
Innov. Graph Theory 2, 2025, pp. 25–117
https://doi.org/10.5802/igt.7

PROBABILITY-GRAPHONS: LIMITS OF LARGE
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Abstract. — We introduce probability-graphons which are probability kernels
that generalize graphons to the case of weighted graphs. Probability-graphons ap-
pear as the limit objects to study sequences of large weighted graphs whose distri-
bution of subgraph sampling converge. The edge-weights are taken from a general
Polish space, which also covers the case of decorated graphs. Here, graphs can
be either directed or undirected. Starting from a distance dm inducing the weak
topology on measures, we define a cut distance on probability-graphons, making
it a Polish space, and study the properties of this cut distance. In particular, we
exhibit a tightness criterion for probability-graphons related to relative compact-
ness in the cut distance. We also prove that under some conditions on the distance
dm, which are satisfied for some well-know distances like the Lévy–Prokhorov dis-
tance, and the Fortet–Mourier and Kantorovitch–Rubinshtein norms, the topology
induced by the cut distance on the space of probability-graphons is independent
from the choice of dm. Eventually, we prove that this topology coincides with the
topology induced by the convergence in distribution of the sampled subgraphs.

1. Introduction

1.1. Motivation and literature review

Networks appear naturally in a wide variety of contexts, including for
example: biological networks [19, 45], epidemics processes [21, 40], electrical
power grids [1] and social networks [2, 50]. Most of those problems involve
large dense graphs, that is graphs that have a large number of vertices and
a number of edges that scales as the square of the number of vertices. Those
graphs are too large to be represented entirely in the targeted applications.
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The idea is then to go from a combinatorial representation given by the
graph to an infinite continuum representation.

In the case of unweighted graphs (i.e. graphs without edge-weights), a
theory was developed to study the asymptotic behaviour of large dense
graphs, with the limit objects being the so-called graphons. The properties
of graphons were studied in a series of articles started by [47, 26, 15, 16, 18].
We shall refer to the monograph [46] which exposes in details the theory
of graphons developed in this series of articles. Graphons can be used to
define models of random graphs with latent vertex-type variables (called
W -random graphs) generalizing the Erdös-Rényi graph and the stochastic
block model (SBM). The space of graphons can be equipped with the so-
called cut distance, making it a compact space, and whose topology is that
of the convergence in distribution for all sampled subgraphs, or equivalently
of the convergence for subgraph homomorphism densities.

In recent years, graphons have been used in several application context:
non-parametric estimation methods and algorithms for massive networks
[17], SIS epidemic models [20], the study of transferability properties for
Graph Neural Networks [39]. Furthermore, there has been recent develop-
ments in the study of mean-field systems using graphons: stochastic games
and their Nash equilibria [43], opinion dynamic on a graphon [3], coopera-
tive multi-agent reinforcement learning [32], to cite a few.

However, most real-world phenomena on the above networks involve
weighted networks, where each edge in the graph carries additional infor-
mation such as intensity or frequency of interaction, or transfer capacity.

There exists many models of random weighted graphs. For example con-
figuration models with edges having independent exponential weights have
been considered in [10, 5, 6], see also [29, 34] where the distribution of the
weight of an edge depends on the types of its end-points. Random geomet-
ric graphs with vertices and edges having independent Gaussian weights
have been considered in [4].

Weighted SBMs (sometimes also called labeled SBMs), in which each
edge independently receives a random weight whose distribution depends
on the community labels of its end-points, have been studied to solve
community detection in [44] (see also [53] for more general models where
vertex-labels come from a compact space), and exact community recovery
in [36], and to get bounds on the number of misclassified vertices in [55, 54].
Note that weighted SBMs correspond to a special case of the probability-
graphons we study in this article where the space of vertex-labels is finite
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(they correspond to the stepfunction probability-graphons we define in Sec-
tion 3).

Concomitantly to our work, in [9], the authors studied mean-field equa-
tions on large real-weighted graphs modeling interactions with a probability
kernel from [0, 1]2 to M1(R) the set of probability measures on R, but they
did not study the topological properties of the set of those probability ker-
nels. Recently, in [31], the authors studied the limit of the total weight
of the minimum spanning tree (MST) for a sequence of random weighted
graphs. Following what has been done for the uniform spanning tree in
[30, 7], one expects the local and scaling limits of the MST to be directly
constructed from the limit of the random weighted graphs.

Motivated by those examples, we shall consider probability-graphons as
possible limits of large weighted graphs; they are defined as maps from
[0, 1]2 to the space of probability measures M1(Z) on a Polish space Z.
When Z is compact, this question has been considered in [49] and in [46,
Section 17.1] using convergence of homomorphism densities of subgraphs
decorated with real functions defined on Z, see also [41] on multigraphs
where Z = N, but the metric properties of the set of probability-graphons
W1 have only been established when Z is finite, see [25]. Concomitantly
to our work, in [8], the authors established the metric properties for the
set of probability-graphons W1 when Z = [−1, 1], where they consider the
Kantorovitch–Rubinshtein cut distance (denoted here by δ□,KR). However
their proof can not be extended directly to a general Polish space. The
work [42] is an extension of [49] where M1(Z) is replaced by the dual space
Z of a separable Banach space B. As M1(Z) is a subset of the dual of the
space Cb(Z) of real-valued continuous bounded functions on Z, this ap-
proach covers our setting when Cb(Z) is separable, that is, Z compact (see
Section 2 below). The norm introduced on the space of Z-valued graphons
therein implies the convergence of homomorphisms densities of B-decorated
sub-graphs, however there is no equivalence a priori. In [28], probability-
graphons with Z = [0, 1] are used as a part of latinons, which are limit
objects for latin squares (square matrix of size n × n where each row and
column contains each integer from 1 to n exactly once). The authors pro-
pose an interesting method to prove compactness of the space of latinons
for the cut distance; but this does not extend directly to the case of a
general Polish space Z.

In this paper we study the topological properties of the space of
probability-graphons W̃1 when Z is a general Polish space: the space W̃1 is
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a Polish topological space and we give “natural” cut distances on W̃1 which
are complete. One of the main difficulties is that the space of probability
measures M1(Z) can be endowed with many distances which induce the
topology of weak convergence, each of them giving rise to a different cut
distance on W̃1. Our main result is:

a) The topology induced on W̃1 does not depend on the initial choice of
the distance on M1(Z), provided this distance satisfies some simple
general conditions. Those conditions are satisfied if the distance is
quasi-convex (a property that generalizes the convexity of a norm).

b) This topology coincides with the topology induced by the conver-
gence in distribution of the sampled subgraphs with random weights
on the edges (or equivalently the convergence of the homomorphism
densities of Cb(Z)-decorated subgraphs).

c) Similarly to the graphon setting, the sequence of large sampled
weighted subgraphs from a probability-graphon W convergence in
distribution to W .

d) We also provide a tightness criterion for studying the convergence
of weighted graphs towards probability-graphons.

In conclusion, we believe that the unified framework developed here is
easy-to-work-with and will allow to use probability-graphons to study large
(random) weighted graphs.

1.2. New contribution

Through the article, measure will always be used to denote a positive
measure.

1.2.1. Definition of probability-graphons

In this article, we define an analogue of graphons for weighted graphs,
which we call probability-graphons, and study their properties. To avoid any
confusion, in the rest of the article we say real-valued graphons instead of
graphons. We consider the general case where weighted graphs take their
edge-weights in a Polish space Z (e.g. Z, R or Rd), which thus also covers
the case of decorated graphs, multi-graphs (graphs with possibly multiple
edges between two vertices) and dynamical graphs (where edge-weights
evolve over time).

We define a probability-graphon as a probability kernel W : [0, 1]2 →
M1(Z), where M1(Z) is the space of probability measures on Z. A
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probability-graphon can be interpreted as follows: for two “vertex type”
x and y in [0, 1], the weight z of an edge between two vertices of type
x and y is distributed as the probability measure W (x, y; dz). In partic-
ular, the special case Z = {0, 1} allows to recover real-valued graphons:
as any real-valued graphon w : [0, 1]2 → [0, 1] can be represented as a
probability-graphon W (x, y; ·) = w(x, y)δ1 + (1 − w(x, y))δ0, where δz de-
notes the Dirac mass located at z. Let us mention that it is possible to de-
fine the probability-graphons on a more general probability space (Ω,A, µ)
than [0, 1] for the vertex-types, see Remark 3.4 for details. In this article,
we also define and study the properties of signed measure-valued kernels
which are bounded (in total mass/total variation norm) measurable func-
tions W : [0, 1]2 7→ M±(Z) whose values are signed measures, but for
brevity we mainly focus on probability-graphons in this introduction.

As probability-graphons are measurable functions, we identify
probability-graphons that are equal for almost every (x, y) ∈ [0, 1]2, and
we denote by W1 the space of probability-graphons. Moreover, as we con-
sider weighted graphs that are unlabeled (that is vertices are unordered),
we need to consider probability-graphons up to “relabeling”: for a measure-
preserving map φ : [0, 1] → [0, 1] (relabeling map for probability-graphons),
we define Wφ(x, y; ·) = W (φ(x), φ(y); ·); we say that two probability-
graphons are weakly isomorphic if there exists measure-preserving maps
φ,ψ : [0, 1] → [0, 1] such that Uφ = Wψ for a.e. (x, y) ∈ [0, 1]2. We denote
by W̃1 the space of probability-graphons where we identity probability-
graphons that are weakly isomorphic.

We can always assume that weighted graphs are complete graphs by
adding all missing edges and giving them a weight/decoration ∂ which is a
cemetery point added to Z. Any weighted graph G can be represented as a
probability-graphon WG in the following way: denote by n the number of
vertices of G and divide the unit interval [0, 1] into n intervals I1, · · · , In of
equal lengths, then WG is defined for (x, y) ∈ Ii×Ij as WG(x, y; ·) = δM(i,j),
where M(i, j) is the weight on the edge (i, j) in G. Thus a weighted graph
G, with its edges decorated by elements of Z, is associated with a M1(Z)-
valued graphon WG where the decorations are replaced by the correspond-
ing Dirac masses. Note that weighted graphs can be either directed or
undirected, in the case of undirected weighted graphs their limit objects
are symmetric probability-graphons, that is probability-graphons W such
that W (x, y; ·) = W (y, x; ·).
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1.2.2. The cut distance for probability-graphons and its properties

While there is a usual distance on the field of reals R, this is not the case
for probability measures, measures or signed measures endowed with the
weak topology. Some commonly used distances include the Lévy–Prokhorov
distance dLP which can be defined on measures, and the Kantorovitch–
Rubinshtein norm ∥ · ∥KR (sometimes also called the bounded Lipschitz
norm) and the Fortet–Mourier norm ∥ · ∥FM defined on signed measures
but metrizing the weak topology on measures. (Note that in general the
weak topology is not metrizable on signed measures, see Section 2 below.)
We also use a norm ∥ · ∥F based on a convergence determining sequence
F ⊂ Cb(Z) (that is, a sequence containing enough functions to characterize
the convergence of measures for the weak topology, see page 37 for a more
formal definition). See Section 3.8 for definitions of those distances. To
define an analogue of the cut norm for probability-graphons, we first need
to choose a distance dm that metrizes the weak topology on the space of
sub-probability measures M⩽1(Z) (i.e. measures with total mass at most
1); we then define the cut distance d□,m for probability-graphons as:

d□,m(U,W ) = sup
S,T⊂[0,1]

dm

(
U(S × T ; ·),W (S × T ; ·)

)
,

where the supremum is taken over all measurable subsets S and T of [0, 1],
and where W (S×T ; ·) =

∫
S×T W (x, y; ·) dxdy is a sub-probability measure,

and similarly for U . Moreover, if the distance dm is derived from a norm
Nm defined on the space of signed measures M±(Z), then the cut distance
d□,m derives from the cut norm N□,m defined on signed measure-valued
kernels:

N□,m(W ) = sup
S,T⊂[0,1]

Nm

(
W (S × T ; ·)

)
.

We then define the unlabeled cut distance δ□,m on the space of unlabeled
probability-graphons W̃1 as:

δ□,m(U,W ) = inf
φ
d□,m(U,Wφ) = min

φ,ψ
d□,m(Uφ,Wψ),

where the infimum is taken over all measure-preserving maps φ and ψ, see
Proposition 3.18 for alternative expressions of δ□,m (including proof that
the minimum exists for the second expression) and see Theorem 3.17 that
states that δ□,m is indeed a distance on W̃1. In Proposition 4.13, we prove
an equivalent of the weak regularity lemma for probability-graphons.

We define the notion of a quasi-convex distance, which generalizes the
convexity of a norm.
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Definition 1.1 (Quasi-convex distance). — Let (X, d) be a metric
space which is a convex subset of a vector space. The distance d is quasi-
convex if for all x1, x2, y1, y2 ∈ X and all α ∈ [0, 1], we have:

d(αx1 + (1 − α)x2, αy1 + (1 − α)y2) ⩽ max(d(x1, y1), d(x2, y2)).

In particular, any distance (on a convex subset of a vector space) which
derive from a norm is quasi-convex. Moreover, the Lévy–Prokhorov distance
dLP is quasi-convex (see Lemma 3.21).

An interesting fact is that under some conditions on dm (including the
case when dm is quasi-convex), the topology induced by the associated cut
distance δ□,m does not depend on the particular choice of dm. The following
proposition is a particular case of Theorem 5.5 together with Corollary 4.14.

Proposition 1.2. — Let dm be a quasi-convex distance on M⩽1(Z)
that induces the weak topology. The cut distances δ□,m, δ□,LP, δ□,KR,
δ□,FM and δ□,F induce the same topology on the space of probability-
graphons W̃1.

Recall that Z is a Polish space. We now state that W̃1 is also Polish for
the distance δ□,LP (but not for δ□,F !), and we refer to Theorem 5.10 for
other distances.

Theorem 1.3. — The space of probability-graphons (W̃1, δ□,LP) is a
Polish metric space.

We prove an analogue of Prokhorov’s theorem with a tightness criterion
for probability-graphons. We say that a subset of probability-graphons K ⊂
W̃1 is tight if the set of probability measures {MW : W ∈ K} is tight
(in the sense of probability measures), where MW (·) = W ([0, 1]2; ·). This
tightness criterion appears in [41] for multigraphs, corresponding to the
particular case Z = N. The next result is consequence of Theorem 5.1 and
Proposition 5.2 as well as Corollary 4.14.

Theorem 1.4 (Compactness property). — Consider the topology on
W̃1 from Proposition 1.2.

(i) If a sequence of elements of W̃1 is tight, then it has a converging
subsequence.

(ii) A subset K ⊂ W̃1 is relatively compact is and only if it is tight.
(iii) If Z is compact, then the space W̃1 is compact.
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1.2.3. Sampling from probability-graphons and its link with the cut
distance

Finally, we link the topology of the cut distance δ□,m with subgraph sam-
pling. The probability-graphons allow to define models of random weighted
graphs (the W -random graph model) which generalize weighted SBM ran-
dom graphs, and which plays the role of sampled subgraphs for probability-
graphons. The W -random graph (or sampled subgraph of size k) G(k,W )
has two parameters, a number of vertices k and a probability-graphon W

for edge-weights, and is defined as follows: first let X1, · · · , Xk be k inde-
pendent random “vertex-types” uniformly distributed over [0, 1]; then given
X1, · · · , Xk, each edge receives a weight independently, where the weight
of the edge (i, j) is distributed as W (Xi, Xj ; ·). By identifying z ∈ Z with
the Dirac mass at z, we can identify the random weighted graph G(k,W )
with its corresponding probability-graphon (see Section 1.2.1), notice that
this random probability-graphon is unique up to a weak isomorphism, and
with a slight abuse we shall denote it by G(k,W ).

We also provide the a.s. convergence of sampled subgraphs for the topol-
ogy from Proposition 1.2, see Theorem 6.13 together with Corollary 5.6.

Theorem 1.5. — Let W be a probability-graphon. Then, a.s. the se-
quence of sampled subgraphs (G(k,W ))k∈N∗ converges to W for the topol-
ogy from Proposition 1.2.

To prove this theorem, we adapt the proof scheme of [46, Sections 10.5
and 10.6] relying on the first and second sampling lemmas for real-valued
graphons. The proof is done using the cut distance δ□,F because of the
good approximation properties of ∥ · ∥F .

In the case of unweighted graphs, the homomorphism numbers hom(F,G)
count the number of occurences of a graph F (often called a motif or
a graphlet) as an induced subgraph of G, and their normalized counter-
parts, the homomorphism densities t(F,G) allow to characterize a graph
(up to relabeling and twin-vertices expansion), and also characterize the
topology on real-valued graphons. In the case of weighted graphs and
probability-graphons, we need to replace absence/presence of edges (which
is 0-1 valued) by test functions from Cb(Z) decorating the edges. Hence,
we define the homomorphism density of a G-graph F g which is a finite
graph F = (V,E) whose edges are decorated with a family of functions
g = (ge)e∈E from a subset G ⊂ Cb(Z) (in practice, we only consider the
cases G = Cb(Z) or G = F ⊂ Cb(Z) a convergence determining sequence),
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in a probability-graphon W as:

t(F g,W ) = MF
W (g) :=

∫
[0,1]V

∏
(i,j)∈E

W (xi, xj ; gi,j)
∏
i∈V

dxi,

where W (x, y; f) =
∫

Z f(z)W (x, y; dz). Moreover, MF
W defines a measure

on ZE (which we still denote by MF
W ) which is defined by MF

W (⊗e∈Ege) =
MF
W (g) for g = (ge)e∈E . Note that when F is the complete graph with k

vertices, MF
W is the joint measure of all the edge-weights of the random

graph G(k,W ), and thus characterizes the random graph G(k,W ).
In the counting Lemma 7.5 and the weak counting Lemma 7.7, we prove

that the cut norm ∥ · ∥□,F allows to control the homomorphism densities.
Conversely, in the inverse counting Lemma 7.8, we prove that the cut norm
∥ · ∥□,F can be controlled by the homomorphism densities. In particular,
the topology of the cut distance turns out to be exactly the topology of
convergence in distribution for sampled subgraphs of any given size; the
next result is a direct consequence of Theorem 7.11.

Theorem 1.6 (Characterization of the topology). — Let (Wn)n∈N and
W be unlabeled probability-graphons from W̃1. The following properties
are equivalent:

(i) (Wn)n∈N converges to W for the topology from Proposition 1.2.
(ii) limn→∞ t(F g,Wn) = t(F g,W ) for all Cb(Z)-graphs F g.
(iii) limn→∞ t(F g,Wn) = t(F g,W ) for all F-graphs F g, for some con-

vergence determining sequence F .
(iv) For all k ⩾ 2, the sequence of sampled subgraphs (G(k,Wn))n∈N

converges in distribution to G(k,W ).

Now, we can turn back to the initial problem of finding a limit object
for a convergent sequence of weighted graphs (Gn)n∈N; here convergent
means that for all k ⩾ 2, the sequence (G(k,Gn) = G(k,WGn

))n∈N of
sampled subgraphs of size k (defined above) converges in distribution (to
some limit random graph). Note that the tightness criterion for a sequence
of probability-graphons (Wn)n∈N can be equivalently rephrased as tight-
ness of the sequence (G(2,Wn))n∈N of sampled subgraphs of size 2. Hence,
the convergence in distribution of the sequence (G(2, Gn))n∈N implies its
tightness, and thus the tightness of the sequence of probability-graphons
(WGn

)n∈N. Then, Theorem 1.4 guarantees the existence of a probability-
graphon W which is a subsequential limit of the sequence (WGn)n∈N in the
cut distance δ□,F , and then Theorem 1.6 guarantees that for all k ⩾ 2, the
sequence (G(k,Gn))n∈N converges in distribution to G(k,W ).
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As a consequence, probability-graphons are precisely the limit objects
for sequences of weighted graphs (Gn)n∈N (and also for random weighted
graphs) whose number of vertices goes to infinity (otherwise the limit would
simply be a weighted graph) and such that for each size k ⩾ 2, the sequence
of sampled subgraphs (G(k,Gn))n∈N converges in distribution.

Remark 1.7 (Extension to vertex-weights). — The framework we have
developed for probability-graphons could easily be extended to add weights
on the vertices, or equivalently to allow for self-loops (i.e. edges linking a
vertex to itself). In this case, weighted graphs and probability-graphons
have a two-variable kernel (probability-graphon) W e for edge-weights as
before, and a one-variable kernel W v : [0, 1] → M1(Z) for vertex-weights.
Note that this implies, as expected, that the same measure-preserving map
φ : [0, 1] → [0, 1] must be used for both kernelsW v andW e when relabeling.

1.3. Organization of the paper

The rest of the paper is organized as follows. In Section 2, we define
some notations used throughout the paper, and recall some properties of
the weak topology on the space of signed measures. In Section 3, we define
probability-graphons and signed-measure valued kernels, we then define
the cut distance and the cut norm and study their properties, and we also
give some exemple of distances with the Lévy–Prokhorov distance dLP, the
Kanrorovitch-Rubinstein and Fortet–Mourier norms ∥·∥KR and ∥·∥FM, and
the norm ∥ ·∥F based on a convergence determining sequence. In Section 4,
we define the steppings of a probability-graphon (which are stepfunction
approximations corresponding to conditional expectations on [0, 1]2), we
define the tightness criterion for probability-graphons, and we prove the
weak regularity property of the cut distance. In Section 5, we prove the
theorem linking the tightness criterion with relative compactness for the
cut distance, we prove that under some conditions the topology of the cut
distance does not depend on the choice of the initial distance dm, and we
prove that the space of probability-graphons with the cut distance is a
Polish space. In Section 6, we define the subgraph G(k,W ) sampled from
a probability-graphon W , we then prove approximation bound in the cut
norm ∥ · ∥□,F between probability-graphons and their sampled subgraphs.
In Section 7, we prove the counting lemmas linking the cut distance with
the homomorphism densities, and prove that the topology induced by the
cut distance coincides with the topology of convergence in distribution for
all the sampled subgraphs.
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An index of notations used in the paper is provided in Section 9.
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2. Notations and topology on the space of signed measures

Throughout the article, measure will always be used to denote a positive
measure.

Let N be the set of non-negative integers, N∗ = N\{0} the set of posi-
tive integers, and, for n ∈ N∗, we define the integer set [n] = {1, . . . , n}.
For k ∈ N∗, the set [0, 1]k is endowed with the Borel σ-field and the
Lebesgue measure λk; and we write λ for λk when the context is clear.
The supremum of a real-valued function f defined on [0, 1]k is denoted by
∥f∥∞ = supx∈[0,1]k f(x).

Let d be a distance on a topological space (X,O).
(i) The distance d is continuous w.r.t. the topology O if the identity

map from (X,O) to (X, d) is continuous.
(ii) The distance d is sequentially continuous w.r.t. the topology O if

for any sequence (xn)n∈N in X which converges to some limit x for
the topology O, we also have that limn→∞ d(xn, x) = 0.

Let d and d′ be two distances on a space X. We say that d′ is continuous
(resp. uniformly continuous) w.r.t. d if the identity map from (X, d) to
(X, d′) is continuous (resp. uniformly continuous).

Remark 2.1. — If the topology O is metrizable (i.e. can be generated
by a distance on the space X), then the topology on X induced by the
distance d is equivalent to O if and only if for every sequence with values
in X, convergence for d is equivalent to convergence for O (see [23, Theorem
4.1.2]). Moreover, when the topology is metrizable, then topological notions
and their sequential counterparts coincides (e.g. compact and sequentially
compact sets, closed and sequentially closed sets, see [23, Proposition 4.1.1
and Theorem 4.1.17]).

Remark 2.2. — For a function, continuity always implies sequential con-
tinuity; and the converse is also true when the topology is metrizable.

A map φ : Ω1 → Ω2 between two probability spaces (Ωi,Ai, πi), i = 1, 2,
is measure-preserving if it is measurable and if for every A ∈ A2, π2(A) =
π1(φ−1(A)). In this case, for every measurable non-negative function f :
Ω2 → R, we have:

(2.1)
∫

Ω1

f(φ(x)) π1(dx) =
∫

Ω2

f(x) π2(dx).

We denote by S[0,1] the set of bijective measure-preserving maps from [0, 1]
with the Lebesgue measure to itself, and by S̄[0,1] the set of measure-
preserving maps from [0, 1] with the Lebesgue measure to itself.
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Let (Z,OZ) be some (non-empty) Polish space, and let B(Z) be the
Borel σ-field on Z generated by the topology OZ. We denote by Cb(Z) the
space of real-valued continuous bounded functions on (Z,OZ). We denote
by M±(Z) the space of finite signed measures on (Z,B(Z)); M+(Z) the
subspace of measures; M⩽1(Z) the subspace of measures with total mass
at most 1; and M1(Z) the subspace of probability measures. We have:

M1(Z) ⊂ M⩽1(Z) ⊂ M+(Z) ⊂ M±(Z).

For a signed measure µ ∈ M±(Z), we recall the definition of the Hahn–
Jordan decomposition µ = µ+ − µ− where µ+, µ− ∈ M+(Z) are mutually
singular measures (that is µ+(A) = 0 and µ−(Ac) = 0 for some measurable
set A), as well as the total variation measure of µ which is defined as |µ| =
µ+ + µ− ∈ M+(Z). Note that for a measure µ ∈ M+(Z), we simply have
|µ| = µ. For a signed-measure µ ∈ M±(Z) and a real-valued measurable
function f defined on Z, we write µ(f) = ⟨µ, f⟩ =

∫
f dµ =

∫
Z f(x)µ(dx)

the integral of f w.r.t. µ whenever it is well defined. For a signed measure
µ ∈ M±(Z), we denote by ∥µ∥∞ = µ+(Z) +µ−(Z) its total mass, which is
also equal to the supremum of µ(f) over all measurable functions f with
values in [−1, 1].

We endow M±(Z) with the topology of weak convergence, that is the
smallest topology for which the maps µ 7→ µ(f) are continuous for all
f ∈ Cb(Z). In particular, a sequence of signed measures (µn)n∈N weakly
converges to some µ ∈ M±(Z) if and only if, for every function f ∈ Cb(Z),
we have limn→+∞ µn(f) = µ(f). Let us recall that M+(Z) and M1(Z)
endowed with the topology of weak convergence are Polish spaces.

Remark 2.3 (The weak topology on M±(Z)). — The topology of weak
convergence on the set of signed measures M±(Z) is equivalent to the weak-
∗ topology on M±(Z) seen as a subspace of the topological dual of Cb(Z)
(see the paragraph after Definition 3.1.1 in [14]). As usual in probability
theory, this topology will be simply called the weak topology (this is also
consistent with [14]).

We recall that a sequence of [0, 1]-valued functions F = (fk)k∈N in Cb(Z),
with f0 = 1 the constant function equal to one, is:

(i) Separating if for every measures µ, ν from M±(Z) (or equivalently
just from M+(Z)) such that for every k ∈ N, µ(fk) = ν(fk), then
µ = ν.

(ii) Convergence determining if for every (µn)n∈N and µ measures from
M+(Z) such that we have limn→+∞ µn(fk) = µ(fk) for all k ∈ N,
then (µn)n∈N weakly converges to µ.
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Notice that a convergence determining sequence is also separating. A se-
quence of functions is separating if and only if it separates the points of Z
(see [24, Theorem 3.4.5]). There always exists a convergence determining
sequence on Polish spaces, see [14, Corollary 2.2.6] or the proof of Propo-
sition 3.4.4 in [24] (which are stated for probability measures but can be
extended to finite positive measures as we required that 1 belongs to F).
Note that there does not exist a convergence determining sequence for
M±(Z) as the weak topology is not metrizable on M±(Z) (see Remark 2.6
below).

