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Abstract in English

We study in this manuscript the day-ahead electricity load forecasting prob-
lem, at the level of the substations, based on exogenous calendar information,
weather forecasts and recent endogenous values of the electricity demand.
This work is part of a broader research field participating in the modernization of
the French power system. The emergence of new production means and the evolu-
tion of electricity uses have indeed strengthened the need to anticipate the variations
of the electricity demand. The Transmission System Operator (TSO), as a cen-
tral actor of the electricity sector in charge of the supply-demand equilibrium and
the management of the resulting energy flows, is particularly affected by these evo-
lutions. Its decision-process relies on the ability to forecast accurately the spatial
distribution of both the production and the demand. The advent of modern Ma-
chine Learning forecasting tools, in association with the improvement of computing
capabilities and the gathering of rich weather and electricity datasets give rise to
new opportunities.

Data exploration and the dynamic literature about electricity load forecasting
serve as a basis for the extension to local forecasts of the more classical models
designed for the aggregated loads. We describe a generic bivariate linear model
and compare its behavior at the national and the local levels. This allows us to
identify both the similarities and the heterogeneous aspects of the substations. At
the local level, the data exploration and the experiments are organized around a
dichotomy between models learned independently for the different substations
and a coupled modeling of the loads. In particular, we motivate a multi-task
approach to load forecasting with a characterization of a common structure
encountered in the local models, that we intend to leverage for the benefit of the
latter, in terms of computational speed and generalization performance.

We address several questions related to the multi-task approach. Namely, what
to expect from a coupling of the local models ? Which parts of the model should be
coupled and how ? How to assess the evolution and the relevance of the multi-task
framework ?

We study three coupling assumptions, based either on a clustering of the
model parameters, an optimization problem with a low-rank constraint that we
analyze in details, or on the consistency between the forecasts at different aggre-
gation levels. Thereby, we prove empirically that the number of parameters of the
independent local models is unnecessarily large and we confirm the interest of
sharing the parameters and the losses during the learning process.
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Résumé en français

Nous étudions la prévision du jour pour le lendemain de la consomma-
tion électrique agrégée à la maille des points de livraison, à partir des
informations calendaires, des prévisions météorologiques et des valeurs ré-
centes de ces séries temporelles. Ce travail s’inscrit dans un domaine de recherche
plus large, qui participe à la modernisation du système électrique français. Avec la
pénétration des énergies renouvelables et l’apparition de nouveaux modes de con-
sommation, le besoin d’améliorer la qualité des prévisions au niveau local devient
de plus en plus pressant. Acteur central du système électrique, le Gestionnaire
du Réseau de Transport (GRT) est responsable de l’équilibre offre-demande et
assure en permanence la fluidité de la circulation d’électricité sur le réseau haute
tension. La prévision de la consommation est donc pour lui une problématique de
recherche centrale. Le développement d’algorithmes modernes de Machine Learn-
ing, l’augmentation des capacités de calcul et la disponibilité de grandes bases de
données électriques et météorologiques laissent entrevoir de nouvelles opportunités.

Après une analyse exploratoire de la base de données et une étude de la littérature
portant sur la prévision de la consommation électrique, nous considérons la possi-
bilité d’étendre et d’adapter les modèles utilisés pour la prévision à des mailles plus
larges comme les régions ou le pays. Cela nous permet de souligner les comporte-
ments plus hétérogènes au niveau des points de livraison de ces séries temporelles.
L’ensemble des expériences est organisé autour d’une dichotomie entre des modèles
à différents noeuds du réseau appris de façon indépendante ou bien couplée. Plus
précisément, nous justifions une approche multi-tâches de ces prévisions avec les
similarités entre les courbes aux différents noeuds du réseau, qui vise à améliorer la
vitesse d’apprentissage de ces modèles ainsi que leur capacité à généraliser.

Nous séparons l’approche multi-tâches en trois questions. Quelles composantes
des modèles est-il pertinent de coupler ? Quelles améliorations ce couplage peut-il
apporter ? Comment évaluer la pertinence de l’approche multi-tâches dans le cadre
de la prévision de la consommation électrique ?

Nous envisageons trois couplages possibles des modèles de prévision, fondés re-
spectivement sur un clustering des coefficients des modèles, une hypothèse de rang
faible sur la matrice de coefficients, et une mesure de la cohérence des prévisions à
différents niveaux d’agrégation. Empiriquement, nous montrons le caractère con-
tingent du grand nombre de coefficients des modèles appris indépendamment et
confirmons l’intérêt de coupler les fonctions objectifs à minimiser ainsi que les
paramètres des modèles au cours de leur apprentissage.
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Chapter 1

Introduction

1.1 Context
The larger variability of the production and the demand with the general mod-

ernization of the electric power system require from the operators a more accurate
anticipation and a faster reactivity. The adoption of generic statistical tools to fore-
cast the aggregated demand and the more recent availability of data with a higher
spatial resolution naturally leads to the ambition of developing electricity load fore-
casting models for the local demands. This work contributes to this field of research
and is the fruit of a collaboration with Réseau de Transport d’Électricité (RTE), the
French Transmission System Operator (TSO) in charge of the national supply and
demand equilibrium and of the management of electricity flows on the high-voltage
network. It is more precisely dedicated to the study of forecasting models at the
level of the electrical substations.

1.1.1 The French energy system

Electricity represents 25% of the final energy consumption in France [IEA,
2016, 2019]. Per capita, the annual electricity demand is about 6.7 MegaWatt
hours (MWh), which leads with 67 millions citizens, to a national demand between
450 and 520 TeraWatt hours (TWh) since 2001 [RTE, 2018]. French exportations
of electricity rank globally second, after the US, thanks to the annual production
of approximately 550 TWh and the country could rely entirely on self-produced
electricity in terms of total consumption of energy.

History In order to structure the electricity sector and ensure self-sufficiency in
terms of electricity, Électricité de France (EDF) was founded as a state-owned
monopoly in 1946. This electricity production activity was reopened to competition
in 1999 and, in 2005, company shares were proposed to the Stock Exchange in Paris.
This change of status followed the European Directive 96/92/EC of December 1996,
stipulating that electricity production and sales should no longer be state-regulated
activities, for the benefit of the final consumer.

Structural transformation The demands in the European directive were met in
the law 2000-108, to ensure the opening to competition of both electricity production
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and sales, while transmission and distribution remained natural monopoly due to
high infrastructural costs. They were subsequently reaffirmed in 2010 by the text Loi
de Nouvelle Organisation des Marchés de l’Électricité (Loi NOME). This led to the
creation of a National Regulation Authority (NRA), the Commission de Régulation
de l’Énergie, and the split of the historical electricity operator EDF, to separate the
production and sales activity reamining in the EDF company from the transmission
and the distribution of electricity, managed by the newly created companies RTE
and Enedis (ex-Électricité Réseau Distribution France).

The EDF company started the competitive energy production market that it
now largely dominates along with ENGIE (ex-GDF Suez) and E.ON, accumulating
altogether 95% of the shares. The transmission of electricity on long distances
is ensured by Réseau de Transport d’Électricité (RTE), the French Transmission
System Operator (TSO), owner of the high-voltage network. After the electricity
voltage is decreased below 63 kV at the so-called substations, the Distribution Sys-
tem Operators (DSO) intervene. They are engaged with local authorities through
concession, maintenance and exploitation contracts for the medium and low voltage
networks to route electricity from the high voltage network to consumption sites. In
a given geographical area, electricity distribution is a natural monopoly too. The
company Enedis, 100% owned by EDF, is the largest DSO and distributes electric-
ity in 95% of the country. Local companies, the Entreprises Locales de Distribution
(ELD), are in charge of the other 5%. Finally, the company EDF is also involved
in the competitive sales market, that now counts approximatively 30 members. In
short, the suppliers propose to individual consumers connected to the medium and
low voltage networks sales and supply contracts. This organization of the electricity
system is summarized in Figure 1.1 and accompanied by a basic representation of
the largest financial and energy flows.

Fast evolution of the electricity mix While hydroelectricity was largely de-
veloped in the 1950-60’s until it could provide almost 20% of the French electricity
production [RTE, 2018], wind and solar energies have become financially competi-
tive only recently, thanks to the decreasing costs of the production means, making
accessible the path to a low-carbon energy system, still sustained in France by the
nuclear plants that satisfy 70% of the demand.

However, renewable energies are uncontrollable, hard to predict and fatal,
in the sense that they are either consumed instantly for free or lost since the storage
of electricity is not possible on a large scale so far. While renewable energies have a
legal priority on the network, the other sources of energy, namely nuclear or fossil,
must adapt. The integration of the renewable energy production in the French elec-
tricity system required a modernization of the network that led, among others, to
the denomination smartgrids. According to the ambitions set during the Grenelle
de l’environnement, legally adopted in 2015 in the Loi relative à la Transition Én-
ergétique pour la Croissance Verte and supported by various financial mechanisms,
the part of the renewable energies should reach 40% by 2030.

This major evolution of the electricity mix destabilizes the supply and demand
equilibrium due to the randomness of the renewable production. To ensure the safety
of the energy system and attain the announced economic and ecological objectives,
the anticipation of both factors, that is to say the ability to predict and meet the
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demand by estimating the fatal renewable production and set the thermic (fossil
and nuclear) and hydraulic production accordingly, is a key intermediary objective.

Decentralization of production Meanwhile, a lot of local producers of vary-
ing sizes, including many professionals producing from renewable sources, appeared
with the opening to competition of the energy-related activities. Their integration in
the electricity system and the measurements of the resulting energy flows is helped
by the development of smart meters. Those have indeed become indispensable to
the modernization of the networks now more generally denominated smartgrids.

The smart meters are also responsible for an improved communication with the
end-consumers, now able to better understand and control their consumption, partic-
ipate in demand-response mechanisms, possibly measure local renewable production
and manage the related financial flows. As a consequence, the outdated representa-
tion of the electricity system as a set of sources and sinks has been replaced by the
modern networks that are the scene of bidirectional flows, both physical, financial
and informational.

The additional development of non-professional local means of production modi-
fies naturally the local electricity demand. Thereby, the multiplication of impacting
decision makers in the energy system impacts the roles of the major electricity com-
panies that used to have a stranglehold on the production plans. The research and
development of modern tools to anticipate and react to the variations of the
demand has consequently become of major interest.

The larger European ecosystem Simultaneously to the modernization of its
economy, the energy system has been identified by the European Union and its
members as a key component of the necessary Energy Transition in the developed
countries and as a major factor of geopolitical stability.

The resulting will to mutualize the means of production and the peaks of the
demand with international partners reinforces the need to consider the French energy
system as a component of the larger European network. With the development of
interconnectors, it is effectively no longer possible to isolate the country from
the rest of Western Europe and the management of the network requires to also
take into account the supply-demand equilibria in other countries, as illustrated in
Figure 1.2. The development of these interconnectors allows to pool the means of
production and therefore the risks, it also aims at coupling prices by considering
Europe as a giant copper plate to make the market mechanisms more efficient.
Among others, the satisfaction of the equilibria in the different regions requires that
transboundary electricity lines are not saturated, which also demands an accurate
forecasts of the needs in each region.

As exposed, the need for accurate load forecasts has become of great importance
with the modernization of the energy system, in particular for the TSO, in charge
of the safety and the stability of the high-voltage network.
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FIGURE 1.1: Cartography of the French electric power system
This scheme aims at identifying the groups of actors and has been simplified
as for instance, we did no plot local energy production or taxes. The 260
Energy Intensive Industries are directly connected to approximatively 2000
substations. A more detailed explanation of the energy flows is provided
by [CRE, 2019] and a definition of the substation in terms of voltage is
represented in Figure 1.4.
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FIGURE 1.2: Spatial repartition of consumption and production
Map of Western Europe with electricity production (orange) and consump-
tion sites (blue) [RTE, 2016b].

19



Chapter 1

1.1.2 The French Transmission System Operator

Fruit of the split of the historical operator EDF, RTE is an independent limited
liability corporation, still owned by public entities, notably with 50.1% of the shares
owned by EDF. As a natural monopoly, the annual transmission of 550 TWh is
a closely regulated activity, it employs approximatively 9000 people and generates
an annual revenue of 4 billion euros.

Missions As a regulated monopoly, RTE is officially engaged with the French
State to provide a public service. In particular, RTE is in charge of :

• the supply-demand equilibrium, which requires to inform the producers of
the coming electricity demands,

• the quality of electricity measured by the stability of the voltage, its fre-
quency, and the quantities of blackouts,

• the current maintenance and the future development of the high-voltage
network,

• providing support for public decisions, in particular for the electricity
tariffs and the investment programs,

• supporting the electricity markets as a transparent, non-discriminative
and independent TSO.

Organization With a cost of about 15 cents per KWh for the end-users, the
electricity annually in transit on the French high-voltage network represents about 80
billion euros. From this amount, about a third is dedicated to the regulated Tariff for
Public Electricity Network Use (TURPE, Tarif d’Utilisation des Réseaux Publics
d’Électricité), 25 % of which, that is 7 % of the price of electricity, are dedicated to
RTE for the operation and the development of the high-voltage network.

1.1.3 Architecture of the high-voltage network

The high-voltage network is the physical connection between large corporates-
owned production units and 4000 substations altogether.

The raison d’être Unique link between the major production sites, the local
areas of consumption and the interconnectors between countries, 105 000 kilometers
of electricity lines are managed by RTE to route electricity with voltages between
63 kV and 400 kV, as illustrated in Figure 1.3. As a comparison, Enedis operates
1.3 million kilometers of lines with voltages under 63 kV.

Due to the installation of local professional producers directly connected to
the medium-voltage network, the former dichotomy to represent the high voltage-
network with sources and sinks is outdated. However, high-voltage electricity lines
are still decidedly required for the transit of electricity on long distances with mini-
mal losses of energy.
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Topology There are 2 virtual channels for the produced electricity to arrive on the
RTE network from the sources. First, 54 large-scale production companies directly
interact with RTE to organize their production plans. Secondly, 150 aggregators act
as intermediaries between RTE and local producers.

At the other end, 4000 substations are the interface between the high and the
lower-voltage subnetworks [RTE, 2019e]. Half of them supply 260 energy-intensive
client companies, including 15 railway companies, notably the French National Rail-
way Company (Société Nationale des Chemins de Fer Français, SNCF). The other
half connects 32 DSO, managing the distribution in delimited geographical areas
and routing electricity meant for residential neighborhoods, tertiary activities and
small or medium-size industries.

FIGURE 1.3: The French high-voltage network [RTE, 2019b].

The substations In this manuscript, our final objective is the load forecasting
at the level of substations. These are defined as the approximatively 4000 inter-
faces between the French high voltage network and the lower voltage networks, as
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illustrated in Figure 1.4. Electricity flows continuously through the substations, its
intensity being directly dictated by the local demand.

The aggregated demand at the substations connecting the DSO with the high-
voltage network presents relatively regular yearly, weekly and daily cycles. Besides,
its strong dependence on the weather conditions and the national economic activity
makes it suitable for statistical forecasting methods. On the contrary, because the
demand of energy-intensive companies depends on factors significantly different and
hard to model on a large scale, they are not considered in this manuscript.

FIGURE 1.4: High and lower voltages networks
Illustration of the substations (Poste source) as the interfaces between the
high-voltage network and lower voltage areas [Barbier, 2017].
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1.2 Load Forecasting
Like the aggregated energy demand, the electricity consumption is sensitive to

the economic context. In 2016, the French energy intensity was estimated around
0, 12 ton of oil equivalent per 1000 euros (1, 4 MWh per 1000 euros) and the GDP
was 2225 billions euros.

It is also sensitive to the weather conditions : the slope of the electrical load
with respect to the temperature is around d`

dT
= −2.4 GW/°C in winter [RTE,

2016a] because of the increased heating demand, which corresponds to a relative
variation of 100

`
d`
dT

= −2.7 % /°C, and +0.4 GW/°C in summer mainly due to the
presence of cooling appliances.

Estimating the coming electricity demand and adapting flow-management ac-
cordingly is a key step for RTE to carry out the missions entrusted by the State.
There are for RTE multiple load forecasting problems to consider, each being char-
acterized by : an aggregation level, between the whole country and the substations,
a time horizon ranging from few minutes ahead to several years in the future, and a
temporal granularity, for instance every couple minutes for intra-day forecasts and
every couple hours for the loads in a decade.

1.2.1 Day-ahead local load forecasting

The day-ahead national load forecasting problem has been studied by the research
community for several decades and a forecasting model has been operational at EDF
since the 1980s. In this manuscript, we focus on the day-ahead load forecasting
problems, at the local level of substations.

More precisely, we consider the problem of day-ahead deterministic hourly
forecasts of the local load at every substation, meaning the forecast at 23:59 on
day j of the hourly loads on day j + 1, with a preference for an interpretable model
given that eventually its usage should not be restricted to statisticians. With the
2 000 substations considered, this corresponds to 48 000 values to forecast everyday.

1.2.2 Industrial interest

Facing the increased variability of the supply and the demand, a predictive tool is
a prerequisite for the local management of power systems to ensure its stability and
its resilience. The penetration of electric vehicles and the installation of renewable
energy power plants are only 2 of the major challenges to come in the next decade.
Altogether, we identify 4 main needs for the TSO to set a local load forecasting
model.

National supply and demand equilibrium RTE is contractually responsible
for the national supply and demand equilibrium. This is part of its public service
missions agreed with the French State and monitored by the National Regulation Au-
thority (NRA) of the energy sector, that justify the financial compensation known
as the TURPE. To this end, RTE has a clear interest in anticipating the load and the
fatal renewable energy production i.e. the wind and solar productions. Otherwise,
RTE is assisted by the so-called responsables d’équilibre (responsible for the equilib-
rium), that agreed to finance, against a predetermined remuneration, the difference
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between the electricity injected on the high-voltage network and the electricity ef-
fectively consumed.

Safety of the system flow management The equilibrium must also be satisfied
locally to ensure the feasibility, determined by the capacity of the lines, of the
production planning and the electricity transfers. The resilience of the network is
commonly assessed by its capacity to resist the default of a couple random electrical
lines. This requires in particular to estimate the future loads at different crucial
nodes of the system including the substations, key interfaces between the high-
voltage network and medium or low-voltage networks.

Maintenance planning Maintenance is a necessity for RTE to ensure the safety
of the network. Either predictive or corrective, it often requires to disconnect elec-
trical lines. In such a case, the load forecasts permit to check the feasibility of
the energy flow planning and ensure the robustness of the network, in spite of the
supposedly offline part of the grid.

Loss reduction Finally, the anticipation of electricity demand is necessary to
consider the optimization of energy flows and losses, in terms of distance travelled
between the production and the consumption sites illustrated in Figure 1.2. The
losses due to the Joule effect are indeed more or less proportional to the distance
traveled. Although they are reduced thanks to the high voltage, they oscillate
between 0.7 GW and 3 GW. Note that this physical phenomenon is not the only
cause for energy losses on the network, the iron losses occurring in transformers
being of the order of 0.1 GW.

1.2.3 Original motivation of this work

In addition to the importance of accurate forecasts of the local loads in the
decision-making processes of RTE, this work is generally motivated by the current
dynamic of the Machine Learning community working on forecasting models [Hahn
et al., 2009; Kyriakides and Polycarpou, 2007; Muñoz et al., 2010; Weron, 2007], the
new availability of large datasets [Hong and Fan, 2016; Hong et al., 2014] and the
accessibility to more computational power, making precisely possible the considera-
tion of these datasets. The important impact of the temperatures on the electricity
demand also makes essential the quality of local weather forecasts, constantly im-
proved during the last decades.

