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Abstract. We consider the simple epidemiological SIS model for a general heterogeneous popu-
lation introduced by Lajmanovich and Yorke (1976) in finite dimensions, and its infinite-dimensional
generalization we introduced in previous works. In this model the basic reproducing number R0 is
given by the spectral radius of an integral operator. If the basic reproducing number R0 is greater
than 1 (R0 > 1), then there exists a maximal endemic equilibrium. In this very general heterogeneous
SIS model, we prove that vaccinating according to the profile of this maximal endemic equilibrium
ensures herd immunity. Moreover, this vaccination strategy is critical: the resulting effective repro-
duction number is exactly equal to one. As an application, we estimate in an example from Britton,
Ball, and Trapman (2020) that if R0 = 2 in an age-structured community with mixing rates fitted to
social activity, applying this strategy would require approximately 29\% fewer vaccine doses than the
strategy which consists in vaccinating uniformly a proportion 1 - 1/R0 of the population. From a
dynamical systems point of view, we prove that the nonmaximality of an equilibrium g is equivalent
to its linear instability in the original dynamics, and to the linear instability of the disease-free state
in the modified dynamics where we vaccinate according to g.

Key words. SIS model, vaccination strategy, effective reproduction number, herd immunity,
spectral radius, endemic equilibrium
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1. Introduction. Increasing the prevalence of immunity from contagious disease
in a population limits the circulation of the infection among the individuals who lack
immunity. This so-called herd effect plays a fundamental role in epidemiology; for
example, it has had a major impact in the eradication of smallpox and rinderpest or
the near eradication of poliomyelitis [12]. Our aim is to present a targeted vaccination
strategy based on the heterogeneity of the infection spreading in the population which
can effectively eradicate the epidemic. We consider for simplicity the deterministic
infinite-dimensional SIS model (with S = Susceptible and I = Infectious) and the
effect of a perfect vaccine. However, we take into account a very general model for
the heterogeneous population based on the infinite-dimensional model introduced in
[3], which encompasses the metapopulation SIS models developed by Lajmanovich
and Yorke in their pioneer paper [15] or SIS model on graphs; see [9] in this direction.
More precisely, the probability u(t, x) of an individual with feature x\in \Omega to be infected
at time t is the solution of the (infinite-dimensional) ordinary differential equation

\partial tu(t, x) = (1 - u(t, x))

\int 
\Omega 

k(x, y)u(t, y)\mu (dy) - \gamma (x)u(t, x) for t\geq 0 and x\in \Omega ,

(1)
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VACCINATION AND MAXIMAL ENDEMIC EQUILIBRIUM 807

where k is the transmission rate kernel of the disease, \gamma is the recovery rate function,
and \mu (dy) is the probability for an individual taken at random to have feature y \in \Omega .
In the above equation the term (1  - u) in front of the integral corresponds to the
incidence rate of the disease given by a generalization of the so-called law of mass
action: infection of subpopulation with feature x from subpopulation with feature y
is proportional to (1  - u(t, x))u(t, y); see [13] for a historical review on the law of
mass action. We refer the reader to section 4 for a more precise description of the
mathematical framework. For a finite-dimensional setting, see Example 3.2 for an
age-structured population and Example 3.3 for subpopulations with a proportionate
mixing structure. For the convenience of the reader, we rewrite (1) with n \geq 1
subpopulations (see equation (3.3) in [15]): \Omega = \{ 1, . . . , n\} , \mu i is the relative size
of the subpopulation i \in \Omega and \gamma i > 0 its recovery rate, the contact matrix K =
(Ki,j ; i, j \in \Omega ) has nonnegative entries, and we have for ui(t) the probability (or
proportion) of the subpopulation i which is infected at time t:

\partial tui(t) = (1 - ui(t))
\sum 
j\in \Omega 

Kij \mu j uj(t) - \gamma iui(t) on [0,\infty ) for i\in \Omega .(2)

In a homogeneous population, the basic reproduction number of an infection, de-
noted by R0, is defined as the number of secondary cases one individual generates
on average over the course of its infectious period, in an otherwise uninfected (sus-
ceptible) population. Intuitively, the disease should die out if R0 < 1 and invade the
population if R0 > 1. For the heterogeneous generalization of many classical models
in epidemiology (including the heterogeneous SIS model), it is still possible to define
a meaningful basic reproduction number R0 as the number of secondary cases gener-
ated by a typical infectious individual when all other individuals are uninfected and
the threshold phenomenon occurs; see [10]. We recall that in the setting of [3], the
reproduction number R0 corresponds to the spectral radius of the next-generation
operator defined as the integral operator associated to the kernel k(x, y)/\gamma (y).

After a vaccination campaign, let the vaccination strategy \eta denote the propor-
tion of the nonvaccinated population: \eta is a [0,1]-valued function defined on \Omega and
\eta (x) denotes the proportion of nonvaccinated individuals of type x. Let the effec-
tive reproduction number Re(\eta ) denote the corresponding reproduction number of
the nonvaccinated population. (Following [3, section 5.3], the effective reproduction
number Re(\eta ) is given by the spectral radius of the effective next-generation operator
defined as the integral operator associated to the kernel k(x, y)\eta (y)/\gamma (y), where \eta (y)
is the proportion of nonvaccinated individuals with feature y.)