Remark 2.4 (The Borel σ-field on M±(Z)). — By [14, Corollary 5.1.9],
the Borel σ-field on M±(Z), associated with the weak topology, is count-
ably generated and can be generated by either:

• the family of maps µ 7→ µ(fn) where the sequence (fn)n∈N of func-
tions from Cb(Z) is separating;

• the family of maps µ 7→ µ(B) where B ∈ A and the subset A ⊂
B(Z) is countable and generates the whole σ-field B(Z) (such subset
A always exists, see [13, Corollary 6.7.5]).

Note that the Borel σ-field of a Polish space is generated by any family of
Borel functions that separates points (see [13, Theorem 6.8.9]).

Furthermore, the maps µ 7→ µ+ and µ 7→ µ− (and thus also µ 7→ |µ|) are
measurable (see [22, Theorem 2.8] and Remark 2.4). As a consequence, the
map µ 7→ ∥µ∥∞ is also measurable (in fact it is even lower semicontinuous
by [14, Theorem 2.7.4]). Note that M1(Z) and M+(Z) are closed, and thus
measurable, subsets of M±(Z).

We define the following two important properties for subsets of signed
measures, which are related to relative compactness (see Lemma 2.8 below).

Definition 2.5. — Let M ⊂ M±(Z) be a subset of signed measures.
(i) The set M is bounded (in total variation) if:

sup
µ∈M

∥µ∥∞ < +∞.

(ii) The set M is tight if for all ε > 0, there exists a compact set K ⊂ Z
such that:

sup
µ∈M

|µ|(Kc) ⩽ ε.

Remark 2.6 (On the compact sets and metrizability of the weak
topology). — Recall that Z is a Polish space. We stress that the weak
topology on signed measures is not metrizable unless it coincides with the
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strong topology (see [52, Theorem 4.1]), which happens only when the ini-
tial space Z is finite (see [14, Proposition 3.1.8]).

Moreover, the closed norm ball {µ ∈ M±(Z) : ∥µ∥∞ ⩽ 1} of M±(Z)
is metrizable if and only if Z is compact (see [14, Proposition 3.1.8 and
Theorem 3.1.9]).

Let M ⊂ M±(Z). The following properties are equivalent (see [14, The-
orems 2.3.4 and 3.1.9]):

(i) M is weakly compact (i.e. M is compact for the weak topology);
(ii) M is sequentially weakly compact (that is every sequence (µn)n∈N

in M has a subsequence that converges to some limit µ ∈ M);
(iii) M is compact for the sequential weak topology (for which sets are

closed if and only if they are closed under weak convergence).

Moreover, when any of those is true, M is tight, bounded, and metrizable in
the weak topology. Furthermore, the Kantorovitch–Rubinshtein and Fortet-
Mouriet norms ∥ · ∥KR and ∥ · ∥FM (defined in Section 3.8.2) can be used
to generate the weak topology on a weakly compact set (see [14, Remark
3.2.5]).

Nevertheless, the weak topology on the unit sphere {µ ∈ M±(Z) :
∥µ∥∞ = 1} of M±(Z) is always metrizable with a complete metric, mak-
ing the unit sphere a Polish space, however, the Kantorovitch–Rubinshtein
and Fortet-Mouriet norms ∥ · ∥KR and ∥ · ∥FM do not provide a complete
metrization in this case (see [14, Theorem 3.2.8]).

Remark 2.7 (On the compactness of M1(Z)). — Let M be either M1(Z),
M⩽1(Z) or the closed norm ball {µ ∈ M±(Z) : ∥µ∥∞ ⩽ 1} of M±(Z).
Then, M is weakly compact if and only if Z is compact.

We give a short proof of this statement. As M1(Z) is closed in M±(Z)
for the weak topology, if M is weakly compact, then M1(Z) is also weakly
compact, and thus Z is compact by [52, Theorem 3.4]. Conversely, if Z is
compact, then by [14, Theorem 1.3.3], we know that M±(Z) (endowed with
the weak topology) is the topological dual space of Cb(Z) (endowed with
the uniform convergence topology), thus using Banach–Alaoglu theorem
(see [14, Theorem 1.3.6]), we get that the closed unit norm-ball of M±(Z),
and thus M, are compact for the weak topology.

We recall the following result, which is an equivalent of Prokhorov’s
theorem for signed measures.

Lemma 2.8 (Prokhorov’s theorem for signed measures, [14, Theorems
2.3.4 and 3.1.9]). — Let Z be a Polish space, and let M ⊂ M±(Z) be a
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subset of signed measures on Z. Then the following conditions are equiva-
lent:

(i) M is relatively sequentially compact, that is every sequence (µn)n∈N
in M contains a subsequence which weakly converges in M±(Z).

(ii) M is relatively compact for the weak topology, that is the closure
of M is compact for the weak topology.

(iii) The family M is tight and bounded.

Remark 2.9 (On the weak sequential topology). — When the space Z
is infinite, the weak topology does not coincide with the weak sequential
topology on M±(Z) (but recall from Remark 2.6 that their compact sets
are the same). Recall that if the space Z is compact, then the unit norm
ball of M±(Z) is metrizable, and thus the weak topology and the weak
sequential topology coincide on it. However, if the space Z is non-compact,
then the weak topology and the weak sequential topology do not coincide
on the unit norm ball of M±(Z).

We give a short proof of those statements according to Z being compact
or not.

(i) Recall that when Z is an infinite compact space (for instance Z =
[0, 1]), the Banach space Cb(Z) is infinite-dimensional and separa-
ble (using Stone–Weierstrass theorem), and its topological dual is
(Cb(Z))∗ = M±(Z) (see [14, Theorem 1.3.3]). Thus, using [33, The-
orem 2.5], we get the existence of a countable subset which is weak
sequentially closed yet weak dense in M±(Z). In particular, the
weak sequential topology and the weak topology do not coincide on
M±(Z).

(ii) Assume that the space Z is non-compact. Thus, Z contains a count-
able closed subset F whose points are at mutual distances uniformly
bounded away from zero. By [14, Remark 3.1.7], the weak topology
on M±(F ) for a closed subset F coincides with the trace of the weak
topology on the whole space. By [14, Section 3.1, p. 102], M±(F ) is
homeomorphic to ℓ1 both endowed with their weak topology, weak
convergence on ℓ1 is equivalent to norm convergence, and the weak
topology on ℓ1 is not sequential, even on the unit norm ball. Hence,
the weak topology on M±(Z) is not sequential, even on the unit
norm ball.

We define the notion of a quasi-convex distance, which generalizes the
convexity of a norm.
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Definition 2.10 (Quasi-convex distance). — Let (X, d) be a metric
space which is a convex subset of a vector space. The distance d is quasi-
convex if for all x1, x2, y1, y2 ∈ X and all α ∈ [0, 1], we have:

d(αx1 + (1 − α)x2, αy1 + (1 − α)y2) ⩽ max(d(x1, y1), d(x2, y2)).

In particular, any distance (on a convex subset of a vector space) which
derives from a norm is quasi-convex.

Lemma 2.11. — Let dm be distance on Mϵ(Z) with ϵ ∈ {+,±} which
is quasi-convex and sequentially continuous with respect to the weak topol-
ogy. Then, dm is uniformly continuous with respect to ∥ · ∥∞ on Mϵ(Z).

Proof. — We shall simply consider the case M = M+(Z), the other
case being simpler. We first check that for all µ ∈ M and ε > 0, there
exists η > 0 such that for all ν ∈ M, we have that ∥µ − ν∥∞ < η implies
dm(µ, ν) < ε. As dm is sequentially continuous w.r.t. the weak topology,
it is also (sequentially) continuous w.r.t. the strong topology. Let µ ∈ M
and ε > 0. Then, the set {ν ∈ M : dm(µ, ν) < ε} is an open set of M
containing µ both for dm and for the strong topology. Thus, it contains a
neighborhood of µ for the strong topology {ν ∈ M : ∥µ − ν∥∞ < η} for
η > 0 small enough. This proves the claim.

As dm is quasi-convex and M is a cone, for µ, ν ∈ M we have:

dm(µ, µ+ ν) = dm

(
1
2 · (2µ+ 0), 1

2 · (2µ+ 2ν)
)

⩽ max(dm(2µ, 2µ), dm(0, 2ν))
= dm(0, 2ν).

Let ε > 0 be fixed. We choose η ∈ (0, 1) such that ∥ν∥∞ < η, with
ν ∈ M, implies dm(0, ν) < ε. Let µ, ν ∈ M be such that ∥µ− ν∥∞ < η/2.
Let λ′ = µ + ν and f (resp. g) the density of µ (resp. ν) with respect to
λ′. We set π = min(f, g)λ′, µ′ = (f − g)+ λ

′ and ν′ = (f − g)− λ
′ so that

π, µ′, ν′ ∈ M, µ = π+ µ′ and ν = π+ ν′. Since µ′ − ν′ = µ− ν and µ′ and
ν′ are mutually singular, we deduce that ∥µ′∥∞ + ∥ν′∥∞ < η/2. We get:

dm(µ, ν) = dm(π + µ′, π + ν′) ⩽ dm(π, π + µ′) + dm(π, π + ν′)
⩽ dm(0, 2µ′) + dm(0, 2ν′)
⩽ 2ε.

Hence, the distance dm is uniformly continuous with respect to ∥ · ∥∞ on
M. □
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3. Measure-valued graphons and the cut distance

In Section 3.1, we introduce the measure-valued graphons, which are a
generalization of real-valued graphons (i.e. [0, 1]-valued measurable func-
tions defined on [0, 1]2). We refer to the monography [46] on real-valued
graphons for more details. Contrary to the case of [0, 1] with its usual
topology, there is no canonical distance inducing the weak topology on
M1(Z). In Sections 3.2, 3.3 and 3.4, starting from a distance dm inducing
the weak topology on measures, we introduce the cut distance, and its unla-
beled variant, on the space of measure-valued graphons which are analogous
to the ones for real-valued graphons (see [46, Chapter 8]). In Section 3.5,
we define a weak isomorphism relation for measure-valued graphons based
on this distance, which is analogous to the weak isomorphism relation for
real-valued graphons (see [46, Sections 7.3 and 10.7]). Then, in Section 3.6,
we give an alternative combinatorial formulation of the cut distance for
stepfunctions.

3.1. Definition of measure-valued graphons

We start by defining measure-valued kernels and graphons which are a
generalization of real-valued kernels and graphons. Recall that Z is a Polish
space and M±(Z) is the space of finite signed measures.

Definition 3.1 (Signed measure-valued kernels). — A signed measure-
valued kernel or M±(Z)-valued kernel is a map W from [0, 1]2 to M±(Z),
such that:

(i) W is measurable in (x, y): for every measurable set A ⊂ Z, the
function (x, y) 7→ W (x, y;A) defined on [0, 1]2 is measurable.

(ii) W is bounded:

(3.1) ∥W∥∞ := sup
x,y∈[0,1]

∥W (x, y; ·)∥∞ < +∞.

We denote by W1 (resp. W⩽1, resp. W+, resp. W±) the space of prob-
ability measure-valued kernels or simply probability-graphons (resp. sub-
probability measure-valued kernels, resp. measure-valued kernels, resp.
signed measure-valued kernels), where we identify kernels that are equal
a.e. on [0, 1]2, with respect to the Lebesgue measure. Then, (3.1) should
be read with an essential supremum instead of a supremum. In what fol-
lows, we always assume for simplicity that we choose representatives of
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measure-valued kernels such that ∥W∥∞ is also the essential supremum of
(x, y) 7→ ∥W (x, y; ·)∥∞.

For M ⊂ M±(Z), we denote by WM the subset of signed measure-
valued kernels W ∈ W± which are M-valued: W (x, y; ·) ∈ M for every
(x, y) ∈ [0, 1]2.

Remark 3.2 (On real-valued kernels). — Let Z = {0, 1} be equipped with
the discrete topology. Every real-valued graphon w can be represented using
a probability-graphon W defined for every x, y ∈ [0, 1] by W (x, y; dz) =
w(x, y)δ1(dz) + (1 − w(x, y))δ0(dz), where δz is the Dirac mass located at
z. In particular we have that w(x, y) = W (x, y; {1}) for x, y ∈ [0, 1].

Let W ∈ W± be a signed measure-valued kernel. Define the map W+ :
[0, 1]2 → M+(Z) to be the positive part of W , i.e. for every (x, y) ∈ [0, 1]2,
W+(x, y; ·) is the positive part of the measure W (x, y; ·). Similarly define
W− : [0, 1]2 → M+(Z) the negative part of W ; and then define |W | =
W+ + W− the total variation of W and ∥W∥ = |W |(Z) the total mass of
W .

Lemma 3.3 (The positive part W+ of a kernel). — The maps W+,
W− and |W | are all measure-valued kernels, and the map ∥W∥ : (x, y) 7→
∥W (x, y; ·)∥∞ is measurable.

Proof. — The statements for |W | and ∥W∥ are immediate consequences
of the statements for W+ and W−; and as the proof for W+ and W− are
similar, we only need to prove that W+ is a measure-valued kernel. It is im-
mediate that W+ is bounded and that for every (x, y) ∈ [0, 1]2, W+(x, y; ·)
is a measure in M+(Z). Thus, we are left to prove the measurability of
W+ in (x, y). By [22, Proposition 2.1] and Remark 2.4, a signed measure-
valued kernel U is measurable in (x, y) (i.e. for every A ∈ B(Z), the map
(x, y) 7→ U(x, y;A) is measurable) if and only if the map (x, y) 7→ U(x, y; ·)
is measurable from [0, 1]2 (with its Borel σ-field) to M±(Z) equipped with
the Borel σ-field generated by the weak topology. By [22, Theorem 2.8], the
map µ 7→ µ+, that associates to a signed measure the positive part of its
Hahn–Jordan decomposition, is measurable from M±(Z) to M+(Z) both
endowed with the Borel σ-field generated by the weak topology. Consider-
ing the composition of W and µ 7→ µ+, we get that W+ is measurable in
(x, y) and is thus a measure-valued kernel. □

Remark 3.4 (Probability-graphons W : Ω × Ω → M1(Z)). — Similarly
to the case of real-valued graphons, it is possible to replace the vertex-
type space [0, 1] by any standard probability space (Ω,A, π) that might
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be more appropriate to represent vertex-types for some applications, and
to consider probability-graphons of the form W : Ω × Ω → M1(Z). We
recall that a standard probability space (Ω,A, π) is a probability space
such that there exists a measure-preserving map φ : [0, 1] → Ω, where [0, 1]
is endowed with the Borel σ-field and the Lebesgue measure. In particular,
every Polish space endowed with its Borel σ-field is a standard probability
space. As an example, the space [0, 1]2 equipped with the Borel σ-field and
the Lebesgue measure λ2 is a standard probability space; we will reuse this
fact later.

Using the measure preserving map φ, it is then possible to consider an
unlabeled version Wφ of W constructed on Ω′ = [0, 1], and to modify the
definition of the cut distance δ□,m similarly as in [35, Theorem 6.9] to allow
each probability-graphon to be constructed on different standard probabil-
ity spaces. For simplicity, in this article we only consider the equivalent
case where all probability-graphons are constructed on Ω = [0, 1].

Remark 3.5 (Symmetric kernels). — We shall consider non-symmetric
measure-valued kernels and probability-graphons in order to handle di-
rected graphs whose adjacency matrices are thus a priori non-symmetric.
We say that a measure-valued kernel or graphon W is symmetric if for a.e.
x, y ∈ [0, 1], W (x, y; ·) = W (y, x; ·).

We define stepfunction measure-valued kernels which are often used for
approximation.

Definition 3.6 (Signed measure-valued stepfunctions). — A signed
measure-valued kernel W ∈ W± is a stepfunction if there exists a finite par-
tition of [0, 1] into measurable (possibly empty) sets, say P = {S1, · · · , Sk},
such that W is constant on the sets Si × Sj , for 1 ⩽ i, j ⩽ k. We say that
W and the partition P are adapted to each other. We write |P| = k the
number of elements of the partition P.

Throughout the article, we shall only consider partitions composed of
measurable subsets.

3.2. The cut distance

We define a distance and a norm on signed measure-valued graphons
and kernels, called the cut distance and the cut norm respectively which
are analogous to the cut norm for real-valued graphons and kernels, see [46,
Chapter 8]. For a signed measure-valued kernel W ∈ W± and a measurable
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subsets A ⊂ [0, 1]2, we denote by W (A; ·) the signed measure on Z defined
by:

W (A; ·) =
∫
A

W (x, y; ·) dxdy.

Definition 3.7 (The cut distance d□,m). — Let dm be a quasi-convex
distance on M a convex subset of M±(Z) containing the zero measure.
The associated cut distance d□,m is the function defined on W2

M by:

(3.2) d□,m(U,W ) = sup
S,T⊂[0,1]

dm

(
U(S × T ; ·),W (S × T ; ·)

)
,

where the supremum is taken over all measurable subsets S and T of [0, 1].

Notice that the right-hand side of (3.2) is well defined as M contains the
zero measure (and thus if U belongs to WM then U(A; ·) belongs to M).

Definition 3.8 (The cut norm N□,m). — The cut norm N□,m associ-
ated with a norm Nm on M±(Z) is the function defined on W± by:

N□,m(W ) = sup
S,T⊂[0,1]

Nm

(
W (S × T ; ·)

)
,

where the supremum is taken over all measurable subsets S and T of [0, 1].

The next proposition states that the cut distance (resp. norm) is indeed
a distance (resp. norm); its extension to distances on M+(Z) and M±(Z)
is immediate.

Proposition 3.9 (d□,m is a distance, N□,m is a norm). — The cut
distance d□,m associated with a distance dm on M⩽1(Z) (resp. M+(Z)) is
a distance on W1 (resp. W+). The cut norm N□,m associated with a norm
Nm on M±(Z) is a norm on W±.

Moreover, when the distance dm on M⩽1(Z) (resp. M+(Z)) derives from
a norm Nm on M±(Z), then the distance d□,m derives also from the norm
N□,m.

Proof. — Let dm be a distance on M⩽1(Z) (the proof for the case M+(Z)
is similar). It is clear that d□,m is symmetric and satisfies the triangular
inequality. Thus, we only need to prove that d□,m is separating. Let U and
W be two probability-graphons such that d□,m(U,W ) = 0. Then, for every
measurable subsets S, T ⊂ [0, 1], we have U(S × T ; ·) = W (S × T ; ·). Let
F = (fk)k∈N be a separating sequence. For every k ∈ N, and for every mea-
surable subsets S, T ⊂ [0, 1], we have that U(S × T ; fk) = W (S × T ; fk).
This implies that U(x, y; fk) dxdy = W (x, y; fk) dxdy for all k ∈ N. Hence,
we deduce that for all k ∈ N, U(x, y; fk) = W (x, y; fk) for almost every
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(x, y) ∈ [0, 1]2. Thus, U(x, y; ·) = W (x, y; ·) for almost every (x, y) ∈ [0, 1]2.
This implies that d□,m is separating on W1, and thus a distance on W1.

The proof for the cut norm is similar. The proof of the last part of the
proposition is clear. □

3.3. Graphon relabeling, invariance and smoothness properties

The analogue of graph relabelings for graphons are measure-preserving
maps. Recall the definition of a measure-preserving map from Section 2,
and in particular (2.1). Recall S̄[0,1] denotes the set of measure-preserving
(measurable) maps from [0, 1] to [0, 1] endowed with the Lebesgue measure,
and S[0,1] denotes its subset of bijective maps.

The relabeling of a signed measure-valued kernel W by a measure-
preserving map φ, is the signed measure-valued kernel Wφ defined for every
x, y ∈ [0, 1] and every measurable set A ⊂ Z by:

Wφ(x, y;A) = W (φ(x), φ(y);A) for x, y ∈ [0, 1] and A ⊂ Z measurable.

We say that a subset K ⊂ W± is uniformly bounded if:

(3.3) sup
W∈K

∥W∥∞ < +∞.

Definition 3.10 (Invariance and smoothness of a distance on kernels).
Let d be a distance on W1 (resp. W+ or W±). We say that the distance d
is:

(i) Invariant: if d(U,W ) = d(Uφ,Wφ) for every bijective measure-
preserving map φ ∈ S[0,1] and U, V ∈ W1 (resp. U, V belongs to
W+ or W±).

(ii) Smooth: if a.e. weak convergence implies convergence for d, that
is, if (Wn)n∈N and W are kernels from W1 (resp. kernels from W+
or W± that are uniformly bounded and) such that for a.e. (x, y) ∈
[0, 1]2, Wn(x, y; ·) weakly converges to W (x, y; ·) as n → ∞, then
limn→∞ d(Wn,W ) = 0.

We say that a norm N on W± is invariant (resp. smooth) if its associated
distance d on W± is invariant (resp. smooth).

We shall see in Section 3.8 some examples of distances dm for which
the associated cut distance d□,m is invariant and smooth. The invariance
property from Definition 3.10 is always satisfied by the cut distance, and
thus also by the cut norm.
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Lemma 3.11 (d□,m is invariant). — Let dm be a distance on M⩽1(Z)
(resp. M+(Z), resp. M±(Z)). Then the cut distance d□,m on W1 (resp.
W+, resp. W±) is invariant.

Proof. — For a signed measure-valued kernel W , a bijective measure-
preserving map φ ∈ S[0,1], and measurable sets S, T ⊂ [0, 1], we have
thanks to (2.1):∫

S×T
Wφ(x, y; ·) dxdy =

∫
S×T

W (φ(x), φ(y); ·) dxdy

=
∫
φ(S)×φ(T )

W (x, y; ·) dxdy.

Hence, taking the supremum over every measurable sets S, T ⊂ [0, 1], we
get that the cut distance d□,m is invariant. □

When a smooth distance on W1 or W+ derives from a distance on M1(Z)
or M+(Z), we have the following result.

Lemma 3.12 (Smoothness and the weak topology). — Let dm be a dis-
tance on M⩽1(Z) (resp. M+(Z) or M±(Z)) such that the distance d□,m
on W1 (resp. W+ or W±) is smooth. Then, the distance dm is continuous
w.r.t. the weak topology on M1(Z) (resp. M+(Z)).

Proof. — Let (µn)n∈N, and µ be measures from M1(Z) (resp. M+(Z))
such that (µn)n∈N weakly converges to µ. Consider the constant measure-
valued graphons (resp. kernels) Wn ≡ µn, n ∈ N, and W ≡ µ. Then, for ev-
ery x, y ∈ [0, 1], Wn(x, y; ·) weakly converges to W (x, y; ·) as n → ∞. As the
distance d□,m is smooth, we get that limn→∞ d□,m(Wn,W ) = 0. Consider-
ing S = T = [0, 1] in the cut distance, we deduce that limn→∞ dm(µn, µ) =
0. □

The next lemma is a partial converse of Lemma 3.12, it gives sufficient
conditions for d□,m to be smooth. Recall the definition of a quasi-convex
distance in Definition 2.10.

Proposition 3.13 (d□,m is smooth). — Let dm be distance on Mϵ(Z)
with ϵ ∈ {+,±} which is quasi-convex and sequentially continuous w.r.t.
the weak topology (on Mϵ(Z)). Then, the cut distance d□,m is smooth.

Moreover, for all U,W ∈ Wϵ, and for all measurable A ⊂ [0, 1]2, we have:

(3.4) dm(U(A; ·),W (A; ·)) ⩽ essup
(x,y)∈A

dm(U(x, y; ·),W (x, y; ·)).

To prove Proposition 3.13, we first need to prove the following lemma
for approximation by M-valued kernels taking finitely many values.
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Lemma 3.14. — Let W ∈ W± and consider a subset A ⊂ [0, 1]2. There
exists a sequence (Wn)n∈N in W± such that (Wn(A; ·))n∈N weakly converges
to W (A; ·) and for all n ∈ N, Wn is finitely valued and takes its values in
{W (x, y; ·) : (x, y) ∈ A}.

Proof. — By scaling, we may assume that ∥W∥∞ ⩽ 1. Let (fk)k∈N be a
convergence determining sequence with f0 = 1 and fk taking values in [0, 1].
Thus, for all (x, y) ∈ [0, 1]2, ϵ ∈ {±1} and k ∈ N, we have Wϵ(x, y; fk) ∈
[0, 1]. For all n ∈ N, let (Cn,j)1⩽j⩽dn be a partition of [0, 1]2(n+1) into
dn = n2(n+1) hypercubes of edge-length rn = 1/n. Then, for all n ∈ N and
j ∈ [dn], define Bn,j = A ∩ (W+(·; (fj)0⩽j⩽n),W−(·; (fj)0⩽j⩽n))−1(Cn,j);
thus we get a partition (Bn,j)1⩽j⩽dn

of A. If Bn,j ̸= ∅, fix some µn,j ∈
{W (x, y; ·) : (x, y) ∈ Bn,j}. If A ̸= [0, 1]2, fix some µ∂ ∈ {W (x, y; ·) :
(x, y) ∈ [0, 1]2 \A}. For n ∈ N, we define Wn = 1Ac µ∂ +

∑dn

j=1 1Bn,j
µn,j ,

which is finitely valued and takes its values in {W (x, y; ·) : (x, y) ∈ A}.
Let k ∈ N and ϵ ∈ {±}. For all n ⩾ k, we have:

|Wϵ(A; fk) − (Wn)ϵ(A; fk)| ⩽
dn∑
j=1

∫
Bn,j

|Wϵ(x, y; fk) − (µn,j)ϵ| dxdy ⩽
1
n

·

As (fk)k∈N is convergence determining, this implies that ((Wn)ϵ(A; ·))n∈N
weakly converges to Wϵ(A; ·) for ϵ ∈ {±}. Hence, (Wn(A; ·))n∈N weakly
converges to W (A; ·). □

Proof of Proposition 3.13. — As dm is quasi-convex, (3.4) is immediate
when U and W take only finitely many values. Now, assume that U and
W are arbitrary Mϵ(Z)-valued kernels. Let ε > 0. As dm is sequentially
continuous w.r.t. the weak topology, using Lemma 3.14, there exist two
Mϵ(Z)-valued kernels U ′ and W ′ such that dm(U ′(A; ·), U(A; ·)) < ε and
U ′ is finitely valued and takes its values in {U(x, y; ·) : (x, y) ∈ A}, and
similarly for W ′ and W . Thus, we have:

dm(U(A; ·),W (A; ·)) ⩽ 2ε+ essup
(x,y)∈A

dm(U(x, y; ·),W (x, y; ·)),

and this being true for all ε > 0, we get (3.4).

Let (Wn)n∈N and W be Mϵ(Z)-valued kernels which are uniformly
bounded by some constant C < ∞ and such that for a.e. (x, y) ∈ [0, 1]2,
the sequence ((Wn(x, y; ·))n∈N converges to W (x, y; ·) for the weak topol-
ogy, and thus also for dm. Let ε > 0 and S, T ⊂ [0, 1]. As dm is quasi-convex
and sequentially continuous w.r.t. the weak topology, using Lemma 2.11,
there exists η > 0 such that for all µ, ν ∈ Mϵ(Z), we have that ∥µ−ν∥∞ < η
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implies dm(µ, ν) < ε. For all n ∈ N, define the measurable set:

An = {(x, y) ∈ S × T : dm(Wn(x, y; ·),W (x, y; ·)) < ε}.