All the factors above motivate the common idea that the results on existing fore-
casting problems can be improved thanks to the development of modern scientific
tools. However, we explain in this manuscript that the local load curves can be sig-
nificantly different from the national or the regional loads since they do not benefit
from the same smoothing effect due to the aggregation. Therefore, their volatility
is higher, even though a lot of similarities can be observed between the substations.
They have also been less studied and their relationships with the weather and the
calendar information are not as well understood. As a first consequence, the models
developed to predict the national load may be inadequate at the local levels. Sec-
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ondly, computational power is not the only extra ingredient required for local load
forecasting.

Instead, the ambition of this work is to characterize the similarities observed
at the level of substations and propose a modeling able to benefit from them, in
terms of numerical accuracy and computational time. This manuscript addresses
the following question :

Is it possible to leverage the similarities between local
loads to improve the forecasts with coupled models ?

Organization of the manuscript In Chapter 2, we present the database pro-
vided by RTE and Météo-France in order to specify the problems we are interested
in. We also present related work and a preliminary data exploration allows us to
justify our approach.

Chapter 3 is dedicated to load forecasting models where each time series is dealt
with independently from the others. We propose a modeling based on B-splines
for univariate effects and products of B-splines for bivariate effects, which leads to a
standard bivariate linear model. After casting and solving the optimization problem
both at the national and at the local levels, we propose an analysis of the results
to highlight the difficulties encountered in the modeling and justify the multi-task
approach of Chapter 4.

Illustrating the models learned and their residuals in the independent setting
lets us relate the local load forecasting problem with different multi-task approaches
presented with related work at the beginning of Chapter 4. We study three differ-
ent multi-task models. The first one assumes that the coefficient of the models for
different substations are close in a geometrical sense. It is based on a clustering
method. The second approach is geometrical too but only assumes that the coeffi-
cients learned for the different models lie in a low-dimensional space. This leads us
to considering an optimization problem with a low-rank constraint, which is studied
in details in Chapter 5. The analysis of the convergence to critical points and the
linear convergence in a neighborhood of the optimal set has been published at the
International Conference on Artificial Intelligence and Statistics in 2019. Finally, the
third approach presented in Chapter 4 has two motivations. It is both an attempt to
leverage the correlations between the residuals observed with the independent mod-
els and a proposition to have local forecasts consistent with the aggregated forecasts,
at the national or regional level, meaning that the sum of the local forecasts must
be a reasonable forecast of the aggregated electricity demand.
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Data exploration and methodology

The database contains load measurements at 2089 electrical substations and 32
weather stations distributed all over the 12 metropolitan regions of France (Corsica
is not part of RTE network) and presented in Figure 2.1.

In this chapter, we present the target variables along with their relationships
with the classical inputs of load forecasting models. We also present the ambitions
of this work and the methodology that we adopted.

The choices of the notations for the manuscript are explained in Appendix A.
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FIGURE 2.1: Map of all substations and weather stations.
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2.1 Raw load data
The loads are measured by the TSO at the level of substations, defined with

Figure 1.4, and are given in MegaWatt hour (MWh) with UTC time.

Discarded special clients Originally, there are about 4000 electrical substations
in France. Half of them, connected to the so-called special clients , only serve energy-
intensive consumers like the French National Railway Company (SNCF), or specific
industrials producing mainly steel, aluminum, glass, paper, cement or chemicals.
The other half serve residential areas with possibly smaller industries and tertiary
activities. The load curves of the special clients are very different from the other
half of the substations, they exhibit specific behaviors that make their demand non-
suitable for prediction, or at least requires specific attention. As a consequence, we
are only interested in this manuscript in forecasting the loads of the second group of
substations that are more regular and homogeneous. Discarding the special clients
brings down the number of substations to 2089.

We should also emphasize that for this reason, the sum of the loads at these
2000 substations does not equal the national load that is made public by RTE on
the website Eco2Mix [RTE, 2019a]. While the mean of the former is approximately
40 GWh, the mean of the latter is about 60 GWh. In particular, the Eco2Mix load
corresponds to a larger aggregation and most forecasting models will obtain better
relative performances with this time series, even though it includes special clients
whose demands are difficult to forecast individually.

Data collection procedure At the level of substations, what is measured is
the amount of electricity transiting from the high-voltage network to the lower-
voltage networks. It does not take into account the locally produced electricity
whose importance is growing, that is injected in the middle-voltage network and
that can be considered as never transiting on the high-voltage part of the network.
Yet, the TSO is interested in estimating the local demands and therefore set up
a procedure that we present below, to take into account these local productions.
Note that we also added a correction procedure described in Section B.1, to detect
and possibly correct anomalous values, leading to the supplementary elimination of
300 substations : there are altogether 2 correction steps and the final number of
substations considered is 1751.

Consider a given substation serving a delimited area. We denote P ∈ R+ the
local production and always assume that it is consumed in that area. We denote
by ` ∈ R+ the total quantity of electricity effectively consumed in that area and
by T ∈ R+ the electricity transiting through the substation from the high voltage
network to the lower voltage network. We have the relationship :

` = P + T. (2.1)

The quantity of interest throughout this manuscript is ` but what the TSO measures
at the level of substations is the quantity T . Therefore, the TSO set up a procedure
to estimate the unknown quantity P .1

1The local production P may be known by the Distribution System Operators but this infor-
mation is not shared.
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The local production P corresponds mainly to wind and solar generated elec-
tricity with relatively small installations. To estimate P in a given area, the TSO
measures the quantity of renewable energy produced in nearby large installations
that are effectively connected to the high-voltage network and extrapolates based
on expert knowledge.

Although this estimation is imperfect as explained in Appendix B.1, it leads us
to consider the supposedly simpler forecasts of the total local electricity demand `
instead of T which is much more sensible to the solar radiation, the wind and the
local means of production. Forecasting T is a possible extension of this manuscript.

Size of the database. The collected database contains hourly measurements from
January 2013 to December 2017, that is 5 years of data. It corresponds to 43924
observation instants and saved as a csv file, it occupies 1.8 GigaBytes. With modern
computers, storing this database in Random Access Memory (RAM) is never a
limiting factor.

Remark 1. The size of the file containing the loads could be significantly reduced
since they are measured with 15 decimals i.e. down to the NanoWatt hours. We do
not however, consider such memory problems in this manuscript or try to fit models
with lower precision data types.

Limited history The decision to consider a 5-year-long database is not arbitrary.
The cost of gathering reliable measurements is not prohibitive and it would be pos-
sible to train and test forecasting models on longer periods. However, the load time
series are not stationary and this is particularly visible at the level of substations.
We identified two main reasons for this non-stationarity.

First, the configuration of the network and the evolution of the local electricity
demand evolves faster at the local levels than at the national level since it is more
sensible to variations of the demography or of the economy with the arrival of new
small industries in a given area. Secondly, the correction procedure set up by the
TSO and described in Section 2.1 is rapidly evolving with the introduction of new
means of production from renewable sources of energy. The database is therefore
limited to the years 2013 to 2017.

2.2 Raw meteorological data
In this section, we present the weather information provided by Météo-France that

is part of the inputs in load forecasting models. The electricity demand is indeed
particularly sensitive to the weather conditions, heating being one of the major uses
of electricity in France.

Origin of the data As the French national meteorological service, Météo-France
provides forecasts and actual measurements with different spatial granularities and
time horizons. Among others, temperatures (°C) and cloud cover indices (ranging
from 0 to 8) were gathered in a dataset describing the weather at 32 geographical
locations, which we call the RTE panel, roughly covering the French metropolitan
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regions. The Voronoi diagram of these 32 weather stations is presented in Figure 2.2.

FIGURE 2.2: Voronoi diagram of the 32 weather stations

Clean dataset The weather data has been cleaned before by Météo-France. Con-
sequently, we do not use any correction mechanism. Besides, all the experiments
in this manuscript were made with observed weather conditions measured in UTC
time. In operational conditions, we should of course use weather forecasts instead
but we have considered that doing this to study forecasting models would increase
the level of noise in the data and make their interpretation more difficult while it
would not change the conclusions.

Weighted average of the weather conditions Orignally, RTE used the 32
selected weather stations to compute a weighted average injected in the national
load forecasting model. The corresponding vector of weights αnational ∈ [0, 1]32 is
given in Table F.1.

For each month in the dataset, the distribution of the weighted mean of the
temperatures computed with the weight vector αnational, is illustrated in Figure 2.3.
The distribution of the temperatures in winter and in summer is of particular interest
as it determines the range of observed values. The same box plots for the cloud covers
are given in Figure F.1.
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FIGURE 2.3: Distribution of the average temperatures
Box plots of the weighted average temperatures for each month in the
dataset. The box extends from the lower to upper quartile values of the
data, with a line at the median. The whiskers extends from the 1st to the
99th percentiles. Points outside these bounds are plotted individually.
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2.3 Exploratory analysis of the national load
The load can be linked with weather conditions and economic or demographic

circumstances. These circumstances are indeed responsible for general trends and
cycles of the loads as well as irregularities and abrupt changes. Pierrot and Goude
[2011] classified these relationships into 3 groups : social, natural and economic. In
this section, we review these relationships and illustrate them with the database, in
order to justify our choices of inputs for the models in Chapters 3 and 4. We also
highlight the non-stationarity of the load time series.

Note that the variables that we present in this chapter are not independent. In
particular, the hour of the day and the position in the year are strongly correlated
with the temperatures. Therefore, all the marginal distributions estimated in this
section should be interpreted with caution.

2.3.1 Impacts of natural events

While a high diversity is suspected among the ways the meteorological conditions
can impact the electricity demand, the pieces of information related to the weather
that provably improve the quality of forecasting models are relatively restricted.
They are mainly the temperatures and the cloud covers.

Effectively, the distribution of the loads illustrated in Figure 2.4 is highly corre-
lated with the distribution of the temperatures presented in Figure 2.3. In Novem-
ber, December and January, the loads were larger in 2013 and 2017, which is consis-
tent with the low temperatures plottted in Figure 2.3 and the fact that the weather
is one of the main driver of the electricity demand. Note also that the distributions
of the loads over different years appear much more heterogeneous in winter than in
summer.

Additionally, while the wind speed at low altitudes and the humidity are some-
times included in load forecasting models, their effect are relatively small and we
have chosen not to include them. This is discussed in more details in Section 3.7.3.

Instantaneous temperatures The effect of the temperature on the electricity
demand is relatively well understood. Heating is roughly responsible for half of the
electricity consumption in France every year.

In winter, the national load increase after a 1°C decrease has been stable over
the last few years and was estimated by RTE around 2, 4 GW [RTE, 2016a, 2019c].
All things equal otherwise, the demand is minimal when the outside temperature
is close to 19°C. Finally above 25°C, the electricity demand slightly increases anew,
about +500 MW/°C [RTE, 2019d], due to the use of cooling appliances, thus giving
the shape of a hockey cross to the marginal load curves in Figure 2.5.

Depending on the region and its usual exposure to low and high temperatures,
the number of heating and cooling appliances as well as their efficiency may vary.
As a result, temperature variations impact the electricity demand differently. This
is illustrated in Figure 2.6.

Past temperatures The past temperatures may also impact the present loads.
First, the thermal masses of the buildings make the past temperatures responsible for
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FIGURE 2.4: Distribution of the aggregated load
Box plots of the aggregated load for each month in the dataset. Note the
increased variability in winter and in particular the correspondence between
the largest demands and the coldest temperatures in Figure 2.3.

32



Chapter 2

−5 0 5 10 15 20 25 30
temperature

30

40

50

60
L
oa
d
(G

W
h
)

FIGURE 2.5: Average load at a given temperature value
Empirical mean of the national load conditioned on the average tempera-
ture. The corresponding density is given in Figure F.5.

the present heating demand. Secondly, people may not react instantaneously to the
temperature variations. It is therefore relevant to include the past temperatures in
the load forecasting models. Plus, it seems reasonable to always use the observations
and never the past forecasts, even in operational conditions.

Cloud cover By impacting the need for artificial light and the heating of the
buildings with solar radiations, the sunlight and indirectly the cloud cover also
drive the electricity demand. To account for this effect, we have included in the
modelings the cloud cover indices provided by Météo-France. We also use a nation-
wide indicator of the presence of the sun above the skyline in Paris but we do not
have information about the intensity of the sunlight. The interactions between the
cloud cover and the indicator of the daylight is of particular interest, if we consider
that the cloud cover has no influence on the demand at night. The average load
conditioned on the value of the cloud cover index is illustrated in Figure 2.7.
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FIGURE 2.6: Load for different temperatures in the North/South
Empirical mean of the load conditioned on the average temperature in two
different areas : North and South of France. The substations and the
weather stations were split into two balanced groups, depending on their
latitudes being above or below 46.5°N. For each group, we compute the
average loads per substation per quantiles of temperature. Each of these
conditional means is then centered, as a function of the temperature, to
illustrate that the slope of the average load is globally larger in the South :
more positive for warmest temperatures and less negative for cold tempera-
tures. These differences may be due to the different appliances installed in
each region but a definite causal interpretation is difficult.
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FIGURE 2.7: Load conditioned on the cloud cover index
Empirical mean of the load conditioned on the average cloud cover. The
corresponding density is plotted in Figure F.6. The value 0 corresponds to
an absence of clouds and the value 8 to a very cloudy observation. Note that
the variations of the load should not be attributed entirely to the cloud cover
since the latter is highly correlated with the temperatures, among others.
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2.3.2 Impacts of the economic activity

In addition to the weather conditions, the economic activity is another important
driver of the electricity demand. While it is not possible to measure people’s oc-
cupations, their relationships with the calendar variables such as the hour and the
positions in a week or in a year can be leveraged to estimate it.

Daily cycles The hour of the day is an obvious indicator of the level of economic
activity and this is reflected immediately by the electricity demand. A similar pat-
tern of consumption, illustrated in Figure 2.8, is roughly repeated every day.
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FIGURE 2.8: Daily cycles
Empirical mean of the nationally-aggregated load conditioned on the hour
of the day (UTC). The corresponding density is plotted in Figure F.2. The
second peak in the evening around 10 pm corresponds to the switch to the
off-peak rates of electricity.

The amplitudes and the precise hour of the peaks in the morning and in the
evening may depend on the period of the year, as illustrated in Figure 2.9. This is
due among others, to the switch between Standard Time (ST) and Daylight Saving
Time (DST) and to the variations of the sunrise and the sunset times.

Weekly cycles Similarly, the day of the week roughly determines people’s agenda.
Based on preliminary experiments, we believe that it is actually more relevant to
consider in the modeling directly the hour of the week which is the combination of
the hour of the day with the day of the week and has 24× 7 = 168 possible values.
The weekly cycles are illustrated in Figure 2.10.

Yearly cycles Figure 2.5 illustrates the relationship between the temperatures
and the load. Since the temperatures is strongly correlated with the day of the
year, we observe yearly cycles in Figure 2.11. Contrary to the temperature that is
minimal during winter and maximal during summer, the electricity demand is on
average maximal during January-February and minimal during July-August.
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FIGURE 2.9: Daily cycles per quarter
Empirical mean of the load conditioned on the hour of the day for the 4
quarters.

It is possible that the variations of the loads along the day of the year is not only
due to the variations of the temperatures. Empirically, it is useful to include both
the temperatures and the day of the year in the inputs of forecasting models.

Vacations periods Of course, the variations of the temperatures are combined in
summer with a slow-down of the economy which leads to the minimum loads around
mid-August. A similar phenomenon occurs during the Christmas period and this is
visible in Figure 2.11.

Holidays Depending on the day of the week, holidays may also affect the previous
and the next days. For instance the date of Easter is not fixed and it makes its effect
difficult to anticipate. Holidays can even be associated with 3 or 4-day-long weekends
and affect the load in the surrounding period. We have in our database the 11 French
holidays every year but no local holiday was taken into account. For instance the
nationally aggregated load, at the beginning of May 2013 where 3 public holidays
occur, is presented in Figure 2.12.

Long-term trend In addition to the 3 cycles identified previously, namely in a
day, a week and a year, non-stationarity can also be illustrated with the observa-
tions of several years of data. This evolution results from variations of demography
and economic activity at a national level, among others. It deserves a special treat-
ment in state-of-the-art models. However, the nationally-aggregated annual demand
stagnated between 2013 and 2018 and no clear evolution can be distinguished in Fig-
ure 2.13. It is more important at the substations level as explained in Section 2.4.1.
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FIGURE 2.10: Weekly cycles
Empirical mean of the load conditioned on the hour of the week. The last
value 167 on the x-axis corresponds to Sundays at 11 pm and the vertical
lines separate the different days of the week. The corresponding density is
given in Figure F.3.
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FIGURE 2.11: Annual cycles
Empirical mean of the load conditioned on the day of the year. The vertical
lines separate the different months. The corresponding density is given in
Figure F.4. We can observe a decrease of the activity around the Christmas
period (day 350 to day 5) and during the summer break (day 200 to day
240).
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FIGURE 2.12: Public holidays in May 2013
The public holidays in May 2013 were : Wednesday, May 1st, Wednesday,
May 8th and Thursday, May 9th that was the Pentecost.
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FIGURE 2.13: Long-term trend
Marginal loads per quantile of temperatures for each year in the database.
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2.3.3 Notable bivariate conditional expectations

A precise modeling of the loads also requires to take into account the potential
interactions between the inputs. The empirical expectations of the nationally aggre-
gated load conditioned on the hour of the week and the day of the year is presented
in Figure 2.14. Like in Figure 2.9, we observe that the peaks and the valleys during
the different days of the week occur at different times over the year. It is a clue
but not a proof that this interaction is relevant for the modeling of the electricity
demand.

FIGURE 2.14: Load conditioned on hours and days of the year
Expectation of the nationally aggregated load conditioned on the hour of
the week and the day of the year. Note that the shift during the year of the
peaks in the morning and in the evening described with Figure 2.9 are also
visible in this illustration. They are particularly visible but not limited to
the transition to Daylight Saving Time around days 90 and 300.

The interactions between the other pairs of inputs are presented in the seven
Figures F.7 - F.13.

2.4 Exploratory analysis of the local loads
Being computed as a sum of the local loads, the national load curves benefit from

a smoothing effect attributed to the law of large numbers. We have highlighted
in Section 2.3 the resulting regularities visible on the national load curves and the
conditional expectations with respect to the different inputs. At the level of sub-
stations, most of these characteristics remain but can be greatly perturbed. In this
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section, we first insist on the heterogeneity among the substations but we highlight
in a second part the presence of similarities.

2.4.1 The local load curves are more erratic

We illustrate in this section the behaviors of the local load curves. We expect a
higher variability at the level of the substations, compared with the national load
illustrated in Section 2.3.

Higher variabilities Since aggregating the loads at the national level induces
a smoothing, one must expect a higher volatility of the load curves for thinner
aggregation levels. As a first illustration of this behavior, we propose a regression of
the standard deviations of the local loads on their mean values in Figure 2.15. The
slope 0.26 must be compared with the ratio 0.24 of the mean load that is 39 GWh
at the national level with a standard deviation of 9.49 GWh.