The vaccination strategy \eta is called critical if Re(\eta ) = 1. Assuming R0 > 1, sup-
pose now that only a proportion \eta uni of the population can catch the disease, the rest
being perfectly immunized. An infected individual will now only generate \eta uniR0 new
cases, since a proportion 1 - \eta uni of previously successful infections will be prevented.
Therefore, the new effective reproduction number is equal to Re(\eta 

uni) = \eta uniR0. This
fact led to the recognition by Smith in 1970 [18] and Dietz in 1975 [11] of a simple
threshold theorem: the incidence of an infection declines if the proportion of nonim-
mune individuals is reduced below \eta unicrit = 1/R0. This effect is called herd immunity,
and the corresponding proportion 1  - \eta unicrit of people that have to be vaccinated is
called the herd immunity threshold [19, 21].

2. Critical vaccination given by the endemic equilibrium. However, herd
immunity can also be achieved using a nonuniform vaccination strategy when the
population is heterogeneous. Such a heterogeneous vaccination strategy, based on

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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808 J.-F. DELMAS, D. DRONNIER, AND P.-A. ZITT

geographic hospitalization rates, has been implemented by the Norwegian Institute of
Public Health for the COVID-19 epidemic; see [2]. See also the study [20] on the Lassa
vaccination campaigns in West Africa, where the most effective preventive vaccination
strategy targets the WHO-classified ``endemic"" districts. In another example, the
discussion of vaccination control of gonorrhea in [14, section 4.5] suggests that it may
be better to prioritize the vaccination of people that have already caught the disease:
this leads us to consider a vaccination strategy guided by the equilibrium state. For
the SIS model in a heterogeneous population with R0 > 1, there exists a maximal
endemic equilibrium, say g, where g(x) represents the fraction of infected people in
the group with feature x. In other words, the function g is the maximal [0,1]-valued
solution g of

(1 - g(x))

\int 
\Omega 

k(x, y)g(y)\mu (dy) = \gamma (x)g(x) for x\in \Omega .(3)

Let us mention that if there exist isolated subpopulations, it is possible to have
other endemic equilibria, i.e., solutions to (3) that are not equal to 0 for all x. Irre-
ducibility conditions on the kernel k ensure, however, the uniqueness of the endemic
equilibrium [3, 15]. Consider the vaccination strategy, denoted by \eta equi, correspond-
ing to vaccinating a fraction g(x) of people in the group with feature x, for all groups.
In our mathematical framework, this amounts to setting

\eta equi(x) = 1 - g(x) forx\in \Omega .(4)

The following result ensures that this strategy reaches herd immunity; see Theorem 5.1
in section 5 for a precise mathematical statement.

Theorem. In the heterogeneous SIS model with nonzero maximal endemic equi-
librium, the vaccination strategy \eta equi is critical:

Re(\eta 
equi) = 1.(5)

Let us stress that implementing the critical vaccination strategy \eta equi relies on
the estimation of the maximal endemic equilibrium and thus can be achieved without
estimating the transmission rate kernel and the recovery rate.

The proof of the theorem relies on the study of the spectral bound of the linearized
operator associated to (1) near an equilibrium. When R0 > 1, this spectral bound
is nonpositive at the maximal equilibrium and positive at all other equilibria; see
Proposition 5.5 (ii). Thus, the nonmaximality of an equilibrium is equivalent to its
linear instability in the original dynamics. We also prove the linear instability of
the disease-free state in the modified dynamics where we vaccinate according to a
nonmaximal equilibrium; see Proposition 5.5 (iv).

3. Discussion. We expect the results obtained here for the SIS model to be
generic in the sense that similar behaviors should also be observed in more realis-
tic and complex models in epidemiology for nonhomogeneous populations: when an
endemic equilibrium exists, vaccinating the population according to the maximal en-
demic profile should protect the population from the disease.

We refer the reader to [6] for a general framework for cost comparison of vaccina-
tion strategies and the notions of ``best"" and ``worst"" vaccination strategies; see also
[4, 5, 7] for further comments and various examples of optimal vaccinations.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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VACCINATION AND MAXIMAL ENDEMIC EQUILIBRIUM 809

Consider a general cost function C which measures the cost for the society of a
vaccination strategy (production and diffusion). A simple and natural choice is the
uniform cost given by the overall proportion of vaccinated individuals:

C(\eta ) =

\int 
\Omega 

(1 - \eta )d\mu = 1 - 
\int 
\Omega 

\eta d\mu .(6)

The cost C(\eta unicrit) is equal to the herd immunity threshold 1  - 1/R0, while the cost
C(\eta equi) is equal to

