice the
operator Q “ aT ´ γ ` ∥ γ ∥8 on L8 is positive and that the invariant sets for Q and T are the same.
Set f “ ηh{2 and A “ suppphq “ supppfq. There exists c ą 0 small enough such that for all t P r0, cs:

(46) exppat ∥T ∥L8 q ă 2.

Set for t ě 0:

(47) uptq “ etpaT´γqf “ e´∥ γ ∥8t etQf.

By [19, Corollary 5.7] applied to the operator Q, we get that supppuptqq “ supppuptqe∥ γ ∥8 tq “ FpAq

for t ą 0. Differentiating (47) leads to:

(48) u1ptq ´ F puptqq “ pa´ φpuptqqqTuptq.

We deduce from (46) and (47) that ∥uptq ∥8 ă η for t P r0, cs, and thus, by definition of a and η, that
u1ptq ´ F puptqq ď 0 for t P r0, cs. Then, since up0q “ f ď h, Theorem 7.2 implies that uptq ď ϕpt, hq

for t P r0, cs, and thus FpAq Ă supppϕpt, hqq for t P p0, cs. Then, use the semi-flow equation (45) to
propagate the result to all t ą 0.
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We deduce from Lemma 3.5 (iii) that supppϕpt, hqq “ supppϕFpAqpt, hqq Ă FpAq for all t ě 0. This
gives that supppϕpt, hqq “ FpAq for all t ą 0. □

9.2. Preliminary results on the spectral radius and bound. We refer to [52, Section 3] for
results on the spectral bound on Banach lattices defined by (18).

Lemma 9.2 (Spectral radius and spectral bound). Let pT, γ, φq that satisfy Assumption 2. Let δ :
Ω Ñ R be a measurable positive function with δ ě γ and essinf δ ą 0. Then the quantities spT ´ δq,
spT̂ ´ δq, ρpT1{δq ´ 1 and ρpT̂1{δq ´ 1 have the same sign.

Proof. Notice that pT, δ, φq also satisfies Assumption 2. By Lemma 2.8 (e) with γ replaced by δ, we
have that ρpT̂1{δq “ ρpT1{δq. So it is enough to prove that spT̂ ´ δq and ρpT̂1{δq ´ 1 have the same sign,
and that spT ´ δq and ρpT1{δq ´ 1 have the same sign. This can be done by mimicking the proof of [17,
Proposition 4.1] based on [52], noticing that the cone Lp

` is normal and reproducing for p P r1,`8s, and
that, by Lemma 2.8, the operators T̂1{δ and T1{δ are respectively compact on Lp and power compact
on L8, and that the linear maps T̂ ´ δ and T ´ δ are operators respectively on Lp and L8. □

Adapting the proof of [17, Proposition 4.2] on kernel operators, we provide a weaker link between
ρpT̂1{γq ´ 1 and spT̂ ´ γq without the condition essinf γ ą 0.

Proposition 9.3 (Positive spectral bound and Krein-Rutman theorem). Let pT, γ, φq that satisfy
Assumption 2. Then the following assertions are equivalent:

(i) spT ´ γq ą 0 or equivalently spT̂ ´ γq ą 0.
(ii) ρpT1{γq ą 1 or equivalently ρpT̂1{γq ą 1.
(iii) There exists λ ą 0 and w P L8

` zt0u such that we have Tw ´ γw “ λw.

Proof. Recall Assumption 2 holds and p P p1,`8q. Since spA´ pγ ` εqq “ spA´ γq ´ ε for ε P R and
A equal to T or T̂ , we deduce from Lemma 9.2 that the two conditions in Point (i) are equivalent. We
also deduce from Lemma 2.8 (e) that the two conditions in Point (ii) are equivalent. So, we shall only
consider the second ones. It is immediate that Point (iii) implies Point (i) as L8 Ă Lp and T and T̂
coincide on L8.

We assume Point (i) and prove Point (ii). For any a P R`, we denote ψpaq “ ρpVaq with Va “

T̂1{pγ`aq. Notice that Va “ T̂M1{pγ`aq for a ą 0. By Assumption 2, the operator Va on Lp is positive
and that Va ě Vb for 0 ď a ď b. Thus the map ψ is non-increasing on R` by (19). By Point (i), there
exists ε ą 0 such that spT̂ ´ pγ ` εqq “ spT̂ ´ γq ´ ε ą 0, therefore we have ψpεq ą 1 by Lemma 9.2
applied to δ “ γ ` ε. We thus get ψp0q “ ρpT̂1{γq ą 1, that is Point (ii).