In fact, we believe that Figure 2.15 accounts more for the amplitude of the yearly
cycles than for the erratic character of the local curves. If instead of considering
the standard deviations of the load curves over 5 years, we consider the average
of the standard deviations within each week of the database, a similar regression
gives a slope of 0.15 for the substations, 0.13 for the administrative regions and
0.12 for the nationally-aggregated load. Although, this corroborates the idea of
more chaotic local loads, one could again consider that this accounts mainly for the
amplitude within each week. Computing these standard deviations after subtracting
an estimator of the loads that depends on the hour, the day of the week, the day of
the year and possibly the temperatures would be more convincing but we defer the
models and the analysis of their redisuals to Chapter 3.

Increased nonstationarity The slowly evolving trend observed at the national
level is much more visible at local levels. The repartition of electricity uses evolves
relatively faster in smaller areas, thereby modifying the joint distribution of the load
and the inputs.

As an illustration we regress the monthly loads with the absolute time. At the
national level, the computed relative slope is −1.31 % per year and the distribution
of the slopes computed for the substations is illustrated in Figure 2.16. Note that
this regression might be disturbed by boundary effects and in particular the fact that
the dataset is only 5 years long. We discuss the non-stationarity in more details in
Section 3.7.4.

Importance of holidays and vacation periods Depending on their location
and the categories of the connected clients, the substations can be much more sen-
sitive to the holidays than the national load. We present in Figure 2.17 the load
curves of 2 substations, one whose behavior is relatively similar to the national load
and the other that is significantly impacted by the holidays, the summer break and
the Christmas period.

Empirical conditional expectations The conditional average we presented in
Section 2.3 are also significantly different at the level of the substations. While the
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FIGURE 2.15: Means and standard deviations of the substations
Regression of the standard deviations over the mean loads of the substations.

global characteristics remain, there are gaps in the behavior between the distribution
of the aggregated loads and the distribution of each individual substation.

For instance, we present in Figure 2.18 four substations that behave differently
depending on the hour of the week. A similar case for the day of the year is presented
in Figure F.17.

More generally, the quantiles over the substations of the conditional loads, nor-
malized by the mean of the substations, are presented in Figure 2.19 for the hour of
the week and in the five Figures F.18 - F.22 for the other calendar and meteorological
variables.
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FIGURE 2.16: Regression of the local loads over the timestamp.
Distribution of the relative slopes 100× βk/ˆ̀

k for the different substations
k = 1, . . . , K where βk is the slope obtained by regressing the monthly
average load of substation k on the timestamp and ˆ̀

k is the average load.
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FIGURE 2.17: Local impacts of vacations
Impact of the summer break for two different substations : one substation
whose behavior is close to the national load (substation 1) and one that is
particularly impacted by the summer and the Christmas periods (substation
2).
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FIGURE 2.18: Diversity of weekly cycles
Empirical expectations of the load divided by its average value, at 4 different
substations conditioned on the hour of the week. The normalized load in
Figure 2.18a is rather similar to the national load presented in Figure 2.10,
the 3 others are quite different. Figure 2.18b presents large peaks in the
morning while in Figure 2.18c, the majority of the demand happens in the
evening. In Figure 2.18d, the normalized load is significantly diminished
during the weekends.
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FIGURE 2.19: Local loads conditioned on the hour of the week
Quantiles over the substations of the empirical expectations conditioned on
the hour of the week of the centered normalized loads. The vertical lines
separate the different days of the week.
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2.4.2 Existence of a common structure

Although the presentation in Section 2.4.1 emphasizes the heterogeneity among
the substations, there are still strong similarities between the joint distribution of
the load and the input variables. They are particularly visible on the empirical
conditional expectations of the loads, presented in Section 2.4.1. We call these
resemblances the (unidentified) common structure.

Under the condition that this common structure is sufficiently pervading, it might
be relevant to mutualize the information at different substations by coupling the
individual models, which is the ambition of this work. In this section, we provide
additional evidence that supports this idea.

Correlation of the substations Due to the yearly and weekly cycles, we ex-
pect the loads of the different substations to be highly correlated. This is indeed
confirmed in Figures 2.20 and F.15.

We also present in Figures 2.21 and F.16 the correlations between the substations
after subtracting an estimator of the load computed with kernel regression for each
day of the year and each hour of the week.
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FIGURE 2.20: Correlations between the substations
Histogram of the correlation between the substations over the 5-year-long
dataset. Note that we should investigate whether the negative correlations
might be due to load reports or have another interpretation.
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FIGURE 2.21: Correlations between the detrended substations
Histogram of the correlations between the substations after an estimate of
the load for each day of the year and hour of the week is subtracted. The
estimate is obtained with a kernel regression on the observations.
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In addition, the matrix of load observations can be relatively well approximated by
a low-rank matrix, as illustrated in Figure 2.22. We observe that 90 % of the variance
in the columns of the load matrix can be explained by 10 principal components.
Thereby, it is legitimate to believe that the necessary complexity to explain the
loads at all substations is less than proportional to their number.
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FIGURE 2.22: Singular values of the load matrix
The matrix L̃ is obtained by centering the rows of the original load matrix
L ∈ Rn,K containing n = 43824 observations of the loads over the 5 years in
the dataset at the K = 1751 substations. For r ∈ N, the matrix L̃(r) is the
closest rank-r approximation of L̃ in terms of the Frobenius norm. Note
that if Pdiag(s1, . . . , smin(n,K))Q

T is a singular value decomposition of L̃,
with P ∈ Rn,min(n,K), s1 ≥ . . . ≥ smin(n,K) ≥ 0 and Q ∈ RK,min(n,K), then the
best rank-r approximation of L̃ is the matrix Pdiag(s1, . . . , sr, 0, . . . , 0)QT

and the plot is simply the graph of r 7→∑min(n,K)
t=r+1 st/

∑min(n,K)
t=1 st. The value

of this function for r = 0 equals 1 but the plot begins at r = 1 because of
the logarithmic scale.

Clustering the substations While the strong correlations and the low-rank ap-
proximation presented previously support the claim that the substations have a
common underlying structure, they do not give an idea of its organization.

Because the load at different substations have varying amplitudes, using a stan-
dard K-means clustering algorithm [MacQueen et al., 1967] to group the resembling
substations together is probably not appropriate because there is a risk that the
substations are clustered depending on their amplitudes. Instead, it seems more
relevant to group the substations depending on their behavior over time and for
different values of the inputs. We propose a possible partition of the substations
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into 5 clusters in Figure 2.23a, which is obtained with a subspace clustering algo-
rithm [Elhamifar and Vidal, 2013].

Figure 2.23a is visually satisfying. Indeed, without being aware of the geograph-
ical coordinates of the substations, the subspace clustering algorithm found groups
relatively well organized spatially. However, it is not clear that this clustering is
really informative since the substations may have been grouped together only be-
cause they are exposed to the same local weather conditions, while we would like
to measure more precisely how similarly the loads behave when the distribution of
the calendar and the meteorological variables are the same. A subspace clustering
of the weather stations into 5 groups is presented in Figure 2.23b and it does not
make this doubt disappear.

The interpretations drawn from these visualizations should be taken with caution
and measuring the similarity between two substations remains an open problem.

(a) Subspace clustering into 5 groups of
the 1751 substations.

(b) Subspace clustering into 5 groups of
the 32 weather stations.

FIGURE 2.23: Clusters of substations and weather stations

Forecast from a few leaders Alternatively, we tried to assess how much in-
formation is shared between the load curves by performing a linear regression on
individual loads with all the others. If every substation were a linear combination of
the others, we could obtain a perfect estimation of the load at one substation from
all the others. A simple extension of this idea leads to wonder whether we could in
fact predict all the substations with a few of them, that we call the leaders. Such a
task can be performed by simultaneously learning all the regression models, adding
a group-Lasso regularization term and solving the following optimization problem :

min
C∈RK,K

1

2n
‖L−LC‖2

F + λ ‖C‖1,2 , (2.2)
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where λ ≥ 0, L ∈ Rn,K is the load matrix with n observations at K substations,
C := (ck` ) is the coefficient matrix to learn and :

‖C‖1,2 :=
K∑

`=1

√√√√
K∑

k=1

(ck` )
2 =

K∑

`=1

‖c`‖2 , (2.3)

with c` the `-th row of the matrix C. The group-Lasso regularization [Bakin et al.,
1999; Obozinski et al., 2010; Yuan and Lin, 2006] is known for encouraging some
of the groups to have zero norm. Thereby, it induces in our case some of the rows
of C to be zero, which eliminates them from the set of predictors. Note that these
forecasts are not feasible in practice since we need the loads of the leaders for the
instants to forecast.

Because the group-Lasso regularization induces a bias and due to the nice prop-
erties of the Elastic-Net penalty as a variable selection procedure [Zou and Hastie,
2005], we instead proceeded sequentially as follows. First, we solve the selection
problem with the Elastic-Net penalty :

min
C∈RK,K

1

2n
‖L−LC‖2

F + λ

(
α ‖C‖1,2 +

(1− α)

2
‖C‖2

F

)
, (2.4)

where λ > 0 and α = 0.99. Let Č denote the concatenation of the r ∈ N non-
zero rows of the estimated solution of Problem (2.4) and Ľ the matrix obtained by
concatenating the selected columns. The columns of Ľ are considered as a new set
of predictors and we then solve :

min
D∈Rr,K

1

2n

∥∥L− ĽD
∥∥2

F
+
µ

2
‖D‖2

F . (2.5)

The results of this 2-step procedure are presented in Figure 2.24. With λ = 1 in the
first step, 14 substations are selected and using them as a set of predictors leads to
an average r2 over the substations of 0.8. With λ = 0.1, 100 substations are selected
and they lead to an average r2 of 0.9. This confirms that the loads in the different
substations have a common structure.

Outliers Although we provided evidence that there is an underlying structure
common to a significant number of the substations, we must keep in mind that
there are outliers : some substations have their own particular behavior and it would
probably not be a good idea to mutualize parts of the learning process with them.
We allowed ourselves to discard a significant amount of the substations, 338 out
of 2089, from the database with the correction procedure described in Section B.2.
Still, there may remain outliers that cannot be well forecast with the selected leaders,
as illustrated in Figure 2.25, and we do not have a clear criterion to know which
ones to discard yet.

As a conclusion of this section, there is heterogeneity among the substations, but
it is reasonable to believe that the data is somehow structured. The whole point of
this work is to try to leverage this unknown structure to improve the quality of the
forecasts.
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FIGURE 2.24: Forecasts with a few leaders
( top ) Average coefficient of determination Mr2 over all the sub-

stations of the individual coefficients of determination
(r2
k)k∈[[1,K]] for different values of λ, each curve corresponding

to a different values of the hyperparameter µ in the second
step.

( bottom ) Numbers of predictor selected in the first step for different
values of λ.

In this procedure, we have a 3-year-long training set, from 2013 to 2015 and
the performances of the model are computed in 2016.
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FIGURE 2.25: Presence of outliers
( left ) Histogram of the coefficients of determination (r2

k)k∈[[1,K]].
( right ) Same histogram zoomed on the outliers.

The hyperparameters for the 2-step procedure described by Equation (2.4)
and Equation (2.5) are λ = 1 so that 14 leaders are selected and µ = 0.001.
Other than that, the learning process is the same as for Figure 2.24.
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2.5 Problem settings
Having presented the database and the behaviors of the different time series, we

now describe more precisely the forecasting problems considered in this work. A
load forecasting problem is defined by a perimeter, a time horizon and the available
information. In this manuscript, we are only interested in day-ahead load fore-
casting but we distinguish 2 possible settings for the available data and 5 different
aggregation levels.

2.5.1 Middle-term and short-term models

The shorter the time horizon, the more recent information is available to forecast
electricity loads. While more settings can be considered, we only introduce two
problems that seem particularly relevant for the TSO. In short, they differ on the
availability of the recent loads among the inputs and have consequently distinct use
cases.

Middle-term forecasts The middle-term model is only based on exogenous in-
puts : the forecasts depend on the calendar variables and the meteorological condi-
tions but do not depend on the past loads. With the adequate weather scenarios, a
middle-term model can reasonably be used in practice to forecast the load several
days or weeks ahead, the main limitation being the accuracy of weather forecasts for
long time horizons. Nevertheless, a middle-term model can also serve as an estima-
tor of the average load during this period if average weather conditions are available
for a future time period of the year. More generally, it provides a simple tool to
analyze the relationships between the weather, the time and the loads.

Short-term forecasts In addition to the information available to a middle-term
model, a short-term model also has access to endogenous information through the
recent values of the target time series. It constitutes a significant advantage over
the middle-term model and clearly impacts the performances.

While the relationships of the loads with the weather or the economic activity
are relatively well-understood, the introduction of the past loads in the inputs has a
less clear interpretation. Certainly, it provides information on the economic activity
that are not contained in the calendar data but we could equally conjecture that it
informs the model of a sensitivity to other weather conditions. Improvements with
the short-term models could also indicate that the expressiveness of the middle-term
model is inappropriately limited. We do not go further in this interpretation and
use the model with the best performances, considering that the past loads provide
complementary information.

2.5.2 Aggregation levels

Aggregated Loads Because the priority of the TSO is to ensure the supply and
demand equilibrium, the first load forecasting problem to be addressed was for the
national demand. A few years ago, this work was extended to forecast the load of
the administrative regions and more recently, the load forecasting at the substations
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level was considered. In this manuscript, we are especially interested in the latter
setting but introduce two more intermediate aggregation levels, respectively defined
by the organization of the network and by the position of the weather stations.
Their goal is to enrich the set of possible problems.

An aggregation level of the K substations in the database is characterized by a
partition Z := (Zk)k∈[[1,K]] of the K substations into K zones. Given κ ∈ [[1,K]], we
denote rκ the load of substation κ and for k ∈ [[1, K]], we denote :

`k :=
∑

κ∈Zk
rκ, (2.6)

the sum of the loads in zone Zk. For simplicity and because we do not consider
different aggregation levels simultaneously, we omit the partition Z in the notation.

Weather information Given a zone Zk in a partition Z, the weather information
extracted from the W = 32 weather stations and injected in the modeling of the
electricity load of Zk should obviously depend on Zk. We consider two possibilities.

First, to model the load in the zone Zk, we can consider a linear combination of
all the weather stations with weights α ∈ [0, 1]W such that

∑W
s=1 αs = 1, we denote

the mean of the temperatures weighted by the vector α :

Tα :=
W∑

s=1

αsT
s, (2.7)

where Ts is the temperature at the weather station s ∈ [[1,W ]]. The same notation
is used for the cloud covers :

cα :=
W∑

s=1

αsc
s. (2.8)

Such linear combinations are used for instance for the operational forecasting model
of the national load.

In the second case, the zone Zk is associated with a subset Wk ⊂ [[1,W ]] of the
weather stations and the forecasts of the aggregated load in zone Zk only rely on the
weather information extracted from the weather stations in Wk, the temperatures
at the different substations being injected in the models as distinct inputs.

National setting In the national setting, the partition is made of a single set that
contains all the substations and the goal is to forecast the sum of all the loads :

`national :=
K∑

κ=1

rκ (2.9)

In the historical national model, RTE has decided of the linear combination given
in Table F.1 of the 32 weather stations [RTE, 2011]. Thereby, a single fictive tem-
perature obtained as a weighted average of the 32 weather stations is used for the
national setting.
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Substations level The local forecasting problem corresponds to the prediction of
the loads (rκ)κ=1,...,K, at each individual substation illustrated in Figure 2.26. Conse-
quently, we set for the substations levelK = K and for each k ∈ [[1,K]], `k := rk. It is
not relevant to consider for each substation all the weather stations or the previously
defined weighted mean of the weather stations. Instead, we consider for a substation
k ∈ [[1, K]] the two weather stations sk1, sk2 ∈ [[1,W ]] that are geographically closest
to the substation k. This decision is discussed in Section 3.6.5.

FIGURE 2.26: Voronoi diagram of the substations
Note that the size of each area is not proportional to the load. Large
cities correspond to regions with a high density of substations that have
consequently small areas on the map.

The time series at the level of the substations are much noisier. They may also
present heterogeneous behaviors that make the local load forecasting problem sig-
nificantly different from the national problem. For this reason, we introduce inter-
mediary settings.

RTE regions Based on the topology of the high-voltage network, the TSO parti-
tioned the country in 7 regions that we denote N1, . . . , N7. In order to forecast the
aggregated loads in one of these regions k ∈ [[1, 7]], we use the two weather stations
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that are closest to the center of the region. Thus we obtain 7 aggregated loads
(`k)k=1,...,7 as presented in Figure 2.27 and Table 2.1.

FIGURE 2.27: Map of the 7 RTE regions
Map of the 7 Regions defined by the high-voltage network. First we have
computed the Voronoi diagram of the substations and secondly painted each
area with the color of the corresponding regions.

Administrative regions The 12 administrative metropolitan regions of France
that we denote A1, . . . , A12 form a slightly thinner partition of the country and have
consequently slightly noisier load time series (`k)k=1,...,12. They are described in
Figure 2.28 and Table 2.1. The weather stations associated to each administrative
region are also the two closest to the center of the region.

FIGURE 2.28: Map of the 12 metropolitan administrative regions

Districts We introduce 32 districts D1, . . . , D32 that form a partition of the whole
set of substations, defined by the Voronoi diagram of the weather stations presented
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in Figure 2.29. As explained in Table 2.1, this setting lies between the administrative
setting and the local setting. Although the corresponding time series (`k)k=1,...,32 are
more sensitive to the local weather conditions than for the coarser regions, noise
is reduced compared with the loads of the individual substations. To simplify, we
consider that each district only has access to the temperature of the associated
weather station.

FIGURE 2.29: Map of the 32 districts

National RTE
regions

Administrative
regions Districts Local

K 1 7 12 32 1751
K/K 1751 250 146 55 1
¯̀ (MWh) 39 000 5 500 3 200 1 200 21
|S| 1 2 2 1 2

TABLE 2.1: Characteristics of the different aggregation levels
The number of zones for an aggregation level is denoted K and the average
number of substations per zone is K/K. The average hourly load of the
zones is denoted ¯̀and the number of weather stations that we use to model
the load in each zone within an aggregation level is denoted |S|. Note that
the unique station used at the national level is fictive and obtained with the
linear combination of Equations (2.7) and (2.8). Besides, the choice of the
number of weather stations at the local level is discussed in Section 3.6.5.
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2.6 Related work - Load forecasting
The modeling of the relationship between the electricity demand, the calendar

information and the weather conditions has been the object of interest of both the
statistical and the economy communities for the last few decades. The models based
on socio-economic information and the analyses of electricity end-uses have proved
more relevant for long-term horizons, of several months or years while the Machine
Learning and more generally the statistical modeling, sustained by the increase
in computing power of modern machines and by the vast amount of collected data,
have dominated among the approaches to load forecasting problems with short-term
horizons.

Broad surveys on the topic of load forecasting include [Hahn et al., 2009; Kyr-
iakides and Polycarpou, 2007; Muñoz et al., 2010; Weron, 2007] and the models
presented often extend to other quantities of current interest for forecasting and
power systems including energy prices [Nowotarski and Weron, 2018] and renewable
energy production, which establish a connection with short-term weather forecasts
techniques [Cros and Pinson, 2018; Messner and Pinson, 2018; Nagbe et al., 2017;
Petra et al., 2014].