By assumption, we have that limn→∞ λ(An) = λ(S × T ). Let N ∈ N be
such that for n ⩾ N , we have λ((S × T ) \An) < η/C. Let n ⩾ N . Remark
that Wn((S × T ) \ An; ·) and W ((S × T ) \ An; ·) have total mass at most
Cλ(Acn) < η. Thus, we have that dm(Wn(An; ·),Wn(S × T ; ·)) < ε and
dm(W (An; ·),W (S × T ; ·)) < ε. Hence, using (3.4) we get that:

dm(Wn(S × T ; ·),W (S × T ; ·)) ⩽ 2ε+ dm(Wn(An; ·),W (An; ·))
⩽ 2ε+ essup

(x,y)∈An

dm(Wn(x, y; ·),W (x, y; ·))

⩽ 3ε.

Taking the supremum over S, T ⊂ [0, 1], we get d□,m(Wn,W ) ⩽ 3ε. This
being true for all ε > 0, we conclude that (Wn)n∈N converges to W for
d□,m, and thus d□,m is smooth. □

3.4. The unlabeled cut distance

We can now define the cut distance for unlabeled graphons.

Definition 3.15 (The unlabeled cut distance δ□,m). — Set K ∈
{W1,W+,W±}. Let d be an invariant distance on the kernel space K. The
pseudometric δ□ on K, also called the cut distance, is defined by:

(3.5) δ□(U,W ) = inf
φ∈S[0,1]

d(U,Wφ) = inf
φ∈S[0,1]

d (Uφ,W ) .

Notice that δ□ satisfies the symmetry property (as d is invariant) and the
triangular inequality. Hence, δ□ induces a distance (that we still denote by
δ□) on the quotient space K̃d = K/ ∼d of kernels in K associated with the
equivalence relation ∼d defined by U ∼d W if and only if δ□(U,W ) = 0.

When the metric d = d□,m on K = W1 (resp. W+, resp. W±) derives from
a metric dm on M⩽1(Z) (resp. M+(Z), resp. M±(Z)), and is thus invariant
thanks to Lemma 3.11, we write δ□,m for δ□ and K̃m for K̃d□,m . We shall
see in Theorem 5.5 and Corollary 5.6 that under some conditions, different
choices of distance dm, which induces the weak topology on M⩽1(Z), lead
to the same quotient space, then simply denoted by W̃1, with the same
topology.
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3.5. Weak isomorphism

Similarly to Theorem 8.13 in [46], when the distance dm is such that
d□,m is invariant and smooth, we can rewrite the cut distance δ□,m as a
minimum instead of an infimum using measure-preserving maps, see the
last equality in (3.6).

We introduce a weak isomorphism relation that allows to “un-label”
probability-graphons.

Definition 3.16 (Weak isomorphism). — We say that two signed
measure-valued kernels U and W are weakly isomorphic (and we note
U ∼ W ) if there exists two measure-preserving maps φ,ψ ∈ S̄[0,1] such
that Uφ(x, y; ·) = Wψ(x, y; ·) for a.e. x, y ∈ [0, 1].

We denote by W̃M = WM/ ∼ the space of unlabeled M-valued kernels
i.e. the space of M-valued kernels where we identify M-valued kernels that
are weakly isomorphic. For M = Mϵ(Z) with ϵ ∈ {1,⩽ 1,+,±}, we simply
write W̃ϵ = W̃M = Wϵ/ ∼.

Notice that U ∼ W implies that ∥U∥∞ = ∥W∥∞ (we recall that signed
measure-valued kernels are only defined for a.e. x, y ∈ [0, 1] and that ∥W∥∞
in (3.1) is an essup in general). In particular, the notion of uniformly
bounded subset defined in (3.3) naturally extends to W̃±. The last part
of this section is devoted to the proof of the following key result.

Theorem 3.17 (Weak isomorphism and δ□). — Let d be a distance
defined on W1 (resp. W+ or W±) which is invariant and smooth. Then,
two kernels are weakly isomorphic, i.e. U ∼ W , if and only if U ∼d W , i.e.
δ□(U,W ) = 0.

Furthermore, the map δ□ is a distance on W̃1 = W̃1,d (resp. W̃+ = W̃+,d

or W̃± = W̃±,d).

As a first step in the proof of Theorem 3.17, following [46], we give a
nice description of δ□ using couplings. We say that a measure µ on [0, 1]2
is a coupling measure on [0, 1]2 (between two copies of [0, 1] each equipped
with the Lebesgue measure) if the projection maps on each component
τ, ρ : [0, 1]2 → [0, 1] (where [0, 1]2 is equipped with the measure µ and [0, 1]
with the Lebesgue measure λ) are measure-preserving. In particular, for
every kernel W on ([0, 1],B([0, 1]), λ), the function W τ is a kernel on the
probability space ([0, 1]2,B([0, 1]2), µ), and similarly for the projection ρ.

Let φ be a given measure-preserving map from [0, 1] with the Lebesgue
measure to [0, 1]2 with a coupling measure µ. For an invariant distance d on
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W1 (resp. W±), we define a distance, say dµ, on kernels on
([0, 1]2,B([0, 1]2), µ) by:

dµ(U ′,W ′) = d(U ′φ,W ′φ).

It is easy to see that, for U and W kernels on [0, 1], we have dµ(Uτ ,W τ ) =
d(U,W ) as d is invariant and τ ◦φ is a measure-preserving map from [0, 1]
to itself; and similarly dµ(Uρ,W ρ) = d(U,W ).

A straightforward adaptation of the proof of [46, Theorem 8.13] gives
the next result.

Proposition 3.18 (Minima in the cut distance δ□). — Let d be a dis-
tance defined on W1 (resp. W+ or W±) which is invariant and smooth.
Then, we have the following alternative formulations for the cut distance
δ□ on W1 (resp. W+ or W±):

(3.6)

δ□(U,W ) = inf
φ∈S[0,1]

d(U,Wφ) = inf
φ∈S̄[0,1]

d(U,Wφ)

= inf
ψ∈S[0,1]

d(Uψ,W ) = inf
ψ∈S̄[0,1]

d(Uψ,W )

= inf
φ,ψ∈S[0,1]

d(Uψ,Wφ) = min
φ,ψ∈S̄[0,1]

d(Uψ,Wφ),

and
δ□(U,W ) = min

µ
dµ (Uτ ,W ρ)

where µ range over all coupling measures on [0, 1]2.

Proof of Theorem 3.17. — We deduce from the last equality in (3.6) that
δ□(U,W ) = 0 if and only if there exist measure-preserving maps φ,ψ ∈
S̄[0,1] such that Uψ(x, y; ·) = Wφ(x, y; ·) for a.e. x, y ∈ [0, 1]. This gives that
the equivalence relations ∼d and ∼ are the same. □

3.6. The cut norm for stepfunctions

For a quasi-convex distance dm, the cut distance dm for stepfunctions can
be reformulated using a finite combinatorial optimization. For a collection
of subsets P, denote by σ(P) the σ-field generated by P.

Lemma 3.19 (Combinatorial optimization of quasi-convex dm for
stepfunctions). — Let dm be a quasi-convex distance on M a convex sub-
set of M±(Z) containing the zero measure. Let U,W ∈ WM be M-valued
stepfunctions adapted to the same finite partition P. Then, there exists
S, T ∈ σ(P) such that:

d□,m(U,W ) = dm(U(S × T ; ·),W (S × T ; ·)).
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Proof. — Let P = {S1, . . . , Sk} with k = |P| the size of the partition
P. First, remark that the quantity d□,m(U,W ) = dm(U(S′ ×T ′; ·),W (S′ ×
T ′; ·)) depends on S′ and T ′ only through the values of λ(S′ ∩ Si) and
λ(T ′ ∩ Si) for 1 ⩽ i ⩽ k. Thus, the cut distance between U and W can be
reformulated as:

d□,m(U,W )

= sup
0⩽αi,βi⩽λ(Si); 1⩽i⩽k

dm

 ∑
1⩽i,j⩽k

αiβj µi,j(·),
∑

1⩽i,j⩽k
αiβj νi,j(·)

 ,

where µi,j (resp. νi,j) is the constant value of U(x, y; ·) (resp. W (x, y; ·))
when x ∈ Si and y ∈ Sj . Moreover, when we fix the value of β = (βi)1⩽i⩽k,
the quantity

dm

 ∑
1⩽i,j⩽k

αiβj µi,j(·),
∑

1⩽i,j⩽k
αiβj νi,j(·)


is a quasi-convex function of α = (αi)1⩽i⩽k, and thus realizes its maximum
on the extremal points of the hypercube

∏k
i=1[0, λ(Si)], i.e. when αi equals

0 or λ(Si) for every 1 ⩽ i ⩽ k. By symmetry, a similar argument holds
for β. The cut distance can thus be reformulated as the combinatorial
optimization:

d□,m(U,W ) = max
I,J⊂[k]

dm

 ∑
i∈I,j∈J

µi,j(·),
∑

i∈I,j∈J
νi,j(·)

 .

Let I, J ⊂ [k] be index sets that maximize this combinatorial optimization,
and take S = ∪i∈ISi and T = ∪j∈JSj to conclude. □

3.7. The supremum in S and T in the cut distance d□,m

In this section, we prove that the supremum in the cut distance d□,m is
achieved by some subsets S, T ⊂ [0, 1].

For W ∈ M±(Z) and f, g : [0, 1] → [0, 1] measurable, we define the
signed measure:

W (f ⊗ g; ·) =
∫

[0,1]2
W (x, y; ·)f(x)g(y) dxdy.

Remark that if we have W ∈ Wϵ with ϵ ∈ {1,⩽ 1,+,±}, then we have
W (f ⊗ g; ·) ∈ Mϵ(Z).
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Note that a similar result was already known for real-valued kernels, see
[46, Lemma 8.10].

Lemma 3.20 (The supremum in the cut distance d□,m for quasi-convex
distance dm). — Let dm be a quasi-convex distance on Mϵ(Z) with ϵ ∈
{+,±} that is sequentially continuous w.r.t. the weak topology. Let U,W ∈
Wϵ. Then, there exist measurable subsets S, T ⊂ [0, 1] such that f = 1S

and g = 1T achieve the supremum in:

sup
f,g

dm

(
U(f ⊗ g; ·),W (f ⊗ g; ·)

)
where the supremum is taken over measurable functions f, g from [0, 1] to
itself.

In the proof and later on we shall use the following notation. ForW ∈ W±
and f ∈ Cb(Z), we denote by W [f ] the real-valued kernel defined by:

(3.7) W [f ](x, y) = W (x, y; f) =
∫

Z
f(z) W (x, y; dz).

Proof. — Define the map Ψ : (f, g) 7→ dm(U(f ⊗ g; ·),W (f ⊗ g; ·)), and
denote C = supf,g Ψ(f, g), where the supremum is taken over measurable
functions f, g from [0, 1] to itself. Let (fn)n∈N and (gn)n∈N be sequences
of measurable functions from [0, 1] to itself such that limn→∞ Ψ(fn, gn) =
C. As the unit ball of L∞([0, 1], λ) is compact for the weak-∗ topology
(with primal space L1([0, 1], λ)), upon taking subsequences, we may as-
sume that (fn)n∈N (resp. (gn)n∈N) weak-∗ converges to some f (resp. g)
which take values in [0, 1]. Thus, (fn⊗ gn)n∈N weak-∗ converges to f ⊗ g in
L∞([0, 1]2, λ2). In particular, for every h ∈ Cb(Z), as W [h] is a real-valued
kernel, this implies that limn→∞ W (fn ⊗ gn;h) = W (f ⊗ g;h). This being
true for every h ∈ Cb(Z), we get that the sequence (W (fn ⊗ gn; ·))n∈N in
Mϵ(Z) weakly converges to W (f ⊗ g; ·) ∈ Mϵ(Z); and similarly for U . As
dm is sequentially continuous w.r.t. the weak topology on Mϵ(Z), we get
that C = limn→∞ Ψ(fn, gn) = Ψ(f, g).

Now, we show that we can replace the functions f and g by functions
that only take the values 0 and 1 (i.e. indicator functions). We first fix
g and do this for f . Let X be a random variable uniformly distributed
over [0, 1], and consider the random function 1X⩽f . Remark that we have
E[W (1X⩽f ⊗g; ·)] = W (f⊗g; ·), and similarly for U . As dm is quasi-convex
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and sequentially continuous w.r.t. the weak topology, we have:

C ⩾ sup
x∈[0,1]

dm(U(1x⩽f ⊗ g; ·),W (1x⩽f ⊗ g; ·))

⩾ dm

(
E[U(1X⩽f ⊗ g; ·)],E[W (1X⩽f ⊗ g; ·)]

)
= dm(U(f ⊗ g; ·),W (f ⊗ g; ·))
= C,

where in the second equality we used the quasi-convex supremum inequal-
ity from (3.4) with the Mϵ(Z)-valued kernels U ′(x, y; ·) = U(1x⩽f ⊗ g; ·)
and W ′(x, y; ·) = W (1x⩽f ⊗ g; ·), and A = [0, 1]2. All inequalities being
equalities, this imposes:

C = sup
x∈[0,1]

dm
(
U(1x⩽f ⊗ g; ·),W (1x⩽f ⊗ g; ·)

)
= lim
n→∞

dm
(
U(1xn⩽f ⊗ g; ·),W (1xn⩽f ⊗ g; ·)

)
,

for some sequence (xn)n∈N in [0, 1]. Upon taking a subsequence, we may as-
sume that the sequence (xn)n∈N monotonically converges to some x ∈ [0, 1].
In particular, the sequence of functions (1xn⩽f )n∈N (monotonically) con-
verges to the function f ′ = 1x⩽f (resp. f ′ = 1x<f ) if (xn)n∈N is non-
decreasing (resp. decreasing), and thus also weak-∗ converges
in L∞([0, 1], λ). Using, as in the first part of the proof, the sequential conti-
nuity of the function Ψ w.r.t. the weak-∗ topology on L∞([0, 1], λ), we get
that Ψ(f ′, g) = dm(U(f ′ ⊗ g; ·),W (f ′ ⊗ g; ·)) = C, that is we can replace f
by the indicator function f ′. The same argument allows to replace g by an
indicator function. □

3.8. Examples of distance dm

We consider usual distances and norms on M+(Z) or M±(Z) that induce
the weak topology on M+(Z). All the distances we consider are quasi-
convex, and all the norms we consider are sequentially continuous w.r.t. the
weak topology on M±(Z). Thus their associated cut distances are invariant
and smooth by Lemma 3.11 and Proposition 3.13. Properties for the cut
distances associated with those distances and norms are summarized in
Corollaries 4.14 and 5.6.

In this section, we assume that (Z, d0) is a Polish metric space, and recall
that B(Z) denotes its Borel σ-field.
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3.8.1. The Lévy–Prokhorov distance dLP

The Lévy–Prokhorov distance dLP is a complete distance defined on the
set of finite measures M+(Z) that induces the weak topology (see [11,
Theorem 6.8]). It is defined for µ, ν ∈ M+(Z) as:

(3.8) dLP(µ, ν)
= inf{ε > 0 : ∀A ∈ B(Z), µ(A) ⩽ ν(Aε) + ε and ν(A) ⩽ µ(Aε) + ε},

where Aε = {x ∈ Z : ∃y ∈ A, d0(x, y) < ε}. For probability measures, we
only need one inequality in (3.8) to define the Lévy–Prokhorov distance;
however for positive measures we need both inequalities as two arbitrary
positive measures might not have the same total mass. For dm = dLP, we
use the subscript m = P. We now prove that the Lévy–Prokhorov distance
is quasi-convex.

Lemma 3.21. — The Lévy–Prokhorov distance dLP is quasi-convex on
M+(Z).

Proof. — Let µ1, µ2, ν1, ν2 ∈ M+(Z) and let α ∈ [0, 1]. Let ε >

max(dLP(µ1, ν1), dLP(µ2, ν2)), then for all i ∈ {1, 2} and B ∈ B(Z), we
have that µi(B) ⩽ νi(Bε) + ε and νi(B) ⩽ µi(Bε) + ε. Taking a linear
combination of those inequalities, we get that for all B ∈ B(Z), we have
that αµ1(B) + (1 − α)µ2(B) ⩽ αν1(Bε) + (1 − α)ν2(Bε) + ε, and similarly
when swapping the role (µ1, µ2) and (ν1, ν2). Hence, we get that dLP(αµ1 +
(1 −α)µ2, αν1 + (1 −α)ν2) ⩽ ε, and taking the infimum over ε, we get that
dm(αµ1 + (1 − α)µ2, αν1 + (1 − α)ν2) ⩽ max(dm(µ1, ν1), dm(µ2, ν2)). □

3.8.2. The Kantorovitch–Rubinshtein and Fortet–Mourier norms

The Kantorovitch–Rubinshtein norm ∥ · ∥KR (sometimes also called the
bounded Lipschitz distance) and the Fortet–Mourier norm ∥ · ∥FM are two
norms defined on M±(Z) that induce the weak topology on M+(Z) (see
Section 3.2 in [14] for definition and properties of those norms). They are
defined for µ ∈ M±(Z) by:

∥µ∥KR = sup
{∫

Z
f dµ : f is 1-Lipschitz and ∥f∥∞ ⩽ 1

}
,

∥µ∥FM = sup
{∫

Z
f dµ : f is Lipschitz and ∥f∥∞ + Lip(f) ⩽ 1

}
,
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where ∥f∥∞ = supx∈Z |f(x)| is the infinity norm and Lip(f) is the smallest
constant L > 0 such that f is L-Lipschitz. Those two norms are metrically
equivalent, see beginning of Section 3.2 in [14]:

(3.9) ∥µ∥FM ⩽ ∥µ∥KR ⩽ 2∥µ∥FM.

Note that we have ∥µ∥KR ⩽ ∥µ∥∞, and thus those two norms are sequen-
tially continuous w.r.t. the weak topology on M±(Z).

An easy adaptation of the proof for Theorem 3.2.2 in [14] gives the
following comparison between dLP, ∥ · ∥KR and ∥ · ∥FM.

Lemma 3.22 (Comparison of dLP, ∥ · ∥KR and ∥ · ∥FM). — Let µ, ν ∈
M+(Z). Then, we have:
dLP(µ, ν)2

1 + dLP(µ, ν) ⩽ ∥µ−ν∥FM ⩽ ∥µ−ν∥KR ⩽
(
2+min(µ(Z), ν(Z))

)
dLP(µ, ν).

In particular, the Lévy–Prokhorov distance dLP is uniformly continuous
w.r.t. ∥ · ∥KR and ∥ · ∥FM on M+(Z); and ∥ · ∥KR and ∥ · ∥FM are uniformly
continuous w.r.t. dLP on M⩽1(Z).

For the special choice Nm = ∥ · ∥KR (resp. Nm = ∥ · ∥FM), we use the
subscript m = KR (resp. m = FM).

3.8.3. A norm based on a convergence determining sequence

From a convergence determining sequence F = (fk)k∈N, where f0 = 1

and fk ∈ Cb(Z) takes values in [0, 1], we define a norm on M±(Z) metrizing
the weak topology on M+(Z), for µ ∈ M±(Z), by:

(3.10) ∥µ∥F =
∑
k∈N

2−k|µ(fk)|.

Note that we have ∥µ∥F ⩽ 2∥µ∥∞, and thus ∥·∥F is sequentially continuous
w.r.t. the weak topology on M±(Z). For the special choice Nm = ∥ · ∥F ,
we use the subscript m = F .

Even though the norm ∥ · ∥F is not complete when Z is not compact
(see Lemma 3.23 below), the cut norm ∥ · ∥□,F and the cut distance δ□,F
will turn out to be very useful in Sections 6 and 7 to link the topology of
the cut distance to the homomorphism densities. Recall dF is the distance
derived from the norm ∥ · ∥F .

Lemma 3.23 (dF is not complete in general). — Let F be a convergence
determining sequence. Then, the distance dF is complete over M1(Z) if and
only if M1(Z) is a compact space, i.e. , if and only if Z is compact.
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Proof. — Theorem 3.4 in [52] states that Z is compact if and only if
M1(Z) is compact. When this is the case, any distance metrizing the weak
topology on M1(Z) is complete.

Reciprocally, assume that dF is a complete metric over M1(Z) and write
F = (fm)m∈N. Let (µn)n∈N be an arbitrary sequence of probability mea-
sures from M1(Z). For every m ∈ N, as fm takes values in [0, 1], we have
for every n ∈ N that µn(fm) ∈ [0, 1]. Hence, using a diagonal extraction,
there exists a subsequence (µnk

)k∈N of the sequence (µn)n∈N such that for
every m ∈ N, the sequence (µnk

(fm))k∈N converges, that is, (µnk
)k∈N is a

Cauchy sequence for the distance dF . As we assumed the distance dF to be
complete, this implies that the sequence (µn)n∈N has a convergent subse-
quence. The sequence (µn)n∈N being arbitrary, we conclude that the space
M1(Z) is sequentially compact, and thus compact by Remark 2.6. □

We denote by ∥·∥□,R (resp. ∥·∥+
□,R) the cut norm (resp. one-sided version

of the cut norm) for real-valued kernels defined as:

∥w∥□,R = sup
S,T⊂[0,1]

∣∣∣∣∫
S×T

w(x, y) dxdy
∣∣∣∣(3.11)

and ∥w∥+
□,R = sup

S,T⊂[0,1]

∫
S×T

w(x, y) dxdy,

where w is a real-valued kernel w (see [46, Section 8.2], resp. [46, Section
10.3], for definition and properties of those objects).

Recall from (3.7) on page 53 the definition of the real-valued kernel W [f ]
for W ∈ W± and f ∈ Cb(Z). The following two remarks link the cut norm
∥ · ∥□,F of a signed measure-valued kernel W with the cut norm ∥ · ∥□,R
of the real-valued kernels W [f ] for some particular choices of functions
f ∈ Cb(Z). We will reuse those facts in Section 6.

Remark 3.24 (Link between ∥ · ∥□,F and ∥ · ∥+
□,R). — For µ ∈ M±(Z) we

have:

(3.12) ∥µ∥F = sup
ε∈{±1}N

∑
n∈N

2−nεnµ(fn) = sup
ε∈{±1}N

µ

(∑
n∈N

2−nεnfn

)
,
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with ε = (εn)n∈N. Hence, for a signed measure-valued kernel W ∈ W±, we
have:

∥W∥□,F = sup
ε∈{±1}N

sup
S,T⊂[0,1]

W

(
S × T ;

∑
n∈N

2−nεnfn

)
(3.13)

= sup
ε∈{±1}N

∥∥∥∥∥W
[∑
n∈N

2−nεnfn

]∥∥∥∥∥
+

□,R

.

Remark 3.25 (Inequality with ∥ · ∥□,F and ∥ · ∥□,R). — For a signed
measure-valued kernel W , we have:

∥W∥□,F = sup
S,T⊂[0,1]

∞∑
n=0

2−n
∣∣∣∣∫
S×T

W (x, y; fn) dxdy
∣∣∣∣

⩽
∞∑
n=0

2−n sup
S,T⊂[0,1]

∣∣∣∣∫
S×T

W (x, y; fn) dxdy
∣∣∣∣

=
∞∑
n=0

2−n∥W [fn]∥□,R.(3.14)

4. Tightness and weak regularity

In this section, using a conditional expectation approach as for real-
valued kernels in [46, Chapter 9], we provide approximations of signed
measure-valued kernels and probability-graphons by stepfunctions. In do-
ing so, we prove that the space of probability-graphons (resp. the space
of signed measure-valued kernels) is separable. We introduce a tightness
criterion for signed measure-valued kernels and probability-graphons sim-
ilar to the one for random measures; it will be used in the next section
to characterise relatively compact subset of probability-graphons. We then
prove a weak regularity property for cut distances which is a uniform ap-
proximation bound for tight subsets of signed measure-valued kernels and
probability-graphons. This weak regularity property is an analogue of the
weak regularity lemma for real-valued kernels from [27, Theorem 12] and
[46, Lemma 9.15], but without an explicit bound on the quality of the ap-
proximation due to the lack of an Euclidean structure for signed measure-
valued kernels. Lastly, we introduce some Euclidean structure on W± linked
to the cut distance d□,F , and we prove a weak regularity lemma with an
explicit bound for signed measure-valued kernel.
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4.1. Approximation by stepfunctions

We start by introducing the partitioning of a signed measure-valued ker-
nel.

Definition 4.1 (The stepping operator). — Let W ∈ W± be a signed
measure-valued kernel and P = {S1, · · · , Sk} be a finite partition of [0, 1].
We define the kernel stepfunction WP adapted to the partition P by aver-
aging W over the partition subsets:

WP(x, y; ·) = 1
λ(Si)λ(Sj)

W (Si × Sj ; ·) for x ∈ Si, y ∈ Sj ,

when λ(Si) ̸= 0 and λ(Sj) ̸= 0, and WP(x, y; ·) = 0 the null measure
otherwise. We call the map W 7→ WP defined on W± the stepping operator
(associated with the finite partition P).

Since the signed measure-valued kernel are defined up to an a.e. equiv-
alence, the value of WP(x, y; ·) for x ∈ Si, y ∈ Sj when λ(Si)λ(Sj) is
unimportant.

Remark 4.2 (Link with conditional expectation). — The stepfunction
WP can be viewed as the conditional expectation of W w.r.t. the (finite)
sigma-field σ(P × P) on [0, 1]2, where W : [0, 1]2 → M±(Z) is seen as a
random signed measure in M±(Z) and the probability measure on [0, 1]2
is the Lebesgue measure.

Remark 4.3 (Steppings are convex stable). — Let M ⊂ M±(Z) be a
convex subset of measures, for instance M is M1(Z), M⩽1(Z), M+(Z)
or M±(Z). Whenever W ∈ W± is a M-valued kernel, then by simple
computation its stepping WP is also a M-valued kernel.

In the following remark, we give a characterization of refining partitions
that generate the Borel σ-field of [0, 1].

Remark 4.4 (On refining partitions that generates the Borel σ-field). —
Let (Pk)k∈N be a sequence of refining partitions of [0, 1]. It generates the
Borel σ-field of [0, 1] (that is, {S : S ∈ Pk, k ∈ N} generates the Borel
σ-field of [0, 1]) if and only if (Pk)k∈N separates points (that is, for every
distinct x, y ∈ [0, 1], there exists k ∈ N such that x and y belong to different
classes of Pk).

Indeed, assume that (Pk)k∈N separates points, and consider the countable
family of Borel-measurable functions F = {1S : S ∈ Pk, k ∈ N} which
separates points. Thus, by [13, Theorem 6.8.9] (remark that a Polish space
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is a Souslin space, see [13, Definition 6.6.1]), the family F generates the
Borel σ-field of [0, 1]. This implies that the family of Borel sets {S : S ∈
Pk, k ∈ N} generates the Borel σ-field of [0, 1].

Conversely, assume there exist x, y ∈ [0, 1] which are not separated by
(Pk)k∈N, i.e. for all k ∈ N, x and y belong to the same class of Pk. This
implies that the set {x} does not belong to the σ-field generated by (Pk)k∈N,
and thus (Pk)k∈N does not generate the Borel σ-field of [0, 1].

Recall the definition of the norm ∥ · ∥∞ on W± defined in (3.1). The
following lemma allows to approximate any signed measure-valued kernel
by its steppings.

Lemma 4.5 (Approximation using the stepping operator). — Let W ∈
W± be a signed measure-valued kernel (which is bounded by definition). Let
(Pn)n∈N be a refining sequence of finite partitions of [0, 1] that generates the
Borel σ-field on [0, 1]. Then, the sequence (WPn)n∈N is uniformly bounded
by ∥W∥∞, and weakly converges to W almost everywhere (on [0, 1]2).