We assume Point (ii) and prove Point (iii). By Point (ii), we have ψp0q ą 1. As for all a ą 0, we
have ψpaq ď ∥Va ∥Lp ď a´1

∥∥∥ T̂ ∥∥∥
Lp

. We deduce that limaÑ8 ψpaq “ 0.
We now prove that ψ is continuous on R`. Let B denote the unit ball of Lp. Notice that

M1{pγ`aqpBq Ă M1{γpBq for a P R` and thus
Ť

aPR`
VapBq “ V0pBq “ T̂1{γpBq is relatively com-

pact in Lp, and thus the family pVaqaPR`
is collectively compact. Thanks to Lemma 2.3, the continuity

of ψ holds if lim|a´b|Ñ0 ∥ pVa ´ Vbqf ∥p “ 0 for any f P Lp. This is indeed the case as, for f P Lp, we
have:

∥ pVa ´ Vbqf ∥p “

∥∥∥∥ T̂1{γ

ˆ

pb´ aqγ

pγ ` aqpγ ` bq
f

˙
∥∥∥∥
p

ď

∥∥∥ T̂1{γ

∥∥∥
Lp

∥∥∥∥ pb´ aqγ

pγ ` aqpγ ` bq
f

∥∥∥∥
p

,

and the right members goes to 0 as |a ´ b| goes to 0 using |b ´ a|γ{pγ ` aqpγ ` bq ď 1 and dominated
convergence. In conclusion, the function ψ is continuous on R`.

Since ψp0q ą 1 and limaÑ8 ψpaq “ 0, we deduce from the continuity of ψ, that there exists λ ą 0 such
that ψpλq “ 1. Thus by the Krein-Rutman Theorem 2.5 (i) applied to the positive compact operator
Vλ on Lp, there exists v P Lp

`zt0u such that Vλv “ v. Thanks to (6), we have ∥ v ∥8 “ ∥Vλv ∥8 ď

∥T pv{γq ∥8 ď C 1
p ∥ v ∥p, we deduce that v belongs also to L8. Setting w “ v{pγ ` λq P L8

` zt0u, we
get that T̂w ´ γw “ λw. As T̂ and T coincide on L8, we get Point (iii). □
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9.3. Proof of Proposition 4.3 (i). Let g be a non-zero equilibrium. By Assumption 2, φpgq ă 1 on
supppgq (as φprq ă 1 for r P p0, 1s). Recall the operator S “ T̂1{γ is compact on Lp, see Lemma 2.8 (c).
Since g P ∆ is an equilibrium, we obtain that:

Spγgq “
γg

φpgq
ą γg on supppgq.

We deduce from Lemma 2.6 (ii), with λ “ 1, and (19) that R0 “ ρpSq ě ρ
`

Ssupppgq

˘

ą 1. In other
words, R0 ď 1 implies that 0 is the only equilibrium. The last part of Point (i) is a consequence of
Proposition 3.1 (iii) and the monotonicity of the semi-flow from Lemma 8.5 (i).

9.4. Proof of Proposition 4.3 (ii). We assume that we have R0 ą 1. Similarly to [17, Section 4.4],
we will prove that there exists a non-zero initial condition w P ∆ such that the semi-flow ϕp., wq is
non-decreasing. As R0 ą 1, there exists a P p0, 1q such that ρ

´

aT̂1{γ

¯

ą 1. Thus, by Proposition 9.3
(with paT, γ, φq), there exists λ ą 0 and w P L8

` zt0u such that aTw ´ γw “ λw. By Assumption 2,
the map φ is continuous with φp0q “ 1; thus there exists η P p0, 1q such that for all r P r0, ηs, we have
φprq ě a. Without loss of generality, we assume that ∥w ∥8 ď η, and thus w P ∆. We deduce that:

F pwq “ φpwqTw ´ γw ě aTw ´ γw “ λw ě 0.

By Lemma 8.5 (ii), the semi-flow t ÞÑ ϕpt, wq is thus non-decreasing on R` and its essential limit, say
g, exists and belongs to ∆. It is an equilibrium by Lemma 8.6. Let g˚ denote the maximal equilibrium.
As we have g˚ ě g ě w and µpsupppwqq ą 0, we deduce that µpsupppg˚qq ą 0.

9.5. Proof of Proposition 4.3 (iii). We now assume that T “ TA with A an irreducible set. Notice
the set A is invariant and thus admissible; and it has positive measure as R0 ą 0. It is thus a (non-zero)
atom by [19, Theorem 1]. Let g be a non-zero equilibrium. We have supppgq Ă A by (4). Since supppgq

is invariant, see Lemma 4.1 (iii), and A is an atom, we deduce that supppgq “ A. Then use that the
support of g characterizes g, see Corollary 4.2 to deduce that g is the only non-zero equilibrium.

9.6. Proof of Proposition 4.3 (iv). By Point (iii), we have supppg˚q “ A. On Ac, we have ϕpt, hq1 “

´γϕpt, hq, so that limesstÑ8 ϕpt, hq1Ac “ 0. So it is enough to prove the result when suppphq Ă

supppg˚q “ A. As suppphq is a non-empty set included in the invariant and irreducible set A, its future
is equal to A. Thus, by Lemma 9.1 and considering ϕp1, hq instead of h, one can assume without loss
of generality that suppphq “ supppg˚q “ A.