\int 
\Omega 
gd\mu , which is the proportion of infected people in the endemic

state for the SIS infection.
It is not possible to determine which strategy is cheaper in general; we shall prove

in a forthcoming paper on two subpopulations that all configurations are possible.
However, we can state some partial results on the comparison of the strategies \eta unicrit,
\eta equi and their cost under the following assumption of the kernel k on \Omega defined as
k(x, y) = \gamma (x) - 1k(x, y): constant degree kernel and monotone kernel. In the constant
degree case, that is, the maps x \mapsto \rightarrow 

\int 
\Omega 
k(x, y)dy and x \mapsto \rightarrow 

\int 
\Omega 
k(y,x)dy are constant

and thus equal, we get that \eta unicrit = \eta equi, and we refer the reader to section 5 (and also
sections 6--7 for particular examples) in [4] to get the minimality or maximality of their
cost among the costs of the critical vaccination strategies according to some properties
of k. In the forthcoming paper [8], under monotonicity assumptions on k, we get that
C(\eta equi)<C(\eta unicrit), and furthermore there exists a critical strategy with cost strictly
less than C(\eta equi). In Example 3.3 below on a proportionate mixing structure with
two subpopulations, which is commonly considered in epidemiological literature, the
kernel satisfies in particular the monotonicity conditions, and we provide explicit
computations here for the reader's convenience. Notice that in the age structured
population from Example 3.2, we also get that C(\eta equi)\leq C(\eta unicrit) even though there
the kernel does not have constant degrees, nor is it monotone.

Example 3.1 (homogeneous mixing). If the population is homogeneous (which cor-
responds to the one-dimensional SIS model where \Omega is a singleton), then the maximal
equilibrium is constant equal to 1 - 1/R0. It follows that C(\eta unicrit) =C(\eta equi).

Example 3.2 (age and activity structure). In [1], Britton, Ball, and Trapman
study an SEIR model, where immunity can be obtained through infection. Using pa-
rameters derived from real-world data, these authors noticed that the disease-induced
herd immunity level can, for some models, be substantially lower than the classical
herd immunity threshold 1  - 1/R0. This can be reformulated in terms of targeted
vaccination strategies: prioritizing the individuals that are more likely to get infected
in an SEIR epidemic may be more efficient than distributing uniformly the vaccine in
the population.

We use the same age and activity structures to determine which strategy between
\eta equi and \eta unicrit is less costly. More precisely, the community is categorized into six age
groups, and contact rates between them are derived from an empirical study of social
contacts [22]. For the activity structure, individuals are categorized into three different
activity levels, which are arbitrary and chosen for illustration purposes: 50\% of each
age cohort have normal activity, 25\% have low activity corresponding to half as many
contacts compared with normal activity, and 25\% have high activity corresponding
to twice as many contacts as normal activity. Note that when the population is only
structured by activity, the mixing is proportionate. Assuming that the recovery rate
is constant equal to 1, we solved numerically equation (3) and computed in Table 1
the cost of the uniform and the equilibrium strategies for different values of R0 and
different population structures. We observe that C(\eta equi) < C(\eta unicrit) as soon as the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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810 J.-F. DELMAS, D. DRONNIER, AND P.-A. ZITT

Table 1
Cost of the equilibrium vaccination C(\eta \mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i}) for different population structures; it is equal

to the herd immunity level C(\eta \mathrm{u}\mathrm{n}\mathrm{i}\mathrm{c}\mathrm{r}\mathrm{i}\mathrm{t}) when the population is homogeneous. Numbers correspond to
percentage.

R0 = 2 R0 = 2.5 R0 = 3

Homogeneous (=C(\eta \mathrm{u}\mathrm{n}\mathrm{i}\mathrm{c}\mathrm{r}\mathrm{i}\mathrm{t})) 50 60 66.7
Age structure 46.6 56.7 63.9

Activity structure 40.1 50 57

Age and activity structure 35.7 45.2 52.2

Fig. 1. Fraction of vaccinated individuals in different groups for the strategy \eta \mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i} from Example
3.2. The population structure includes both age and activity. These values assume that R0 = 2,
so that the uniform critical vaccination consists in vaccinating 50\% of the population: only three
categories, indicated in deep red, require more vaccine in the targeted strategy than in the uniform
strategy. Numbers on the vertical axis correspond to percentage; lengths of the blocks are proportional
to the population sizes.

population is not homogeneous. In Figure 1, we represent the fractions of vaccinated
individuals in the different age activity groups when following the strategy \eta equi. This
is done by assuming R0 = 2. Note that in this case, only three subpopulations (in
red) need to be vaccinated at a level higher than 1 - 1/R0 = 50\%.