Proof. — Set Wn = WPn
for n ∈ N. By definition of the stepping oper-

ator, we have for every n ∈ N and every (x, y) ∈ [0, 1]2 that the total mass
of Wn(x, y; ·) is upper bounded by ∥W∥∞.

Recall that for W ∈ W± and f ∈ Cb(Z), the real-valued kernel W [f ]
is defined by (3.7). First assume that W ∈ W+. Let F = (fk)k∈N be a
convergence determining sequence, with by convention f0 = 1. For every
k ∈ N and n ∈ N, an immediate computation gives Wn[fk] = (W [fk])Pn .
For every k ∈ N, as W [fk] is a real-valued kernel, we can apply the closed
martingale theorem (as (W [fk])Pn

can be viewed as a conditional expec-
tation, see Remark 4.2), and we get that limn→∞ Wn[fk] = W [fk] almost
everywhere, since (Pn)n∈N generates the Borel σ-field. Hence, as the se-
quence (fk)k∈N is convergence determining, the sequence (Wn)n∈N weakly
converges to W almost everywhere.

Now, for W ∈ W±, write W = W+ − W− where W+,W− ∈ W+ (see
Lemma 3.3). By linearity of the stepping operator, remark that we have
Wn = (W+)Pn

− (W−)Pn
for all n ∈ N. By the first case, we have that

the sequence ((W+)Pn
)n∈N weakly converges a.e. to W+, and similarly for

((W−)Pn
)n∈N and W−. Hence, the sequence (Wn)n∈N weakly converges to

W almost everywhere. □

We first provide a separability result on the space of probability
-graphons.
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Proposition 4.6 (Separability of W1 and W̃1). — Let d be a smooth
distance on W1 (resp. W+ or W±). Then, the space (W1, d) (resp. (W+, d)
or (W±, d)) is separable.

If furthermore d is invariant (which implies that δ□ is a distance), then
the space (W̃1, δ□) (resp. (W̃+, δ□) or (W̃±, δ□)) is separable.

In particular, this proposition can be applied when d = δ□,m and dm is
a quasi-convex distance continuous w.r.t. the weak topology, as then d□,m
is invariant and smooth (recall Lemma 3.11 and Proposition 3.13).

Proof. — We shall consider the space of probability-graphons W1, as
the proofs for W+ and W± are similar. Applying Lemma 4.5 with the
sequence of dyadic partitions, for every probability-graphon W , we can find
a sequence of probability-graphon stepfunctions adapted to finite dyadic
partitions and converging to W almost everywhere on [0, 1]2.

As the space Z is separable, the space of probability measures M1(Z)
is also separable for the weak topology (see [11, Theorem 6.8]). Let A ⊂
M1(Z) be an at most countable dense (for the weak topology) subset. Then,
for any stepfunction W ∈ W1 adapted to a finite dyadic partition, we can
approach it everywhere on [0, 1]2 by a sequence of A-valued stepfunctions
adapted to the same finite dyadic partition.

Hence, for every W ∈ W1, there exists a sequence (Wn)n∈N in the count-
able set of A-valued stepfunctions adapted to a finite dyadic partition that
converges to W almost everywhere on [0, 1]2. As d is smooth, we get that
this convergence also holds for d. Thus, the space (W1, d) is complete.

Recall that by Theorem 3.17, when the distance d is invariant and
smooth, then the pseudometric δ□ is a distance on W̃1. In that case, con-
vergence for d implies convergence for δ□, and thus the space (W̃1, δ□) is
also separable. □

4.2. Tightness

Similarly to the case of signed measures (recall Lemma 2.8), we introduce
a tightness criterion for signed measure-valued kernels that characterizes
relative compactness, see Proposition 4.8 below. For a signed measure-
valued kernel W ∈ W±, we define the measure MW ∈ M+(Z) by:

(4.1) MW (dz) = |W |([0, 1]2; dz) =
∫

[0,1]2
|W |(x, y; dz) dxdy,

where for every x, y ∈ [0, 1], |W |(x, y; ·) is the total variation of W (x, y; ·)
(see Lemma 3.3). In particular, if W is a probability-graphon then MW is a
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probability measure from M1(Z). Notice also that if W and U are weakly
isomorphic, then MW = MU , so that the application W 7→ MW can be
seen as a map from W̃1 (resp. W̃±) to M1(Z) (resp. M+(Z)).

Definition 4.7 (Tightness criterion). — A subset K ⊂ W± (resp. K ⊂
W̃±) is said to be tight if the subset of measures {MW : W ∈ K} ⊂ M+(Z)
is tight.

The following proposition shows the equivalence between a global tight-
ness criterion and a local tightness criterion. Recall that uniformly bounded
subsets of W̃± are discussed after Definition 3.16. Recall also λ2 is the
Lebesgue measure on [0, 1]2.

Proposition 4.8 (Alternative tightness criterion). — Let K ⊂ W± (or
K ⊂ W̃±) be a uniformly bounded subset of signed measure-valued kernels.
The set K is tight if and only if for every ε > 0, there exists a compact set
K ⊂ Z, such that for every W ∈ K we have:

(4.2) λ2

(
{(x, y) ∈ [0, 1]2 : |W |(x, y;Kc) ⩽ ε}

)
> 1 − ε.

Proof. — As the left hand side of (4.2) is invariant by relabeling, it is
enough to do the proof for W±. Let K ⊂ W± be uniformly bounded and
set C = supW∈K ∥W∥∞ < ∞. Assume that for every ε > 0, there exists a
compact set K ⊂ Z, such that (4.2) holds for every W ∈ K. Let 1 > ε > 0.
Thus, there exists a compact subset K ⊂ Z such that for every W ∈ K
there exists a subset AW ⊂ [0, 1]2 with (Lebesgue) measure at least 1 − ε,
such that for every (x, y) ∈ AW , we have |W |(x, y;Kc) ⩽ ε. We have that
for all W ∈ K:

MW (Kc) =
∫

[0,1]2
|W |(x, y;Kc) dxdy ⩽ ∥W∥∞λ2(AcW ) + ελ2(AW )

⩽ (C + 1)ε.

Hence, the subset of measures {MW : W ∈ K} ⊂ M+(Z) is tight, that is
K is tight.

Conversely, suppose that K is tight. Let ε > 0. There exists a compact
set K ⊂ Z such that for every W ∈ K, we have MW (Kc) < ε2. For W ∈ K,
define AW = {(x, y) ∈ [0, 1]2 : |W |(x, y;Kc) ⩽ ε}. We have:

ε2 > MW (Kc) =
∫

[0,1]2
|W |(x, y;Kc) dxdy ⩾ ελ2(AcW ).

Hence, λ2(AW ) > 1 − ε, and consequently Equation (4.2) holds. □

We end this section on a continuity result of the map W 7→ MW .
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Lemma 4.9 (Regularity of the map W 7→ MW ). — Let dm be a distance
on M⩽1(Z) (resp. M+(Z)). Then the map W 7→ MW is 1-Lipschitz, and
thus continuous, from (W̃1,m, δ□,m) (resp. (W̃+,m, δ□,m)) to (M1(Z), dm)
(resp. (M+(Z), dm)).

Proof. — Taking S = T = [0, 1] in Definition (3.2) of d□,m, we get that
dm(MU ,MW ) ⩽ d□,m(W,U). As MUφ = MU for any measure-preserving
map φ thanks to (2.1), we deduce from Definition (3.5) of δ□,m that
dm(MU ,MW ) ⩽ δ□,m(U,W ). □

4.3. Weak regularity

We shall consider the following extra regularities of distances on the set
of signed measure-valued kernels w.r.t. the stepping operator. For a finite
partition P, denote by |P| the size of the partition P, i.e. the number of
sets composing P.

Definition 4.10 (Regularities of distances). — Let d be a distance on
W1 (resp. W+ or W±).

(i) Weak regularity. The distance d is weakly regular if whenever the
subset K of W1 (resp. W+ or W±) is tight (resp. tight and uniformly
bounded), then for every ε > 0, there exists m ∈ N∗, such that for
every kernel W ∈ K, and for every finite partition Q of [0, 1], there
exists a finite partition P of [0, 1] that refines Q such that:

|P| ⩽ m|Q| and d(W,WP) < ε.

(ii) Regularity w.r.t. the stepping operator. The distance d is
regular w.r.t. the stepping operator if (resp. for any finite constant
C ⩾ 0) there exists a finite constant C0 > 0 such that for every
W,U in W1 (resp. in W+ or W±, with ∥W∥∞ ⩽ C and ∥U∥∞ ⩽ C)
and every finite partition P of [0, 1], then we have:

(4.3) d(W,WP) ⩽ C0 d(W,UP).

We say that a norm N on W± is weakly regular (resp. regular w.r.t. the
stepping operator) if its associated distance d on W± is weakly regular
(resp. regular w.r.t. the stepping operator).

The weak regularity property above is an analogue to the weak regularity
lemma for real-valued graphons, see [27, Theorem 12] or [46, Lemma 9.15].
In those two references there is an explicit relation betweenm and ε (namely
that m = 2⌊1/ε2⌋). This is not the case here because we shall consider it
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for cut distances d□,m associated to a general distance dm, and they are
not associated to an Euclidean structure (see also Section 4.4 for a stronger
version of the weak regularity property with the cut distance d□,F which
is indeed associated to an Euclidean structure).

If a distance d is weakly regular, then for a subset K ⊂ M±(Z) which is
tight and uniformly bounded, every K-valued kernel can be approximated
by a stepfunction with a uniform bound. The regularity w.r.t. the stepping
operator states that the stepping operator gives an almost optimal way to
approximate a signed measure-valued kernel using stepfunctions adapted
to a given partition.

4.3.1. An example of cut distance regular w.r.t. the stepping operator

Recall the definition of a quasi-convex distance in Definition 2.10. We
first show that the stepping operator is 1-Lipschitz for the cut distance
d□,m when the distance dm is quasi-convex.

Lemma 4.11 (The stepping operator is 1-Lipschitz). — Let dm be a
quasi-convex distance on M a convex subset of M±(Z) containing the
zero measure. Then, the stepping operator associated with a given finite
partition of [0, 1] is 1-Lipschitz on WM for the cut distance d□,m.

Proof. — Let U,W ∈ WM be M-valued kernels, and let P be a finite
measurable partition of [0, 1]. As UP and WP are stepfunctions adapted to
the same partition, and as dm is quasi-convex, we can use Lemma 3.19 to
get for some S, T ∈ σ(P) that:

d□,m(UP ,WP) = dm(UP(S × T ; ·),WP(S × T ; ·))
= dm(U(S × T ; ·),W (S × T ; ·))
⩽ d□,m(U,W ),

where the second equality comes from the fact that the integrals are equal
as S, T ∈ σ(P) and thus the integration is over full steps of the partition.
Hence, the stepping operator is 1-Lipschitz on WM for the cut distance
dm. □

For a quasi-convex distance dm, the cut distance d□,m is regular w.r.t.
the stepping operator with C0 = 2 in (4.3) (and one can take C = +∞ in
Definition 4.10 (ii)).

Lemma 4.12 (d□,m is regular w.r.t. the stepping operator). — Let dm
be a quasi-convex distance on M a convex subset of M±(Z) containing
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the zero measure. Let W,U ∈ Wϵ be WM-valued kernels, and let P be a
finite partition of [0, 1]. Then, we have:

d□,m(W,WP) ⩽ 2d□,m(W,UP).

Proof. — The proof is similar to the proof of [46, Lemma 9.12]. As dm
is quasi-convex, using Lemma 4.11, we get:

d□,m(W,WP) ⩽ d□,m(W,UP) + d□,m(UP ,WP) ⩽ 2d□,m(W,UP).

□

4.3.2. An example of weakly regular cut distance

We have the following general result. Recall Definitions 3.10 and 4.10
on distances and norms on Wϵ, with ε ∈ {+,±}, being invariant, smooth,
weakly regular and regular w.r.t. the stepping operator.

Proposition 4.13 (Weak regularity of d□,m). — Let dm be a quasi-
convex distance on Mϵ(Z), with ϵ ∈ {+,±}, which is sequentially con-
tinuous w.r.t. the weak topology. Then, the cut distance d□,m on Wϵ is
invariant, smooth, weakly regular and regular w.r.t. the stepping operator.

Using results from Section 3.8, we directly get the following weak regu-
larity of the cut distance d□,LP and the cut norms ∥ · ∥□,F , ∥ · ∥□,KR and
∥ · ∥□,FM.

Corollary 4.14 (Weak regularity of usual distances and norms). —
The cut norms ∥·∥□,F , ∥·∥□,KR and ∥·∥□,FM (resp. the cut distance d□,LP)
on W± (resp. W+) are invariant, smooth, weakly regular and regular w.r.t.
the stepping operator.

Proof of Proposition 4.13. — We deduce from Lemmas 3.11 and 4.12,
Proposition 3.13 and that the cut distance d□,m on Wϵ is invariant, smooth
and regular w.r.t. the stepping operator. We are left to prove that d□,m is
weakly regular on Wϵ. We prove it by considering in the first step the case
Z compact and in a second step the general case Z Polish.

Step 1. We assume Z compact. As in the definition of weak regularity,
let K ⊂ Wϵ be a subset of Mϵ(Z)-valued kernels that is tight and uniformly
bounded by some finite constant C. Let M ⊂ Mϵ(Z) be the subset of ele-
ments of Mϵ(Z) with total mass at most C; in particular M is a convex set
containing 0 and K ⊂ WM. As Z is compact, from Remarks 2.6 and 2.7,
we know that the weak topology is metrizable on M and that M is com-
pact, and thus sequentially weakly compact. Hence, as dm is sequentially
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continuous w.r.t. the weak topology on Mϵ(Z), we have that (M, dm) is
sequentially compact, and thus compact.

Denote by B(µ, r) = {ν ∈ M : dm(µ, ν) < r} the open ball centered
at µ ∈ M with radius r > 0. Let ε > 0. As M is compact, there exist
µ1, . . . , µn ∈ M, n ∈ N∗, such that M = ∪ni=1B(µi, ε). For 1 ⩽ i ⩽ n,
define Ai = B(µi, ε)\∪j<iB(µj , ε), so that {A1, . . . , An} is a finite partition
(with possibly some empty sets) of M.

Every M-valued kernel W can be approximated by a {µ1, . . . , µn}-valued
kernel U defined for every (x, y) ∈ [0, 1]2 by U(x, y; ·) = µi for i such that
W (x, y; ·) ∈ Ai. Thus, by construction, we have that for every (x, y) ∈
[0, 1]2, dm(W (x, y; ·), U(x, y; ·)) < ε. Applying the quasi-convex supremum
inequality from (3.4) to W and U , we get that:

d□,m(W,U) ⩽ essup
(x,y)∈[0,1]2

dm(W (x, y; ·), U(x, y; ·)) ⩽ ε.

Then, as the stepping operator is 1-Lipschitz for the cut norm, see
Lemma 4.11, we have for any finite partition P of [0, 1] that:

d□,m(W,WP) ⩽ d□,m(W,U) + d□,m(U,UP) + d□,m(UP ,WP)
⩽ 2ε+ d□,m(U,UP).(4.4)

Hence, to get the weak regularity property for M-valued kernels, we are
left to prove it for the much smaller set of V-valued kernels, where V is the
convex hull of {µ1, . . . , µn}.

As dm is quasi-convex and sequentially continuous w.r.t. the weak topol-
ogy, using Lemma 2.11, there exists η > 0 such that for all µ, ν ∈ Mϵ(Z),
we have that ∥µ− ν∥∞ < η implies that dm(µ, ν) ⩽ ε.

As V is a subset of a vector space with finite dimension n, the norm
∥ · ∥∞ seen over V is equivalent to the L1-norm µ =

∑n
i=1 αiµi 7→ ∥α∥1 =∑n

i=1 |αi|. We can now see V-valued kernel as Rn-valued graphon with
a cut norm derived from the L1-norm ∥ · ∥1. In this case the proof for
the weak regularity Lemma 9.9 in [46] in R can easily be adapted to
Rn by first decomposing the Rn-valued kernels into their n dimensional
marginals (w1, · · · , wn) which are all real-valued kernels, then applying the
weak regularity Lemma 9.9 in [46] to each of the wi’s independently with
precision ε′ = ε/n giving partitions Pi for i ∈ {1, . . . , n}, and lastly defining
P as the common refinement of the Pi’s and using Lemma 9.12 in [46] for
regularity w.r.t. the stepping operator to conclude. Hence, we have the weak
regularity property for V-valued kernels: there exists m ∈ N∗, such that for
every V-valued kernel U ′, and for every finite partition Q of [0, 1] there
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exists a finite partition P of [0, 1] that refines Q, and such that |P| ⩽ m|Q|
and supS,T⊂[0,1] ∥(U ′ − U ′

P)(S × T ; ·)∥∞ < η, and thus d□,m(U ′, U ′
P) ⩽ ε.

Taking U ′ = U in (4.4), we get that d□,m(W,WP) ⩽ 3ε and |P| ⩽ m|Q|.
This concludes the proof of the lemma when Z is compact.

Step 2. We consider the general case Z Polish. We now prove that d□,m
is weakly regular on Wϵ. Let K ⊂ Wϵ be a subset of Mϵ(Z)-valued kernels
that is tight and uniformly bounded, and denote by C = supW∈K ∥W∥∞ <

∞.
Let ε > 0. As dm is quasi-convex and sequentially continuous w.r.t. the

weak topology, using Lemma 2.11, there exists η > 0 such that for all
µ, ν ∈ Mϵ(Z), we have that ∥µ − ν∥∞ < η implies that dm(µ, ν) < ε.
Without loss of generality, we assume that η ⩽ ε. Let ηC = min(η, η/C).

As K is tight, using Proposition 4.8, there exists a compact set K ⊂ Z,
such that for every W ∈ K the subset AW = {(x, y) ∈ [0, 1]2 : |W |(x, y;Kc)
⩽ ηC/2} has Lebesgue measure at least 1 − ηC/2. Let W ∈ K, and define
the signed measure-valued kernel U by: U(x, y; ·) = W (x, y; ·∩K) for every
(x, y) ∈ AW , and U(x, y; ·) = 0 otherwise. Let S, T ⊂ [0, 1]. We have:

∥(W − U)(S × T ; ·)∥∞ ⩽
∫
S×T

∥W (x, y; ·) − U(x, y; ·)∥∞ dxdy

⩽
∫
AW ∩(S×T )

|W |(x, y;Kc) dxdy

+
∫
Ac

W
∩(S×T )

∥W (x, y; ·)∥∞ dxdy

⩽ ηC/2 + C · ηC/2
⩽ η.

Thus, we have that dm(W (S × T ; ·), U(S × T ; ·)) < ε. Since this holds for
all S, T ⊂ [0, 1], we get that d□,m(W,U) ⩽ ε.

Notice that the M±(Z)-valued kernel U is also a M±(K)-valued kernel,
where K ⊂ Z is a compact set, and that ∥U∥∞ ⩽ ∥W∥∞ ⩽ C. Further
remark that, using Lemma 4.11, for every W ∈ K and every finite partition
P of [0, 1], we have that:

d□,m(W,WP) ⩽ d□,m(W,U) + d□,m(U,UP) + d□,m(UP ,WP)
⩽ 2ε+ d□,m(U,UP).

Hence, to get the weak regularity property for d□,m on K (see Defini-
tion 4.10 (i)), it is enough to prove that d□,m restricted to Mϵ(K)-valued
kernels is weakly regular, which is true by Step 1. As a consequence, we
get that d□,m on Wϵ is weakly regular. □
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4.4. A stronger weak regularity lemma for d□,F

In this subsection, we prove a stronger version of the weak regularity
lemma for the special case of the cut distance d□,F . We shall use this
result for the proof of the second sampling Lemma 6.12.

Let F = (fn)n∈N, with f0 = 1 and fn takes values in [0, 1], be a conver-
gence determining sequence, which is assumed fixed in this section.

4.4.1. Comparison between ∥ · ∥□,F and an Euclidian norm

To better understand the stepping operator, we introduce a scalar prod-
uct over signed measure-valued kernels. The link between this scalar prod-
uct and the norm ∥ · ∥□,F is given by Lemma 4.15. We define the scalar
product ⟨·, ·⟩F on signed measure-valued kernels for U,W ∈ W± by:

⟨U,W ⟩F =
∑
n⩾0

2−n⟨U [fn],W [fn]⟩,

where for all n the scalar product taken for U [fn] and W [fn] is the usual
scalar product in L2([0, 1]2, λ2) for real-valued kernels:

⟨U [fn],W [fn]⟩ =
∫

[0,1]2
U [fn](x, y)W [fn](x, y) dxdy.

The scalar product ⟨·, ·⟩F induces a norm on W± which we denote by ∥·∥2,F .
Let P be a finite partition of [0, 1]. As the stepping operator for mea-

surable real-valued L2 functions on [0, 1]2 is a linear projection, and is
idempotent and symmetric, and by definition of the scalar product ⟨·, ·⟩F
for signed measure-valued kernels, we have that the stepping operator for
signed measure-valued kernels is linear, idempotent and symmetric for
⟨·, ·⟩F . Moreover, the stepping operator is the orthogonal projection for
⟨·, ·⟩F onto the space of stepfunctions with steps in P.

Note that for a probability-graphon W ∈ W1, we have ∥W∥2,F ⩽
√

2
as each fn takes values in [0, 1]. The following technical lemma gives a
comparison between ∥ · ∥□,F and ∥ · ∥2,F .

Lemma 4.15 (Comparison between ∥·∥□,F and ∥·∥2,F ). — For a signed
measure-valued kernel W ∈ W±, we have ∥W∥□,F ⩽

√
2∥W∥2,F .

Proof. — Let S, T ⊂ [0, 1] be measurable subsets. By the Cauchy–
Schwarz inequality, we have |⟨W [fn],1S×T ⟩|2 ⩽ ∥W [fn]∥2

2 =
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⟨W [fn],W [fn]⟩ for every n ⩾ 0. Using this inequality along with Jensen’s
inequality, we get for every S, T ⊂ [0, 1] that:∑

n⩾0
2−n|W (S × T, fn)|

2

=

∑
n⩾0

2−n|⟨W [fn],1S×T ⟩|

2

⩽
∑
n⩾0

2−n+1|⟨W [fn],1S×T ⟩|2

⩽
∑
n⩾0

2−n+1⟨W [fn],W [fn]⟩

= 2(∥W∥2,F )2.

Taking the supremum over every measurable subsets S, T ⊂ [0, 1] gives the
desired inequality. □

4.4.2. The weak regularity lemma for ∥ · ∥□,F

The following lemma gives an explicit bound on the approximation of a
signed measure-valued kernel, say W , by its steppings WP , with P a finite
partition on [0, 1]. Its proof is a straightforward adaptation of the proof of
the weak regularity lemma for real-valued graphons in [46, Lemma 9.9].

Lemma 4.16 (Weak regularity lemma for ∥ · ∥□,F , simple formulation).
For every signed measure-valued kernel W ∈ W± and k ⩾ 1, there exists a
finite partition P of [0, 1] such that |P| = k and:

∥W −WP∥□,F ⩽

√
8√

log(k)
∥W∥2,F .

In particular, if W ∈ W1 is a probability-graphon, (as ∥W∥2,F ⩽
√

2) we
have:

∥W −WP∥□,F ⩽
4√

log(k)
·

It is possible in the weak regularity lemma to ask for extra requirements,
for instance to start from an already existing partition, or to ask the par-
tition to be balanced, as stated in the following lemma. The proof is a
straightforward adaptation of the proof of [46, Lemma 9.15].

Lemma 4.17 (Weak regularity lemma for ∥ · ∥□,F , with extra require-
ments). — Let W ∈ W1 be a probability-graphon, and let 1 ⩽ m < k.
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(i) For every partition Q of [0, 1] into m classes, there is a partition P
with k classes refining Q and such that:

∥W −WP∥□,F ⩽
4√

log(k/m)
·

(ii) For every partition Q of [0, 1] into m classes, there is an equipar-
tition (i.e. a finite partition into classes with the same measure) P
of [0, 1] into k classes and such that:

∥W −WP∥□,F ⩽ 2∥W −WQ∥□,F + 2m
k

·

5. Compactness and completeness of W̃1

In this section, we study compactness and completeness properties of the
space of probability-graphon W̃1, as well as the relation between the topolo-
gies induced by the different cut distances δ□,m (associated to the distance
dm on M⩽1(Z) which induces the weak topology). While the space of real-
valued graphons equipped with the cut distance is compact (see [48] or
[46, Section 9.3]), this is not true in general for probability-graphons as the
space of probability measures on a Polish space is not compact in general.
Then, using the tightness criterion introduced in Section 4.2, we charac-
terize subsets of probability-graphons and measure-valued kernels that are
relatively compact w.r.t. the cut distance δ□,m, see in Section 5.1. Recall
that unlike for R with its usual topology, there is no canonical distance
dm on the space of signed measures M±(Z) inducing the weak topology.
For this reason, it is necessary to consider cut distances δ□,m for signed
measure-valued kernels and probability-graphons indexed by several dis-
tances dm. Lastly, in Section 5.2, we compare the topologies induced by
the cut distance δ□,m for different choice of dm, and state that under some
conditions on dm, those topologies coincide. In Section 5.3, we investigate
the completeness of W̃1 endowed with the cut distance δ□,m and prove that
the space of probability-graphons W̃1 is a Polish space (Theorem 5.10), and
that it is compact if and only if Z is compact (Corollary 5.13). The technical
proofs are postponed to Section 8.

5.1. Tightness criterion and compactness

Let M ⊂ M±(Z) be a subset of signed measures on Z. Recall that
WM ⊂ W± denotes the subset of signed measure-valued kernels which are
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M-valued. In this section, we shall denote by W̃M the quotient of WM
identifying signed measure-valued kernels that are weakly isomorphic.

Recall from Definition 3.15 and Theorem 3.17 that for an invariant,
smooth and weakly regular distance d on W1 (resp. W+, W±), δ□ is de-
fined as δ□(U,W ) = infφ∈S[0,1] d(U,Wφ), and is a distance on W̃1 (resp.
W̃+, W̃±).

We are now ready to formulate the following important theorem, which
relates tightness with compactness and convergence for signed measure-
valued kernels. We prove this theorem in Section 8.

Theorem 5.1 (Compactness theorem for W̃1). — Let d be an invariant,
smooth and weakly regular distance on W1 (resp. W±).

(i) If a sequence of elements of W1 or W̃1 (resp. W± or W̃±) is tight
(resp. tight and uniformly bounded), then it has a subsequence
converging for δ□.

(ii) If M ⊂ M1(Z) (resp. M ⊂ M±(Z)) is convex and compact
(resp. sequentially compact) for the weak topology, then the space
(W̃M, δ□) is convex and compact.

(iii) If Z is compact, then the space (W̃1, δ□) is compact.

In particular, this theorem can be applied when d = d□,m and dm is a
quasi-convex distance continuous w.r.t. the weak topology, as then d□,m is
invariant, smooth and weakly regular (recall Proposition 4.13).

We deduce from this theorem a characterization of relative compactness
for subsets of probability-graphons.

Proposition 5.2 (Characterization of relative compactness). — Let dm
be a distance on M⩽1(Z) (resp. M+(Z) or M±(Z)) that induces the weak
topology on M⩽1(Z) (resp. M+(Z)). Assume that the distance d□,m on W1
(resp. W+ or W±) is (invariant) smooth and weakly regular.