For ε P p0, 1s, we consider the operator Uε “ φpεqMthěεuT̂1{γ on Lppµq, and set U0 “ Mthą0uT̂1{γ .
Let B be the unit ball in Lp. Since T̂1{γ is compact and limεÑ0 φpεq1thěεu “ 1thą0u a.e., we deduce that
Ť

εPr0,1s UεpBq is relatively compact. Thus the family of operators pUεqεPr0,1s is collectively compact.
By dominated convergence, we also get that limεÑ0 ∥ pUε ´ U0qf ∥p “ 0. We deduce from Lemma 2.3
that the map ε ÞÑ ρpUεq is continuous at 0. Thus, there exists ε P p0, 1q such that ρpUεq ą 1. Notice
that pφpεq1thěεuT, γ, φq satisfies Assumption 2. By Proposition 9.3 with T replaced by φpεq1thěεuT ,
there exists λ ą 0 and w P L8

` zt0u such that:

(49) φpεq1thěεuTw ´ γw “ λw.

Without loss of generality, we can assume that ∥w ∥8 ď ε. We also have:

(50) supppwq Ă th ě εu Ă A.

Using (49) we get that:

(51) F pwq “ φpwqTw ´ γw ě φpεqTw ´ γw ě λw ě 0.

We deduce that the map t ÞÑ ϕpt, wq is non-decreasing by Lemma 8.5 (ii) and, as g˚ is the only
non-zero equilibrium, that limesstÑ8 ϕpt, wq “ g˚ by Lemma 8.6. As the semi-flow is monotone by
Lemma 8.5 (i), we deduce that ϕpt, wq ď ϕpt, hq ď ϕpt,1q for all t P R`. Then use Proposition 3.1 (iii)
to conclude that limesstÑ8 ϕpt, hq “ g˚.
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10. Proof of Theorem 5.1

Let pT, γ, φq that satisfy Assumption 2. We keep notations from Section 4; so CA is the supercritical
antichain given by the maximal elements of the supercritical atoms included in the set A.

Proof of Theorem 5.1. Let A “ Fpsuppphqq and g˚
A be the maximal equilibrium on A (notice that

A “ H if h “ 0). Since A is invariant, g˚
A is also an equilibrium by Lemma 3.4 (ii).

We will, as in the proof of Proposition 4.3 (iv), prove the existence of w P ∆ with w ď h such
that the semi-flow pϕpt, wqqtPR`

is non-decreasing and converges essentially to g˚
A. By Lemma 9.1 and

considering ϕp1, hq instead of h, one can assume without loss of generality that suppphq “ A. If CA is
empty, we get that g˚

A “ 0 and by Lemma 3.5 (i) and (iii), we have limesstÑ`8 ϕpt, 1Aq “ 0, and by
monotonicity of the semi-flow that limesstÑ`8 ϕpt, hq “ 0, which proves Theorem 5.1 in this case.

We now assume that CA is not empty. Let B P CA. By considering TB instead of T , mimicking the
proof of Proposition 4.3 (iv), see (50) and (51), we deduce that there exists a function wB P ∆ such
that supppwBq Ă B, wB ď h, F pwBq ě 0 and limesstÑ8 ϕBpt, wBq “ g˚

B . Since CA is an antichain
of atoms, we deduce that FpsupppwBqq X supppwB1 q Ă FpBq X B1 “ H for all B1, B P CA such that
B ‰ B1. Set w “

ř

BPCA
wB ď h. We have:

F pwq “
ÿ

BPCA

F pwBq ` 1FpBq pφpwq ´ φpwBqqTwB “
ÿ

BPCA

F pwBq ě 0,

where for the first equality we used that FpBq is invariant and supppwBq Ă B Ă FpBq, and for the
second that φpwq ´ φpwBq “ 0 on FpBq for B P CA. Arguing as in the end of the proof of Proposi-
tion 4.3 (iv), we deduce that the semi-flow pϕpt, wqqtPR`

is non-decreasing and that limesstÑ8 ϕpt, wq “

g P ∆ with g an equilibrium.

We now prove the equality CA “ Cg “ Cg˚
A
. Since w ď g, we deduce that CA Ă Cg. Since supppwq Ă A

and A is invariant, we have supppgq Ă A by Lemma 9.1. In particular, g is an equilibrium of A by
Lemma 3.4 (i), thus we get g ď g˚

A and deduce that Cg Ă Cg˚
A

Ă CA as supppg˚
Aq Ă A. This proves the

claim and that g “ g˚
A by Corollary 4.2.

By monotonicity of the semi-flow, we have that ϕpt, wq ď ϕpt, hq ď ϕpt,1Aq for all t ě 0. The
left term converges essentially to g “ g˚

A, and the right term to g˚
A by Lemma 3.5. This gives

limesstÑ8 ϕpt, hq “ g˚
A. This ends the proof. □
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