Example 3.3 (proportionate mixing structure with two subpopulations). The pro-
portionate mixing is a classical mixing structure introduced by [17] and used in many
different epidemiological models. It assumes that the number of adequate contacts be-
tween two subpopulations is proportional to the relative activity levels of the two sub-
populations. Thus individuals in more active subpopulations will have more adequate
contacts. Let us consider the simple case where there are only two subpopulations
(that is, (2) with n= 2). Then the contact matrix is given by

K =

\biggl( 
a2 ab
ab b2

\biggr) 
,

where a and b are positive constants that correspond to the activity levels of the
first and second subpopulations, respectively. Denote by \mu 1 and \mu 2 their respective
relative size, suppose that the recovery rate \gamma is equal to 1 for both subpopulations,
and assume without loss of generality that a\geq b. In this case, we get that

R0 = a2\mu 1 + b2\mu 2, Re(\eta ) = a2\eta 1\mu 1 + b2\eta 2\mu 2, and C(\eta ) = 1 - (\eta 1\mu 1 + \eta 2\mu 2)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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VACCINATION AND MAXIMAL ENDEMIC EQUILIBRIUM 811

for the vaccination strategy \eta = (\eta 1, \eta 2). If R0 > 1, then the (unique) nonzero equi-
librium satisfies

(1 - gi)

2\sum 
j=1

Ki,j gj \mu j = gi for i= 1,2,

and the corresponding vaccination strategy \eta equi = 1 - g is given by

\eta equi =

\biggl( 
1

1 + ac
,

1

1 + bc

\biggr) 
,

where c \in [(R0  - 1)/a, (R0  - 1)/b] is the unique positive solution of the second-order
equation Re(\eta 

equi) = 1. It is elementary to check that in this case C(\eta equi)\leq C(\eta unicrit),
with an equality if and only if a= b. However, the critical vaccination strategy with
minimal cost, say \eta opt, corresponds to vaccinating in priority the population with the
highest activity rate, that is, if a> b,

\eta opt =

\biggl( 
max(0,1 - b2\mu 2)

a2\mu 1
,

1

max(1, b2\mu 2)

\biggr) 
;

thus either \eta opt1 = 0 or \eta opt2 = 1. So, for \mu 1\mu 2 > 0 and a> b> 0, we easily get

C(\eta opt)<C(\eta equi)<C(\eta unicrit) and Re(\eta 
opt) =Re(\eta 

equi) =Re(\eta 
uni
crit) = 1.

An instance is represented in Figure 2, where the solid red line corresponds to the
``best"" vaccination strategies and the dashed red line to the ``worst"" vaccination strate-
gies; see [6] for more details.

Assuming the subpopulations have the same size (that is, \mu 1 = \mu 2 = 1/2), we
represent in Figure 3 the costs of the critical optimal/uniform/endemic vaccination
strategy as a function of the activity parameters (a, b) when R0 = (a2 + b2)/2 >
1. We also compare in Figure 4 the nonnegative quantities C(\eta equi)  - C(\eta opt) and
C(\eta unicrit)  - C(\eta equi). Using as parameters the mean intensity i = (a + b)/2 and the
asymmetry measured by the ratio \alpha = b/a\geq 1, we observe three regions of interest.

0 μ1 μ2 1

0

R0

1

a2μ1

b2μ2

ηequi ηunicritηopt

Fig. 2. Three critical vaccinations from Example 3.3 with \mu 1 = 0.2 = 1 - \mu 2, a= 2.5, and b= 0.8.
The horizontal axis corresponds to the cost and the vertical axis to the effective reproduction number
for a vaccination strategy. The blue zone represents all the possible outcomes for (C(\eta ),Re(\eta )) where
\eta runs over the set \Delta of vaccination strategies.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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812 J.-F. DELMAS, D. DRONNIER, AND P.-A. ZITT

Fig. 3. Cost of the critical optimal/uniform/endemic vaccination strategy as a function of the
activity parameter (a, b) for the proportionate mixing model from Example 3.3 with two subpopula-
tions with the same size.

- If both i and \alpha are large, the optimal vaccination concentrates on one sub-
population and needs almost half as much vaccine as the other two strategies.

- If i is large but \alpha is small, the three strategies require vaccinating almost the
whole population.

- If i is small but the asymmetry is large, then the cost of \eta equi is comparable
to the optimal one, but much smaller than the cost of \eta unicrit.

4. General framework. We recall the differential equations governing the epi-
demic dynamics in metapopulation SIS models which were developed in the paper
[15] in finite dimension and generalized in [3].

4.1. The heterogeneous SIS model. Let (\Omega ,F , \mu ) be a probability space,
where x \in \Omega represents a feature and the probability measure \mu (dx) represents the
fraction of the population with feature x. The parameters of the SIS model are given
by a recovery rate function \gamma , which is a positive bounded measurable function defined
on \Omega , and a transmission rate kernel k, which is a nonnegative measurable function

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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VACCINATION AND MAXIMAL ENDEMIC EQUILIBRIUM 813

Fig. 4. Difference between costs for different strategies, for the proportionate mixing model
from Example 3.3 with two subpopulations with the same size. For clarity we parametrize by the
mean intensity i = (a + b)/2, on the x-axis, and the ratio between the two parameters \alpha = b/a,
on the y-axis (in log scale). The admissible values of i and \alpha \geq 1 corresponding to R0 > 1 are

delimited by the black curve i= (1+\alpha )/
\sqrt{} 

2(1 + \alpha 2). On the left: C(\eta \mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i}) - C(\eta \mathrm{o}\mathrm{p}\mathrm{t}). On the right:
C(\eta \mathrm{u}\mathrm{n}\mathrm{i}) - C(\eta \mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i}).

defined on \Omega 2. We shall also consider that the incidence rate of the disease is given
by the so-called law of mass action; see also [16] for a survey on other incidence rates.