(i) If a sequence of elements of W1 or W̃1 (resp. W+ or W̃+) is con-
verging for δ□,m, then it is tight.

(ii) Let K be a subset of W̃1 (resp. a uniformly bounded subset of W̃+).
Then, the set K is relatively compact for δ□,m if and only if it is
tight.

(iii) Let M be a subset of M+(Z) which is bounded, convex and closed
for the weak topology. Then the set W̃M is convex and closed in W̃+.

Remark that convergence for δ□,m does not necessarily imply tightness
on W± or on W̃±.
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Proof. — We consider the case where dm is a distance on M+(Z) or
M±(Z), the case with M⩽1(Z) is similar.

We prove Point (i). Let (Wn)n∈N be a convergent sequence of W+ (and
thus of W̃+) for δ□,m. We deduce from the continuity of the map W 7→ MW ,
see Lemma 4.9, that the sequence (MWn

)n∈N is converging for dm, and thus
is tight as dm induces the weak topology on M+(Z). Then, by definition
the sequence (Wn)n∈N is tight.

We prove Point (ii). If K ⊂ W̃+ is tight and uniformly bounded, then by
Theorem 5.1 (i) every sequence in K has a subsequence converging for δ□,m,
which implies that K is relatively compact in the metric space (W̃+, δ□,m)
(see Remark 2.1).

Conversely, assume that K ⊂ W̃+ is uniformly bounded and relatively
compact for δ□,m. Define M = {MW : W ∈ K} ⊂ M+(Z). By Lemma 4.9,
the mapping W 7→ MW is continuous from (W̃1, δ□,m) to (M+(Z), dm).
Hence, as dm induces the weak topology on M+(Z), the set M is also
relatively compact in M+(Z) for the weak topology. As the space Z is
Polish, applying Lemma 2.8, we get that M ⊂ M+(Z) is tight, and by
Definition 4.7, the set K ⊂ W̃+ is tight.

We postpone the proof of Point (iii) to Section 8 on page 109. □

5.2. Equivalence of topologies induced by δ□,m

The following lemma allows to show a first result on equivalence of the
topologies induced by the cut distance δ□,m for different distances dm,
where the sub-script m is used to distinguish different distances. Its proof
is given below. Recall from Theorem 3.17 that d□,m must be smooth for
δ□,m to be a distance.

Lemma 5.3 (Comparison of topologies induced by d□,m and δ□,m). —
Let dm and dm′ be two distances on M⩽1(Z) such that dm′ is uniformly
continuous w.r.t. dm (in particular, dm induces a finer topology than dm′

on M⩽1(Z)). Then, we have the following properties.
(i) The distance d□,m′ is uniformly continuous w.r.t. d□,m on W1. In

particular d□,m induces a finer topology than d□,m′ on W1.
(ii) If the distance d□,m on W1 is smooth, then the distance d□,m′ is also

smooth and δ□,m′ is uniformly continuous w.r.t. δ□,m. In particular,
δ□,m induces a finer topology than δ□,m′ on W̃1.
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(iii) If the distance d□,m on W1 is weakly regular, then the distance
d□,m′ is also weakly regular.

(iv) Assume that the distance dm′ induces the weak topology
on M⩽1(Z), and that the distance d□,m is smooth and weakly reg-
ular. In particular, the distance dm also induces the weak topology
on M⩽1(Z). Then, the distances δ□,m and δ□,m′ induce the same
topology on W̃1.

We will see some application of Lemma 5.3 in Corollary 5.6 below.

Remark 5.4 (Extension to W± for topology comparisons). — In
Lemma 5.3 (i)-(iii), one can replace W1 and W̃1 by W+ and W̃+ or by
W± and W̃± as soon as the distances dm and dm′ are defined on M+(Z)
or M±(Z); in this case comparisons of topologies only apply on uniformly
bounded subsets. In Lemma 5.3 (iv), one can replace W̃1 by W̃M with a
bounded subset M ⊂ M+(Z) as soon as the distances dm and dm′ are
defined on M+(Z).

Proof of Lemma 5.3. — We prove Point (i). Let ε > 0. As dm′ is
uniformly continuous w.r.t. dm, there exists η > 0 such that for every
µ, ν ∈ M⩽1(Z), if dm(µ, ν) < η, then dm′(µ, ν) < ε. Let U,W ∈ W1 such
that d□,m(U,W ) < η. Then, for every subsets S, T ⊂ [0, 1], we have:

dm′ (U(S × T ; ·),W (S × T ; ·)) < ε.

Thus, d□,m′(U,W ) ⩽ ε. Hence, d□,m′ is uniformly continuous w.r.t. d□,m.

We prove Point (ii). Assume that d□,m is smooth. Let (Wn)n∈N and W be
probability-graphons such that Wn(x, y; ·) weakly converges to W (x, y; ·)
for almost every x, y ∈ [0, 1]. Since the cut distance d□,m is smooth, we get
that d□,m(Wn,W ) → 0. As d□,m′ is uniformly continuous (and thus also
continuous) w.r.t. d□,m, we have that d□,m′(Wn,W ) → 0. Hence, d□,m′ is
smooth.

Furthermore, let ε > 0. Let η > 0 be such that for every µ, ν ∈ M⩽1(Z),
dm(µ, ν) < η implies dm′(µ, ν) < ε. For every U,W ∈ W1 such that
δ□,m(U,W ) < η, there exists φ ∈ S[0,1] such that d□,m(U,Wφ) < η, which
implies that d□,m′(U,Wφ) < ε, which then implies that δ□,m′(U,W ) < ε.
That is, δ□,m′ is uniformly continuous w.r.t. δ□,m.

We prove Point (iii). Assume that d□,m is weakly regular. Let K ⊂ W1
be tight. Let ε > 0. As d□,m′ is uniformly continuous w.r.t. d□,m, there
exists η > 0 such that for every U,W ∈ W1, if d□,m(U,W ) < η, then
d□,m′(U,W ) < ε. Since d□,m is weakly regular, there exists m ∈ N∗, such
that for every probability-graphon W ∈ K, and for every finite partition Q
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of [0, 1], there exists a finite partition P of [0, 1] that refines Q and such that
|P| ⩽ m|Q| and d□,m(W,WP) < η; and thus we also have d□,m′(W,WP) <
ε. Hence, d□,m′ is weakly regular.

We prove Point (iv). Assume that dm′ induces the weak topology on
M⩽1(Z) and that d□,m is smooth and weakly regular. In particular, the
topology induced by dm if finer than the topology induced by dm′ , i.e.
finer than the weak topology. As d□,m is smooth, by Lemma 3.12, dm is
continuous w.r.t. the weak topology (i.e. the weak topology if finer than
the topology induced by dm), and thus dm induces the weak topology on
M⩽1(Z). By Points (ii) and (iii), we get that d□,m′ is also smooth and
weakly regular. By Point (ii), the distance δ□,m induces a finer topology
than δ□,m′ on W̃1.

We now prove that the topology of δ□,m′ is finer than the topology
of δ□,m. Let (Wn)n∈N and W be probability-graphons in W̃1, such that Wn

converges to W for δ□,m′ . By Proposition 5.2 (i), we deduce that the se-
quence (Wn)n∈N is tight. As d□,m is smooth and weakly regular, Theo-
rem 5.1 gives that every subsequence (Wnk

)k∈N of the sequence (Wn)n∈N
has a further subsequence (Wn′

k
)k∈N that converges for δ□,m to a limit,

say U ∈ W̃1. Since δ□,m is finer than δ□,m′ , we deduce that (Wn′
k
)k∈N

converges also to U for δ□,m′ ; but, as a subsequence, it also converges
to W for δ□,m′ . As δ□,m′ is a distance on W1 thanks to Theorem 3.17, we
get U = W . Hence, every subsequence of (Wn)n∈N has a further subse-
quence that converges to W for δ□,m, therefore the whole sequence itself
converges to W for δ□,m. Consequently, δ□,m′ is finer than δ□,m, and thus
those two distances induce the same topology on W̃1. □

The following theorem states that under appropriate assumptions, the
topology induced by δ□,m does not depend on dm. We prove this theorem
in Section 8. Recall that under suitable conditions satisfied in the next
theorem, the quotient space W̃1 does not depend on the choice of the
distance dm, see Theorem 3.17.

Theorem 5.5 (Equivalence of topologies induced by δ□,m on W̃1). —
The topology on the space of probability-graphons W̃1 induced by the
distance δ□,m does not depend on the choice of the distance dm on M⩽1(Z),
as long as dm induces the weak topology on M⩽1(Z) and the cut distance
d□,m on W1 is (invariant) smooth, weakly regular and regular w.r.t. the
stepping operator.

Recall from Proposition 4.13 that when the distance dm is quasi-convex
and continuous w.r.t. the weak topology on M+(Z) or M±(Z), then the
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cut distance d□,m is invariant, smooth, weakly regular and regular w.r.t.
the stepping operator. This is in particular the case of dLP, ∥ · ∥F , ∥ · ∥KR
and ∥ · ∥FM.

The next corollary is an immediate consequence of Lemma 3.22, Corol-
lary 4.14, Lemma 5.3 and Theorem 5.5. This corollary gathers results com-
paring the topology induced by the cut distances associated with the dis-
tances introduced in Section 3.8. It is yet unclear if the distances d□,F
induce the same topology on the space of labeled probability-graphons W1
as the one induced by d□,LP, d□,FM or d□,KR.

Corollary 5.6 (Topological equivalence of the cut distances associated
to dLP, ∥ · ∥FM, ∥ · ∥KR and ∥ · ∥F ). — The cut distances d□,LP on W+
and d□,KR, d□,FM and d□,F on W± are invariant, smooth, weakly regular
and regular w.r.t. the stepping operator. Moreover, we have the following
comparison between the distances introduced in Section 3.8.

(i) The cut norms ∥·∥□,FM and ∥·∥□,KR (resp. the cut distances δ□,FM

and δ□,KR) are metrically equivalent on W± (resp. W̃±).
(ii) The cut distances δ□,FM, δ□,KR and δ□,LP (resp. d□,FM, d□,KR and

d□,LP) are uniformly continuous w.r.t. one another, and thus in-
duce the same topology on W̃1 (resp. W1) and on every uniformly
bounded subset of W̃+ (resp. W+).

(iii) The cut distances δ□,FM, δ□,KR, δ□,LP and δ□,F , for every choice of
the convergence determining sequence F , induce the same topology
on W̃1.

Proof. — The first part of the corollary is a re-statement of
Corollary 4.14. Point (i) is an immediate consequence of (3.9).

We now prove Point (ii). Thanks to (3.9) and Point (i), it is enough
to consider only the Lévy–Prokhorov and the Kantorovitch–Rubinshtein
distances. As dLP is uniformly continuous w.r.t. dKR (see Lemma 3.22),
applying Lemma 5.3 (recall Corollary 4.14) with Remark 5.4 in mind, we
get that δ□,LP (resp. d□,LP) is uniformly continuous w.r.t. δ□,KR (resp.
d□,KR) on every uniformly bounded subset of W̃+ (resp. W+) As dKR
is also uniformly continuous w.r.t. dLP (see Lemma 3.22), applying again
Lemma 5.3, we have that δ□,KR (resp. d□,KR) is uniformly continuous w.r.t.
δ□,LP (resp. d□,LP) on every uniformly bounded subset of W̃+ (resp. W+).

Point (iii) is an immediate consequence of Corollary 4.14 and Theo-
rem 5.5, together with Point (ii). □

Remark 5.7 (Extension to uniformly bounded subsets of W̃+). — In The-
orem 5.5 and also in Corollary 5.6 (iii), one can replace W̃1 by W̃M with
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a bounded subset M ⊂ M+(Z) as soon as the distance dm is defined on
M+(Z). (One has in mind the case M = M⩽1(Z).) This can be seen by an
easy modification in the proof of Theorem 5.5. Alternatively, this can be
seen using scaling to reduce the case of general M to the case of M⩽1(Z),
and then adding a cemetery point (for missing mass of measures) to Z to
further reduce to the case of M1(Z).

5.3. Completeness

Let dm be a distance on M⩽1(Z) or M+(Z). We shall consider a slight
modification of the cut distances d□,m and δ□,m to achieve completeness.
Recall the measure MW ∈ M+(Z) defined by (4.1) associated to W ∈ W+.

Definition 5.8 (The cut distances dc
□,m and δc

□,m). — Let dm and dc

be two distances on Mϵ(Z) with ϵ ∈ {⩽ 1,+}. We define the cut distance
dc
□,m on the space of Mϵ(Z)-valued kernels Wϵ as:

dc
□,m(U,W ) = d□,m(U,W ) + dc(MU ,MW ),

and the cut (pseudo-)distance δc
□,m on the space of unlabeled Mϵ(Z)-valued

kernels W̃ϵ as:

δc
□,m(U,W ) = inf

φ∈S[0,1]
dc
□,m(U,Wφ) = δ□,m(U,W ) + dc(MU ,MW ).

Notice that by Lemma 3.11 and the definition of MW , the distance dc
□,m

is invariant.

Lemma 5.9 (Topological equivalence of δ□,m and δc
□,m). — Let dm and

dc be two distances on Mϵ(Z), with ϵ ∈ {⩽ 1,+}, such that dc is contin-
uous w.r.t. dm and that d□,m is (invariant and) smooth on Wϵ. Then, the
cut distance dc

□,m is invariant and smooth and δc
□,m is a distance on W̃ϵ.

Moreover, the distances d□,m and dc
□,m (resp. δ□,m and δc

□,m) induce the
same topology on the space Wϵ (resp. W̃ϵ).

Proof. — Let (Wn)n∈N and W be elements of W⩽1 such that
(Wn(x, y; ·))n∈N weakly converges to W (x, y; ·) for almost every x, y ∈ [0, 1].
Since the distance d□,m is smooth, we have that limn→∞ d□,m(Wn,W ) = 0.
Using Lemma 4.9 on the continuity of the map W 7→ MW and that dc is
continuous w.r.t. dm, we obtain that limn→∞ dc

□,m(Wn,W ) = 0. This gives
that the distance dc

□,m is smooth. Since we have already seen that dc
□,m is

invariant, we deduce from Theorem 3.17 that δc
□,m is a distance on W̃1.
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We now prove that the two distances d□,m and δc
□,m induce the same

topology (which implies that this is also true for δ□,m and δc
□,m). As d□,m ⩽

dc
□,m, convergence for dc

□,m implies convergence for d□,m. Conversely, let
(Wn)n∈N be a sequence in Wϵ that converges for d□,m to a limit, say W ∈
Wϵ. Using again Lemma 4.9 and the continuity of dc w.r.t. dm, we obtain
that limn→∞ dc(MWn ,MW ) = 0. This clearly implies that the sequence
(Wn)n∈N converges to W for dc

□,m. Then, the two distances have the same
convergent sequences and thus induce the same topology (see Remark 2.1).

□

Recall Z is a Polish space. We already proved in Proposition 4.6 that the
space (W̃1, δ□,m) is separable; and we now investigate completeness of this
space.

Theorem 5.10 (W̃1 is a Polish space). — Let dm and dc be two dis-
tances on M⩽1(Z) such that dc induces the weak topology on M⩽1(Z), dc

is complete and continuous w.r.t. dm, and d□,m is (invariant) smooth and
weakly regular on W1. Then, the space (W̃1, δ

c
□,m) is a Polish metric space.

Note that the assumptions in Theorem 5.10 imply that dm also induces
the weak topology on M⩽1(Z). Indeed, as dc is continuous w.r.t. dm, the
topology induced by dm if finer than the topology induced by dc, i.e. finer
than the weak topology. As d□,m is smooth, by Lemma 3.12, dm is continu-
ous w.r.t. the weak topology (i.e. the weak topology if finer than the topol-
ogy induced by dm), and thus dm induces the weak topology on M⩽1(Z).

Also note that Theorem 5.10 can easily be extended to W⩽1 or the space
of unlabeled M-valued kernels W̃M when M is a bounded convex closed
subset of M+(Z).

Proof. — From Lemma 5.9, we have that δc
□,m is a distance on W̃1 which

induces the same topology as δ□,m, and from Proposition 4.6, we have that
(W̃1, δ□,m), and thus (W̃1, δ

c
□,m), is separable. To get that this latter space

is Polish, we are left to prove that the distance δc
□,m is complete.

Let (Wn)n∈N be a sequence of probability-graphons that is Cauchy for
δc
□,m. By definition of the cut distance δc

□,m, the sequence of probabil-
ity measures (MWn

)n∈N is Cauchy in M1(Z) for the complete distance
dc. Thus, the sequence (MWn)n∈N is weakly convergent as dc induces the
weak topology, which implies that it is tight (see Lemma 2.8). Hence, by
definition, the sequence of probability-graphons (Wn)n∈N is tight. By The-
orem 5.1 (i), there exists a subsequence (Wnk

)k∈N that converges for δ□,m
to a limit, say W ∈ W̃1. This subsequence also converges for δc

□,m to W

as δ□,m and δc
□,m induce the same topology. Finally, because the sequence
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(Wn)n∈N is Cauchy for δc
□,m and has a subsequence converging to W for

δc
□,m, the whole sequence must also converge to W for δc

□,m. Consequently,
the distance δc

□,m is complete. □

The following lemma shows that every probability measure can be rep-
resented as a constant probability-graphon.

Lemma 5.11 (M1(Z) seen as a closed subset of W1). — Let dm be
a distance on M⩽1(Z) such that d□,m is (invariant and) smooth on W1.
Then, the map µ 7→ Wµ ≡ µ is an injection from (M1(Z), dm) to (W̃1, δ□,m)
with a closed range and continuous inverse.

Proof. — For any µ ∈ M1(Z) consider the constant probability-graphon
Wµ ≡ µ, and notice that MWµ

= µ, that Wµ(S×T ; ·) = λ(S)λ(T )µ for all
measurable S, T ⊂ [0, 1], and that Wφ

µ = Wµ for any measure-preserving
map φ. This readily implies that for µ ∈ M1(Z) and W ∈ W1:

δ□,m(Wµ,W ) = d□,m(Wµ,W )(5.1)
= sup
S,T⊂[0,1]

dm(λ(S)λ(T )µ,W (S × T ; ·))

⩾ dm(µ,MW ).

In particular, taking W = Wν for ν ∈ M1(Z) we get that δ□,m(Wµ,Wν)
⩾ dm(µ, ν). This implies that the map I : µ 7→ Wµ ≡ µ is an injection, and
its inverse, given by the map Wµ 7→ µ, is 1-Lipschitz.

Let (µn)n∈N be a sequence in M1(Z) such that the sequence (Wµn
)n∈N

converges for δ□,m to a limit, say W . We deduce from (5.1) that (µn)n∈N
converges for dm to µ = MW and that for all measurable S, T ⊂ [0, 1],
(λ(S)λ(T )µn)n∈N converges for dm to W (S × T ; ·). This implies that
W (S × T ; ·) = λ(S)λ(T )µ(·) for all measurable S, T ⊂ [0, 1], that is,
W = Wµ. This implies that the image by I of any closed subset of M1(Z)
is a closed subset of W1, and thus the range of I is closed. □

Remark 5.12 (Extension to isometric representation of M1(Z)). — If the
distance dm, in addition to the hypothesis of Lemma 5.11, is
sub-homogeneous, that is, for all µ, ν ∈ M1(Z) we have dm(µ, ν) =
supr∈[0,1] dm(rµ, rν) (which is the case if dm is quasi-convex), then we de-
duce from (5.1) that the map µ 7→ Wµ ≡ µ is isometric from (M1(Z), dm)
to (W̃1, δ□,m).

We now state a characterization of compactness and completeness for
the space of probability-graphons. Recall Z is a Polish space.
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Corollary 5.13 (Characterization of compactness and completeness
for W̃1). — Let dm be a distance on M⩽1(Z), which induces the weak
topology on M⩽1(Z), and such that d□,m is (invariant) smooth and weakly
regular on W1. We have the following properties.

(i) Z is compact ⇐⇒ (M⩽1(Z), dm) is compact ⇐⇒ (W̃1, δ□,m) is
compact.

(ii) If (M⩽1(Z), dm) is complete then (W̃1, δ□,m) is complete.
(iii) Assume furthermore that dm is sub-homogeneous (see Re-

mark 5.12). If (W̃1, δ□,m) is complete, then (M1(Z), dm) is com-
plete.

Proof. — We prove Point (i). From Remark 2.7, we already know that Z
is compact if and only if M⩽1(Z) is weakly compact, i.e. compact for dm
as dm induces the weak topology on M⩽1(Z).

Now, assume that (M⩽1(Z), dm) is compact. Applying Theorem 5.1 (iii),
we get that the space (W̃1, δ□,m) is also compact.

Conversely, assume that (W̃1, δ□,m) is compact. By Lemma 4.9, the map-
ping W 7→ MW is continuous from (W̃1, δ□,m) to (M1(Z), dm), and as
(W̃1, δ□,m) is compact its image through this mapping is also compact. To
conclude, it is enough to check that this mapping is surjective. But this is
clear as the image of the constant probability-graphon Wµ ≡ µ is MWµ

= µ.
Hence, (M1(Z), dm) (and thus (M⩽1(Z), dm)) is compact.

We prove Point (ii). Assume that (M⩽1(Z), dm) is complete. Thus, we
can choose dc = dm in Definition 5.8, and apply Theorem 5.10 to get that
(W̃1, δ

c
□,m) is complete. As dc = dm, we have δ□,m ⩽ δc

□,m ⩽ 2δ□,m. Hence,
(W̃1, δ□,m) is also complete.

We prove Point (iii). Assume that (W̃1, δ□,m) is complete. Let (µn)n∈N
be a Cauchy sequence of probability measures in (M1(Z), dm). By Re-
mark 5.12, the sequence of constant probability-graphons (Wµn

)n∈N is also
Cauchy for δ□,m. As (W̃1, δ□,m) is complete, there exists a probability-
graphon W ∈ W̃1 such that (Wµn

)n∈N converges to W for the cut distance
δ□,m. Thanks to Lemma 5.11, W is constant equal to some µ ∈ M1(Z),
and (µn)n∈N converges to µ for dm. Hence, (M1(Z), dm) is complete. □

6. Sampling from probability-graphons

Measure-valued graphons allow to define models for generating random
weighted graphs that are more general than the models based on real-valued
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graphons. We prove that the weighted graphs sampled from probability-
graphons are close to their original model for the cut distance δ□,F , where
F = (fk)k∈N (with f0 = 1) is a convergence determining sequence. In
doing so, we prove analogues for probability-graphons of the first and sec-
ond sampling lemmas for real-valued kernels and graphons (see [16] or [46,
Sections 10.3 and 10.4]).

It would have been more natural to work in Sections 6 and 7 with the
Kantorovitch–Rubinshtein norm or the Fortet–Mourier norm that both
treats all test functions in a uniform manner. Unfortunately, the supre-
mum in the definition of both of these norms does not behave well regard-
ing the probabilities and expectations of graphs sampled from probability-
graphons. We need in our proofs (and in particular that of the First Sam-
pling Lemma 6.7 below) to consider simultaneously only a finite number
of test functions in order to control the probability of failure for our sto-
chastic bounds. The proof of the First Sampling Lemma 6.7 is based on
applying the first sampling lemma for real-valued kernels to several one
dimensional-valued projections of measure-valued kernels. The proof of the
Second Sampling Lemma 6.12 is similar to the one for real-valued kernels
and graphons.

6.1. M1(Z)-Graphs and weighted graphs

A graph G = (V,E) is composed of a finite set of vertices V (G) = V , and
a set of edges E(G) = E which is a subset of V × V avoiding the diagonal.
When its set of edges E(G) is symmetric, we say that G is symmetric or
non-oriented. We denote by v(G) = |V (G)| the number of vertices of this
graph, and by e(G) = |E(G)| its number of edges.

Definition 6.1 (X -graphs). — Let X be a non-empty set. A X -graph
is a triplet G = (V,E,Φ) where (V,E) is a graph and Φ : E → X is a
map that associates a decoration x = Φ(e) ∈ X to each edge e ∈ E. When
X = Z, we say that G is a weighted graph.

Furthermore, the graph G is said to be symmetric if (V,E) is a symmetric
graph and if Φ is a symmetric function, i.e. for every edge (x, y) ∈ E, we
have (y, x) ∈ E and Φ(x, y) = Φ(y, x).

Remark 6.2 (M1(Z)-Graphs as probability-graphons). — Any labeled
M1(Z)-graph G can be naturally represented as an M1(Z)-valued graphon,
which we denote by WG, in the following way. Let G = (V,E,M) be a
M1(Z)-graph, with v(G) = n ∈ N∗. Denote by V = [n] = {1, . . . , n} the
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vertices of G. Consider intervals of length 1/n: for 1 ⩽ i ⩽ n, let Ji =
((i − 1)/n, i/n]. We then define the M1(Z)-valued graphon stepfunction
WG associated with the M1(Z)-graph G by:

∀(i, j) ∈ E, ∀(x, y) ∈ Ji × Jj , WG(x, y; dz) = Φ(i, j)(dz);

and WG(x, y; dz) equals the Dirac mass at ∂ otherwise, where ∂ is an ele-
ment of Z used as a cemetery point for missing edges in graphs.

In this section, we investigate weighted graphs sampled from probability-
graphons. Hence, using the cemetery point argument in the remark above,
we only consider complete graphs for the rest of this section.

Let dm be a distance on M⩽1(Z). If G and H have the same vertex-set,
the cut distance between them is defined as the cut distance between their
associated graphons:

d□,m(G,H) = d□,m(WG,WH).

When G and H do not have the same vertex-sets, as the numbering of
the vertices in Remark 6.2 is arbitrary, we must consider the unlabeled cut
distance between them defined as the cut distance between their associated
graphons:

δ□,m(G,H) = δ□,m(WG,WH).

Recall that when the distance dm derives from a norm Nm on M±(Z),
Lemma 3.19 applies, and the cut distance d□,m(G,H) can be rewritten as
a combinatorial optimization over whole steps.

Remark 6.3 (Weighted graphs as M1(Z)-graphs). — We will sometimes
need to interpret a weighted graph G as a M1(Z)-graph where a weight x
on an edge is replaced by δx the Dirac mass located at x.

Notation 6.4 (The real-weighted graph G[f ]). — For a M1(Z)-graph
(resp. weighted graph) G and a function f ∈ Cb(Z), we denote by G[f ] the
real-weighted graph with the same vertex set and edge set as G, and where
the edge (i, j) has weight ΦG[f ](i, j) = ΦG(i, j; f) =

∫
Z f(z)ΦG(i, j; dz)

(resp. ΦG[f ](i, j) = f(ΦG(i, j))), where ΦG is the decoration of the M1(Z)-
graph G. This notation is consistent when one identifies the decoration
z ∈ Z for a Z-graph with the decoration given by the Dirac mass at z
for the corresponding M1(Z)-graph. It is also consistent with the notation
in (3.7) for probability graphons.
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6.2. W -random graphs

Let W be a probability-graphon, and x = (x1, . . . , xn), n ∈ N∗, be a
sequence of points from [0, 1]. We define the M1(Z)-graph H(x,W ) as the
complete graph whose vertex set is [n] = {1, . . . , n}, and with each edge
(i, j) decorated by the probability measure W (xi, xj ; dz).

Let H be any M1(Z)-graph. We can define from H a random weighted
(directed) graph G(H) whose vertex set V (H) and edge set E(H) are
the same as H, and with each edge (i, j) having a random weight βi,j
distributed according to the probability distribution decorating the edge
(i, j) in H, all the weights being independent from each other. For the
special case where H = H(x,W ), we simply note G(x,W ) = G(H(x,W )).