Note that in operational conditions, most forecasting tools are different from
the models encountered in the literature because the forecasts are often manually
modified a posteriori by forecasters, in particular to take into account special and
punctual events having a noticeable impact on the electricity demand.

Statistical approach A wide variety of forecasting methods have been proposed
to model the electricity load, because no model has proved to be significantly better
than the others in all possible settings, even for the short-term forecasting of the
aggregated load at regional or national levels. Pioneer works on electricity load
forecasting applied classical statistical tools, notably autoregressive models. Their
flexibility and especially their ability to include seasonal components, trends and
effects of exogenous variables [Huang and Shih, 2003; Nowicka-Zagrajek and Weron,
2002] has justified their use as classical benchmarks for load forecasting problems.
Exponential smoothing techniques have equally been considered [Taylor, 2010, 2011].

Multilayer prediction The complex relationships between the input variables
and the electricity demand lead researchers to consider more sophisticated models.
Thereby, the universal approximation of neural networks motivated non-statistical
modeling [Hippert et al., 2001; Khotanzad et al., 1997; Kiartzis et al., 1995; Park
et al., 1991]. A significant improvement was finally obtained in 2004 with Support
Vector Machines [Chen et al., 2004].

The potential of tree-based models able to model high non-linearities with weak
learners at a low computational cost was also assessed by Dudek [2015]. Additionally,
the design and the aggregation of specialized load forecasting experts was studied
by Devaine et al. [2013]; Gaillard and Goude [2015], with models estimated over
different time windows by Pesaran and Pick [2011], and with a procedure of selection
for high-dimensional data modeled with functional regression by Mougeot et al.
[2015].

56



Chapter 2

Generalized Additive Models From 2011, the successful application to the load
forecasting problem and the interpretability of the Generalized Additive Models
(GAM) based on the calendar variables, the weather and the past values of the series
has motivated a deeper analysis and various extensions2. In particular, they lead
to an improvement of the predictions compared with the historical additive model
used by EDF [Bruhns et al., 2005], that requires expert knowledge to be tuned and
is considered to be insufficiently modular. That is why they are given a particular
attention in this manuscript and are discussed in more details in Section 2.9.4. In
particular, Pierrot and Goude [2011] specialized these models to the modeling of the
French national demand and Goude et al. [2013] pursued this approach to model
the electrical load of about 2000 substations of the French distribution network.

Variable selection For an adaptation to high-dimensional inputs and outputs,
the GAM were also considered simultaneously with a 2-step variable selection proce-
dure [Thouvenot, 2015; Thouvenot et al., 2015], first with a selection of the relevant
inputs variables with a group-Lasso regularization like in Equation (2.3) and a tuning
of the regularization hyperparameters based on a Model Selection Criteria [Akaike,
1974; Craven and Wahba, 1978; Shenoy et al., 2015], then with a relaxed version
of the objective, i.e. without the group-Lasso regularization, to correct the bias
induced by the latter [Zhang et al., 2008]. In addition, Thouvenot et al. [2015] pro-
vided a statistical analysis of their estimator and proved its consistency for variable
selection.

State-Space Models As a major shortcoming of the aforementioned models, the
difficulty to model the non-stationarity of electricity demand was addressed with
periodic State-Space Models (SSM), able to adapt to changes of regime and long-
term non-stationarity of the electricity consumption [Dordonnat et al., 2008]. A
functional vector autoregressive SSM based only on endogenous data was proposed
by Nagbe et al. [2018].

Modeling uncertainty More recently quantile regression and density forecasting,
that is to say the prediction of a whole conditional distribution, were the objects
of an increasing attention of both the Machine Learning community [Dawid, 1984;
Sangnier et al., 2016] and the users of the load forecasting models [Hong and Fan,
2016; Shenoy et al., 2015] as well as the wind power forecasting models [Pinson,
2012; Sloughter et al., 2010].

With stochastic process modeling and the estimation of a confidence interval,
Antoniadis et al. [2014] extends the work of [Antoniadis et al., 2012], whose general
principle consists in finding in the history, observations similar to the present-day
context in order to provide a forecast based on a linear combination of the similar
observations, where the similarity is measured with the coefficients obtained by a

2In the electricity load forecasting literature, these models are sometimes called semi-parametric
models. This denomination seems less appropriate than GAM since what matters most is their
nonlinearity, which leads to the adjective Generalized, and their Additive structure, but not their
potential infinite parametrization. Besides, it is very rare to have a load forecasting model that
actually has an infinite number of parameters to estimate, mainly because of the Representer
Theorem [Wahba, 1990, and references therein].
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Kernel Wavelet transform [Antoniadis et al., 2006]. A comparable approach based
on curve linear regression to forecast a day of consumption given its recent past was
developed by Cho et al. [2013, 2015].

Alternatively, bootstrapping methods were considered almost 10 years ago [Fan
and Hyndman, 2011] and more recently with randomly generated temperature sce-
narios [Gaillard et al., 2016]. Meanwhile, Gaillard et al. [2016] approached the prob-
lem with the pinball loss developed for quantile regression [Koenker, 2005; Koenker
and Bassett Jr, 1978]. Finally, an estimation of the time-varying covariance matrix
in GAM was studied by Wijaya et al. [2015].

Particularly relevant and studied in meteorology, the problem of choosing an ap-
propriate method to assess and compare empirically density forecasts was addressed
by Gneiting et al. [2007] who propose a study of the probability integral transform
histogram, marginal calibration plots, the sharpness diagram and proper scoring
rules.

Multiple output forecasting A large majority of the load forecasting models
presented so far is focused on the load aggregated at regional or national levels.
Still, forecasts at non-aggregated levels were considered for buildings or residential
neighborhoods [Kolter and Ferreira, 2011; Wijaya, 2015], homogeneous groups of
consumers [Cugliari et al., 2016; Wijaya et al., 2014], and geographical areas [Hong
et al., 2014]. Additionally, Thouvenot [2015] studies the local load forecasting prob-
lem for 61 of the 1751 substations that we consider in this manuscript, in a region
near Lyon and with a particular attention paid to the selection of relevant input
variables.

Depending on the residential, commercial or industrial nature of the electric-
ity uses contained in these disaggregated time series, the curves may have strong
similarities and share an underlying structure. Leveraging such a structure in the
modeling to obtain a better generalization performance is the question of interest in
Multi-task Learning. The tools developed in this branch of Mathematics have been
applied in the last decade to the forecasting of electricity production from renew-
able sources [Sanandaji et al., 2015; Wytock and Kolter, 2013] and to local loads
forecasting problems.

Relying on the hierarchical organization of the time series, Auder et al. [2018]
studied the individual (household level) and aggregated (national level) load curves
to propose a clustering tool with the same wavelet-based notion of similarity as
in [Antoniadis et al., 2012]. Instead, Hyndman et al. [2011] introduced a model
where the time series of different levels are forecast independently and then opti-
mally combined with a linear regression model consistently with the hierarchical
organization of the network.

Alternatively, Kim and Giannakis [2013] consider low-rank formulation of multi-
task load forecasting problems in an attempt to leverage and potentially reveal
the underlying structure of the load curves. Promoting the interpretability of non-
negative matrix factorization formulation [Lee and Seung, 1999, 2001], Mei et al.
[2017] studied the problem of time series recovery in the context of incomplete
measurements and extended the model with side-information to times series predic-
tion [Mei et al., 2018].

The rising interest for local load curves has additionally motivated the develop-
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ment of methods for the detection of anomalies [Jian et al., 2018, and references
therein], much more present at disaggregated levels.

Future stakes Major challenges have recently emerged in the electricity sector,
such as the adaptation to modern energy markets, the integration of renewable
energies and the penetration of electric vehicles, progressively being reflected in
the research literature. The installation of smart meters and the conditions neces-
sary to the realization of their potential progressively draw attention too, to take
into account the Demand-Response Mechanisms as well as to leverage the consid-
erable datasets collected, certainly leading to Big Data considerations. Mei et al.
[2016] studied for instance the relationship between socio-demographic character-
istics and local electricity uses in order to extrapolate the demand in regions with
socio-demographic information but few measurements of the electricity demand with
smart meters.

2.7 Numerical evaluation
The most relevant evaluation of a model depends on the final task it is designed

for. Generally speaking, there is never an easy way to order forecasting methods,
especially models with non-stationary multivariate outputs. However, we chose to
assess the quality of the models with numerical criteria presented in this section as
guides in our research, in order to summarize in a unique number the discrepancy
between observed target variables and the predictions.

Note that there might be a post-processing of the forecasts by RTE, in particular
when rare events occur. Besides, the day-ahead predictions of the models are always
corrected during the intraday forecasting process, once more recent observations are
available. None of these two post-processings are considered in this manuscript.

2.7.1 Evaluation criteria for a single-task problem

In a single-task setting, the `1 and `2 distances usually provide relevant means to
evaluate a forecasting model. Consider a zone Zk that corresponds to a subset of
the substations as introduced in Section 2.5.2, a time period denoted :

Tb := [[1, n]], (2.10)

indexed by b ∈ N and a batch of observations `(k) := (`ki )i∈Tb ∈ Rn. To assess
the quality of a prediction ˆ̀(k) := (ˆ̀k

i )i∈Tb , we introduce the following performance
criteria.

Mean Squared Error The Mean Squared Error (MSE) is a simple quadratic
penalization of the residuals. It corresponds to the squared Euclidean distance
between the forecasts and the observations. It also has the notorious advantage of
being a convex and differentiable loss. It is defined as :

MSEk,b =
1

n

n∑

i=1

(`ki − ˆ̀k
i )

2. (2.11)
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The coefficient of determination r2 The coefficient of determination r2 is a
relative error that makes the comparison of different tasks more convenient. It is
obtained with an affine transformation of the MSE based on the empirical variance
of the time series (`ki )i=1,...,n. It is without unit and in particular invariant to affine
transformations of the target variables. Let

¯̀
k :=

1

n

n∑

i=1

`ki

denote an estimate of the average load for the considered area :

r2
k,b = 1−

1
n

∑n
i=1(`ki − ˆ̀k

i )
2

1
n

∑n
i=1(`ki − ¯̀

k)2
. (2.12)

We always have r2
k,b ≤ 1 and a negative score means that the predictions are worse

than the constant prediction ¯̀
k.

Normalized Mean Squared Error Proportional to the MSE, the Normalized
Mean Squared Error (NMSE) is defined as :

NMSEk,b =
1
n

∑n
i=1(`ki − ˆ̀k

i )
2

¯̀2
k

. (2.13)

Related to the NMSE, we also define the Root Normalized Mean Squared Error
(RNMSE) :

RNMSEk,b = 100×
√
NMSEk,b. (2.14)

MAPE Finally, the Mean Absolute Percentage Error (MAPE) is related to the
`1-distance between the observations and the predictions, thereby it is more robust
(less sensitive) to outliers. It is defined for time series without any zero value, which
is the case of well collected loads :

MAPEk,b = 100× 1

n

n∑

i=1

|`ki − ˆ̀k
i |

|`ki |
. (2.15)

Comments In the single-task setting, the MSE, the coefficient of determination
and the NMSE are affine transformations of each other. They are commonly used as
loss functions, in large part because they are C∞ functions. However, as quadratic
functions, they are sensitive to outliers while the MAPE is a more robust criteria.

In practice, we minimize in this manuscript the NMSE and mainly compare
single-task models using the RNMSE. Also, note that the coefficient of determination
and the NMSE are highly sensitive to the empirical mean and variance of the time
series. In particular, computing these criteria for a prediction of one year is not
equivalent to averaging the same criteria computed separately for each of the 12
months : one should always compare performances for test sets that correspond
exactly to the same period since the mean and the variance of the electrical load are
generally twice larger during the winter than during the summer.
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2.7.2 Evaluation criteria for the multi-task setting

We now discuss how to evaluate a forecasting model on several possibly heteroge-
neous time series. We considerK ∈ N∗ tasks that correspond to different substations
or areas of consumption.

We require the numerical criteria to be representative of the cost induced by the
errors in the model for the TSO. In particular, the TSO asked that the numerical
criteria should reflect the following : an error of x MWh of the prediction for a
small area is more damaging to the network management than an error of the same
amplitude in a larger area. Therefore, we introduce, for a time period Tb, the Mean
NMSE (MNMSE) and the Root MNMSE (RMNMSE) :

MNMSEb =
1

K

K∑

k=1

NMSEk,b, (2.16)

RMNMSEb = 100
√
MNMSEb. (2.17)

The MNMSE is the criteria used for optimization in the multi-task problems
cast in this manuscript. The first mean is taken in Equation 2.13 with respect to
the observation instants and the second mean in Equation 2.16 with respect to the
different tasks. Our results presents the RMNMSE along with the average coefficient
of determination and the average MAPE :

Mr2
b =

1

K

K∑

k=1

r2
k,b, (2.18)

MMAPEb =
1

K

K∑

k=1

MAPEk,b. (2.19)

We could go even further and require that the criteria also reflects that an error
of x % in a large area is more damaging than an error of x % in a smaller area
of consumption. For this reason, we also introduce the Weighted RNMSE and the
weighted MAPE :

WRNMSEb =

∑K
k=1

¯̀
k × RNMSEk,b∑K
k=1

¯̀
k

, (2.20)

WMAPEb =

∑K
k=1

¯̀
k × MAPEk,b∑K
k=1

¯̀
k

. (2.21)

It is not clear which of these criteria is the most relevant, industrially speaking.
Eventually, we mainly focus on the RMNMSE.

To compute a unique quantity from the performances of the model for different
tasks, we chose to compute a uniform or weighted mean over the tasks in the above
formulas. Alternatively, we could compute the median, it has the notable advan-
tage of not being as sensitive to outliers as the mean and in particular, not being
as sensitive to the choice of the discarded substations with the correction proce-
dure of Section B.2. Still, we use the average and illustrate the distribution of the
performances of the different tasks when relevant.
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2.7.3 Experimental process

In operational conditions, the forecasts are made day by day and we are allowed
to modify the model everyday by incorporating in the training data the most re-
cent days that were already forecast. However, updating the model everyday and
forecasting the day in the test set one by one is tedious in the experiments and not
necessarily relevant : the fitted model does not change drastically if we add in the
training data only the last observed day. Instead, we choose to update the model
every s observations with s ∈ N∗, and perform repeated experiments with sliding
training and test sets. Empirically, we estimated that updating the models every 4
weeks is reasonable. This is discussed in more details in Section 3.7.4.

Additionally, because of the obsolescence of data, it is not true that the bigger
the training set, the better the fitted model. For instance, we estimated empirically
that training sets with 3 years of data are reasonable for the national forecasting
problem and we also discuss this decision in Section 3.7.4. As an additional remark,
we also observed that the optimal length of the training sets may vary between years
in the database. We denote h the length of the training sets and consider it as a
hyperparameter of the models.

In summary, the models are repeatedly learned with sliding training sets of size
h and evaluated on smaller test sets of size s. More formally, let [[Ltest, Rtest]] denote
an interval in the database corresponding to the whole period used to test the
models. We consider that older observation instants [[Ltest−h, Ltest−1]] are available
for training. For simplicity, we also assume that there exists B ∈ N∗ such that
Rtest − Ltest + 1 = B × s. For b ∈ [[0, B − 1]], we train the models with the b-th
training set :

T train
b := [[Ltest

b − h, Ltest
b − 1]], (2.22)

and evaluate them with the b-th test set :

T test
b := [[Ltest

b , Rtest
b ]], (2.23)

where Ltest
b := Ltest + b× s and Rtest

b := Ltest
b + s− 1.

Example 2. For instance, consider that we want to evaluate the performances of a
model in 2016, which corresponds to [[Ltest, Rtest]] and we choose, first to use h = 3
years in the training datasets, secondly to update the model every s = 4 weeks. The
first test subset starts at 0 a.m. on January 1st, ends at 11 p.m. on January 28, 2016
and is used to evaluate a model trained with data from January 2013 to December
2015. The second model is trained with data from February 2013 to January 28th,
2016 and is evaluated with the data from 0 p.m. on January 29th, 2016 to 11 p.m.
on February 25th, and so on until December 2016.

In the end, we compute for each time period T test
b with b ∈ [[0, B − 1]] the

quantities Mr2
b, MMAPEb, RMNMSEb, WRNMSEb and MMAPEb defined in Section 2.7.2 for

the forecasts (ˆ̀k
i )i=Ltest

b ,...,Rtest
b ,k=1,...,K of the time series (`ki )i=Ltest

b ,...,Rtest
b ,k=1,...,K . We

also define the average performances over the batches :
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MMr2 =
1

B

B∑

b=1

Mr2
b, (2.24)

MMMAPE =
1

B

B∑

b=1

MMAPEb, (2.25)

MRMNMSE =
1

B

B∑

b=1

RMNMSEb. (2.26)

Finally, to compare the predictions in different areas in a same aggregation level,
we define the Mean RNMSE (MRNMSE) for the forecasts of one time series in-
dexed with k :

MRNMSEk =
1

B

B∑

b=1

RNMSEk,b, (2.27)

where RNMSEk,b is the RNMSE defined in Equation (2.14) for time series k over the
time period T test

b .

Size of the batches Two comments are in order after the presentation of the
performance measures in Section 2.7.3. First, having a batch of results for repeated
experiments is more convenient to compare results since the mean over the batches
for different models might be quite close and having repeated samples lets use a
Wilcoxon signed-rank test [Wilcoxon, 1992] to determine whether the differences
are significant. This is why we do not compute the prediction errors over the entire
test set at once.

Secondly, we had to determine the size of the batches. Although comparing the
errors of different models for every single observation instant would generate more
samples for the Wilcoxon test, these samples would be highly correlated, because the
errors of one model at subsequent instants are generally highly correlated. Therefore,
we had to determine a size of batch to aggregate the errors. For convenience, we
chose it so that it matches the frequency s of the updates of the models.

2.8 Available equipment and ambitions
In this manuscript, we study load forecasting models able to provide daily at

23:59, forecasts for the next 24 hours of the hourly electricity demands in France.
We describe in this section, the equipment used for our experiments.

Time constraints For all the models that we consider, the computational time
necessary to make forecasts for 24 hours is never a problem. What matters is the
time required to learn the models, and given the requirements of the TSO, this
time should not exceed a few hours. For information, the existing national load
forecasting models are estimated in a couple of minutes at most. In the end at
the local level, our models required between 1 and 6 hours, depending on the exact
choice of hyperparameters.
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Computing power constraints Most experiments were performed on a High
Performance Computing (HPC) cluster with 20 nodes (192 Go RAM each) and a
total of about 300 CPU (3 GHz) but can be and were from time to time performed
on a modern laptop (3.1 GHz, 16 Go RAM). In addition, 4 GPU were available and
used to train and test neural networks or to occasionally leverage the simplicity of
the autograd package [Maclaurin et al., 2015].

Memory constraints Although no memory constraint was imposed at the begin-
ning of this work, experiments were never performed on a machine with more than
192 Go RAM. Experiments using around 60 Go RAM existed but were not suitable
to large search of hyperparameters. Consequently, for convenience, experiments only
occasionally exceeded 16 Go RAM.

2.9 Benchmarks
In order to compare our results with existing models, we consider three possibil-

ities : the operational model used by the TSO, general purpose Machine Learning
models and, recent works especially dedicated to load forecasting. We introduce all
the benchmarks in this section.