In accordance with [3], we consider for a kernel k on \Omega and q \in (1,+\infty ) its norm:

\| k\| \infty ,q = sup
x\in \Omega 

\biggl( \int 
\Omega 

k(x, y)q \mu (dy)

\biggr) 1/q

.

For a kernel k on \Omega such that \| k\| \infty ,q is finite for some q \in (1,+\infty ), we define the
integral operator \scrT k on the set L \infty of bounded measurable real-valued function on
\Omega by

\scrT k(g)(x) =
\int 
\Omega 

k(x, y)g(y)\mu (dy) for g \in L \infty and x\in \Omega .(7)

By convention, for f, g two nonnegative measurable functions defined on \Omega and k
a kernel on \Omega , we denote by fkg the kernel on \Omega defined by

fkg : (x, y) \mapsto \rightarrow f(x) k(x, y)g(y).(8)

We shall consider the kernel k= k/\gamma (corresponding to k\gamma  - 1, which differs in general
from \gamma  - 1k), which is thus defined by

k(x, y) = k(x, y)\gamma (y) - 1.(9)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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814 J.-F. DELMAS, D. DRONNIER, AND P.-A. ZITT

We shall assume that

\| k\| \infty ,q <\infty for some q \in (1,+\infty ).(10)

The integral operator \scrT k is the so-called next-generation operator.
Let \Delta = \{ f \in L \infty : 0 \leq f \leq 1\} be the subset of nonnegative functions bounded

by 1, and let 1\in \Delta be the constant function equal to 1. The SIS dynamics considered
in [3] follows the vector field F defined on \Delta by

F (g) = (1 - g)\scrT k(g) - \gamma g.(11)

More precisely, we consider u= (ut, t \in \BbbR ), where ut \in \Delta for all t \in \BbbR +, and u solves
(1), that is,

\partial tut = F (ut) for t\in \BbbR +,(12)

with initial condition u0 \in \Delta . The value ut(x) = u(t, x) models the probability that
an individual of feature x is infected at time t; it is proved in [3] that such a solution
u exists and is unique. We also recall (see [3, Proposition 2.10]) that

F (u0)\geq 0 =\Rightarrow the map t \mapsto \rightarrow ut is pointwise nondecreasing.(13)

An equilibrium of (12) is a function g \in \Delta such that F (g) = 0. According to [3],
there exists a maximal equilibrium g, i.e., an equilibrium such that all other equilibria
h \in \Delta are dominated by g: h \leq g. It is towards this maximal equilibrium that the
process stabilizes when started from a situation where all the population is infected,
that is, if u0 = 1, then we have

lim
t\rightarrow \infty 

ut = g.

More generally (see [3, Proposition 2.13]), for u0 \in \Delta , if limt\rightarrow \infty ut exists pointwise,
then

lim
t\rightarrow \infty 

ut is an equilibrium.(14)

For T a bounded operator on L \infty endowed with its usual supremum norm, we
define by \| T \| L \infty its operator norm and its spectral radius is given by

\rho (T ) = lim
n\rightarrow \infty 

\| Tn \| 1/nL \infty .

The reproduction number R0 associated to the SIS model given by (12) is the spectral
radius of the next-generation operator:

R0 = \rho (\scrT k).(15)

If R0 \leq 1 (subcritical and critical cases), then ut converges pointwise to 0 when
t\rightarrow \infty . In particular, the maximal equilibrium g is equal to 0 everywhere. If R0 > 1
(supercritical case), then 0 is still an equilibrium but different from the maximal
equilibrium g, as

\int 
\Omega 
gd\mu > 0.
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VACCINATION AND MAXIMAL ENDEMIC EQUILIBRIUM 815

4.2. Vaccination strategies. A vaccination strategy \eta of a vaccine with perfect
efficiency is an element of \Delta , where \eta (x) represents the proportion of nonvaccinated
individuals with feature x. Notice that \eta d\mu corresponds in a sense to the effective
population. In particular, the ``strategy"" that consists in vaccinating no one (resp.,
everybody) corresponds to \eta = 1, the constant function equal to 1 (resp., \eta = 0, the
constant function equal to 0).