An important special case is when the sequence X is chosen at random:
X = (Xi)1⩽i⩽n where the Xi are independent and uniformly distributed
on [0, 1]. For this special case, we simply note H(n,W ) = H(X,W ) and
G(n,W ) = G(X,W ), that are conditionally on X = x, distributed respec-
tively as H(x,W ) and G(x,W ). The random graphs H(n,W ) and G(n,W )
are called W -random graphs.

Remark 6.5 (The case of symmetric graphons). — In the special case
where W is a symmetric probability-graphon, the M1(Z)-graph H(x,W ) is
also symmetric. From a symmetric M1(Z)-graph H, the random weighted
graph G(H) is not necessarily symmetric, but we can define a random
symmetric weighted graph Gsym(H) whose vertex set V (H) and E(H) are
the same as H, and with independent weights βi,j = βj,i on each edge
(i, j) = (j, i) distributed according to ΦH(i, j; ·). For H = H(x,W ) we
simply note Gsym(x,W ) and Gsym(n,W ).

For a weighted graph G, and for 1 ⩽ k ⩽ v(G), we can define the random
weighted graph G(k,G) as being the sub-graph of G induced by a uniform
random subset of k distinct vertices from G. Then, upper bounding by the
probability that a uniformly-chosen map [k] → V (G) is non-injective, we
get the following bound on the total variation distance between the graphs
obtained from G and its associated graphon WG:

dvar(G(k,G),G(k,WG)) ⩽
(
k

2

)
1

v(G) ,

where dvar is the total variation distance between probability measures.
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6.3. Estimation of the distance by sampling

6.3.1. The first sampling lemma

In this subsection, we link sampling from graphons with the cut distance.
This result is the equivalent of Lemma 10.6 in [46]. The main consequence of
the following lemma is that the cut distance d□,F between two probability-
graphons can be estimated by sampling.

Notation 6.6 (The random stepfunction WX). — For a measure-valued
kernel W (resp. a real-valued kernel w) and a vector X = (Xi)1⩽i⩽k com-
posed of k independent random variables uniformly distributed over [0, 1],
we denote by WX = WH(k,W ) (resp. wX) the random measure-valued (resp.
real-valued) stepfunction with k steps of size 1/k, and where the step (i, j)
has value W (Xi, Xj ; ·) (resp. w(Xi, Xj)).

Lemma 6.7 (First Sampling Lemma). — Let F be a convergence deter-
mining sequence. Let k ∈ N∗, and U,W ∈ W1 be two probability-graphons,
and let X be a random vector uniformly distributed over [0, 1]k. Then with
probability at least 1 − 4k1/4 e−

√
k/8, we have:∣∣∣∥UX −WX∥□,F − ∥U −W∥□,F

∣∣∣ ⩽ 11
k1/4 ·

An immediate consequence of Lemma 6.7 is that the decorated graphs
with probability measures on their edges H(k, U) and H(k,W ) can be cou-
pled in order that d□,F (H(k, U),H(k,W )) is close to d□,F (U,W ) with high
probability.

To prove the first sampling lemma, we first need to prove the following
lemma which states that the cut norm ∥ · ∥□,F can be approximated by
the maximum of the one-sided cut norm using a finite number of functions.
Recall from Remark 3.24 the definition of the one-sided version of the cut
norm ∥ · ∥+

□,R.

Lemma 6.8 (Approximation bound with ∥ · ∥□,F and ∥ · ∥+
□,R). — Let

U,W ∈ W1 and let N ∈ N. For every ε = (εn)1⩽n⩽N ∈ {±1}N , define
gN,ε =

∑N
n=1 2−nεnfn. Then, we have:

∥U −W∥□,F − 2−N ⩽ max
ε∈{±1}N

∥(U −W ) [gN,ε]∥+
□,R ⩽ ∥U −W∥□,F .

Proof. — First remark that for n ∈ N, fn takes values in [0, 1], and
thus U [fn] − W [fn] takes values in [−1, 1]. Recall that f0 = 1, and thus
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U [f0] − W [f0] ≡ 0. Upper bounding integrals by 1 for indices n > N , we
get:

∥U −W∥□,F ⩽ sup
S,T⊂[0,1]

N∑
n=1

2−n
∣∣∣∣∫
S×T

(U −W )[fn](x, y) dxdy
∣∣∣∣+ 2−N .

And adding the non-negative terms for n > N , we get:

sup
S,T⊂[0,1]

N∑
n=1

2−n
∣∣∣∣∫
S×T

(U −W )[fn](x, y) dxdy
∣∣∣∣ ⩽ ∥U −W∥□,F .

Using the same idea as in (3.12) and (3.13), we get:

sup
S,T⊂[0,1]

N∑
n=1

2−n
∣∣∣∣∫
S×T

(U −W )[fn](x, y) dxdy
∣∣∣∣

= max
ε∈{±1}N

∥(U −W ) [gN,ε]∥+
□,R ,

which concludes the proof. □

Proof of Lemma 6.7. — Remark that for f ∈ Cb(Z) and W ∈ W±, we
have (WX)[f ] = (W [f ])X , and we thus writeW [f ]X without any ambiguity.

Assume that k ⩾ 24 (otherwise the lower bound in the lemma is trivial).
Set N = ⌈log2(k1/4)⌉, so that 2−1k−1/4 < 2−N ⩽ k−1/4. Let ε ∈ {±1}N .
Remark that as the fn take values in [0, 1], the real-valued kernels (U −
W )[fn] take values in [−1, 1], and thus the real-valued kernel (U−W )[gN,ε]
also take values in [−1, 1]. Applying [16, Theorem 4.6] to the real-valued
kernel (U −W ) [gN,ε], we get with probability at least 1 − 2 e−

√
k/8 that:

(6.1)
∣∣∣∣∥(U −W )[gN,ε]X∥+

□,R − ∥(U −W )[gN,ε]∥+
□,R

∣∣∣∣ ⩽ 10
k1/4 ,

where recall that ∥ · ∥+
□,R is the one-sided version of the cut norm for

real-valued kernels defined in (3.11). Hence, with probability at least 1 −
2N+1 e−

√
k/8 ⩾ 1 − 4k1/4 e−

√
k/8, we have that the bounds in (6.1) holds

for every ε ∈ {±1}N simultaneously; and when all of this holds, applying
Lemma 6.8 to U,W and to UX ,WX , we get:

∥UX −WX∥□,F ⩽ max
ε∈{±1}N

∥(U −W )[gN,ε]X∥+
□,R + 2−N

⩽ max
ε∈{±1}N

∥(U −W )[gN,ε]∥+
□,R + 11

k1/4

⩽ ∥U −W∥□,F + 11
k1/4 ,
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and similarly:

∥U −W∥□,F ⩽ max
ε∈{±1}N

∥(U −W )[gN,ε]∥+
□,R + 2−N

⩽ max
ε∈{±1}N

∥(U −W )[gN,ε]X∥+
□,R + 11

k1/4

⩽ ∥UX −WX∥□,F + 11
k1/4 ·

This concludes the proof. □

6.3.2. Approximation with random weighted graphs

As a consequence of the First Sampling Lemma 6.7, we get that the cut
distance between the sampled graphs H(k, U) and H(k,W ) (with the proper
coupling) is close to the cut distance between the probability-graphons U
and W . The following lemma states that if k is large enough, then G(k,W )
is close to H(k,W ) in the cut distance d□,F , and thus the cut distance
between the random weighted graphs G(k, U) and G(k,W ) is also close to
d□,F (U,W ).

Recall from Section 6.2 the definition of the random weighted graph
G(H) when H is an M1(Z)-graph. Following Remarks 6.3 and 6.2, we shall
see the weighted graph G(H) as a M1(Z)-graph or even as a probability-
graphon.

Lemma 6.9 (Bound in probability for d□,F (G(H), H)). — For every
M1(Z)-graph H with k vertices, and for every ε ⩾ 10/

√
k, we have:

P
(
d□,F (G(H), H) > 2ε

)
⩽ e−ε2k2

.

Remark 6.10 (Bound in expectation for d□,F (G(H), H)). — Recall that
d□,F (G(H), H) ⩽ 1. Applying Lemma 6.9 with ε = 10/

√
k, we get the

following bound on the expectation of d□,F (G(H), H):

E[d□,F (G(H), H)] ⩽ 20√
k

+ e−100k <
21√
k

·

Proof of Lemma 6.9. — Let H and ε be as in the lemma. Assume that
ε ⩽ 1/2 (otherwise the probability to bound in the lemma is null). To
simplify the notations, denote by G = G(H) throughout this proof. Define
N = ⌈log2(ε−1)⌉, so that

∑∞
n=N+1 2−n ⩽ ε. Upper bounding by 1 the

terms for n > N in (3.14), we get for U,W ∈ W1:

d□,F (U,W ) ⩽
N∑
n=1

2−n∥U [fn] −W [fn]∥□,R + ε,
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where recall that ∥ · ∥□,R is the cut norm for real-valued kernels defined in
(3.11). Using this equation with the graphs G and H, we get:

P(d□,F (G,H) > 2ε) ⩽ P

(
N∑
n=1

2−nd□,R(G[fn], H[fn]) > ε

)

⩽
N∑
n=1

P
(
d□,R(G[fn], H[fn]) > ε

)
,(6.2)

where d□,R denotes the cut distance associated to the cut norm ∥ · ∥□,R for
real-valued graphons and kernels. Remark that for every n ∈ N, H[fn] and
G[fn] are real-weighted graphs with weights in [0, 1]. Thus, by a straight-
forward adaptation of the proof of [46, Lemma 10.11], we get:

(6.3) ∀n ∈ [N ], P(d□(G[fn], H[fn]) > ε) ⩽ 2 · 4k e−2ε2k2
.

Combining (6.2) and (6.3), we get for ε > 10/
√
k:

P(d□,F (G,H) > 2ε) ⩽ 2N4ke−2ε2k2
⩽ e−ε2k2

,

where the last bound derives from simple calculus. This concludes the proof.
□

We can apply the First Sampling Lemma 6.7 along with Lemma 6.9 to
get the following lemma, equivalent of the first sampling lemma for the
random weighted graph G(k,W ):

Corollary 6.11 (First Sampling Lemma for G(k,W )). — Let U,W ∈
W1 be two probability-graphons, and k ∈ N∗. Then, we can couple the
random weighted graphs G(k, U) and G(k,W ) such that with probability
at least 1 − (4k1/4 + 1) e−

√
k/8, we have:

∣∣d□,F (G(k, U),G(k,W )) − d□,F (U,W )
∣∣ ⩽ 14

k1/4 ·

Proof. — Assume that k ⩾ 144 (otherwise the bound in the corollary is
trivial). Then, we have with probability at least 1 − 4k1/4 e−

√
k/8 −2 e−100k
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> 1 − (4k1/4 + 1) e−
√
k/8:

(6.4)
∣∣d□,F (G(k, U),G(k,W )) − d□,F (U,W )

∣∣
⩽
∣∣d□,F (G(k, U),G(k,W )) − d□,F (H(k, U),H(k,W ))

∣∣
+
∣∣d□,F (H(k, U),H(k,W )) − d□,F (U,W )

∣∣
⩽ d□,F (G(k, U),H(k, U))

+ d□,F (G(k,W ),H(k,W )) + 11
k1/4

⩽
40√
k

+ 11
k1/4

⩽
14
k1/4 ,

where we used the upper bound from the First Sampling Lemma 6.7 (which
gives the coupling with the same random vector X to define both graphs
UX = H(k, U) and WX = H(k,W )) for the second inequality, the upper
bound from Lemma 6.9 with ε = 10/

√
k with both U and W for the third

inequality, and that 1√
k
⩽ 1

14k1/4 for the last inequality. □

6.4. The distance between a probability-graphon and its sample

In this section, we present the Second Sampling Lemma, that shows
that a sampled M1(Z)-graph is close to its original probability-graphon
with high probability. Note that we use the unlabeled cut distance δ□,F
rather than d□,F as the sample points are unordered. The bound on the
distance is much weaker than the one in the First Sampling Lemma 6.7,
but nevertheless goes to 0 as the sample size increases.

The proof is a straightforward adaptation of the proof of [46, Lemma
10.16] (replacing the weak regularity lemma and the first sampling lemma
by their counterparts for probability-graphons, that is Lemmas 4.17 and
6.7; the sample concentration theorem for real-valued graphons can easily
be adapted to probability-graphons).

Lemma 6.12 (Second Sampling Lemma). — Let F be a convergence
determining sequence. Let W ∈ W̃1 be a probability-graphon and k ∈ N∗.
Then, with probability at least 1 − exp(−k/(2 ln(k))) we have:

δ□,F (H(k,W ),W ) ⩽ 21√
ln(k)

and δ□,F (G(k,W ),W ) ⩽ 22√
ln(k)

·
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In the above lemma, the asymmetric random graph G(k,W ) can be
replaced by the symmetric random graph Gsym(k,W ) without changing
the proof. Similarly, the results in Section 6.3.2 can be reformulated with
symmetric random graphs Gsym(k,W ) and Gsym(H) (but with a slight
modification of the proof for Lemma 6.9 to symmetrize the random variable
Xi,j and with the upper bound e−ε2k2/2, see also [46, Lemma 10.11]).

As an immediate consequence of Lemma 6.12 and of the Borel–Cantelli
lemma, we get the convergence of the sampled subgraphs for the cut dis-
tance δ□,F .

Theorem 6.13 (Convergence of sampled subgraphs). — Let F be a
convergence determining sequence. Let W ∈ W̃1 be a probability-graphon.
Then, a.s. the sequence of sampled subgraphs (G(k,W ))k∈N∗ converges to
W for the cut distance δ□,F , and thus for any cut distance δ□,m from
Theorem 5.5.

7. The Counting Lemmas and the topology of
probability-graphons

In this section, we introduce the homomorphism densities for probability-
graphons, and then we link those to the cut distance δ□,F through the
Counting Lemma and the Inverse Counting Lemma. Those results are anal-
ogous to the case of real-valued graphons, see [46, Chapter 7] for the def-
inition of homomorphism densities and [46, Chapter 10] for the Counting
Lemma and Inverse Counting Lemma. The main differences with [46] are:
the decoration of the edges of the graphs with functions from Cb(Z); the
Counting Lemma for the decorations belonging only in the convergence
determining sequence F ; the more technical proof of the Inverse Counting
Lemma. Note that we need to work with δ□,F here as the proof of the
Inverse Counting Lemma relies on the second sampling Lemma 6.12.

Finally, we prove our main result, Theorem 7.11, which states that the
topology on the space of probability-graphons, see Theorem 5.5, which can
be induced by several choices of cut distances (e.g. δ□,LP, δ□,KR, δ□,FM
and δ□,F ) coincides with the topology of convergence for all sampled sub-
graphs.

7.1. The homomorphism densities

In the case of non-weighted graphs, the homomorphism densities t(F,G)
allow to characterize a graph (up to twin-vertices expansion), and also
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allow to define a topology for real-valued graphons. In the case of weighted
graphs and probability-graphons, we need to replace the absence/presence
of edges (which is 0-1 valued) by test functions from Cb(Z) decorating each
edge.

In this section, we often need to fix the underlying (directed) graph
structure F = (V,E) (which may be incomplete) of a Cb(Z)-graph and
to vary only the Cb(Z)-decorating functions g = (ge)e∈E , thus we will
write F g = (V,E, g) for a Cb(Z)-graph. Moreover, when there exists a
convergence determining sequence F such that ge ∈ F for every edge e ∈ E,
we say that F g is a F-graph and use the same notation conventions.

Definition 7.1 (Homomorphism density). — We define the homomor-
phism density of a Cb(Z)-graph F g in a signed measure-valued kernel
W ∈ W± as:

(7.1) t(F g,W ) = MF
W (g) =

∫
[0,1]V (F )

∏
(i,j)∈E(F )

W (xi, xj ; gi,j)
∏

i∈V (F )

dxi.

Moreover, MF
W defines a measure on ZE (which we still denote by MF

W )
which is characterized by MF

W (⊗e∈Ege) = MF
W (g) for g = (ge)e∈E .

Remark 7.2 (Invariance under relabeling of homomorphism densities).
Let φ : [0, 1] → [0, 1] be a measure-preserving map. As φ⊗k : (x1, . . . , xk) 7→
(φ(x1), . . . , φ(xk)) is a measure-preserving map on [0, 1]k, applying the
transfer formula (see (2.1)), we get that for every Cb(Z)-graph F g and every
signed measure-valued kernel W ∈ W±, we have t(F g,Wφ) = t(F g,W ).
Thus t(F g, ·) can be extended to W̃±.

Remark 7.3. — When W ∈ W+ is a measure-valued kernel, and F is the
graph with two vertices and one edge, we get that MF

W = MW the measure
defined in (4.1).

Remark 7.4 (Adding missing edges to F ). — When we work with
probability-graphons, we can always assume the graph F to be complete,
by adding the missing edges (i, j) and decorating them with the constant
function g(i,j) = 1.

For a finite weighted graph G, we define the homomorphism density of
the Cb(Z)-graph F g in G as t(F g, G) = t(F g,WG) (recall from Remark 6.2
the definition of WG), that is:

t(F g, G) = 1
v(G)k

∑
(x1,··· ,xk)∈V (G)k

∏
(i,j)∈E(F )

g(i,j)(ΦG(xi, xj)),
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where k = v(F ) and ΦG(xi, xj) is the weight of the directed edge from xi
to xj .

7.2. The Counting Lemma

The following lemma links the homomorphism densities with the cut
distance δ□,F for some convergence determining sequence F = (fn)n∈N
(with f0 = 1 and fn takes values in [0, 1]). This lemma is a generalization
to probability-graphons of the Counting Lemma for real-valued graphons
(see Lemmas 10.22 and 10.23 from [46]). Recall that by Remark 7.2, t(F g, ·)
is defined on W̃±.

Lemma 7.5 (Counting Lemma). — Let F = (fn)n∈N be a convergence
determining sequence (with f0 = 1 and fn taking values in [0, 1]). Let
F g be a F-graph, and for every edge e ∈ E(F ), let ne ∈ N be such that
ge = fne

. Then, for every probability-graphons W,W ′ ∈ W̃1, we have:

|t(F g,W ) − t(F g,W ′)| ⩽

 ∑
e∈E(F )

2ne

 δ□,F (W,W ′).

Remark 7.6 (W 7→ t(F g,W ) is Lipschitz). — The Lipschitz constant
given by the lemma is too large to be useful in practical cases. Nevertheless,
the homomorphism density function W 7→ t(F g,W ) is Lipschitz on the
space of unlabeled probability-graphons W̃1 equipped with the cut distance
δ□,F .

Proof of Lemma 7.5. — To do this proof, we will apply Lemma 10.24
from [46], which applies to graphs F whose edges are decorated with (possi-
bly different) real-valued graphons w = (we : e ∈ E(F )), and the associated
homomorphism density is defined as

(7.2) t(F,w) =
∫

[0,1]V (F )

∏
(i,j)∈E(F )

we(xi, xj)
∏

i∈V (F )

dxi.

Recall from (3.7) that for a probability-graphon W ∈ W1 and a func-
tion f ∈ F (which is [0, 1]-valued by our definition of convergence deter-
mining sequences), we have that W [f ] is a real-valued graphon. Define
the collections of real-valued graphons w = (W [ge] : e ∈ E(F )) and
w′ = (W ′[ge] : e ∈ E(F )). Notice from (7.1) and (7.2) that we have
t(F,w) = t(F g,W ) and t(F,w′) = t(F g,W ′). Applying [46, Lemma 10.24]
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to the graph F and edge-decorations w and w′, we get:

|t(F g,W ) − t(F g,W ′)| = |t(F,w) − t(F,w′)| ⩽
∑

e∈E(F )

∥W [ge] −W ′[ge]∥□,R,

where the norm ∥ · ∥□,R in the upper bound is the cut norm for real-
valued graphons (see (3.11) for definition of this object). For e ∈ E(F ), by
definition of the cut distance d□,F and using (3.10), we have:

∥W [ge] −W ′[ge]∥□,R ⩽ 2ne d□,F (W,W ′).

Hence, combining all those upper bounds, we get the bound in the lemma
but with d□,F instead of δ□,F . Since t(F g, ·) is invariant under relabeling by
Remark 7.2, taking the infimum other all relabelings allows to replace d□,F
by δ□,F and to get the bound in the lemma. □

We have just seen that homomorphism densities defined using only func-
tions from F are Lipschitz. We are going to see that the other homomor-
phism densities are nevertheless continuous.

Lemma 7.7 (Weak Counting Lemma). — Let F be a convergence de-
termining sequence (with f0 = 1). Let (Wn)n∈N and W be probability-
graphons such that limn→∞ t(F g,Wn) = t(F g,W ) for all F-graphs F g
(which in particular the case if limn→∞ δ□,F (Wn,W ) = 0 by the Counting
Lemma 7.5). Then, for every Cb(Z)-graph F g we have:

t(F g,Wn) −→
n→∞

t(F g,W ).

Proof. — Let F = (V,E) be some fixed (directed) graph. By
assumption, we have for all edge-decorations g = (ge)e∈E in F that
limn→∞ MF

Wn
(⊗e∈Ege) = MF

W (⊗e∈Ege) (see Definition 7.1). By [24, Chap-
ter 3, Proposition 4.6], F⊗E is a (countable) convergence determining fam-
ily on M+(ZE). Thus, the sequence of measures (MF

Wn
)n∈N converges to

MF
W for the weak topology on M+(ZE). And in particular, for every edge-

decoration function g = (ge)e∈E (here for every e ∈ E, ge ∈ Cb(Z) is ar-
bitrary) we have MF

Wn
(⊗e∈Ege) = t(F g,Wn) → t(F g,W ) = MF

W (⊗e∈Ege)
as n → ∞. This being true for all choices of the graph F , it concludes the
proof. □

7.3. The Inverse Counting Lemma

The goal of this subsection is to establish a converse to the Counting
Lemma: if two probability-graphons are close in terms of homomorphism
densities, then they are close w.r.t. the cut distance δ□,F .
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Lemma 7.8 (Inverse Counting Lemma). — Let F = (fn)n∈N be a con-
vergence determining sequence (with f0 = 1 and fn takes values in [0, 1]).
Let U,W ∈ W̃1 be two probability-graphons, and let k, n0 ∈ N∗. As-
sume that we have |t(F g, U) − t(F g,W )| ⩽ 2−k−n0k

2 for every (complete)
Cb(Z)-graph F g with k vertices and such that the edge-decoration func-
tions g = (ge)e∈E(F ) are products (without repetition) of the functions
(fn)1⩽n⩽n0 and (1 − fn)1⩽n⩽n0 . Then, we have:

δ□,F (U,W ) ⩽ 44√
log(k)

+ 2−n0 .

To prove Lemma 7.8, we first need to prove the special case where the
space Z is finite.

Lemma 7.9 (Inverse Counting Lemma, case with finite space Z). —
Assume that the space Z is finite with cardinality n1, for simplicity say
Z = [n1]. Define the indicator functions fn : z 7→ 1{z=n} for n ∈ [n1], in
particular H = (fn)1⩽n⩽n1 is a finite convergence determining sequence.
Let U,W ∈ W̃1 be two probability-graphons, and let k ∈ N∗. Assume
that we have |t(F g, U) − t(F g,W )| < 2−k−log2(n1)k2 for every (complete)
H-graph F g with k vertices.

Then, for any (possibly finite) convergence determining sequence F , we
have:

δ□,F (U,W ) ⩽ 44√
log(k)

·

Abusing notations, we can identify a weight-value n ∈ Z with its indica-
tor function fn, and doing this identification for edge-decoration functions,
we can identify a F-graph F g with its corresponding weighted graph. In
particular, doing so we get t(F g,W ) = P(G(k,W ) = F g) for every F-graph
F g with k vertices. The proof of Lemma 7.9 is then a straightforward adap-
tation of the proof of [46, Lemma 10.31 and Lemma 10.32].

Proof of Lemma 7.8. — As the functions (fn)n∈N take value in [0, 1], for
all φ measure-preserving map, for all S, T ⊂ [0, 1] measurable sets and for
all n ∈ N, we have:∣∣∣U(S × T ; fn) −Wφ(S × T ; fn)

∣∣∣ ⩽ 1.

Using this bound, we get the following bound (recall that f0 = 1):
(7.3)

δ□,F (U,W ) ⩽ inf
φ∈S[0,1]

sup
S,T⊂[0,1]

n0∑
n=1

2−n
∣∣∣U(S×T ; fn)−Wφ(S×T ; fn)

∣∣∣+2−n0 .
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Hence, for a point z ∈ Z, the upper bound in (7.3) uses only the informa-
tion given by (fn(z))n∈[n0]. In order to discretize the space [0, 1]n0 , we re-
place a point p = (p1, . . . , pn0) ∈ [0, 1]n0 by a random point (Y1, . . . , Yn0) ∈
{0, 1}n0 where the Yi are independent random variables with Bernoulli dis-
tribution of parameter pi. This leads us to replace a M1(Z)-valued kernel
W by the M1({0, 1}n0)-valued kernel W̃ defined for all (x, y) ∈ [0, 1]2, and
for all s = (s1, . . . , sn0) ∈ {0, 1}n0 as:

W̃ (x, y; {s}) = W (x, y; fs) where fs =
n0∏
n=1

fsn
n (1 − fn)1−sn .

Fix some enumeration (sm)m∈[2n0 ] of the points in {0, 1}n0 , and de-
fine the indicator functions h̃m : s 7→ 1{s=sm} for m ∈ [2n0 ], in partic-
ular H̃ = (h̃m)1⩽m⩽2n0 is a finite convergence determining sequence on
M+({0, 1}n0). Let F g̃ be a H̃-graph with vertex set V (F ) = [k], and for
every edge e ∈ E(F ), let me ∈ [2n0 ] be such that g̃e = h̃me . Define the edge-
decoration functions g = (ge)e∈E(F ) for every edge e ∈ E(F ) as ge = fs

me ,
then we get:

t(F g̃, W̃ ) =
∫

[0,1]k

∏
(i,j)∈E(F )

W̃ (xi, xj ; {sme})
k∏
i=1

dxi = t(F g,W ).

Thus, the M1({0, 1}n0)-valued graphons Ũ and W̃ inherit the bounds on
the homomorphism densities: for every H̃-graph F g̃, we have |t(F g̃, Ũ) −
t(F g̃, W̃ )| ⩽ 2−k−n0k

2 .
Define for all n ∈ [n0] the function f̃n : s 7→ 1{sn=1}, and let F̃ be the

concatenation of (f̃n)n∈[n0] and H̃, in particular F̃ is a finite convergence de-
termining sequence on M+({0, 1}n0). Finally, as δ□,F̃ (Ũ , W̃ ) upper bounds
the first term in the upper bound of (7.3), applying Lemma 7.9 with the
finite space Z = {0, 1}n0 and n1 = 2n0 , the finite convergence determining
sequences F̃ and H̃, and the M1({0, 1}n0)-valued graphons Ũ and W̃ , we
get:

δ□,F (U,W ) ⩽ 44√
ln(k)

+ 2−n0 ,

which concludes the proof. □

7.4. Subgraph sampling and the topology of
probability-graphons

Thanks to the Weak Counting Lemma 7.7 and the Inverse Counting
Lemma 7.8, we can formulate a new informative characterization of weak

Innov. Graph Theory 2, 2025, pp. 25–117



94 R. Abraham, J.-F. Delmas & J. Weibel

isomorphism, i.e. equality in the space of unlabeled probability-graphons
W̃1. Note that the propositions and the theorem in this subsection can in
particular be applied to δ□,m when dm is a quasi-convex distance continuous
w.r.t. the weak topology, as then d□,m is invariant, smooth, weakly regular
and regular w.r.t. the stepping operator (see Proposition 4.13).