2.9.1 Operational models

Aggregated load EDF developed during the 80s, before it was split into differ-
ent entities in 2004 as described in Section 1.1.1, a model to forecast the national
load [Bruhns et al., 2005; RTE, 2014]. The forecasts are published online [RTE,
2019a]. Experts consider that research papers in the electricity domain reached
better performances only recently and this model is still in operation in major com-
panies : its average MAPE for the day-ahead national load forecasting problem is
1.5 % [Antoniadis et al., 2012, Section 3.3].

However, this model has a large number of hyperparameters and its fine tuning
required a lot of expert knowledge. An adaptation of this model to forecast the load
of the administrative regions was proposed a few years ago but it is considered not
to be suitable for local load predictions.

Although the forecasts of this historical model are made available on the web-
site Eco2Mix [RTE, 2019a], we did not have access to this tool and cannot use it
as a comparison for the local models that we are interested in. Besides, the exact
conditions in which this model is used are slightly different from the ones that we
consider. First, the forecasts are done at 17:00 instead of 23:59. Secondly, the tem-
peratures in operational conditions are forecasts and not observations. Finally, the
forecasts of the historical model are manually corrected a posteriori by forecasters
and this procedure is unknown to us.

Local prediction Currently, the operational forecasts at the local levels are made
by the TSO by distributing the regional forecasts to the sublevels based on historical
proportions. This top-down method has been studied by Gross and Sohl [1990].

It seems however, based on expert knowledge, that modern Machine Learning
tools perform better than the top-down method. Besides, we could not access the
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precise model used by the TSO. As a consequence, we do not use the operational
models as benchmarks.

2.9.2 Tree-based models

Tree-based models are an easy and remarkably fast forecasting tool, despite their
difficult interpretation.

Random Forests In particular, Random Forests [Breiman, 2001] are widely used
in the industry, were considered by Dudek [2015] for electricity load forecasting and
allow to obtain quickly reasonable forecasts with :

• the instantaneous temperatures or cloud covers at different weather stations,

• the same weather conditions with a given delay (e.g. δ = 24 or 48 hours),

• maximum and minimum of meteorological conditions over different time win-
dows.

• the hour of the day,

• the day of the week,

• the day of the year,

• indicators of holidays, any annual or punctual event,

• the position of the sun (for the natural light),

We have not performed an exhaustive optimization of the hyperparameters of
the random forests. However, the first results obtained showed that the high non-
linearity in these models can help obtain reasonable forecasts.

XGBoost The algorithm XGBoost [Chen and Guestrin, 2016; Friedman, 2001],
which is implemented in the XGBoost package [Chen et al., 2015], has also been
competitive in data challenges so we considered it as a benchmark. It seems to
benefit from the boosting since it performed most of the time better than Random
Forests in our experiments. We also include it among the benchmarks in the first
experiments of Section 3.5.2.

Remark 3. Although there are multitask versions of these tree-based algorithms [Du-
mont et al., 2009], we observed that single-task versions applied to each time series
independently perform better on the considered load forecasting problems. Note how-
ever that we have not searched exhaustively for the optimal hyperparameters.

To summarize, tree-based models provide fast and flexible tools but the obtained
models are extremely noisy and few generalization guarantees exist. Understanding
and interpreting these highly non-linear models in a high-dimensional setting is
intricate and a different topic.

Remark 4. While in most models of this manuscript we include among the inputs
the hour of the week, ranging from 0 to 167, tree-based models perform better with
both the hour of the day and the day of the week.
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2.9.3 Neural networks

The advent of Neural Networks [Haykin, 1994, and references therein] led us to
wonder what performances could be obtained for our problem with a short implemen-
tation that relies on the recent and remarkably powerful Deep Learning libraries.
Besides, they were specifically studied for electricity load forecasting by Hippert
et al. [2001]; Khotanzad et al. [1997]; Kiartzis et al. [1995]; Park et al. [1991].

We limited our experiments with neural networks by varying only a few hy-
perparameters and considering constant width network. We allowed the following
hyperparameters to vary :

• the type of the layers : Fully Convolutional (FC) or ResNet Blocks,

• the depth of the network, that is the number of layers,

• the width of each layer, that is the number of units in a layer,

• the length of the training set,

• the weight decay parameters i.e. the regularization coefficients.

With the national load forecasting problems, we could quickly conclude that the
networks benefited from longer training sets, which is a potential issue in a non-
stationary context. Besides, the high dimension of the hyperparameters space and
the slow optimization of the models made difficult the use the neural networks as
benchmarks.

Since the first experiments, the performances of the fitted neural networks im-
proved a bit for the national problem by exploring the space of hyperparameters.
Although they are not yet competitive with tree-based models, they would certainly
deserve a longer study.

In one sentence, neural networks were given important computing resources and
did not outperform the other benchmarks, yet we have not concluded that this tool
can be discarded for the load forecasting problem. Given their computational cost,
they are not a convenient benchmark so far.

2.9.4 Related work - Generalized additive models

Generalized Additive Models (GAM) are an extension of the Generalized Linear
Models (GLM) allowing the relationships between the inputs and the target vari-
able to be non-linear. They have been studied specifically for the electricity load
forecasting problem by the research team of EDF, at the national level by Pierrot
and Goude [2011] and at the level of substations by Goude et al. [2013]. They are
considered to provide state-of-the-art forecasts and indeed perform better with our
database than the other benchmarks. We consequently describe them more precisely
in this section where we restrict the scope to single-task models, multi-task models
being discussed in Section 4.2.
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GLM Generalized Linear Models (GLM) are a generalization proposed by Nelder
and Wedderburn [1972] of linear regression to unify various statistical models [Mc-
Cullagh and Nelder, 1983]. In a GLM, the distribution of the target variable y ∈ R
generalizes both the exponential families of distributions [Andersen, 1970; Darmois,
1935; Koopman, 1936; Pitman, 1936] that are defined with respect to a reference
measure µ(dy) and have the form :

p(y|θ) = k(y) exp
[
η(θ)Tφ(y)− A(θ)

]
, (2.28)

and the exponential dispersion models [Jørgensen, 1987] :

p(y|θ, λ) = h(y, λ) exp (λ [θy −B(θ)]) , (2.29)

where s ∈ N∗, θ ∈ Rs and θ ∈ R are location parameters, η(θ) ∈ Rs is the canonical
parameter, the real-valued functions k and h are the ancillary statistics, φ(y) ∈ Rs

is the sufficient statistic, A(θ) and B(θ) are the real-valued log-partition functions,
and λ ∈ R is a scale parameter.

More precisely, the target variable y ∈ R in a GLM is assumed to follow a
distribution in an overdispersed exponential family [Gelfand and Dalal, 1990] that
generalizes Equation (2.28) and Equation (2.29) and whose density is given with
respect to a reference measure µ(dy) by :

p(y|θ, τ) = h(y, τ) exp

(
η(θ)Tφ(y)− A(θ)

δ(τ)

)
, (2.30)

where τ ∈ R is a dispersion parameter and δ is a real-valued dispersion function.
Furthermore, the mean value E[y] of the target variable in a GLM depends on

the input variables (ξ1, . . . , ξD) through the link function g : R→ R and coefficients
β1, . . . , βD ∈ R via the relationship :

E[y] = g−1

(
D∑

d=1

ξdβd

)
. (2.31)

The Linear Regression corresponds to the special case where g is the identity function
and the Ordinary Least Squares make the additional assumption that y follows a
Gaussian distribution.

GAM In a GAM, the target variable y is related to the inputs with the more
general structure :

E[y] = g−1

(
D∑

d=1

fd(ξd)

)
, (2.32)

where for all d ∈ [[1, D]], the function fd : R → R is an unspecified and possibly
non-parametric function.

In addition to the flexibility provided by this structure, the GAM are motivated
by the Kolmogorov-Arnold representation theorem [Arnold, 1957; Kolmogorov, 1957]
which states that any continuous function Φ of the inputs ξ1, . . . , ξD can be written
as a finite composition of univariate functions :

Φ(ξ1, . . . , ξD) =
E∑

e=0

g−1
e

(
D∑

d=1

fd,e(ξd)

)
(2.33)
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with E = 2D. The GAM structure in Equation (2.32) corresponds to the restriction
E = 0 i.e. with the outer sum dropped in Equation (2.33).

While the GAM contain a broad class of functions and general frameworks were
studied for instance in [Breiman and Friedman, 1985; Friedman and Stuetzle, 1981],
modeling assumptions generally require that the link function g is the identity or
at least is known. Thereby, the relationship between the inputs and the target
variable is additionally restricted in the models that we consider to a form that still
generalizes linear regression :

E[y] =
D∑

d=1

fd(ξd). (2.34)

Estimation Several methods have been proposed to fit these models, see for in-
stance a review in [Hastie and Tibshirani, 1990].

Tibshirani and Hastie [1987] and Hastie and Tibshirani [1990] study the estima-
tion of the non-linear functions with the back-fitting algorithm, which is essentially a
cyclic block coordinate descent algorithm, to iteratively increase the local likelihood.
Instead, Wood [2017] developed the Penalized Iterative Re-Weighted Least Squares
(P-IRLS) method, following the study of IRLS by Green [1984].

Implementation Penalized regression is implemented for R in the MGCV li-
brary [Wood and Wood, 2015] and was selected by Goude et al. [2013]; Pierrot and
Goude [2011]; Wood et al. [2015] for electricity forecasting to minimize the following
objective :

E



(
y −

D∑

d=1

fd(ξd)

)2

+

D∑

d=1

λd

∫
‖f ′′d ‖2

, (2.35)

with the methodology described in [Wood, 2004, 2011], and where the functions
(fd)d=1,...,D are parametrized with linear combinations of pre-determined basis func-
tions, often piecewise polynomials with a given number of knots. Note that by
setting for all d ∈ [[1, D]], λd → +∞, the penalization of the curvature in Equa-
tion (2.35) constrain the univariate functions (fd)d=1,...,D to be linear and the model
becomes a GLM.

An interesting feature of the MGCV library is the automatic selection of the
regularization coefficients λd, based on a Generalized Cross-Validation Criteria
(GCV) [Craven and Wahba, 1978].

Extension to multivariate functions Locally, the estimation of the functions
(fd)d=1,...,D relies on the density of the data points given in the training set and
it is well-known that smoothing techniques break down in high dimensions if the
functions (fd)d=1,...,D are multivariate, i.e. have vector as arguments [Friedman and
Stuetzle, 1982]. For this purpose, Wahba [1980] proposed the thin-plate splines to
model response surfaces.

Load forecasting GAM Both for the national and local forecasting problems,
Pierrot and Goude [2011] and Goude et al. [2013] estimate several GAM for different
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times of the day. At the national level, Pierrot and Goude [2011] build 24 models, one
for each hour, while at the local level Goude et al. [2013] estimate 144×2000 models
since they considered loads measured every 10 minutes at about 2000 substations.
In addition to the inputs considered for the tree-based models in Section 2.9.2, they
include the timestamp t which is the number of seconds since a chosen instant in
time. Pierrot and Goude [2011] also include interactions between pairs of inputs
with thin plate-splines in the national model, that are implemented in the MGCV
library.

Impossible formal comparison Data challenges have been proposed with the
objective of comparing different forecasting models based on North American
data [Hong and Fan, 2016; Hong et al., 2014]. However, the exact problem that
they consider is different from day-ahead load forecasting and the predictions of
each group of participants are unknown, like the locations of the substations and
the weather stations that correspond to a higher level of aggregation than the French
substations.

As for French electricity datasets, most of them are confidential : there is no
large public dataset to formally compare models. We do not have access to the
list of substations considered by Goude et al. [2013] for the local load forecasting
problem, or to the selected special tariffs information. Besides, the time period in
our dataset is different from theirs.

We consequently considered their modeling and for reproducibility, we give in
Appendix D the exact formulas that we used in R with the MGCV library [Wood
and Wood, 2015], to obtain benchmarks with GAM.
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Independent models

We only consider in this chapter load forecasting models where each time series is
predicted independently from the others. After introducing a mathematical frame-
work for a general form single-task discriminative model, we propose in Section 3.4
middle and short-term instances to compare with the benchmarks introduced in
Section 2.9. Experiments and their analyses are presented in Section 3.5 and Sec-
tion 3.6.

3.1 Feature engineering
As seen in Section 2.3, an appropriate modelling of the load requires nonlinear-

ity. Consequently, we propose feature transformations with sets of basis functions
adapted to the four categories of inputs distinguished in Table 3.1 : the indicators,
the timestamp, the bounded acyclic inputs (past loads and weather conditions) and
the cyclic inputs (hour and day of the year).

Origin Inputs Categories
Hour of the week CyclicDay of the year

Calendar Sun is up
11 French holidays Indicators
Christmas period

Timestamp Timestamp
Weather Temperatures

Cloud cover Acyclic
Endogenous Past loads*

* Only for the short-term models

TABLE 3.1: Classification of the inputs
The timestamp has its own category. It is indeed conceptually different from
the other variables because unlike the temperatures or the loads whose whole
range of possible values is encountered in the training sets, the forecasts are
an extrapolation with respect to the timestamp.

From the results of the tree-based models of Section 2.9.2 and the bivariate
conditional expectations presented in Section 2.3.3, we expect the model to require
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at least one-dimensional effect and interactions between pairs of inputs. So, we
introduce both univariate and bivariate features to eventually define a standard
linear model.

For clarity, the original data time series are called the inputs. These inputs
are transformed with functions called features and the instances of these features
are the covariates. A summary of the whole procedure leading to the minimization
Problem (3.25) is summarized in Appendix C.

Indicators and timestamp There is no transformation of the binary variables in
our models. Still, given an input ξ ∈ {0, 1}, we write φ0(ξ) := ξ the corresponding
feature to fit the general framework.

Besides, the only transformations of the timestamp t ∈ R that we consider are
polynomial, to model and extrapolate a long-term trend. For polynomials of degree
at most ptimestamp ∈ N∗, we write the corresponding vector of features φtimestamp(t) :=
(t, . . . , tptimestamp), typically we set ptimestamp = 1 or ptimestamp = 2.

For all the other inputs, we create features with univariate splines.

3.1.1 Univariate splines

Basis functions An ideal family of basis functions for a nonlinear transformation
of the inputs contains elements that simultaneously :

• are regular,

• have a simple analytical form,

• are orthogonal for the scalar product related to the distribution of the inputs,

• have a localized support.

Different families were proposed for modeling but none satisfies all the sought
conditions. We compromise and use the framework provided by the cardinal B-
splines [De Boor et al., 1978; Eilers and Marx, 1996]. They satisfy 3 out of the 4
criteria because their supports are not disjoint and the orthogonality condition is
not satisfied.

The splines and their different variants are particularly adequate with well-
studied approximation properties [Schumaker, 2007; Wahba, 1990]. Like a vast
majority of the basis function encountered in the literature, they are defined by a
set of knots. With splines, the modeled function is allowed to have discontinuous
derivatives at these knots.

Different approaches were proposed to select the knots. They can be fixed and
uniformly distributed or computed from the quantiles of the data. Alternatively,
Friedman et al. [1991] proposed a forward selection algorithm for Multivariate Adap-
tive Regression Splines (MARS). Adaptive models have alternatively been consid-
ered with other iterative procedures [Zhou and Shen, 2001], with the Trend Filter-
ing models (TF) [Tibshirani et al., 2014] and with the Locally Adaptive Regression
Splines (LARS) [Mammen et al., 1997] that consider combinations of the elements
of the truncated power basis functions and lead to piecewise polynomials with pieces
as large as possible. Because the supports of the truncated power basis functions
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are not compact, Bakin et al. [1999] later adapted the MARS model to B-splines in
the BMARS framework, supposedly leading to better conditioned design matrices.

Cardinal B-splines The B-splines are piecewise polynomial with possible discon-
tinuities of the derivatives localized in a finite set of knots. They are additionally
called cardinal if the knots are equidistant. Although their supports are not disjoint,
this family is particularly suitable for approximation since any spline function can
be written as a linear combination of B-splines.

More precisely, we build basis functions with the cardinal B-spline with degree
1 and support [0, 2],

B1 : ξ 7→ (ξ)+ − 2(ξ − 1)+ + (ξ − 2)+, (3.1)

where (ζ)+ := max(ζ, 0). There are more regular B-splines with higher degrees and
larger supports, that we illustrate in Figure 3.1. For instance the cubic splines [Stone
and Koo, 1985] insist on the regularity of the basis functions but have larger supports.
The cardinal B-spline with degree δ and support [0, δ + 1] is given by :

Bδ : ξ 7→ 1

δ!

δ+1∑

m=0

(−1)m
(
δ + 1

m

)
(ξ −m)δ+, (3.2)

where
(
δ+1
m

)
:= (δ+1)!

(δ+1−m)!m!
is the binomial coefficient. For any δ ∈ N, the function

Bδ is Cδ−1 and piecewise Cδ. Using piecewise linear splines with δ = 1 instead of
splines with a higher degree has the notable advantage of producing continuous and
sparser representations.

0.0 2.5 5.0
0.0
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1.0
B0

B1

B2

B3

B4

FIGURE 3.1: The cardinal B-splines Bδ for δ = 0, 1, 2, 3, 4.

Family of basis splines We generate a family of basis functions thanks to com-
positions of affine functions with B1. We follow the ideas of a multi-resolution
approximation [Forster, 2011], with possibly non-dyadic cuts. This last point is rel-
evant for hours of the day or hours the week since 24 = 23× 3 and 168 = 7× 24 are
not powers of 2.

Consider a sequence of cuts (cr)r∈N ∈ (N\{0, 1})N and a level of detail ` ∈
N\{0, 1}, we define the granularity C :=

∏`
r=1 cr. It is inversely proportional to the
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support width of the splines that we build. Given a translation parameter τ ∈ Z,
we define the perspective function Bτ,C with support [ τ

C
, τ+2
C

] as :

Bτ,C : ξ 7→ 1

C
B1(Cξ − τ). (3.3)

As illustrated in Figure 3.2b, the support of Bτ,C is centered at τ+1
C

.

0 1 2

0

1

(a) The cardinal B-spline B1.

τ
C

τ+1
C

τ+2
C

0

1
C

(b) The composed function Bτ, C .

FIGURE 3.2: The transformed Cardinal B-spline B1.

Restriction to [0, 1] To describe a general procedure, we consider that the inputs
have already been affinely transformed so that the cyclic inputs with original values
in [0, c], where c is the maximum value (e.g. the value of c is 167 = 7×24−1 for the
hour of the week) now lie in [0, 1− 1

c+1
] and the other inputs have been transformed

so that the minimum is 0 and the maximum is 1, this is detailed in Appendix C.
Thus, we only select those elements whose support has a non-trivial intersection
with the interval [0, 1] :

SC := {Bτ,C , τ ∈ [[−1, C − 1]]} . (3.4)

The family SC spans the set of piecewise linear continuous functions that are
zero outside [− 1

C
, 1 + 1

C
] and whose derivative may be discontinuous at the knots{

m
C
, m ∈ [−1, C + 1]

}
. We adapt it for the acyclic and cyclic inputs classified in

Table 3.1 : to anticipate extrapolation in the first case and to satisfy the additional
constraint in the second case.

Acyclic features Generally, estimators near the boundaries of the observed do-
main tend to be erratic, which lead Friedman et al. [2001, Section 5.2.1] to consider
the natural cubic splines that are piecewise third-order polynomials with the addi-
tional condition, from which the adjective natural is coined, that the second-order
derivative is zero on the two edges of the domain, the extrapolation outside the
observed domain being linear.