Recall the definition of the kernel fkg from (8). For \eta \in \Delta , the kernel k\eta = k\eta /\gamma 
has finite norm \| \cdot \| \infty ,q, so we can consider the bounded positive operators \scrT k\eta and
\scrT k\eta on L \infty . According to [3, section 5.3], the SIS equation with vaccination strategy
\eta is given by u\eta = (u\eta 

t , t\geq 0) solution to (12), with F replaced by F\eta , defined by

F\eta (g) = (1 - g)\scrT k\eta (g) - \gamma g.(16)

Then the quantity u\eta 
t (x) = u\eta (t, x) represents the probability for a nonvaccinated

individual of feature x to be infected at time t; so at time t among the population
of feature x, a fraction 1 - \eta (x) is vaccinated, a fraction \eta (x)u\eta 

t (x) is not vaccinated
and infected, and a fraction \eta (x) (1 - u\eta 

t (x)) is not vaccinated and not infected.
We define the effective reproduction number Re(\eta ) associated to the vaccination

strategy \eta as the spectral radius of the effective next-generation operator \scrT k\eta :

Re(\eta ) = \rho (\scrT k\eta ).(17)

For example, for the trivial vaccination strategies we get Re(1) =R0 and Re(0) = 0.
We denote by g\eta the corresponding maximal equilibrium:

F\eta (g\eta ) = 0.(18)

In particular, we have

Re(1) =R0 and g= g1.

4.3. Critical vaccination strategies. If R0 \geq 1, then a vaccination strategy \eta 
is called critical if it achieves precisely herd immunity, that is, Re(\eta ) = 1.

As the spectral radius is positively homogeneous (that is, \rho (\lambda t) = \lambda \rho (T ) for \lambda \geq 0),
we also get, when R0 \geq 1, that the uniform strategy that corresponds to the constant
function

\eta unicrit =
1

R0
1

is critical, as Re(\eta 
uni
crit) = 1. This is consistent with results obtained in the homogeneous

model.

5. Proof of the main theorem. We now restate the main result of the paper
with precise hypothesis and gives its proof in the next subsections. As hinted in
[14, section 4.5] for vaccination control of gonorrhea, it is interesting to consider
vaccinating people with feature x with probability g(x). This corresponds to the
strategy based on the maximal equilibrium:

\eta equi = 1 - g.

The following result entails that this strategy is critical and thus achieves herd im-
munity. Recall that in the (infinite-dimensional) SIS model (11) on the probability
space (\Omega ,F , \mu ) the recovery rate function \gamma is positive and bounded, the transmission
rate k is nonnegative, and the norm \| k\| \infty ,q of the kernel k = k/\gamma is finite for some
q \in (1,+\infty ).
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816 J.-F. DELMAS, D. DRONNIER, AND P.-A. ZITT

Theorem 5.1 (the maximal equilibrium yields a critical vaccination). Consider
the SIS model (11) under the boundedness assumption (10). If R0 \geq 1, then the
vaccination strategy \eta equi is critical, that is, Re(\eta 

equi) = 1.

We recall in sections 5.1 and 5.2 some known results on positive operators and
SIS models which can be found in [3] and also give some technical complements. Then
Theorem 5.1 is part of Proposition 5.5 and is proved in section 5.3

5.1. Technical results on positive operators. For an operator A, we denote
by A\top its adjoint. For the convenience of the reader, we collect here (an adaptation
of) a well-known result of results on positive operators and refer the reader to [3] for
a detailed proof. We shall consider the cone L \infty 

+ = \{ f \in L \infty : f \geq 0\} of nonnegative
measurable functions defined on \Omega . Let k be a (nonnegative) kernel on \Omega with finite
norms \| \cdot \| \infty ,q for some q \in (1,+\infty ). Notice that \scrT k is a positive operator as \scrT k(L \infty 

+ )\subset 
L \infty 

+ .
- Existence of Perron eigenvector. According to Krein--Rutman theorem, and
more precisely [3, Lemma 3.7 (v)], there exists v \in Lq

+\setminus \{ 0\} , seen as an element
of the topological dual of L \infty , being a left Perron eigenfunction of \scrT k, such
that (\scrT k)\top (v) = \rho (\scrT k)v.

- Collatz--Wielandt inequality. If there exist g \in L \infty 
+ \setminus \{ 0\} and \lambda > 0 such that

\scrT (g)\geq \lambda g, then we have \rho (\scrT k)\geq \lambda ; see [3, Proposition 3.6].
- Monotonicity of the spectral radius. Let k be a (nonnegative) kernel on \Omega 
with finite norms \| \cdot \| \infty ,q. We have that

k\geq k\prime =\Rightarrow \rho (\scrT k)\geq \rho (\scrT k\prime ),(19)

as the operator \scrT k  - \scrT k\prime is positive; see, for example, [3, Theorem 3.5(i)].
We also recall that for two bounded operators T and S on L \infty ,

\rho (TS) = \rho (ST ).(20)

We shall use the following extension of the Collatz--Wielandt inequality.

Lemma 5.2. Let k be a nonnegative kernel on \Omega such that \| k\| \infty ,q is finite for
some q \in (1,+\infty ) and consider the positive bounded linear integral operator \scrT k on
L \infty . If there exists g \in L \infty 

+ , with
\int 
\Omega 
g d\mu > 0 and \lambda > 0 satisfying

\scrT k(g)(x)>\lambda g(x), for all x such that g(x)> 0,

then we have \rho (\scrT k)>\lambda .