Proposition 7.10 (Characterization of equality for δ□,m). — Let
U,W ∈ W1 be two probability-graphons. The following properties are
equivalent:

(i) δ□,m(U,W ) = 0 for some (and hence for every) choice of the dis-
tance dm on M⩽1(Z) such that the cut distance d□,m on W1 is
(invariant) smooth.

(ii) There exist φ,ψ ∈ S̄[0,1] such that Uφ = Wψ almost everywhere on
[0, 1]2.

(iii) t(F g, U) = t(F g,W ) for all Cb(Z)-graphs F g.
(iv) t(F g, U) = t(F g,W ) for all F-graphs F g.

Proof. — The equivalence between Properties (i) and (ii) is a conse-
quence of Proposition 3.18 on the cut distance. Remark 7.2 gives that
Property (ii) implies Property (iii). It is clear that Property (iii) implies
Property (iv). The Inverse Counting Lemma 7.8 with the Weak Counting
Lemma 7.7 give that Property (iv) implies Property (i) (with dm = dF ).
Hence, we have the desired equivalence. □

Thanks to the Weak Counting Lemma 7.7 and the Inverse Counting
Lemma 7.8, we get the following characterization of the topology induced
by the cut distance δ□,m on the space of unlabeled probability-graphons
W̃1 in terms of homomorphism densities

Theorem 7.11 (Characterization of the topology induced by δ□,m). —
Let (Wn)n∈N and W be unlabeled probability-graphons from W̃1. The fol-
lowing properties are equivalent:

(i) limn→∞ δ□,m(Wn,W ) = 0 for some (and hence for every) choice of
the distance dm on M⩽1(Z) such that dm induces the weak topology
on M⩽1(Z) and the cut distance d□,m on W1 is (invariant) smooth,
weakly regular and regular w.r.t. the stepping operator.

(ii) limn→∞ t(F g,Wn) = t(F g,W ) for all Cb(Z)-graphs F g.
(iii) limn→∞ t(F g,Wn) = t(F g,W ) for all F-graphs F g.
(iv) For all k ⩾ 2, the sequence of sampled subgraphs (G(k,Wn))n∈N

converges in distribution to G(k,W ).
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In particular, the topology induced by the cut distance δ□,F on the
space of unlabeled probability-graphons W̃1 coincides with the topology
generated by the homomorphism densities functions W 7→ t(F g,W ) for all
Cb(Z)-graphs F g.

Proof. — By Theorem 5.5, convergence for δ□,F is equivalent to conver-
gence for δ□,m for every choice of the distance dm on M⩽1(Z) such that dm
induces the weak topology on M⩽1(Z) and the cut distance d□,m on W1 is
(invariant) smooth, weakly regular and regular w.r.t. the stepping operator.
Taking dm = dLP, the Weak Counting Lemma 7.7 gives that Property (i)
implies Property (ii). It is clear that Property (ii) implies Property (iii).
The Inverse Counting Lemma 7.8 with the Weak Counting Lemma 7.7
give that Property (iii) implies Property (i) (with dm = dF ). Notice that
when F is the complete graph with k vertices, MF

W is the joint measure
of all the edge-weights of the random graph G(k,W ), and thus character-
izes the distribution random graph G(k,W ). Thus (recall Definition 7.1),
Property (ii) and Property (iv) are equivalent. Hence, we have the desired
equivalence. □

Question 7.12 (Do the distances d□,F all induce the same topology?).
Even though every distance δ□,F generates the same topology on the space
of unlabeled probability-graphons W̃1, it is an open question whether or
not it is also the case that every distance d□,F induces the same topology
on the space of labeled probability-graphons W1.

The following proposition states that to prove existence of a limit unla-
beled probability-graphon it is enough to prove that there exists a conver-
gence determining sequence F such that for every F-graph F g the homo-
morphism densities t(F g, ·) converge.

Proposition 7.13 (Existence of a limit unlabeled probability-graphon).
Let dm be a distance on M⩽1(Z) such that dm induces the weak topology
on M⩽1(Z) and the cut distance d□,m on W1 is (invariant) smooth, weakly
regular and regular w.r.t. the stepping operator.

Let (Wn)n∈N be sequence of unlabeled probability-graphons in W̃1 that
is tight. Let F be a convergence determining sequence such that for every
F-graph F g the sequence (t(F g,Wn))n∈N converges. Then, there exists an
unlabeled probability-graphon W ∈ W̃1 such that the sequence (Wn)n∈N
converges to W for δ□,m.

Proof. — Since the sequence (Wn)n∈N is tight, by Theorem 5.1, there
exists a subsequence (Wnk

)k∈N of the sequence (Wn)n∈N that converges to

Innov. Graph Theory 2, 2025, pp. 25–117



96 R. Abraham, J.-F. Delmas & J. Weibel

some W for δ□,m. By Theorem 7.11, we have for every F-graph F g that
limk→∞ t(F g,Wnk

) = t(F g,W ); and as we already know that the sequence
(t(F g,Wn))n∈N converges, we have that limn→∞ t(F g,Wn) = t(F g,W ).
Hence, by Theorem 7.11, we get that the sequence (Wn)n∈N converges to
W for δ□,m. □

Remark 7.14. — For the special case Z = {0, 1}, which is compact, we
find back that convergence for real-valued graphons is characterized by the
convergence of the homomorphism densities. Notice the tightness condition
of Proposition 7.13 is automatically satisfied as Z is compact.

8. Proofs of Theorem 5.1 and Theorem 5.5

We start by proving a lemma that allows to construct a convergent sub-
sequence and its limit kernel for a tight sequence of measure-valued ker-
nels. This lemma is useful for the proofs of both Theorem 5.1 and The-
orem 5.5. For the proof of Theorem 5.5, we will also need the conver-
gence to hold simultaneously for two distances δ□ and δ′

□. Recall from
Definition 4.1 the definition of the stepfunction WP for a signed measure-
valued kernel W and a finite partition P of [0, 1]. For a finite partition
P of [0, 1], define its diameter as the smallest diameter of its sets, i.e.
diam(P) = minS∈P diam(S) = minS∈P supx,y∈S |x− y|.

Lemma 8.1 (Convergence using given approximation partitions). — Let
d be an invariant smooth distance on W1 (resp. W+ or W±). Let (Wn)n∈N
be a sequence in W1 (resp. W+ or W±) which is tight (resp. uniformly
bounded and tight). Further assume that we are given, for every n, k ∈ N,
partitions Pn,k of [0, 1], such that these partitions and the corresponding
stepfunctions Wn,k = (Wn)Pn,k

satisfy the following conditions:
(i) the partition Pn,k+1 is a refinement of Pn,k,
(ii) diam(Pn,k) ⩽ 2−k and |Pn,k| = mk depends only on k (and not on

n),
(iii) d(Wn,Wn,k) ⩽ 1/(k + 1).

Then, there exists a subsequence (Wnℓ
)ℓ∈N of the sequence (Wn)n∈N and

a measure-valued kernel W ∈ W1 (resp. W ∈ W+ or W ∈ W±) such that
(Wnℓ

)ℓ∈N converges to W for δ□.

Moreover, assume that d′ is another invariant smooth distance on W1
(resp. W+ or W±) such that for every n ∈ N and k ∈ N, Wn,k also satisfies:

(iv) d′(Wn,Wn,k) ⩽ 1/(k + 1).
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Then, there exists a subsequence (Wnℓ
)ℓ∈N of the sequence (Wn)n∈N and

a measure-valued kernel W ∈ W1 (resp. W ∈ W+ or W ∈ W±) such that
(Wnℓ

)ℓ∈N converges to the same measure-valued kernel W simultaneously
both for δ□ and for δ′

□, the cut distance associated with d′.

Proof. — We adapt here the general scheme from the proof of Theo-
rem 9.23 in [46], but the argument for the convergence of the Uk, defined be-
low, takes into account that measure-valued kernels are infinite-dimensional
valued. We set (recall from (3.1) the definition of ∥ · ∥∞):

C = sup
n∈N

∥Wn∥∞ < +∞.

The proof is divided into four steps.
Step 1: Without loss of generality, the partitions Pn,k are made

of intervals. For every n ∈ N, we can rearrange the points of [0, 1] by a
measure-preserving map so that the partitions Pn,k are made of intervals,
and we replace Wn by its rearranged version.

An argument similar to the next lemma is used in the proof in [46,
Proof of Theorem 9.23] without any reference. So, we provide a proof and
stress that diameters of the partitions shrinking to zero is an important
assumption (see Remark 8.3 below). We say a measurable map φ from
[0, 1] to [0, 1] is a.e. invertible if there exists a measurable function ψ from
[0, 1] to [0, 1] such that φ ◦ψ(x) = ψ ◦φ(x) = x for a.e. x ∈ [0, 1]; and that
it is bi-measurable if φ is measurable and for all Borel set B ⊂ [0, 1], φ(B)
is also a Borel set.

Lemma 8.2 (Kernel rearrangement with interval partitions). —
Let (Pk)k∈N be a refining sequence of finite partitions of [0, 1] whose diame-
ter converges to zero. Then, there exist a measure-preserving map φ ∈ S̄[0,1]
which is bi-mesurable and a.e. invertible, and a refining sequence of parti-
tions made of intervals (Qk)k∈N such that for all k ∈ N, and all set S ∈ Pk
there exists a set R ∈ Qk such that a.e. 1R = 1φ−1(S).

In particular, if W is a signed measure-valued kernel, then for U = Wφ,
we have that a.e. UQk

= (Wφ)Qk
= (WPk

)φ for all k ∈ N.
Notice that, according to Remark 4.4, the sequence of refining partition

(Pk)k∈N, with a partition diameter converging to 0, separates points and
thus generates the Borel σ-field of [0, 1].

Proof. — Consider the infinite Ulam–Harris tree T ∞ = {u1 · · ·uk : k ∈
N, u1, . . . , uk ∈ N∗}, where for k = 0 the empty word u = ∂ is called the
root node of the tree; for a node u = u1 · · ·uk ∈ T ∞ , we define its height
as h(u) = k, and if k > 0 we define its parent node as p(u) = u1 · · ·uk−1
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and we say that u is a child node of p(u). We order vertices on the tree T ∞

with the lexicographical (total) order <lex. As a first step, we construct a
subtree T ⊂ T ∞ that indexes the sets in the partitions (Pk)k∈N, such that
for every k ∈ N, Pk = {Su : u ∈ T , h(u) = k}, and such that if Sv ⊂ Su
with Sv ∈ Pk and Su ∈ Pk−1, then p(v) = u.

Without loss of generality, we may assume that P0 = {[0, 1]}, and we
label its only set by the empty word ∂, and we set S∂ = [0, 1]. Then, suppose
we have already labeled the sets from P0, . . . ,Pk, and we proceed to label
the sets from Pk+1. Because the partition Pk+1 is a refinement of Pk, we
can group the sets of Pk+1 by their unique parent set from Pk, i.e. for every
Su ∈ Pk, let Ou = {S ∈ Pk+1 : S ⊂ Su}, then Su = ∪S∈Ou

S. For Su ∈ Pk,
we fix an arbitrary enumeration of Ou = {S1, . . . , Sℓ} with ℓ = |Ou|, then
label the set Sj by uj, and set Sj = Suj ; remark that the parent node of
w = uj is p(w) = u, and the height of node w is h(w) = h(u) + 1 = k + 1.
Hence, we have labeled every set from Pk+1. To finish the construction, we
set T = {u : ∃k ∈ N,∃S ∈ Pk, S has label u}.

We now proceed to construct a measure-preserving map ψ such that
the image of every set Su is a.e. equal to an interval, and such that those
intervals are ordered w.r.t. to the order of their labels in T .

Define the map σ : [0, 1] → T N by σ(x) = (uk(x))k∈N ∈ T N where uk(x)
is the only node of T with height k such that x ∈ Suk(x) (and thus uk+1(x) is
a child node of uk(x)). Remark that if uk0(x) <lex u

k0(y) for some k0 ∈ N,
then uk(x) <lex uk(y) for every k ⩾ k0. We extend naturally the total
order <lex from T to a the total order on T N: for (uk)k∈N, (vk)k∈N ∈ T N,
(uk)k∈N <lex (vk)k∈N if uk0 <lex v

k0 where k0 is the smallest k such that
uk ̸= vk.

For every u ∈ T , define:

A−(u) =
⋃

v<lexu :h(v)=h(u)

Sv and A+(u) = A−(u) ∪ Su,

and then define C−(u) = λ(A−(u)) and C+(u) = λ(A+(u)). Now, define ψ
as, for x ∈ [0, 1]:

ψ(x) = λ(A−(x))

where A−(x) = {y ∈ [0, 1] : σ(y) <lex σ(x)} = ∪k∈NA
−(uk(x)).

Moreover, as the sequence of partitions (Pk)k∈N has a diameter that con-
verges to zero, and thus separates points, the map σ is injective. Thus, we
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also have:

ψ(x) = λ(A+(x))
where A+(x) = {y ∈ [0, 1] : σ(y) ⩽lex σ(x)} = A−(x) ∪ {x}.

Remark that both A−(x) and A+(x) are Borel measurable.
Remark that for every k ∈ N, we have A−(uk(x)) ⊂ A−(x) ⊂ A+(x) ⊂

A+(uk(x)). In particular, for every u ∈ T , we have ψ(Su) ⊂ [C−(u), C+(u)];
however ψ(Su) is not necessarily an interval, but we shall see that
λ(ψ(Su)) = C+(u) − C−(u), i.e. ψ(Su) is a.e. equal to [C−(u), C+(u)].
Remark that, as the sequence of partitions (Pk)k∈N is refining, we get that
[C−(u), C+(u)] = ∪v : p(v)=u[C−(v), C+(v)] for every u ∈ T \ {∂}.

As the diameter of the partitions (Pk)k∈N converges to zero, we have the
following alternative formula for ψ:

ψ(x) = lim
k→∞

C−(uk(x)) = lim
k→∞

C+(uk(x)).

For every k ∈ N, the map x 7→ C−(uk(x)) is a simple function (constant
on each S ∈ Pk and takes finitely-many values), and thus ψ is measurable
as a limit of measurable maps.

We outline the rest of the proof. We first prove that ψ is measure-
preserving. Secondly, we prove that ψ is a.e. invertible and construct its a.e.
inverse map φ. Thirdly, we prove that (φ−1(Pk))k∈N is a refining sequence
of partitions. And lastly, we approximate almost everywhere the sequence
of partitions (φ−1(Pk))k∈N by a sequence of refining partitions composed
of intervals.

We now prove that ψ is measure preserving. Remark that ψ(x) is a non-
decreasing function of σ(x) for the total relation order<lex, i.e. ψ(y) ⩽ ψ(x)
if and only if σ(y) ⩽lex σ(x). Hence, ψ−1([0, ψ(x)]) = {y ∈ [0, 1] : σ(y) ⩽lex
σ(x)}, and we have:

λ(ψ−1([0, ψ(x)])) = λ({y ∈ [0, 1] : σ(y) ⩽lex σ(x)}) = ψ(x).

Thus, to show that ψ is measure preserving we just need to show that
ψ([0, 1]) is dense in [0, 1]. For every u ∈ T , as ψ(Su) ⊂ [C−(u), C+(u)], we
know that the interval [C−(u), C+(u)] contains at least one point of the
form ψ(x). Remark that for all k ∈ N, we have:

[0, 1] = ∪u∈T :h(u)=k[C−(u), C+(u)].

Hence, as λ([C−(u), C+(u)]) = λ(Su) ⩽ diam(Ph(u)) for every u ∈ T , and
as the diameter of the partitions (Pk)k∈N converges to zero, we know that
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each interval of positive length contains a point of the form ψ(x) for some
x ∈ [0, 1], which implies that ψ([0, 1]) is indeed dense in [0, 1].

We now prove that ψ is a.e. invertible and construct its a.e. inverse map
φ. Without loss of generality, assume that there is no set Su with null
measure. Consider two distinct elements x, y ∈ [0, 1] such that σ(x) <lex
σ(y). Assume that ψ(x) = ψ(y), and let N ∈ N be the last index k such
that uk(x) = uk(y). Then, for every k > N , we have uk(x) <lex uk(y),
which implies that ψ(x) ⩽ C+(uk(x)) ⩽ C−(uk(y)) ⩽ ψ(y); and thus
ψ(x) = ψ(y) = C+(uk(x)) = C−(uk(y)), which in turn implies that there
is no node of T between uk(x) and uk(y). Remark that this situation is
analogous to the terminating decimal versus repeating decimal situation.
Hence, we proved that there is no node between uN+1(x) and uN+1(y)
and that for every k > N , uk+1(x) is the right-most child of uk(x), and
uk+1(y) is the left-most child of uk(y) (i.e. uk+1(x) = uk(x)|Ouk(x)| and
uk+1(y) = uk(y)1). Recall that the map σ is injective. Putting all of this
together, we get that the set {(x, y) ∈ [0, 1] : ψ(x) = ψ(y), x < y} can
be indexed by the nodes of T , and is thus at most countable. The set
D = {x ∈ [0, 1] : ψ−1({ψ(x)}) is a singleton} is a Borel set as [0, 1] \D is
at most countable. Hence, the map ψ is injective on the subset D ⊂ [0, 1]
with measure one, and as ψ is measure preserving, we get that ψ(D) has
measure one, and thus ψ is bijective from D to ψ(D), that is, ψ is a.e.
invertible. We construct the map φ as the inverse map of ψ for x ∈ ψ(D)
and φ(x) = 0 for x ∈ [0, 1] \ ψ(D). Without loss of generality, we assume
that 0 ̸∈ D. Thus, φ is the a.e. inverse map of ψ.

We are left to prove that φ is bi-measurable and measure preserving. As
we saw that each point z ∈ [0, 1] has a pre-image ψ−1(z) = {x ∈ [0, 1] :
ψ(x) = z} at most countable (indeed of cardinal at most 2), thus [51]
insures that ψ is bi-measurable. Let B ⊂ (0, 1] be a Borel set. We have
that φ−1(B) = φ−1(B ∩ D) = ψ(B ∩ D) is a Borel set, where the first
equality uses that φ([0, 1]) = D ∪ {0}, the second equality uses that ψ is
the inverse of φ on D, and lastly we used that ψ is bi-measurable. We also
have that φ−1(B ∪ {0}) = φ−1(B) ∪ ([0, 1] \ ψ(D)) is a Borel set. Thus,
we deduce that φ is measurable. We now prove that φ is bi-measurable.
Let B ⊂ [0, 1] be a Borel set. We have that φ(B) is equal to ψ−1(B) if
B ⊂ ψ(D) and ψ−1 (B ∩ ψ(D)) ∪ {0} otherwise. In both cases, this is a
Borel set as ψ(D) is a Borel set since ψ is bi-measurable and D is a Borel
set.

Moreover, we have:

λ(φ−1(B)) = λ(ψ(B ∩D)) = λ(ψ−1(ψ(B ∩D))) = λ(B ∩D) = λ(B),
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where we used that φ−1(B) = ψ(B ∩ D) for the first equality, that ψ
is measure preserving for the second equality, that ψ is bijective from D

to ψ(D) for the third equality, and that D has measure one for the last
equality. We also have:

λ(φ−1(B ∪ {0})) = λ(φ−1(B)) + λ([0, 1] \ ψ(D)) = λ(B) = λ(B ∪ {0}),

where we used that φ−1(B) ⊂ ψ(D) and [0, 1] \ ψ(D) are disjoint sets
for the first equality, that λ(φ−1(B)) = λ(B) and that ψ(D) has measure
one for the second equality. Hence, the map φ is measurable and measure
preserving.

We now prove that (φ−1(Pk))k∈N is a refining sequence of partitions.
For k ∈ N, as Pk is a finite partition of [0, 1], we have that φ−1(Pk) =
{φ−1(Su) : u ∈ T , h(u) = k} is also a finite partition of [0, 1]. Moreover,
as (Pk)k∈N is a refining sequence of partitions, we get that the sequence of
partitions (φ−1(Pk))k∈N is also refining. Remark that the sets φ−1(Su) are
not necessarily intervals, they are intervals minus some at most countable
sets (this is similar to the unit line minus the Cantor set).

To finish the proof, we are left to construct a refining sequence of par-
titions made of intervals (Qk)k∈N that agrees almost everywhere with the
refining sequence of partitions (φ−1(Pk))k∈N. For u ∈ T , define Ru =
[C−(u), C+(u)) (and Ru = [C−(u), C+(u)] if u is the unique node such
that v ⩽lex u for every v ∈ T with h(v) = h(u)). As ψ is measure pre-
serving, and as ψ(Su) ⊂ [C−(u), C+(u)] with λ(Su) = C+(u) −C−(u), we
get that λ([C−(u), C+(u)] \ ψ(Su)) = 0. As φ is the a.e. inverse map of ψ,
we have that a.e. 1φ−1(Su) = 1ψ(Su) = 1[C−(u),C+(u)] = 1Ru

, i.e. Ru agrees
almost everywhere with φ−1(Su). For k ∈ N, define the finite partition
Qk = {Ru : h(u) = k}. Then, by definition of the sets Ru, the sequence of
partitions (Qk)k∈N is refining. This concludes the proof. □

Remark 8.3 (The shrinking diameter assumption is important). — Even
if it is not stressed in [46, Proof of Theorem 9.23], the measure preserving
map φ in Lemma 8.2, which is bi-measurable and a.e. invertible, cannot
be obtained without any assumption on the refining sequence of partitions
(Pk)k∈N (in our case, we assumed that their diameter converges to zero).
Indeed consider the sequence of partitions where for every k ∈ N, Pk is
composed of the sets:

Sk,j = [j2−k−1, (j + 1)2−k−1) ∪ [1/2 + j2−k−1, 1/2 + (j + 1)2−k−1),

0 ⩽ j < 2k,
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i.e. Sk,j is the union of two dyadic interval translated by 1/2, (also add 1 to
the set Sk,0 to get a complete partition). Then, for every x ∈ [0, 1/2), x and
x+1/2 belong to the same set of Pk for every k ∈ N; in particular the diam-
eter of the partitions (Pk)k∈N does not converge to zero. By contradiction,
assume there exist a measure preserving map φ ∈ S̄[0,1] and a sequence of
interval partitions (Qk)k∈N such that for all k ∈ N and all set Sk,j ∈ Pk
with 0 ⩽ j < 2k, there exists a interval set Ik,j ∈ Qk such that a.e. 1Ik,j

=
1φ−1(Sk,j). In particular, the set Ik,j must be an interval of length 2−k.
Hence, Qk is a dyadic partition with stepsize 2−k, and thus the diameter of
the partitions (Qk)k∈N converges to zero. For every x ∈ [0, 1/2), we get that
diam(φ−1({x, x+1/2})) ⩽ diam(Qk) = 2−k for all k ∈ N; this implies that
φ−1({x, x+1/2}) is a singleton, i.e. either x ̸∈ φ([0, 1]) or x+1/2 ̸∈ φ([0, 1]).
Hence, as φ is bi-measurable, considering the measurable set A = φ([0, 1]),
we have λ

(
[0, 1/2)∩A

)
= λ

(
[1/2, 1)\A

)
and λ

(
[0, 1/2)\A

)
= λ

(
[1/2, 1)∩A

)
.

As λ
(
[0, 1/2)

)
= λ

(
[0, 1/2) ∩ A

)
+ λ

(
[0, 1/2) \ A

)
= 1/2 because φ is mea-

sure preserving, we get that λ
(
A
)

= λ
(
[0, 1/2)∩A

)
+λ
(
[1/2, 1)∩A

)
= 1/2,

which contradicts the fact that φ is measure preserving.

Now, for every n ∈ N, applying Lemma 8.2 to (Pn,k)k∈N and Wn, we get a
measure-preserving map φn and a refining sequence of partitions (P ′

n,k)k∈N
made of intervals such that for all k ∈ N, and all set R ∈ P ′

n,k there exists
a set S ∈ Pn,k such that a.e. 1R = 1φ−1

n (S). In particular, for all k ∈ N, the
sequence of partitions (Pn,k)k∈N still satisfy (i)–(ii). Set W ′

n = Wφn
n and

W ′
n,k = Wφn

n,k so that almost everywhere:

W ′
n,k =

(
(Wn)Pn,k

)φn = (Wφn
n )P′

n,k
= (W ′)P′

n,k
.

As d and d′ are invariant, we have for every n, k ∈ N that d(Wn,Wn,k) =
d(W ′

n,W
′
n,k), and similarly for d′. This insures that the signed measure-

valued kernels (W ′
n)n∈N and (W ′

n,k)n∈N, k ∈ N, still satisfy (iii)–(iv). Re-
call that for a measure-valued kernel W and a measure-preserving map φ,
δ□,m(W,Wφ) = 0. Hence, we can replace the signed measure-valued kernels
(Wn)n∈N and (Wn,k)n∈N, k ∈ N, by (W ′

n)n∈N and (W ′
n,k)n∈N, k ∈ N, and

assume that the partitions Pn,k are made of intervals.

Step 2: There exists a subsequence (Wnℓ
)ℓ∈N such that for every

k ∈ N and ϵ ∈ {+,−}, the subsequence (W ϵ
nℓ,k

)ℓ∈N weakly converges,
as ℓ → ∞, almost everywhere to a limit, say U ϵk which is a step-
function adapted to a partition with mk elements (some elements
might be empty sets).

Fix some k ∈ N. The stepfunctions (Wn,k = (Wn)Pn,k
)n∈N all have the

same number of steps mk. For n ∈ N, denote by Pn,k = {Sn,k,i : 1 ⩽ i ⩽
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mk} the interval partition adapted to Wn,k where the intervals are order
according to the natural order on [0, 1] (note that some intervals might
be empty, simply put them at the end). For n ∈ N and 1 ⩽ i ⩽ mk, let
λ(Sn,k,i) denote the length of the interval Sn,k,i ∈ Pn,k. As the lengths of
steps take values in the compact set [0, 1], there exists a subsequence of
indices (nℓ)ℓ∈N such that for every 1 ⩽ i ⩽ mk, there exists sk,i ∈ [0, 1]
such that limℓ→∞ λ(Snℓ,k,i) = sk,i. Denote by Pk = {Sk,i : 1 ⩽ i ⩽ mk} the
interval partition composed of mk intervals where the i-th interval Sk,i has
length sk,i (note that some intervals might be empty). Up to a diagonal
extraction, we can assume that the convergence holds for every k ∈ N
simultaneously. Remark that for all n, k ∈ N, the fact that Pn,k+1 is a
refinement of Pn,k can be simply restated as linear relations on the interval
lengths (λ(Sn,k,i))1⩽i⩽mk

and (λ(Sn,k+1,i))1⩽i⩽mk+1 . As linear relations
are preserved when taking the limit, we get that the partition Pk+1 is a
refinement of Pk for all k ∈ N. We assume from now on that (Wn)n∈N and
(Wn,k)n∈N, k ∈ N, are the corresponding subsequences.