In our case, although the training data is affinely transformed to lie in the inter-
val [0, 1], the same transformations on new unseen data might have values outside
[0, 1]. Following the ideas of the natural splines, we choose instead of SC , a family
of functions whose span is the set of piecewise linear functions with possible discon-
tinuities of the derivative in the set of knots

{
m
C
, m ∈ [1, C − 1]

}
and that are linear
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outside of [ 1
C
, 1− 1

C
]. Let AC denote this family of C+1 continuous transformations

for acyclic inputs, shown in Figure 3.3 :

AC = { φ0 : ξ 7→ max(0,
1

C
− ξ) }

∪ { φ1 : ξ 7→ min(B0,C(ξ), ξ) }
∪ { φτ+1 : ξ 7→ Bτ,C(ξ), τ ∈ [[1, C − 3]] }
∪ { φC−1 : ξ 7→ min(BC−2,C(ξ), 1− ξ) }

∪ { φC : ξ 7→ max(0, ξ − 1 +
1

C
) } .

− 1
C 0 1

C

0

1
C

B−1,C

φ0

(a) B−1,C ∈ SC and φ0 ∈ AC

0 1
C

2
C

0

1
C

B0,C

φ1

(b) B0,C ∈ SC and φ1 ∈ AC

1− 2
C

1− 1
C 1

0

1
C

BC−2,C

φC−1

(c) BC−2,C ∈ SC and φC−1 ∈ AC

1− 1
C 1 1 + 1

C

0

1
C

BC−1,C

φC

(d) BC−1,C ∈ SC and φC ∈ AC

FIGURE 3.3: Family of univariate acyclic splines
Modification of the acyclic basis functions for extrapolation purposes.

Finally, we denote by φ the concatenation of the linearly independent elements
(φ0, . . . , φC) of AC . Since

∑C
j=0 φj equals the constant function ξ 7→ 1

C
, the union

of such families for different inputs will not be linearly independent. It is the case
for instance if we consider an additive model with at least 2 temperatures as inputs,
each one being associated to a different vector of features.

Cyclic features For a cyclic input, there is an additional constraint but extrapo-
lation is not a concern anymore. Among the functions of SC , only B−1,C and BC−1,C

do not have a trivial cyclic extension. However, we see in in Figure 3.4 that they
are naturally replaced by merging them.

74



Chapter 3

0 1
C

1
2

1− 1
C

0

1
C φ0

B−1,C

BC−1,C

FIGURE 3.4: Family of univariate cyclic splines
Modification of the basis to satisfy the cyclic constraint. The pair
(B−1,C , BC−1,C) in SC is substituted with φ0 in CC .

Therefore, we define the family of cyclic basis functions :

CC = { φ0 : ξ ∈ R/Z 7→ max[B−1,C(ξ), BC−1,C(ξ)] }
∪ { φτ+1 : ξ ∈ R/Z 7→ Bτ,C(ξ), τ ∈ [[0, C − 2]] } .

Because of the additional constraint, the number of elements in CC is only C.
We denote by φ the multivariate feature obtained by concatenating the elements
(φ0, . . . , φC−1) of CC . Note that for an input with discrete values in [0, 1

c+1
, . . . , 1−

1
c+1

] where c ∈ N, we can build indicators from the representations above based on
splines if we choose a sufficient level of detail C = c + 1. This will be of particular
interest when considering as input the hour of the week h ∈ [[0, 167]] with c = 167 :
having an indicator for each hour of the week means that the set of basis functions
spans all functions of these discrete values.

3.1.2 Interactions

Bivariate features To allow interactions in the model between the different in-
puts, we build bivariate features with tensor products of univariate features [Bakin
et al., 1999; Binev et al., 2007]. Consider two inputs ξ, ζ ∈ [0, 1], for instance the
past load and the hour of the week, and the associated vector of features φ ∈ (RR)p

and ψ ∈ (RR)q built in Section 3.1.1, where p, q ∈ N∗. We define the interaction
features with the tensor product :

φ⊗ψ ∈ (RR)p,q. (3.5)

Given two inputs ξ, ζ ∈ R, it is convenient to see the covariates associated to this
interaction as a matrix :

Φ(ξ, ζ) := φ(ξ)ψ(ζ)T ∈ Rp,q. (3.6)

Thus, any linear combination of these covariates with a coefficient matrixM ∈ Rp,q

can be written :
〈Φ(ξ, ζ),M〉. (3.7)
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3.2 Additive model
With the univariate and bivariate features, we build a general-form additive model

to apply to a vector of inputs ξ := (ξ1, . . . , ξD) ∈ RD.

First, consider a subset of the inputs U ⊂ [[1, D]] for the univariate features and d ∈
U . After setting a granularity Cd ∈ N∗ for the input d, we write the corresponding
vector of features φd ∈ (RR)pd where pd = Cd + 1 if d corresponds to an acyclic
input, pd = Cd if d corresponds to a cyclic input, pd = 1 if d is an indicator and
pd = ptimestamp if d corresponds to the timestamp. We denote the total number of
univariate features

pU :=
∑

d∈U
pd. (3.8)

Given a subset of interactions B ⊂ [1, D]2 and (d, e) ∈ B, we write pd and pe the
size of the associated univariate features used to build the corresponding matrix of
features as in Section 3.1.2 with a tensor product :

Φd,e := φd ⊗ φe ∈ (RR)pd,pe , (3.9)

so that the total number of bivariate features is :

pB =
∑

(d,e)∈B
pdpe. (3.10)

We define the additive modelMU ,B with :

p := 1 + pU + pB (3.11)

coefficients as the following set of hypotheses :

(ξ1, . . . , ξD) 7→ β0 +
∑

d∈U
〈φd(ξd),βd〉+

∑

(d,e)∈B
〈Φd,e(ξd, ξe),Md,e〉 (3.12)

s.t. β0 ∈ R, ∀ d ∈ U , βd ∈ Rpd , ∀(d, e) ∈ B,Md,e ∈ Rpd,pe .

Equivalently, denoting the univariate effects :

fd : ξd 7→ 〈φd(ξd),βd〉, (3.13)

where (fd)d∈U are piecewise linear functions, and the bivariate effects :

gd,e : (ξd, ξe) 7→ 〈Φd,e(ξd, ξe),Md,e〉, (3.14)

where (gd,e)(d,e)∈B are defined with linear combinations of tensor products, the model
MU ,B has the concise form

(ξ1, . . . , ξD) 7→ β0 +
∑

d∈U
fd(ξd) +

∑

(d,e)∈B
gd,e(ξd, ξe). (3.15)
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3.3 Formulation of the optimization problem
To learn the coefficients in the modelMU ,B, we classically write the minimization

of the mean squared error on a training set as an optimization problem. Let p denote
the number of covariates given in Equation 3.11 and x ∈ Rp be the random vector
obtained by concatenating all the covariates built with the features from the inputs
(ξ1, . . . , ξD) ∈ RD :

x :=
(
1, [φd(ξd)]d∈U , [Φd,e(ξd, ξe)](d,e)∈B

)
. (3.16)

Similarly, let b ∈ Rp denote the coefficient vector obtained by concatenating the
coefficients assigned to each group of features :

b :=
(
β0, [βd]d∈U , [Md,e](d,e)∈B

)
. (3.17)

The model (3.12) can be decomposed in two steps : the feature engineering of
Section 3.1 and the linear combination of the covariates in Section 3.2, that can be
written as :

x ∈ Rp 7→ xTb s.t. b ∈ Rp. (3.18)

The data fitting term Consider a training set of observation instants i ∈ [[1, n]]
with n ∈ N∗ and a target time series (yi)i=1,...,n ∈ Rn. Let xi ∈ Rp denote the
covariates for instant i. Minimizing the squared error on the training set of the
modelMU ,B amounts to minimizing with respect to b ∈ Rp the data fitting term :

1

2n

n∑

i=1

(yi − xTi b)2. (3.19)

The regularization In order to avoid overfitting, we consider adding a regular-
ization ω : Rp → R+ and write the optimization problem :

min
b∈Rp

1

2n

n∑

i=1

(yi − xTi b)2 + ω(b). (3.20)

Since the coefficient vector b ∈ Rp is the concatenation of coefficient vectors
assigned to different groups of features, we use regularizations with the additive
form :

ω : [β0, (βd)d∈U , (Md,e)(d,e)∈B] 7→ λ0γ0(β0) +
∑

d∈U
λdγd(βd) +

∑

(d,e)∈B
λd,eγd,e(Md,e),

where λ0 ≥ 0, for all d ∈ U , λd ≥ 0 and for all (d, e) ∈ B, λd,e ≥ 0.

Structured coefficients Adding the interactions between univariate features may
significantly increase the statistical complexity of the model and exposes it to over-
fitting. To counteract this effect, we will add, given a matrix M ∈ Rp,q associated
to an interaction between two inputs ξ and ζ, three possible structural constraints.
Thus, we distinguish :
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• the unstructured case without any structural constraint. Therefore, the matrix
M has p× q free parameters.

• the low-rank constraint :
rank(M) ≤ R, (3.21)

with R ∈ N∗, implying the existence ofU ∈ Rp,R and V ∈ Rq,R such thatM =
UV T . With the notations of Section 3.1.2, this implies that the interaction
can be written :

〈φ(ξ)ψ(ζ)T ,M〉 =
R∑

r=1

[φ(ξ)Tu(r)][ψ(ζ)Tv(r)], (3.22)

where u(r) and v(r) are the r-th columns of respectively U and V . We use this
form in our implementation and this leads to (p+ q)R parameters associated
to this interaction. In this case, we use a penalization of the form (U ,V ) 7→
ω1(U) + ω2(V ) instead of penalizing the matrix M .

• the sesquivariate constraint

M = βvT + uγT (3.23)

where β ∈ Rp is the coefficient vector associated to the univariate feature of
input ξ, γ ∈ Rq is the coefficient vector associated to the univariate feature
of input ζ and v ∈ Rq, u ∈ Rp. Thus, the sum of the univariate effects
〈φ(ξ),β〉+〈ψ(ζ),γ〉 and this bivariate effect 〈φ(ξ)ψ(ζ)T ,βvT +uγT 〉 has the
general form :

(ξ, ζ) 7→ F (ξ)[1 + g(ζ)] +G(ζ)[1 + f(ξ)]. (3.24)

Note that for this constraint to be possible, the dimension must be the same
for the univariate features and the bivariate features i.e. the matrix M must
have the same number of rows as β. With this constraint, the rank of M is
at most 2 and the number of parameters associated to this interaction is then
only p+ q. In this case, we penalize the vectors v and u instead of penalizing
the matrix M .

The low-rank constraint (3.21) is introduced as an intermediary, if R ≥ 2, between
the unstructured case and the sesquivariate constraint (3.23) but empirically, it was
never better than both, even for R = 1, so we do not use it.

Independent models The above formulation is immediately generalized to a
multi-task setting where each task is learned independently from the others. Con-
sider K ∈ N∗ target series (y(k))k=1,...,K where for each k ∈ [[1, K]] we have n ∈ N∗
observations : y(k) ∈ Rn.

In the problems that we consider, some covariates are called common because
they are used by all the tasks (e.g. the hour) and others are called local as only
some tasks use them (e.g. the past loads or the temperatures at a given weather
station). We denote their numbers respectively p0 ∈ N and p − p0 ∈ N. Besides,
we assume that all tasks have the same numbers of local covariates. We also denote
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X(0) ∈ Rn,p0 the common design matrix and Z(k) ∈ Rn,p−p0 the local design matrix
of each task k ∈ [[1, K]].

Similarly, for each task k ∈ [[1, K]], the coefficient vector associated to the com-
mon covariates is denoted a(k) ∈ Rp0 and the coefficient vector for the local covari-
ates is denoted c(k) ∈ Rp−p0 . We write the collective yet independent optimization
problem as :

min
A∈Rp0,K ,C∈Rp−p0,K

1

2n

K∑

k=1

∥∥y(k) −X(0)a(k) −Z(k)c(k)
∥∥2

2
+ ωk(a

(k), c(k)). (3.25)

For each k ∈ [[1, K]], we define b(k) ∈ Rp as the concatenation of a(k) and c(k) :

b(k) :=

[
a(k)

c(k)

]
, (3.26)

so that the column vector b(k) is the analogous for task k of the vector b defined for
the single-task setting in Equation (3.17) and y(k) ∈ Rn is the analogous of the time
series (yi)i=1,...,n ∈ Rn defined for Equation (3.19).

3.4 Application to the load forecasting problem
Target variables In Section 2.5.2, we introduced 5 partitions of the K substations
that correspond to different levels of aggregation. To instantiate a load forecasting
model, consider one element Zk ⊂ [[1,K]] in these partitions, that corresponds to
a subset of the substations, with cardinal |Zk|. Like in Equation (2.6), we denote
(rκ)κ∈Zk ∈ R|Zk| the loads of the substations in the area Zk and we define the
aggregated load of this area :

`k :=
∑

κ∈Zk
rκ ∈ R. (3.27)

In this section, we introduce a parametrization to model this aggregated load, that
we denote for simplicity `. Its estimator is denoted ˆ̀.

There is no reason for the parametrization to be the same at different aggrega-
tion levels and indeed, we found empirically that they should be different. Conse-
quently, we restrict this section to the parametrization of the national models and
the parametrization for the models at the level of substations are given in the three
Tables F.2 - F.4. These choices are then justified in Sections 3.5 and 3.6.

Inputs The calendar inputs given to the middle-term model are the timestamp
t, the hour of the week h and the day of the year d. We also use a unique binary
indicator 1hld for the 11 French holidays and two others 1hld− and 1hld+ for the days
respectively preceding and following a holiday. We denote 1xmas an indicator of
the two weeks around Christmas and New Year’s Eve and 1sun an indicator of the
daytime, that is 1 between the sunset and the sunrise measured in Paris and 0
otherwise.
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In Section 2.5.2, the subset of substation Zk was associated with a subset of the
weather stations that we denote [[1, S]] with S ∈ N∗. For s ∈ [[1, S]] and δ ∈ {24, 48},
we write Ts the corresponding temperature, Ts9δ the temperature with a delay of δ
hours, T̄s9δ the maximum temperature over the δ last hours, and

¯
Ts9δ the minimum.

Finally, the instantaneous cloud cover is denoted cs.
For short-term forecasts, the models are additionally aware of the past loads `9δ

with a delay of δ hours, for δ ∈ {24, 48}. An enumeration of the inputs to the
short-term model is given in Table 3.2.

Category Name Symbol

Date
and
time

cyclic hour of the week h
day of the year d

indicators holidays 1hld

days before a holiday 1hld−

days after a holiday 1hld+

Christmas period 1xmas

Sun is up 1sun

absolute time timestamp t

Weather
acyclic temperatures Ts

δ hours-delayed temperatures Ts9δ
maximum over a δ hours window T̄

s
9δ

minimum over a δ hours window
¯
Ts9δ

cloud covers cs

Past loads acyclic δ hours-delayed load `9δ

TABLE 3.2: Inputs to the short-term load forecasting model
There are as many copies of the weather-related inputs as weather stations
s ∈ [[1, S]] and one copy of the past information for each δ ∈ {24, 48}.

Univariate features To build features as in Section 3.1, we decide of a granularity
for each input. Based on preliminary experiments, we consider the hour of the
week instead of considering separately the hour of the day and the day of the week
like Goude et al. [2013]; Thouvenot [2015]. For this input, we choose 168 knots for
the hour of the week because of the high frequencies of the expected load conditioned
on this variable (c.f. Figure 2.10). This is equivalent with using an indicator for each
hour of the week.

For the other continuous inputs, we expect smoother univariate effects given the
empirical conditional expectations presented in Section 2.3. The granularity is set
to 128 for the day of the year, to 16 for the temperature-related univariate features
and, to 4 for the past loads in the short-term models, leading respectively to 128,
17 and 5 knots because the temperatures and the past loads are not cyclic. Finally,
we add a linear function for the timestamp t.

The coefficients for the hour of the week h and the timestamp t are penalized
with the Ridge regularization :

‖·‖2
F : θ ∈ Rp 7→ 1

2

p∑

i=1

θ2
i . (3.28)
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For the other coefficients, we use the smoothing spline regularization ΩS2 , like in [Fan
and Hyndman, 2011; Goude et al., 2013; Pierrot and Goude, 2011; Thouvenot, 2015],
that penalizes abrupt changes in the consecutive differences between coefficients. It
is defined for vectors by :

ΩS2 : θ ∈ Rp 7→ 1

2

p−1∑

i=2

(θi−1 − 2θi + θi+1)2, (3.29)

and for matrices, by :

ΩS2 : A ∈ Rp,q 7→ 1

2

q∑

j=1

p−1∑

i=2

(ai−1,j − 2ai,j + ai+1,j)
2

+
1

2

p∑

i=1

q−1∑

j=2

(ai,j−1 − 2ai,j + ai,j+1)2

+

p−1∑

i=1

q−1∑

j=1

(ai+1,j+1 − ai+1,j − ai,j+1 + ai,j)
2. (3.30)

We also include the indicator of the Christmas period in the univariate effects and
use the Ridge regularization to penalize the associated coefficient. These univariate
features are gathered in Table 3.3 and justified empirically in Section 3.6.4. This
setting leads to 366 degrees of freedom for the univariate part in the middle-term
model (i.e. without the past loads) and 371 in the short-term model.

Name Category Symbol Parametrization
hour of the week Cyclic h 168 knots
day of the year d 128 knots
Christmas period indicator 1xmas indicator
timestamp timestamp t linear function
temperatures acyclic Ts 17 knots
δ hours delayed temperatures Ts9δ 17 knots
last maxima over δ hours T̄

s
9δ 17 knots

last minima over δ hours
¯
Ts9δ 17 knots

δ hours-delayed load acyclic `9δ 5 knots

TABLE 3.3: Univariate features for the national forecasts
Set U of univariate features with the corresponding parametrization for the
short-term load forecasting model at the national level.

Bivariate features There are multiple reasons to believe that interactions be-
tween the inputs also play a major role for the determination of the load :

• the 2-dimensional conditional expectations observed in Section 2.3.3,

• the good results of (highly non-linear) tree-based models,

• interactions are included in the state-of-the-art GAM models,
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• intuitively, a holiday will not have the same effect on working and non-working
days of the week, and similarly, the past loads with a fixed delay depend on
the day of the week.

While any order interactions can be considered, we did not obtain so far results
indicating that explicit interactions between more than two univariate features are
useful in a forecasting perspective. In fact interactions between two covariates al-
ready introduce an extra layer of complexity. Indeed, as presented in Table 3.4,
the number of parameters associated to the unconstrained bivariate features is more
than ten times the number of degrees of freedom of the univariate effects. Depend-
ing on the quantity of data to fit the model and its regularity which is strongly
dependent on the considered level of aggregation, the regularization is essential.

Names Symbols Parametrization
cloud covers and day/night (cs, 1sun) 3 knots & indicator
week hour and holiday (h, 1hld) 84 knots & indicator
week hour and day before a holiday (h, 1hld−) 84 knots & indicator
week hour and day after a holiday (h, 1hld+) 84 knots & indicator
week hour and δ hours-delayed load (h, `9δ) 84 & 5 knots
week hour and day of the year (h, d) 168 & 32 knots
temperatures and day of the year (Ts, d) 5 & 32 knots

TABLE 3.4: Bivariate features for the national forecasts
Set B of bivariate features with the corresponding parametrization for the
short-term load forecasting model.