Proof. We simply write \scrT for \scrT k. Let A= \{ g > 0\} be the support of the function
g. Let \scrT \prime be the bounded operator defined by \scrT \prime (f) = 1A\scrT (1Af). Since \scrT \prime (g) =
1A\scrT (1Ag) = 1A\scrT (g) > \lambda g, we deduce from the Collatz--Wielandt inequality (with k
replaced by 1Ak1A) that \rho (\scrT \prime )\geq \lambda > 0. Let v \in Lq

+\setminus \{ 0\} be a left Perron eigenfunction
of \scrT \prime : (\scrT \prime )\top (v) = \rho (\scrT \prime )v. In particular, we have v = 1A v and thus

\int 
A
v d\mu > 0 and\int 

\Omega 
vg d\mu > 0. We obtain

(\rho (\scrT \prime ) - \lambda )\langle v, g\rangle = \langle v,\scrT \prime (g) - \lambda g\rangle > 0.

As \scrT \prime = \scrT k\prime with k\prime = 1Ak1A \leq k, we deduce from (19) that \rho (\scrT )\geq \rho (\scrT \prime )>\lambda .

5.2. Technical results on SIS models. We consider the SIS model from sec-
tion 4.1 and thus assume that (10) holds. We first state a direct consequence of the
monotony property (13).
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VACCINATION AND MAXIMAL ENDEMIC EQUILIBRIUM 817

Lemma 5.3. Consider the SIS model (11) under the boundedness assumption (10).
Let \eta , g \in \Delta . If F\eta (g)\geq 0, then we have g\leq g\eta .

Proof. Consider the solution u\eta 
t of the SIS model \partial tu

\eta 
t = F\eta (u

\eta 
t ) with vaccination

\eta and initial condition u\eta 
0 = g. According to (13) (applied to F\eta instead of F ), this

solution is nondecreasing since F\eta (g) \geq 0. According to (14), the pointwise limit of
u\eta 
t is an equilibrium. As this limit is dominated by the maximal equilibrium g\eta and

since u\eta 
t is nondecreasing, this proves that g\leq g\eta .

We recall [3, Proposition 4.2] on equivalent conditions for the supercritical regime.
Recall that the spectral bound s(T ) of a bounded operator T is defined by

s(T ) = sup\{ Re(\lambda ) : \lambda in the spectrum of T\} .

Proposition 5.4. Consider the SIS model (11) under the boundedness assump-
tion (10). The following properties are equivalent:

(i) s(\scrT k  - \gamma )> 0.
(ii) R0 > 1.
(iii) There exist \lambda > 0 and g \in L \infty 

+ \setminus \{ 0\} such that \scrT k(g) - \gamma g= \lambda g.

5.3. Proof of Theorem 5.1. The next result characterizes the maximal equi-
librium g among all equilibria by various spectral properties; Theorem 5.1 may be
viewed as a corollary to this characterization. Recall that R0 = Re(1), and that the
vector field F is defined by (11). Let DF [h] denote the bounded linear operator on
L \infty of the derivative of the map f \mapsto \rightarrow F (f) defined on L \infty at point h:

DF [h](g) = (1 - h)\scrT k(g) - (\gamma + \scrT k(h))g for h, g \in L \infty .

Proposition 5.5 (equivalent conditions for maximality). Consider the SIS model
(11) under the boundedness assumption (10). Let h in \Delta be an equilibrium, that is,
F (h) = 0. The following properties are equivalent:

(i) h= g.
(ii) s(DF [h])\leq 0.
(iii) Re((1 - h)2)\leq 1.
(iv) s(DF(1 - h)[0])\leq 0.
(v) Re(1 - h)\leq 1.

Furthermore, g= 0 if and only if R0 \leq 1, and if g \not = 0, then it is critical: Re(1 - g) = 1.

Remark 5.6 (on stability). From a dynamical systems point of view, this propo-
sition links together two different stability properties. The (classically equivalent)
conditions (ii) and (iii) state that for the original dynamics given by (12) with vector
field F , the equilibrium h is not linearly unstable. Similarly, conditions (iv) and (v)
both state that in the vaccinated dynamics given by the modified vector field F1 - h

defined by (16), the disease-free equilibrium 0 is not linearly unstable.
In particular, in the original dynamics given by (12), equilibria that are not

maximal are necessarily linearly unstable.

Proof. Let h\in \Delta be an equilibrium, that is, F (h) = 0.
The equivalence between (iv) and (v) is a direct consequence of Proposition 5.4.
Let us show the equivalence between (ii) and (iii). According to Proposition 5.4

again, we have s(DF [h])\leq 0 if and only if

\rho (\scrT k)\leq 1 with k(x, y) = (1 - h(x))
k(x, y)

\gamma (y) + \scrT k(h)(y)
\cdot 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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818 J.-F. DELMAS, D. DRONNIER, AND P.-A. ZITT

Since F (h) = 0, we have (1 - h)/\gamma = 1/(\gamma + \scrT k(h)). This gives

\sansk (x, y) = (1 - h(x))
k(x, y)(1 - h(y))

\gamma (y)
(21)

and thus \scrT k =M1 - h \scrT k/\gamma M1 - h, where Mf is the multiplication operator by f . Recall
the definition (17) of Re. We deduce from (20) that