For every n ∈ N, we decompose Wn = W+
n − W−

n into its positive and
negative kernel parts, see Lemma 3.3. For n, k ∈ N and ϵ ∈ {+,−}, we
define W ϵ

n,k = (W ϵ
n)Pn,k

. In particular, remark that Wn,k = W+
n,k − W−

n,k

and for all ℓ ⩾ k, that W ϵ
n,k = (W ϵ

n,ℓ)Pn,k
. Let ϵ ∈ {+,−} and 1 ⩽ i, j ⩽ mk

such that sk,isk,j > 0 be fixed. For every n ∈ N, we have on Sn,k,i × Sn,k,j
that W ϵ

n,k = µi,j,ϵn,k ∈ M+(Z) with:

µi,j,ϵn,k (·) = 1
λ(Sn,k,i)λ(Sn,k,j)

W ϵ
n(Sn,k,i × Sn,k,j ; ·).

We have that:
∥µi,j,ϵn,k ∥∞ ⩽ ∥Wn∥∞ ⩽ C.

This gives that the sequence (µi,j,ϵn,k )n∈N in M±(Z) is bounded. We now
prove it is tight. Let η > 0. As limn→∞ λ(Sn,k,ℓ) = sk,ℓ > 0 for ℓ = i, j, we
deduce that there exists c > 0 such that for every n ∈ N large enough and
ℓ = i, j, we have λ(Sn,k,ℓ) > c. Set η′ = c2η. As the sequence (Wn)n∈N in
W̃± is tight, there exists a compact set K ⊂ Z such that for every n ∈ N,
MWn(Kc) ⩽ η′. Hence, for every n ∈ N large enough, we have:

µi,j,ϵn,k (Kc) ⩽ 1
λ(Sn,k,i)λ(Sn,k,j)

MWn
(Kc) ⩽ η.

This gives that the sequence (µi,j,ϵn,k )n∈N in M+(Z) is bounded and tight,
and thus by Lemma 2.8, it has a convergent subsequence. By diagonal
extraction, we can assume there is a subsequence (Wnℓ

)ℓ∈N such that for
all k ∈ N, all 1 ⩽ i, j ⩽ mk such that sk,isk,j > 0, and all ϵ ∈ {+,−}, the
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subsequence (µi,j,ϵnℓ,k
)ℓ∈N weakly converges to a limit say µi,j,ϵk . Define the

stepfunction U ϵk ∈ W+ adapted to the partition Pk which is equal to µi,j,ϵk

on Sk,i×Sk,j (if sk,isk,j = 0, set µi,j,ϵk = 0). We have in particular obtained
that, for every k ∈ N, the subsequence (W ϵ

nℓ,k
)ℓ∈N weakly converges a.e.

to U ϵk which is a stepfunction adapted to a partition with mk elements;
this implies that the subsequence (Wnℓ,k)ℓ∈N also weakly converges a.e. to
Uk = U+

k −U−
k . We now assume that (Wn)n∈N is such a subsequence. With

this convention, notice that for all k, n ∈ N and ϵ ∈ {+,−}:

(8.1) ∥U ϵk∥∞ ⩽ sup
n∈N

∥W ϵ
n,k∥∞ ⩽ sup

n∈N
∥Wn∥∞ = C < +∞.

Step 3: There exists a subsequence of (Uk)k∈N which weakly
converges to a limit U ∈ W± almost everywhere on [0, 1]2. The
proof of this step is postponed to the end. Without loss of generality we
still write (Uk)k∈N for this subsequence.

Step 4: We have limn→∞ δ□(U,Wn) = limn→∞ δ′
□(U,Wn) = 0. Let

η > 0. As the cut distances d is smooth, we deduce from Step 3, that for k
large enough d(U,Uk) ⩽ η. By hypothesis (iii) on the sequence (Wn,k)n∈N,
we also have that for k large enough d(Wn,Wn,k) ⩽ η. For such large k, as
by step 2 the sequence (Wn,k)n∈N weakly converges almost everywhere to
Uk, and again as the cut distances d is smooth, there is a n0 such that for
every n ⩾ n0, d(Uk,Wn,k) ⩽ η. Then for all n ⩾ n0, we have:

δ□(U,Wn) ⩽ δ□(U,Uk) + δ□(Uk,Wn,k) + δ□(Wn,k,Wn)
⩽ d(U,Uk) + d(Uk,Wn,k) + d(Wn,k,Wn)
⩽ 3η.

This gives that limn→∞ δ□(Wn, U) = 0.
If we consider a second distance d′ as in the lemma, then similarly

limn→∞ δ′
□(Wn, U) = 0.

Proof of Step 3. Assume that the claim is true for measure-valued
kernels. Then, if (Uk)k∈N is a sequence of signed-measure valued kernels,
applying the claim to (U ϵk)k∈N, for ϵ ∈ {+,−}, we get a measure-valued
U ϵ ∈ W+ such that the sequence (U ϵk)k∈N weakly conveges a.e. to U ϵ.
Thus, the sequence (Uk)k∈N weakly conveges a.e. to U = U+ − U−.

Hence, we are left to prove the claim for measure-valued kernels. The
proof is divided in four steps. The first three steps also work for signed-
measure valued kernels, but the last argument of step 3.d. only works for
measures.
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Step 3.a: The sequence (Uk)k∈N inherit the tightness property
from the sequence (Wn)n∈N. Let η > 0. Since the sequence (Wn)n∈N is
tight, there exists a compact set K ⊂ Z such that for every n ∈ N, we have
MWn

(Kc) ⩽ η. Remark that:

MWn,k
=

∑
1⩽i,j⩽mk

λ(Sn,k,i)λ(Sn,k,j)µi,jn,k = MWn

and MUk
=

∑
1⩽i,j⩽mk

sk,isk,jµ
i,j
k .

For all k ∈ N and 1 ⩽ i, j ⩽ mk, as the sequence (µi,jn,k)n∈N weakly converges
to µi,jk , using [14, Theorem 2.7.4] with the open subset Kc ⊂ Z, we get
that µi,jk (Kc) ⩽ lim infn→∞ µi,jn,k(Kc). As limn→∞ λ(Sn,k,i) = sk,i for all
1 ⩽ i ⩽ mk, and summing those bounds, we get:

MUk
(Kc) ⩽ lim inf

n→∞
MWn,k

(Kc) = lim inf
n→∞

MWn(Kc) ⩽ η.

Consequently, the sequence (Uk)k∈N is tight.

Step 3.b: Convergence of the measures Ûk in M+([0, 1]2 × Z) de-
fined for k ∈ N as:

(8.2) Ûk(dx, dy,dz) = Uk(x, y; dz)λ2(dx, dy).

Since the sequence (MUk
)k∈N in M+(Z) is tight, for all η > 0, there ex-

ists a compact set K ⊂ Z such that for every k ∈ N, MUk
(Kc) ⩽ η; and

thus Ûk(K̂c) = MUk
(Kc) ⩽ η where K̂ = [0, 1]2 ×K is a compact subset of

[0, 1]2 ×Z, that is, the sequence (Ûk)k∈N in M+([0, 1]2 ×Z) is tight. The se-
quence (Ûk)k∈N is also bounded as ∥Ûk∥∞ ⩽ ∥Uk∥∞ ⩽ C thanks to (8.1).
Hence, using Lemma 2.8, there exists a subsequence (Ûkℓ

)ℓ∈N of the se-
quence (Ûk)k∈N that converges to some measure, say Û , in M+([0, 1]2 ×Z).
Remark that, when considering the subsequence of indices (kℓ)ℓ∈N, the sub-
sequences (Wn,kℓ

)ℓ∈N, n ∈ N, still satisfy properties (i)-(iv) of Lemma 8.1,
and for all ℓ ∈ N, the sequence (Wn,kℓ

)n∈N still weakly converges to Ukℓ
.

Without loss of generality, we now work with this subsequence and thus
write k instead of kℓ.

Step 3.c: The measure Û(dx, dy,dz) can be disintegrated w.r.t.
λ2(dx, dy) giving us an element of W+. To prove this, we need the fol-
lowing disintegration theorem for measures, see [38, Theorem 1.23] (stated
in more the general framework of Borel spaces) which generalizes the disin-
tegration theorem for probability measures [37, Theorem 6.3]. The notation
µ ∼ ν for two measures µ and ν means that µ ≪ ν and ν ≪ µ, where µ ≪ ν

means that µ is absolutely continuous w.r.t. ν.

Innov. Graph Theory 2, 2025, pp. 25–117



106 R. Abraham, J.-F. Delmas & J. Weibel

Lemma 8.4 (Disintegration theorem for measures, [38, Theorem 1.23]).
Let ρ be a measure on S×T , where S is a measurable space and T a Polish
space. Then there exist a measure ν ≡ ρ(· × T ) on S and a probability
kernel µ : S → M1(T ) such that ρ = ν ⊗ µ (i.e. ρ(ds, dt) = ν(ds)µ(s; dt)).
Moreover, the measures µs = µ(s; ·) are unique for ν-a.e. s ∈ S.

Using Lemma 8.4 with S = [0, 1]2 and T = Z, we get that there exists a
probability kernel U ′ in W1 such that:

Û(dx,dy,dz) = U ′(x, y; dz)π(dx, dy),

where π = Û(· × Z) is a measure on [0, 1]2.
We now need to prove that π ≪ λ2. By contradiction, assume this is false,

then there exists a measurable set A ∈ B([0, 1]2) such that λ2(A) = 0 and
π(A) > 0. As the measure

∫
A
U ′(x, y; ·)π(dx, dy) is not null, there exists

f ∈ Cb(Z) such that
∫
A
U ′(x, y; f)π(dx, dy) ̸= 0. As the sequence (Ûk)k∈N

weakly converges to Û in M+([0, 1]2 × Z) by step 3.b, we have that the se-
quence of measures Ûk(dx, dy; f) = Uk(x, y; f)λ2(dx,dy) weakly converges
as k → ∞ to Û(dx, dy; f) = U ′(x, y; f)π(dx, dy) in M+([0, 1]2). Moreover,
as the maps x, y 7→ Uk(x, y; f) are uniformly bounded (by ∥f∥∞∥Uk∥∞ ⩽
C∥f∥∞, see (8.1)), they are also uniformly integrable (w.r.t. λ2), and apply-
ing [12, Corollary 4.7.19] there exist a subsequence (Ukℓ

)ℓ∈N and a bounded
function gf on [0, 1]2 such that for every bounded measurable function
h ∈ L∞([0, 1]2), we have:

lim
ℓ→∞

∫
Ukℓ

(x, y; f)h(x, y)λ2(dx,dy) =
∫
gf (x, y)h(x, y)λ2(dx, dy).

In particular, the sequence of measures (Ukℓ
(x, y; f)λ2(dx, dy))ℓ∈N weakly

converges to the measure gf (x, y)λ2(dx, dy), which imposes the equality
between measures:

Û(dx,dy, f) = U ′(x, y; f)π(dx,dy) = gf (x, y)λ2(dx,dy).

Hence, taking h = 1A, we get:

Û(A, f) =
∫
A

U ′(x, y; f)π(dx,dy) =
∫
A

gf (x, y)λ2(dx, dy) = 0,

which yields a contradiction. Consequently, the measure π is absolutely
continuous w.r.t. λ2, with density still denoted by π, and we set λ2-a.e. on
[0, 1]2:

(8.3) U(x, y; dz) = π(x, y)U ′(x, y; dz)

and thus Û(dx, dy,dz) = U(x, y; dz)λ2(dx, dy).
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Step 3.d: The sequence (Uk)k∈N weakly converges to U almost
everywhere on [0, 1]2. Recall that by construction, the stepfunction Uk is
adapted to the partition Pk defined in Step 2, and that Pk+1 is a refinement
of Pk. A closer look at Step 2 yields that for all ℓ ⩾ k, since Wn,k =
(Wn,ℓ)Pn,k

, we also get:

(8.4) Uk = (Uℓ)Pk
.

We prove (8.4) for ℓ = k+1, the other cases follow by induction. As Pn,k+1
is a refinement of Pn,k, we already know that Uk and (Uk+1)Pk

are both
stepfunctions adapted to the finite partition Pk. Thus, we only need to
verify that Uk and (Uk+1)Pk

take the same value on each step. For every
n ∈ N, the fact that Wn,k = (Wn,k+1)Pn,k

implies that for all 1 ⩽ i, j ⩽ mk

such that λ(Sn,k,i)λ(Sn,k,j) > 0, we have:

µn,ki,j =
∑

i′∈Ii,j′∈Ij

λ(Sn,k+1,i′)λ(Sn,k+1,j′)
λ(Sn,k,i)λ(Sn,k,j)

µn,k+1
i′,j′ ,

and this equation is preserved when taking the limit n → ∞, which gives
us:

µki,j =
∑

i′∈Ii,j′∈Ij

sk+1,i′sk+1,j′

sk,isk,j
µk+1
i′,j′ ,

for all 1 ⩽ i, j ⩽ mk such that sk,isk,j > 0.

This proves that the stepfunctions Uk and (Uk+1)Pk
take the same value

on each step Sk,i × Sk,j with positive size sk,isk,j > 0 (on a step with null
size sk,isk,j = 0, Uk and (Uk+1)Pk

are both equal to the null measure).
This gives that Uk = (Uk+1)Pk

.
Let f ∈ Cb(Z) be a bounded continuous function, and X,Y be indepen-

dent uniform random variables on [0, 1]. Then (8.4) and (8.1) imply that
the sequence Nf = (Nf

k = Uk(X,Y ; f))k∈N is a martingale bounded by
C∥f∥∞ for the filtration (Fk)k∈N, where the σ-field Fk is generated by the
events {X ∈ Sk,i} ∩ {Y ∈ Sk,j} for 1 ⩽ i, j ⩽ mk and Sk,ℓ ∈ Pk. By the
martingale convergence theorem, the martingale Nf is almost surely con-
vergent, that is, the sequence (Uk[f ])k∈N converges λ2-a.e. to a bounded
measurable function uf . Let g : [0, 1]2 → R be a bounded measurable
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function. We get:∫
[0,1]2

g(x, y)U(x, y; f)λ2(dxdy) =
∫

[0,1]2×Z
g(x, y) f(z) Û(dx, dy,dz)

= lim
k→∞

∫
[0,1]2×Z

g(x, y) f(z) Ûk(dx,dy,dz)

= lim
k→∞

E [g(X,Y )Uk(X,Y ; f)]

=
∫

[0,1]2
g(x, y)uf (x, y)λ2(dxdy),

where we used the definition (8.3) of U for the first equality, that (Ûk)k∈N
weakly converges to Û for the second, the definition (8.2) of Ûk for the third,
and the convergence of the martingale Nf for the last. Since g is arbitrary,
we deduce that λ2-a.e. U(·, ·; f) = uf and thus that the sequence (Uk[f ])k∈N
converges λ2-a.e. to U [f ]. Applying this result for all f ∈ F = (fm)m∈N a
convergence determining sequence (with the convention f0 = 1), we deduce
that the sequence (Uk)k∈N weakly converges to U almost everywhere on
[0, 1]2. Recall from Section 2 that convergence determining sequences exist
only for measures and not for signed measures in general, this is why we
worked with measures in Step 3. This ends the proof of Step 3, and thus
ends the proof of the lemma. □

We are now ready to prove Theorem 5.1.
Proof of Theorem 5.1. — We first prove Point (i) on W± (the proof

on W1 is similar). Since the distance d is weakly regular and the sequence
(Wn)n∈N is uniformly bounded and tight in W±, we can construct induc-
tively for every n ∈ N a sequence (Pn,k)k∈N of partitions of [0, 1] such that
hypothesis (i)-(iii) of Lemma 8.1 are satisfied: Pn,k+1 being obtained by ap-
plying the weak regularity property (see Definition 4.10-(i)) with starting
partition Qn,k = Pn,k ∧ Dk, where Dk is the dyadic partition with stepsize
2−(k+1). (We may assume that the partitions Pn,k for all n ∈ N have the
same size mk by adding empty sets.) Then as d is also invariant and smooth
on W±, the first part of Lemma 8.1 directly gives Point (i).

Before proving Point (ii), we first need to prove the following lemma.

Lemma 8.5 (Compactness theorem for WM). — Let d be an invariant,
smooth and weakly regular distance on W1 (resp. W+ or W±). Let M be a
convex and weakly closed subset of M1(Z) (resp. M+(Z) or M±(Z)). Let
(Wn)n∈N be a sequence of M-valued kernels which is tight and uniformly
bounded. Then, (Wn)n∈N has a subsequence that converges for δ□ to some
M-valued kernel.
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Proof. — First remark that, as M is convex, the image of WM by the
stepping operatorW 7→ WP , where P is a finite partition of [0, 1], is a subset
of WM. Hence, a close look at the proof of Lemma 8.1 (the partitions are
constructed as in the proof of Point (i) from Theorem 5.1), and using the
notation therein, shows that, up to taking subsequences, one can take the
stepping kernels Wn,k and Uk in WM, such that (Uk)k∈N weakly converges
to U a.e. and the subsequence (Wnℓ

)ℓ∈N converges to U w.r.t. δ□. Since
Uk(x, y; ·) ∈ M weakly converges to U(x, y; ·) for almost every x, y ∈ [0, 1]
and since M is weakly closed (and thus sequentially weakly closed), we
deduce that U(x, y; ·) belongs to M for almost every x, y ∈ [0, 1]. This
means that U ∈ WM. □

We prove Point (ii) for M ⊂ M±(Z) (the proof for M ⊂ M1(Z) is
identical). The fact that WM and W̃M are convex is clear as M is convex.
Let (Wn)n∈N be a sequence of elements of W̃M. Since M is convex, we
deduce that (MWn)n∈N is a sequence in M. As M is sequentially compact
for the weak topology, M is tight and bounded by Lemma 2.8, and thus the
sequence (Wn)n∈N is tight and uniformly bounded (recall Definition 4.7).
Hence, using Lemma 8.5, we get that from any sequence in W̃M, we can
extract a subsequence which converges for δ□ to an element in W̃M. This
implies that (W̃M, δ□) is compact.

Point (iii) is a direct consequence of Point (ii) as if Z is compact, so is
M1(Z). □

Proof of Point (iii) from Proposition 5.2. — We prove Point (iii). The
fact that WM and W̃M are convex is clear as M is convex. To prove that
W̃M is closed, we consider a sequence (Wn)n∈N in W̃M that converges
for δ□,m to some W ∈ W̃±. As (Wn)n∈N is a Cauchy sequence for δ□,m, by
Lemma 4.9, (MWn)n∈N is a Cauchy sequence for dm and thus is tight. Hence,
(Wn)n∈N is uniformly bounded and tight. Applying Lemma 8.5, there exists
a subsequence (Wnk

)k∈N of the sequence (Wn)n∈N which converges for δ□,m
to some M-valued kernel U ∈ W̃M. But as a subsequence, (Wnk

)k∈N must
also converge for δ□,m to W . This implies that W = U is a M-valued
kernel. □

In order to prove Theorem 5.5, we first prove a lemma that allows to
construct the partitions needed to use Lemma 8.1.

Lemma 8.6 (Construction of partitions for two distances). — Let d and
d′ be two distances on W1 (resp. W+ or W±) which are invariant, smooth,
weakly regular and regular w.r.t. the stepping operator (see Definitions 3.10
and 4.10). Let (Wn)n∈N be a sequence in W1 (resp. W+ or W±) which is
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tight (resp. uniformly bounded and tight). Then, there exists sequences
(Pn,k)k∈N, n ∈ N, of partitions of [0, 1] such that hypothesis (i)–(iv) of
Lemma 8.1 are satisfied.

Proof. — We prove the result on W± (the proof on W1 and W+ is sim-
ilar). To simplify notations, write d1 = d and d2 = d′. We proceed by
induction on k ∈ N ∪ {−1}. For every n ∈ N, set Pn,−1 = {[0, 1]} the
trivial partition with size 1. Let k ∈ N and assume that we have already
constructed partitions (Pn,k−1)n∈N that have the same size mk−1. Now we
proceed to construct partitions (Pn,k)n∈N that satisfy hypothesis (i)-(iv).

Set C = supn∈N ∥Wn∥∞, which is finite as the sequence (Wn)n∈N is
uniformly bounded. As di, with i = 1, 2, are regular w.r.t. the stepping
operator, there exists a finite constant C0 > 0 such that for every W,U ∈
W±, with ∥W∥∞ ⩽ C and ∥U∥∞ ⩽ C, and U a stepfunction adapted to a
finite partition Q:

(8.5) di(W,WQ) ⩽ C0 d
i(W,U).

Set ε = 1/C0(k + 1). Since di, with i = 1, 2, are weakly regular and the
sequence (Wn)n∈N is tight and uniformly bounded, there exists rk ∈ N∗,
such that for every n ∈ N, there exists a partition Ri

n,k of [0, 1] that refines
Qn,k = Pn,k−1 ∧ Dk, where Dk is the dyadic partition with stepsize 2−k,
such that:

(8.6) |Ri
n,k| ⩽ rk|Qn,k| ⩽ 2krk|Pn,k−1| and di

(
Wn, (Wn)Ri

n,k

)
⩽ ε.

(Indeed, a close look at the proof shows that Pn,k−1 refines Dk−1 by con-
struction, thus Qn,k cuts each set of Pn,k−1 in at most 2 sets, and we get
|Qn,k| ⩽ 2|Pn,k−1|.) Now, let Pn,k be the common refinement of R1

n,k and
R2
n,k; it is a refinement of Pn,k−1, has diameter at most 2−k and size:

|Pn,k| ⩽ 22kr2
k|Pn,k−1|2 = 22kr2

km
2
k−1.

If necessary, by completing Pn,k with null sets, we may assume that |Pn,k| =
mk, where mk = 22kr2

km
2
k−1. As (Wn)Ri

n,k
is a stepfunction adapted to the

partition Pn,k, we deduce from (8.5) and (8.6) that for i = 1, 2 and n ∈ N:

di(Wn, (Wn)Pn,k
) ⩽ C0 d

i
(
Wn, (Wn)Ri

n,k

)
⩽ C0 ε = 1

k + 1 ·

Hence, for every n ∈ N, the partition Pn,k satisfies the hypothesis (i)-(iv)
of Lemma 8.1. Thus, the induction is complete. □

Proof of Theorem 5.5. — Let dm and dm′ be as in Theorem 5.5.
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Let (Wn)n∈N be a sequence of probability-graphons that converges to
some W ∈ W̃1 for δ□,m. By Lemma 4.9, the sequence of probability mea-
sure (MWn)n∈N converges to MW for the distance dm. As dm induces the
weak topology on M⩽1(Z), we have that the sequence (MWn

)n∈N is tight,
and thus the sequence (Wn)n∈N is also tight (recall Definition 4.7). The
sequence (Wn)n∈N is also uniformly bounded as a sequence in W̃1. Apply-
ing Lemma 8.6 with the distances d = d□,m and d′ = d□,m′ , which are
invariant, smooth, weakly regular and regular w.r.t. the stepping operator,
we get sequences of partitions (Pn,k)k∈N, n ∈ N, that satisfy hypothesis (i)-
(iv) of Lemma 8.1. We then deduce from the last part of Lemma 8.1 that
any subsequence of (Wn)n∈N has a further subsequence which converges to
the same limit for both δ□,m and δ□,m′ , this limit must then be W . This
implies that the sequence (Wn)n∈N converges to W for δ□,m′ .

The role of dm and dm′ being symmetric, we conclude that the distances
δ□,m and δ□,m′ induce the same topology on W̃1. □

9. Index of notations

Measures
- (Z,OZ) a topological Polish space

(p. 37)

- B(Z) the Borel σ-field induced by
OZ (p. 37)

- Cb(Z) the set of continuous
bounded real-valued functions on
Z (p. 37)

- measure = positive measure
(p. 36)

- M±(Z) the set of signed measures
on Z (p. 37)

- M+(Z) the set of measures on Z
(p. 37)

- M1(Z) the set of probability mea-
sures on Z (p. 37)

- M⩽1(Z) the set of sub-probability
measures on Z, i.e. measures with
total mass at most 1 (p. 37)

- µ+, µ− the positive and negative
parts of µ from its Hahn–Jordan
decomposition (p. 37)

- |µ| = µ+ + µ− the total variation
measure of µ (p. 37)

- ∥µ∥∞ = |µ|(Z) the total mass of µ
(p. 37)

- dm a distance on either M⩽1(Z),
M+(Z) or M±(Z) (p. 45)

- Nm a norm on M±(Z) (p. 45)

- dLP the Lévy–Prokhorov distance
(p. 55)

- ∥ · ∥KR the Kantorovitch–
Rubinshtein norm (p. 55)
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- ∥ · ∥FM the Fortet–Mourier norm
(p. 55)

- ∥ · ∥F the norm based on a con-
vergence determining sequence F
(p. 56)

Relabelings and partitions
- S[0,1] the set of bijective measure-

preserving maps from ([0, 1], λ) to
itself (p. 36)

- S̄[0,1] the set of measure-preserving
maps from ([0, 1], λ) to itself
(p. 36)

- |P| the number of sets in the finite
partition P (p. 44)

Kernels and graphons spaces
- W1 the set of probability-graphons

(p. 42)

- W+ the set of measure-valued ker-
nels (p. 42)

- W± the set of signed measure-
valued kernels (p. 42)

- WM the set of M-valued kernels
with M ⊂ M±(Z) (p. 43)

- W̃1 the set of unlabeled
probability-graphons (p. 50)

- W̃+ the set of unlabeled measure-
valued kernels (p. 50)

- W̃± the set of unlabeled signed
measure-valued kernels (p. 50)

- W̃M the set of unlabeled M-
valued kernels (p. 50)

Kernels and graphons

- W+ and W− the positive and
negative part of W ∈ W± (p. 43)

- |W | = W+ +W− (p. 43)

- W (A; ·) =
∫
A
W (x, y; ·) dxdy for

A ⊂ [0, 1]2 (p. 45)

- W [f ](x, y) = W (x, y; f) for f ∈
Cb(Z) (p. 53)

- WP the stepping of W w.r.t. a
partition P (p. 59)

- ∥W∥∞ :=supx,y∈[0,1]∥W (x, y; ·)∥∞
(p. 42)

- MW (dz) = |W |([0, 1]2; dz) (p. 61)

- WG the probability-graphon
associated to a M1(Z)-graph or
a weighted graph G (p. 80)

- H(k,W ) the M1(Z)-graph with k

vertices sampled from W ∈ W1
(p. 82)

- G(k,W ) the M1(Z)-graph with k

vertices sampled from W ∈ W1
(p. 82)

- F g a finite graph whose edges are
decorated with functions in Cb(Z)
(p. 89)

- t(F g,W ) = MF
W (g) the homomor-

phism density of F g in W (p. 89)

Distances/norms on graphon
spaces

- d□,m the cut distance associated to
dm (p. 45)

- N□,m the cut norm associated to
Nm (p. 45)
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- δ□ the unlabeled distance associ-
ated to an arbitrary distance d

(p. 49)

- δ□,m the unlabeled cut distance
associated to d□,m or N□,m (p. 49)

- ∥·∥□,R the cut norm for real-valued
kernels (p. 57)

- ∥ · ∥+
□,R the positive part of the

cut norm for real-valued kernels
(p. 57)

Definitions

- weak isomorphism of kernels and
graphons in Definition 3.16 on
page 50

- tightness for sets of kernels or
graphons in Definition 4.7 on
page 62

- invariant and smooth for a dis-
tance d on graphon spaces in Def-
inition 3.10 on page 46

- weakly regular and regular w.r.t.
the stepping operator for a dis-
tance d on graphon spaces in Def-
inition 4.10 on page 63
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