It is not relevant to impose any of the structures defined in Section 3.3 on in-
teractions between an indicator and another input since the coefficient matrix has
only one column or one row. Besides, we have found empirically that the struc-
tures on the interaction matrices described in Section 3.3 are not essential for the
other inputs so we first consider the unstructured case and discuss this question in
Section 3.6.6.

Finally, the interactions including an indicator are regularized with the Ridge
penalty ‖·‖2

F of Equation (3.28) while the others are penalized with the smoothing
spline regularization ΩS2 defined in Equations (3.29) and (3.30).

Proposed models The version of Equation (3.15) for the middle-term model is :

MMT ∼ β0 + α11xmas + γ2t + f3(h) + f4(d)

+
S∑

s=1


f s5 (Ts) +

∑

δ∈{24,48}

[
f s6,9δ(T

s
9δ) + f s7,9δ(T̄

s
9δ) + f s8,9δ(¯

Ts9δ)
]



+ g9(h, d) +
S∑

s=1

[gs10(Ts, d) + hs11(cs)1sun]

+ h12(h)1hld + h13(h)1hld− + h14(h)1hld+ . (3.31)
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The short-term model additionally uses the past loads :

MST ∼ MMT +
∑

δ∈{24,48}
[f15,9δ(`9δ) + g16,9δ(h, `9δ)] . (3.32)

As explained in Section 2.7.1, we are interested in minimizing the NMSE so we
define the centered target variable :

y =
`
¯̀− 1 ∈ R. (3.33)

where ¯̀ is the empirical expectation of the load `. Thereby, the regularized mini-
mization of the NMSE over a training set [[1, n]] is exactly Equation (3.20) where the
covariates (xi)i=1,...,n ∈ Rn,p are obtained by concatenating the defined features.

Finally, when considering the simultaneous forecasting problems of several time
series, the corresponding optimization problem is the sum of the individual objec-
tives. It is strictly equivalent with an independent optimization of each problem
since there is no coupling in this chapter. Writing this sum allows us to use the
general form of Equation (3.25) for the simultaneous optimization of all the models
at a given aggregation level. Each target time series has indeed access to its own
design matrix since the past loads are not shared and the associated weather stations
might be different.

3.5 Experiments with independent models
In this section, we only study the models defined in Section 3.4. We compute in

Section 3.5.1 the performances of the middle and short-term forecasts at the different
aggregation levels and justify the integration among the inputs of the past loads.

The rest of the section has three goals. First, we illustrate the national model
and propose a qualitative analysis to better understand the modeling with univariate
and bivariate effects to identify potential difficulties. Secondly, we illustrate the local
models to highlight their heterogeneity and the fact that the curves of the estimated
local univariate effects are more erratic. Thirdly, we would like to nuance the second
point by proving that, in spite of the diversity of the local effects, a similar rough
structure is encountered throughout the substations. This last point is particularly
relevant to motivate the multi-task setting presented in Chapter 4.

3.5.1 Numerical performances

Collection of training and test sets To assess the performances of the models,
we choose the year 2016. Because of the non-stationarity and the obsolescence of
data, we have evaluated empirically that, first, the models should be updated every
4 weeks using the new available data, so we consider 4-week-long test sets and
secondly, using training sets containing 3 years of data is a reasonable choice. These
decisions are discussed in more details in Section 3.7.4.

We measure the numerical performances presented in Section 2.7 with the same
frequency as the updates of the models. Therefore, we collect 13 pairs of datasets,
similarly to Example 2 of Section 2.7.3. The first pair contains a training set of
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exactly 3 × 52 weeks starting on Friday, January 4th, 2013 and a 4-week-long test
set, starting on Friday, January 1st, 2016. The second pair of datasets is obtained
by translating the elements of the first pair by 4 weeks forward and so on until the
end of the year 2016 is reached. There are consequently 13 pairs of training and test
sets.

Relevance of short-term models We compare in Table 3.5 the results of middle
and short-term models for the 5 aggregation levels defined in Section 2.5.2. The
addition of the past loads among the inputs in the short-term models leads to a
substantial improvement at all levels.

Middle-term Short-term
National (0.952, 2.29, 2.89) (0.983, 1.31, 1.69)
RTE Regions (0.926, 2.92, 3.68) (0.959, 2.07, 2.71)
Administrative (0.925, 3.05, 3.85) (0.963, 2.07, 2.66)
Districts (0.910, 3.25, 4.14) (0.954, 2.27, 2.93)
Substations (0.842, 7.87, 11.35) (0.860, 4.64, 7.01)

TABLE 3.5: Performances of middle and short-term models
(MMr2, MMMAPE, MRMNMSE) as defined in Section 2.7 for the 5 aggregation levels
presented in Section 2.5. The short-term models had better results at all
aggregation levels on the 13 test sets.

This should not come as a surprise. As explained in Section 3.5 : the past loads
may contain complementary information about the current economical activity that
is absent from the calendar and meteorological variables. Figure 3.5 shows the
correlations between the residuals obtained with a middle-term models and the
residuals of the day before. The diagonal from the bottom left corner to the top
right corner corresponds to values with a delay of 24 hours. Its non-zero coefficients
effectively suggest that short-term models are relevant.

Harder local problems In addition to the expected improvement obtained with
the short-term models, there is in Table 3.5 a clear and consistent degradation when
the size of the regions decreases for both middle and short-term problems : the
smoothing effect due to the aggregation makes the regional and national problems
easier than the local problems.

The distribution of the resulting RMNMSE are presented in Figure 3.6. Besides
the degradation of the average performance, the disaggregation apparently reveals
exotic behaviors that thicken the right queue of the distribution at the level of the
substations : complex load series are no longer diluted in the regional sums and
represent difficult learning problems.

Erratic substations There is also in Table 3.5 a larger difference between middle
and short-term models at the substations level. We believe that this is due to a
more important impact of the non-stationarity at the level of the substations, that
makes the forecasting problems with middle-term models more difficult since they
cannot see these variations in the test set while a short-term model may adapt the
predictions once the impact of the evolution is caught in the past loads.
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FIGURE 3.5: Correlations between consecutive residuals
Correlations between the residuals obtained with middle-term models on
day j (hours 0 to 23 on the y-axis) and the residuals on day j + 1 (hours
24 to 47 on the x-axis), in the training (top) and the test (bottom) sets, at
the national (left) and the local levels (right).

At the substations level, the non-stationarity is more visible for at least three
reasons. First, load reports presented in Section B.1 are by nature invisible at the
aggregated levels. Secondly, the evolution of the economic and demographic contexts
may be relatively faster at this thinner granularity while at the national level, these
evolutions are smoothed and slower. Thirdly, the presence of irrelevant values in the
substations data may have a dramatic impact on the local predictions while these
irrelevant values are smoothed when aggregating the loads, like the variations of the
local context.

These problems remain in spite of the data cleansing procedure described in
Section B.1. Indeed, we did not make it too restrictive to keep as many substations as
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possible, even if some are non-stationary and present jumps related to load reports.
Sometimes, it is even difficult to decide visually whether a substation has irrelevant
values.

Non-stationary time series are of course difficult to model individually since it can
confound the model during the training step or make the numerical performances
computed during the test step inaccurate. What’s more, including these in a joint
modeling for a multi-task learning problem, which is the final goal of this work,
might lead to a deterioration of the performances at all substations.

Regarding potential solutions, the evolution of the local context seems unavoid-
able and requires a more sophisticated modeling. For the load reports and the
detection of anomalies, a few methods have been proposed [Jian et al., 2018, and
references therein]. Finally, for the irrelevant values, we tried to detect and discard
appropriately as much as possible the concerned substations during the cleansing
procedure described in Section B.1. However, this problem should be studied fur-
ther and we clearly believe that identifying these problems before the modeling is a
substantial lead for improvement.
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FIGURE 3.6: Distribution of the errors
Histograms of the errors (MRNMSEk)k∈[[1,K]] defined in Equation (2.27), for the
5 aggregation level introduced in Section 2.5.2 by a partition (Zk)k∈[[1,K]] of
the K substations. Models are repeatedly trained with 3-year-long train-
ing sets ending the day before the first observation of the test sets. The
RNMSE are computed for each area over 13 batches containing 4 weeks of
observations in 2016 and the average is the MRNMSE for each area.
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3.5.2 Comparison and validation

We compare the proposed model with the benchmarks at the national and the local
levels in 2016 in Table 3.6. The results seem better than the results of the GAM,
while the models are quite similar. This might be due to the thinner calibration
of the hyperparameters in our model. An interrogation naturally stems from this
observation : did the thinner calibration in our models lead to overfitting the test
set that is the year 2016 ? To answer this question, we validate our choice of
hyperparameters with the year 2017, never seen so far by the models, and compare
with the GAM.

Year 2016 Year 2017
Models of Section 3.4 (0.985, 1.20, 1.59) (0.951, 1.68, 2.85)
GAM of Section 2.9.4 (0.949, 1.83, 3.16) (0.931, 1.90, 3.68)
RF of Section 2.9.2 (0.950, 2.12, 2.92) (0.907, 2.47, 3.92)
XGB of Section 2.9.2 (0.927, 2.81, 3.63) (0.900, 3.06, 4.21)

(a) National level

Year 2016 Year 2017
Models of Section 3.4 (0.860, 4.64, 7.01) (0.849, 4.81, 6.91)
GAM of Section 2.9.4 (0.843, 4.94, 7.47) (0.831, 5.07, 7.45)
RF of Section 2.9.2 (0.791, 5.66, 8.27) (0.768, 5.86, 8.44)
XGB of Section 2.9.2 (0.812, 5.60, 7.99) (0.795, 5.74, 8.07)

(b) Substations level

TABLE 3.6: Validation of the short-term models in 2017
Comparison with the benchmarks on the test year 2016 and the validation
year 2017 with (MMr2, MMMAPE, MRMNMSE) as defined in Section 2.7 at the
national and local levels with short-term models. They are learned with the
same procedure as for Figure 3.6 but in the right column, the 13 batches of
validation are in 2017. The hyperparameters for the Models of Section 3.4
have been selected with the test year 2016 and the year 2017 has never been
seen before.

There is indeed a degradation of the MMr2 and the MMMAPE but not always of the
MRMNMSE between 2016 and 2017. Plus, our model still outperforms the benchmarks.
We cannot say what proportion of this degradation is due to the overfitting and what
proportion is due to the non-stationarity.

Remark 5. We remarked that the optimal choice of hyperparameters evolves and
may change between consecutive years. As a consequence, the degradation of the
performances between the test year 2016 and the validation year 2017 in Table 3.6
is at least partially due to the fact that the choice of hyperparameters of our models
are based on the performances in 2016.

Put differently, we remarked that exactly the same model can have varying nu-
merical performances over different years with variations up to 20%. This non-
stationarity is discussed in more details in Section 3.7.4, although we do not have a
definite answer to provide.
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3.5.3 Study of the national univariate effects

In order to better understand the model estimated for the national load forecast-
ing, we propose in this section to illustrate the univariate effects and the distribution
of the residuals. In addition, this allows us to identify potential weaknesses of the
chosen modeling. We recall that the national model uses a fictive weather station
whose temperature and cloud cover is computed with the weighted mean given in
Table F.1.

In the illustrations of this section the model is not updated during 2016 because
we fix the training and test datasets to the 3×52 weeks before and the 52 weeks after
Friday, January 1st, 2016 so that both are well-balanced and have approximately the
same quantity of data for each month, each day of the week and each hour. Thus the
distribution of the data in the test set is representative of operational conditions, in
terms of possible values of the input variables.

Hour of the week The effect estimated for the hour of the week is presented
in Figure 3.7. It is one of the most important effects as its amplitude is the sec-
ond largest, after the effect of the past loads. The average forecasts Etrain[ˆ̀|h] and
Etest[ˆ̀|h] are so close on average to the target loads Etrain[`|h] and Etest[`|h] that
the curves are superimposed. Note that the hour of the week is also included in
interactions with the day of the year, the past loads and the indicator of holidays.

Every day of the week, the forecasts are less accurate during the day than during
the night. Besides, Mondays clearly represent a problem as the residuals are much
larger than the other days. We believe that this is because the model includes
the effect of the load the two days before and Mondays are the only working days
preceded by two non-working days. The inverse situation occurs with transitions
from Fridays to Saturdays but it is not as visible in terms of residuals.

Day of the year The effect of the day of the year is presented in Figure 3.8.
Although the shape of the learned effect in the national model matches the shape
of the load over one year, the amplitude is ten times smaller than the effect of the
hour of the week. The residuals are particularly large during the Christmas period
and, while they are on average smaller during summer, they are still large during
the summer break.

Temperatures The effects estimated for the temperature, the delayed tempera-
ture and the extremal values are presented for the national model in Figures 3.9, 3.10
and F.23 - F.27. The norms of the residuals are larger in cold temperatures which
typically correspond to larger loads.

Note that the shape of the effect f s5 in Figure 3.9 learned for the temperature
matches the shape of the conditional load but it is not the case of the effects learned
for the delayed temperature f s6,924 in Figure 3.10 and f s6,948 in Figure F.23. How-
ever, we should not try and make a causal interpretation of these graphs. Indeed,
interpreting the learned effects is not trivial because the inputs are highly correlated.

Also, the amplitudes of the estimated effects related to the temperatures are
much larger than the amplitude of the effect of the day of the year presented in
Figure 3.8 : according to the learned model, the variations of the amplitude of the
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FIGURE 3.7: Estimated effect of the hour of the week
( top left ) Effect β0 +f3(h) of the hour of the week estimated in the

national short-term model after renormalization.
( bottom left ) Conditional norms of the residuals Etrain[|` − ˆ̀||h] and

Etest[|`− ˆ̀||h].
( top right ) Target loads Etrain[`|h] and Etest[`|h] with the forecasts

Etrain[ˆ̀|h] and Etest[ˆ̀|h].
Note that the residuals are still quite correlated with the hour of the week.

load during the year are much more explained by the changes in the temperatures
than by the day of the year.

Past loads The effect f15,924(`924) of the 24 hours-delayed loads is presented in
Figure 3.11. It seems almost linear, which corroborates the idea that the past load
acts like a corrective term, but the slope in Figure 3.11 is slightly smaller than the
slope of the empirical loads E[ˆ̀|`924] that is close to 1. This effect is significant since
it has the largest amplitude. The estimated effect f15,948(`948) of the 48 hours-delayed
loads is presented in Figure F.28.

Indicator of the Christmas period The average values of the national loads,
the forecasts and the residual during and outside the Christmas period are given
in Table 3.7, for the training and the test sets. Because this indicator is highly
correlated with the temperatures and the day of the year, the average values of the
different time series are computed only for observations in December and January.

The coefficient α1 is negative, as expected because the economic activity de-
creases during this period. However, its amplitude is 5 times smaller than the
difference in the training set between the average loads during the Christmas pe-
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FIGURE 3.8: Estimated effect of the day of the year
( top left ) Effect β0 + f4(d) estimated in the national short-term

model for the day of the year after renormalization.
( bottom left ) Smoothed and renormalized graphs of the conditional

norms of the residuals Etrain[|`− ˆ̀||d] and Etest[|`− ˆ̀||d].
( top right ) Conditional loads Etrain[`|d] and Etest[`|d] and conditional

forecasts Etrain[ˆ̀|d] and Etest[ˆ̀|d].
The average loads and the forecasts are very close on the training and the
test sets so the curves are superimposed. Note that the important residuals
during the Christmas period are not due to boundary effects or to a low
density of the data since the day of the year d is uniformly distributed. Also,
the learned effect β0 + f4(d) presents high frequencies. This may be a sign
of overfitting, although the hyperparameters have been selected empirically.

riod Etrain[`|1xmas = 1] and the average load Etrain[`|1xmas = 0, month ∈ {Dec, Jan}]
during the rest of December and January.

Timestamp The last univariate effect in the model depends on the timestamp. In
Figure 3.12, we present the smoothed loads, forecasts and residuals over the training
and the test sets. Visually, it is not obvious what the linear effect of the timestamp
should be. Yet, the coefficient γ2 in front of the linear timestamp t equals −45 in
the national short-term model, which corresponds to a decrease of 45 MWh of the
hourly load every year. Still, there was an overestimation of the loads in 2016 since
the average residuals are mostly negative. Indeed, if the model can know the test
set in advance, that is to say when the model is learned with 4 years of data, the
learned coefficient is −49. It remains however a rather small value.

The significativity of these coefficients has not been tested and using the times-
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FIGURE 3.9: Estimated effect of the temperature
( top left ) Effect β0 + f s5 (Ts) learned by the national short-term

model for the weighted temperature defined in Table F.1
after renormalization.

( bottom left ) Norm of the conditional residuals Etrain[|` − ˆ̀||d] and
Etest[|`− ˆ̀||d].

( top right ) Conditional loads Etrain[`|d] and Etest[`|d] with the con-
ditional forecasts Etrain[ˆ̀|d] and Etest[ˆ̀|d].

( bottom left ) Density of the data in the training and the test sets.
The illustration of the density of the data shows that the distribution µtest

of the temperatures in 2016 was different from the distribution µtrain from
2013 to 2015 : this is indeed confirmed by the boxplots in Figure 2.3.

tamp in our experiments only led to a minor improvement. A more refined and
efficient treatment of the modeling of the trend over time is proposed by Goude
et al. [2013].
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FIGURE 3.10: Estimated effect of the 24 h-delayed temperature
( top left ) Effect β0 + f s6,924(Ts924) learned by the national short-

term model for the 24 hours-delayed temperature after
renormalization.

( bottom left ) Marginal norm of the residuals Etrain[|` − ˆ̀||Ts924] and
Etest[|`− ˆ̀||Ts924].

( top right ) Target loads Etrain[`|Ts924] and Etest[`|Ts924] with the
forecasts Etrain[ˆ̀|Ts924] and Etest[ˆ̀|Ts924].

( bottom right ) Density of the data in the training and the test sets.
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FIGURE 3.11: Estimated effect of 24 h-delayed load
( top left ) Effect β0 + f15,924(`924) learned by the national short-

term model for the 24 hours-delayed loads after renor-
malization.

( bottom left ) Conditional norm of the residuals Etrain[|`− ˆ̀||`924] and
Etest[|`− ˆ̀||`924].

( top right ) Conditional loads Etrain[`|`924] and Etest[`|`924] with the
conditional forecasts Etrain[ˆ̀|`924] and Etest[ˆ̀|`924].

( bottom right ) Density of the loads in the training and the test sets.
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Christmas
period 1xmas = 1

Rest of December
and January 1xmas = 0

Training
set

# samples 1152 3240
Loads (GWh) 44.2 50.7
Forecasts (GWh) 44.2 50.7
Residuals (MWh) -3.54 -25.12

Test
set

# samples 384 1056
Loads (GWh) 46.7 49.8
Forecasts (GWh) 46.8 49.8
Residuals (MWh) -0.087 -0.082

coefficient α1 = −0.926 GWh

TABLE 3.7: Estimated effect of the Christmas period
Number of samples and average values of the loads, the forecasts and the
residuals during the Christmas period (1xmas = 1) and during the rest of
December and January (1xmas = 0). The coefficient α1 is the factor in front
of the indicator 1xmas in the national short-term model.
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FIGURE 3.12: Forecasts and residuals over the database
( top ) Loads and forecasts from 2013 to 2015 for the training set

and in 2016 for the test set.
( bottom ) Residuals of the national short-term model over the training

and the test sets.
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3.5.4 Study of the national bivariate effects

The addition of interactions generates more complex models that are more suit-
able to describe the relationship between the loads and the inputs. In this section,
we illustrate the estimation of these relationships in the national short-term model,
although the interpretations that we can make are less obvious than for the univari-
ate effects.