\rho (\scrT k) = \rho 
\bigl( 
\scrT k/\gamma M(1 - h)2

\bigr) 
=Re((1 - h)2).(22)

This gives the equivalence between (ii) and (iii).
We prove that (i) implies (v). Suppose that Re(1 - h) > 1. Thanks to (20), we

have \rho (M1 - h\scrT k/\gamma ) = \rho (\scrT k/\gamma M1 - h) =Re(1 - h)> 1. Let v \in Lq
+ \setminus \{ 0\} be a left Perron

eigenfunction of \scrT (1 - h)k/\gamma , that is, \scrT \top 
(1 - h)k/\gamma (v) = Re(1 - h)v. Using F (h) = 0, and

thus (1 - h)\scrT k(h) = \gamma h, for the last equality, we have

Re(1 - h)\langle v, \gamma h\rangle = \langle v, (1 - h)\scrT k/\gamma (\gamma h)\rangle = \langle v, \gamma h\rangle .

We get \langle v, \gamma h\rangle = 0 and thus \langle v,1A\rangle = 0, where A= \{ h> 0\} denotes the support of the
function h. Since \scrT \top 

(1 - h)k/\gamma (v) =Re(1 - h)v and setting v\prime = (1 - h)v (so that v\prime = v
\mu -almost surely on Ac), we deduce that

\scrT \top 
k\prime /\gamma (v

\prime ) =Re(1 - h)v\prime ,

where k\prime = 1Ac k 1Ac . This implies that \rho (\scrT k\prime /\gamma ) \geq Re(1  - h). Since k\prime = (1  - h)k\prime 

and k  - k\prime \geq 0, we get that \scrT k/\gamma  - \scrT k\prime /\gamma is a positive operator. Using (19) for the
inequality as (1  - h)k\prime /\gamma \leq (1  - h)k/\gamma , we deduce that \rho (\scrT k\prime /\gamma ) = \rho (M1 - h\scrT k\prime /\gamma ) \leq 
\rho (M1 - h\scrT k/\gamma ) = Re(1 - h). Thus, the spectral radius of \scrT k\prime /\gamma is equal to Re(1 - h).
According to Proposition 5.4, since \rho (\scrT k\prime /\gamma )> 1, there exist w \in L \infty 

+ \setminus \{ 0\} and \lambda > 0
such that

\scrT k\prime (w) - \gamma w= \lambda w.

This also implies that w = 0 on A= \{ h > 0\} , that is, wh= 0 and thus w\scrT k(h) = 0 as
\scrT k(h) = \gamma h/(1 - h). Using that F (h) = 0, \scrT k(w) = \scrT k\prime (w) = (\gamma +\lambda )w and h\scrT k(w) = 0,
we obtain

F (h+w) =w(\lambda  - \scrT k(w)).

Taking \varepsilon > 0 small enough so that \varepsilon \scrT k(w)\leq \lambda /2 and \varepsilon w \leq 1, we get h+ \varepsilon w \in \Delta and
F (h+ \varepsilon w)\geq 0. Then we use Lemma 5.3 to deduce that h+ \varepsilon w\leq g and thus h \not = g.

To see that (v) implies (iii), notice that (1 - h)\geq (1 - h)2, and then use (19) to
deduce that \rho (\scrT k(1 - h))\geq \rho (\scrT k(1 - h)2) and thus Re(1 - h)\geq Re((1 - h)2).

We prove that (iii) implies (i). Notice that F (g) = 0 and g \in \Delta implies that g < 1.
Assume that h \not = g. Notice that \gamma /(1 - h) = \gamma +\scrT k(h), so that \gamma (g - h)/(1 - h)\in L \infty 

+ .
An elementary computation, using F (h) = F (g) = 0 and k defined in (21), gives

\scrT k
\biggl( 
\gamma 
g - h

1 - h

\biggr) 
= (1 - h)\scrT k (g - h) = \gamma 

g - h

1 - g
=

1 - h

1 - g
\gamma 
g - h

1 - h
\cdot 

Since h \not = g and h \leq g, we deduce that (1 - h)/(1 - g) \geq 1, with strict inequality on
\{ g - h > 0\} which is a set of positive measure. We deduce from Lemma 5.2 (with k
replaced by k\gamma ) that \rho (\scrT \sansk )> 1. Then we use (22) to conclude.
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VACCINATION AND MAXIMAL ENDEMIC EQUILIBRIUM 819

To conclude notice that g = 0 \Leftarrow \Rightarrow R0 \leq 1 is a consequence of the equivalence
between (i) and (v) with h= 0 and R0 =Re(1).

Using that F (g) = 0, we get \scrT k(g) = \gamma g/(1 - g). We deduce that \scrT k(1 - g)/\gamma (\scrT k(g)) =
\scrT k(g). If g \not = 0, we get \scrT k(g) \not = 0 (on a set of positive \mu -measure). This implies that
Re(1 - g)\geq 1. Then use (v) to deduce that Re(1 - g) = 1 if g \not = 0.
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