Past loads and hour of the week It is essential that the effects of the past
loads in the model depend on the day of the week since the relationships between
the loads of two consecutive days are clearly different if these days are working or
non-working days. We consequently included this interaction and it is illustrated for
the national model in Figure 3.13. It modifies the effect of the past loads, especially
on Mondays (h ∈ [[0, 23]]), Fridays and Sundays (h ∈ [[120, 167]]).

Although it is not intuitive why this bivariate effect is small on Sundays and
Mondays, what matters to analyze this interaction is the sum f3(h) + f15,924(`924) +
g16,924(h, `924) which is, on the contrary larger on weekdays than on weekends. This
sum is represented in Figure 3.14.

The analogous graphs for the load with a delay of 48 hours are given in Fig-
ure F.29 and Figure F.30.

Cloud cover and daylight The estimated effect of the interaction between the
cloud cover and the indicator of the daylight is presented in Figure 3.15. Roughly,
the more clouds during the day, the larger the electricity demand while this term
has no effect during the night (1sun = 0). Note that this effect is relatively small
compared with the effects of the temperatures or the hour of the week.

Holidays and hour of the week The impact of the holidays depend obviously
on the day of the week. The interactions between the hour of the week and the
indicators of holidays are presented in Figures 3.16, F.31 and F.32.

We observe on the learned effect in Figure 3.16 that the electricity demand during
working hours from Monday to Friday is reduced on holidays. During the weekend,
the estimated effect is almost constant as expected.

In Figure F.31, it appears on the learned effect that the electricity demand is
lower on a Monday if it precedes a holiday, which makes sense given that it often
leads to a 4-day-long weekend. Whether we see the inverse relation for Fridays in
Figure F.32 is debatable. This might be due to the little number of non-working
weekdays in the database.

In fact, the effect 1hld+h14(h) in Figure F.32 leads to larger forecasts on days that
follow a holiday. We believe that it is because the potential decrease of the economic
activity on days that follow a holiday is already introduced in the model through
the effects related to the past loads.

Day of the year with temperature The interaction in the national model
between the temperature and the day of the year is presented in Figure F.33. Clearly,
the modification induced by the interaction gs10(Ts, d) could not be obtained with
a sum of univariate functions. However, note that the regions of the input space
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FIGURE 3.13: Interaction between past loads and week hours
( top left ) Interaction g16,924(h, `924) between the hour of the week

and the past load.
( bottom left ) Estimated marginal density µtest(h, `924) of the inputs in

the test set.
( top right ) Average residuals in the test set Etest[|`− ˆ̀||h, `924].

where gs10(Ts, d) is small correspond to a low-density and their interpretation seems
difficult.

Day of the year with hour of the week Finally, the estimated interaction in
the national model between the hour of the week and the day of the year is presented
in Figure F.34. Although this bivariate effect clearly increases the estimated loads on
Mondays during summer and reduces the estimated loads on Saturdays and Sundays
during the same period, the coefficients are small compared with other effects.

Also, we can see in Figure F.34 a continuous shift during the year of the peak
in the morning from Mondays to Fridays. It occurs around 8 a.m. in summer and
one or two hours later in winter. This may be partially due to the Daylight Sav-
ing Time (DST). However, there is no abrupt transition at the end of March and
October, when the shift occurs.

For information, the time in the model and in the plots is always the UTC
time and the DST is not explicitly taken into account, any more than with this
interaction. Looking closer at electricity load curves near the switch between winter
and summer times permits to see a transition but we did not take it into account in
the models. We discuss this in more details in Section 3.7.3.
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FIGURE 3.14: Total effect of the 24 h-delayed loads
Sum of the univariate and bivariate effects β0 + f3(h) + f15,924(`924) +
g16,924(h, `924) in the national short-term model.
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FIGURE 3.15: Estimated effect of the cloud cover during the
day
( 1st row ) Effect β0 + 1sunh

s
11(cs) of the cloud cover, when the sun is

down (1sun = 0) and up (1sun = 1).
( 2nd row ) Target loads Etrain[`|1sun, c

s] and Etest[`|1sun, c
s], with the av-

erage forecasts Etrain[ˆ̀|1sun, c
s] and Etest[ˆ̀|1sun, c

s].
( 3rd row ) Marginal norm of the residuals Etrain[|` − ˆ̀||1sun, c

s] and
Etest[|`− ˆ̀||1sun, c

s].
( 4th row ) Density of the cloud cover in the training and the test sets.
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FIGURE 3.16: Interaction of holidays with hours of the week
(1st row) Interaction β0 + 1hldh12(h) between the indicator of holidays

and the hour of the week.
(2nd row) Target loads Etrain[`|1hld, h] and Etest[`|1hld, h] with the fore-

casts Etrain[ˆ̀|1hld, h] and Etest[ˆ̀|1hld, h].
(3rd row) Marginal norm of the residuals Etrain[ |` − ˆ̀| |1hld, h] and

Etest[ |`− ˆ̀| |1hld, h].
The marginal loads, forecasts and residuals are incomplete in the column
1hld = 1 because there was no holiday on Wednesdays and Saturdays in
2016.
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3.5.5 Study of the local univariate effects

In this section, we propose a study of the models estimated at the level of the
substations. The goal is twofold. First a quick look at the distribution of the
coefficients for different substations proves that the local loads do not have exactly
the same behaviors as the national load and are not perfectly homogeneous. The
parameters of the model should consequently be adapted for this level. Secondly,
we see that a common structure is nevertheless encountered in these models and it
justifies the ambition of models learned within a multi-task framework in Chapter 4.

Since the loads of the substations have different amplitudes, the graphs that we
present in this section represent the models estimated to forecast the loads normal-
ized as in Equation (3.33).

Cyclic inputs The remarks about the effects of the hour of the week in the
national model are also valid for the substations, namely that the estimated effect
of the hour of the week and the residuals are largest on Mondays in Figure 3.17.
Marginal quantiles q10 and q90 are relatively close and a similar weekly cycle can
be observed for most of the substations.

Similarly, the quantiles of the effect of the day of the year, presented in Fig-
ure F.35, show that the quantiles q10 and q90 have a similar shapes, even if this
input has a minor effect on the forecasts.

Note that although these illustrations are convenient because they summarize
in a single graph the effects estimated for all the substations, they are still limited
because they do not guarantee that the effects do not oscillate between quantiles q0
and q100. However, we did observe that for most of the substations, the estimated
effects have the same shape as the quantiles and the curves do not oscillate. We do
not represent those individual effects to be concise.

Acyclic inputs The quantiles of the estimated effects of the temperature, its de-
layed and its extremal values over 24 hours are illustrated in Figures 3.18, 3.19, F.36
and F.37. The analogous graphs for a delay of 48 hours are presented in Fig-
ures F.38, F.39 and F.40. Again, they exhibit a relationship similar to what is
encountered in the national load forecasting model.

Unlike the hour of the week and the day of the year, the temperatures are not
cyclic and the fact that quantiles are wide for low and high temperatures is at least
partially due to a low density of the data near the boundaries and not only to the
fact that load forecasting is more problematic under these weather conditions.

Finally, the quantiles of the effects of the past loads are given in Figure 3.20 with
a delay of 24 hours and in Figure F.41 for a delay of 48 hours. Between quantiles q10
and q90, the effect is almost linear in Figure 3.20, like in the national model. Besides,
the number of 3 knots has been selected empirically. As explained in Section 3.6.6,
the modeling of this input only requires a couple degrees of freedom.

Christmas period In Figure 3.21, we present a histogram of the coefficients
learned to model the effect of the Christmas period. They spread around a small
negative values. We indeed expect a slight decrease of the loads during this period.
However, some substations consistently exhibit an augmentation of the electricity
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FIGURE 3.17: Local effects of the hour of the week
Quantiles for the estimated univariate effect of the hour of the week at
each of the 168 knots. Since the loads at the different substations have
different amplitudes the quantiles correspond to the forecasting models for
the normalized load, like in Equation (3.33). The mean and the quantile
q50 are almost superimposed. Note also that the quantiles q0 and q100
that correspond to the smallest and largest coefficients encountered over
the substations are not especially robust.

demand during this period. We believe that this is due to large crowds going to hol-
idays resorts in particular in the Alps, as is illustrated in Figure 3.22. Note however
that low temperatures are observed during this period in the Alps and our causal
interpretation for the effect of the Christmas period is not certain.

Timestamp A histogram of the coefficients for the timestamp is presented in
Figure 3.23. The coefficients spread around zero with both positive and negative
values : although the national load seems to be slightly decreasing over time, there
might be variations in both directions at a local level due to different local economic
and demographic contexts. Note also that the database is quite short to estimate
precisely this effect and the significance of the estimated coefficients has not been
tested. The apparent decrease could in particular be due to the fact that the elec-
tricity demand is smaller during the second half of the year and the database starts
in January and ends in December, 5 years later. The introduction of the timestamp
in the models is discussed in Section 3.6.5 with Table 3.11.
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FIGURE 3.18: Local effects of the temperature
Quantiles of the univariate effect associated to the temperature at each of
the 9 knots. The mean and the median are almost superimposed. The
substations have different amplitudes so the coefficients correspond to the
forecasting model of the normalized load. Also, since the substations are
associated to different weather stations that have different ranges of possible
values, the temperatures that are affinely transformed to lie in [0, 1] have
not been transformed back to their original values.
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FIGURE 3.19: Local effects of the 24 h-delayed temperatures
Quantiles of the univariate effect associated to the 24 hours-delayed de-
layed temperatures at each of the 9 knots. The substations have different
amplitudes so the coefficients correspond to the forecasting model of the nor-
malized load. Also, since the substations are associated to different weather
stations that have different ranges of possible values, the temperatures that
are affinely transformed to lie in [0, 1] have not been transformed back to
their original values.
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FIGURE 3.20: Local effects of the 24 h-delayed loads
Quantiles of the univariate effects associated to the 24 hours-delayed load
at each of the 3 knots. Since the substations have different amplitudes, the
coefficients correspond to the forecasting models of the normalized loads.
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FIGURE 3.21: Local effects of the Christmas period
Distribution of the coefficients corresponding to the Christmas period.
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FIGURE 3.22: Positive coefficients for the Christmas period
Positive part max(α1, 0) of the coefficients in front of the indicator of the
Christmas period for the different substations. Only the positive coefficients
were colored. These coefficients are particularly large in the Alps, where
many people spend their Christmas holidays.
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FIGURE 3.23: Local effects of the timestamp
Distribution of the coefficients in the local models corresponding to the
timestamp.
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3.5.6 Study of the local bivariate effects

In this section, we propose to illustrate the interactions learned by the local mod-
els. Given the number of substations and the fact that interactions have large
number of degrees of freedom with a lower density of the data to estimate each coef-
ficient than for the univariate effects, we must not undertake a causal interpretation
of the graphs and limit the goal of this section to highlight the similarities of the
interactions when they are undeniable.

Past loads and hour of the week Since the univariate features of the past
loads used for the interaction with the hour of the week are linear functions, these
interactions can be represented with quantiles like in Section 3.5.5, in Figure 3.24
for a delay of 24 hours and in Figure F.42 for a delay of 48 hours.
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FIGURE 3.24: Local interactions between past loads and hours
Given the parametrization of the local models, the features for the past loads
used to build the interaction with the hours of the week consist of a single
linear function : there exists a function h16,924 such that g16,924(`924, h) =
`924 × h16,924(h). The quantiles represented on the graph are the quantiles
over the substations of the function h16,924(h).

Interactions with indicators Similarly, the interactions between the holidays
and the hour of the week, as well as the interactions between the cloud covers and
the daylight can also be represented with quantiles, because one of the two inputs
is an indicator. They are illustrated in Figures F.43 - F.46.

Interactions with the day of the year Finally, to insist on the similarities be-
tween the local effects, the standard deviations of the coefficients for the interactions
between the day of the year and either the hour of the week or the temperature are
given in Figures F.47 and F.48.
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3.6 Discussion
From Section 3.1 to Section 3.3, we have defined a standard linear bivariate model.

In Section 3.4, we have introduced instances of this generic model specifically de-
signed for day-ahead load forecasting with different variants for the multiple aggre-
gation levels. The resulting models were illustrated in Section 3.5.

The designs of these models are mostly based on the electricity load forecasting
literature. However, the local load forecasting problem is relatively new and few
papers present a precise setup accompanied by satisfying results at this thinner
level. To the best of our knowledge, the best results are obtained with GAM both
for the national [Pierrot and Goude, 2011] and the local [Goude et al., 2013] load
forecasting problems.

3.6.1 Comments on results

Comparison with benchmarks In short, we believe that the model we intro-
duced gives performances comparable with state-of-the-art models. We implemented
the best known benchmarks, with the restrictions mentioned in Section 2.9, and
compared the results in Table 3.6.

A significant advantage of the GAM implemented with the MGCV library [Wood
and Wood, 2015] is the automatic selection of the hyperparameters : it provides an
efficient way of estimating for each substation the best regularization hyperparame-
ters by cross-validation. In order to limit the dimension of the set of hyperparameters
at the substations level and to protect these local models against overfitting, we, on
the contrary, forced all the substations to use the same hyperparameters and tuned
them collectively. We have observed empirically that slightly better performances
can be obtained when this constraint is relaxed. However, it makes the search for
any further improvement of the model more complex and we choose to maintain this
constraint.

Computation Time In terms of computation time, the benchmarks and our
model are well under a minute for the prediction of the nationally aggregated load.
For the local predictions at the substations level, our implementation, which is
based on the quasi-Newton method of Broyden, Fletcher, Goldfarb, and Shanno
(L-BFGS) [Liu and Nocedal, 1989; Zhu et al., 1997] implemented in the SciPy
library [Jones et al., 2001], leads to a computation time of a couple hours (for one
set of hyperparameters). If we only model the univariate effects, this time can be
reduced to 15 minutes but the performances are not as good.

Although none of the pioneer papers on local load forecasting presents the speed
as a quality of their model, this is a significant gain to test a larger set of configura-
tions. Indeed, Goude et al. [2013] stated that the optimization (with the automatic
selection of the regularization hyperparameters) of their local models for 1900 sub-
stations takes about about 50 hours. Of course, only the order of magnitude matters
since the computers are different.
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3.6.2 Main differences with existing models

Spline orders The models that we introduced rely on piecewise linear features
while tree-based models rely on piecewise constant functions and GAM are generally
piecewise quadratic or cubic. Looking for continuous functions drove us to consid-
ering both first and second order piecewise polynomials and we could not conclude
empirically that one configuration is better than the other in terms of generalization
performances. The sparser structure of the design matrix induced by the first order
splines guided our decision since the associated computations are faster.

Hour of the week The treatment of the univariate features in our models is
almost identical to the GAM used as a benchmark [Goude et al., 2013; Pierrot
and Goude, 2011]. However, we have found empirically that using the hour of the
week instead of taking both the hour of the day and the day of the week gives
slightly better results, with the Ridge penalty of Equation (3.28) instead of the
smoothing spline regularization in Equation (3.29). The way we proceed boils down
to considering only the interaction between the hour of the day and the day of the
week and never separately. Since it increases the complexity of the model, it can
improve the empirical performances only if there are enough regular data, which
seems to be the case.

Explicit interactions Because of the results that we obtained empirically, we
have included more interactions than the benchmark models. As opposed to the
thin plate-splines used by Pierrot and Goude [2011], the interactions defined in
Section 3.1.2 have a predetermined number of degrees of freedom. Indeed, each
interaction is represented explicitly by a matrix in our model, analyzing them and
choosing the appropriate regularization is relatively easy.

Note that we have introduced the interactions for two inputs ξ, ζ ∈ R as the
product Φ(ξ, ζ) := φ(ξ)ψ(ζ)T ∈ Rp,q in Equation (3.6) of Section 3.1.2. Alterna-
tively, we have considered the interaction Φ′(ξ, ζ) ∈ Rp,q defined for all i ∈ [[1, p]],
j ∈ [[1, q]] by :

Φ′i,j(ξ, ζ) := min[φi(ξ), ψj(ζ)]. (3.34)

Given that the features φ(ξ) and ψ(ζ) are piecewise linear, considering Φ′ leads to
piecewise linear interactions, like the univariate features, and would also work for
higher order interactions, while the interaction Φ leads to second order piecewise
functions. Although the empirical results are approximately the same, we believe
that these piecewise linear interactions could be considered for future work because
they are simpler, easier to represent or manipulate and may lead to more regular
functions, as illustrated in Figure 3.25.

3.6.3 Selecting the inputs for the national model

In this section, we justify the choice of the hyperparameters given in Section 3.4
for the nationalmodel. This setting should not be considered as a definitive optimal
parametrization of the models since we observed that over time and depending on
the aggregation level, the optimal hyperparameters may vary.
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(a) Product interaction of Eq. (3.6) (b) Minimum interaction of Eq. (3.34)

FIGURE 3.25: Alternative interactions

Besides, the given choices for the inputs, the interactions, and the granularities,
that have discrete values, should be interpreted only as a setting that is close-to-
optimal for the database that we have considered. Other works consider different
settings and it seems difficult to decide once and for all which choice is the best.

Variable importance In order to justify our choices for the inputs and the asso-
ciated features in Section 3.4, we propose an ablation study for the national model
in Table 3.8. Thereby, we make sure that the introduced covariates are useful for
the model, while all the other hyperparameters of the model are kept fixed. In the
same table, we also sort the covariates, from the least to the most important for
the forecast, in terms of how the performances are deteriorated when it is removed
from the model. This should only give an idea of the key inputs for the forecasts
but since those are highly correlated, this ranking cannot be considered as the only
criterion to consider.

To complete this variable importance analysis, the average norm of the different
effects in the predictions at the national level is presented in Table 3.9.

Selection of delayed information The inputs of the model contain information
about the loads and the temperatures 24 and 48 hours before the instant to forecast.
To choose these delays, we proceeded empirically and present our results for other
sets of delays in Table 3.10.

From our point of view, the improvement of the model with past temperatures
is related to the thermal masses of the building and possibly to the behavior of
people that depends on the recent history. However it is less easy to give a similar
interpretation for the past loads.

While the GAM [Goude et al., 2013; Pierrot and Goude, 2011] seem to benefit
from having different delays for the different inputs, we use the same 24 and 48
hours delays for all the inputs and did not assess the possibility of having different
delays.
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RMNMSEtrain RMNMSEtest

∅ 1.29 1.59
Christmas period 1.30 1.60
constant 1.29 1.60
hour of the week 1.30 1.60
day of the year 1.32 1.61
timestamp 1.29 1.61
temperature 1.30 1.62
delayed loads 1.30 1.62
past loads and hour of the week 1.37 1.63
cloud cover and daylight 1.34 1.63
temperatures and day of the year 1.34 1.64
minimum temperatures 1.33 1.64
coming holidays and hour of the week 1.36 1.68
delayed temperatures 1.36 1.69
maximum temperatures 1.43 1.70
past holidays and hour of the week 1.38 1.72
hour of the week and day of the year 1.72 1.84
holidays and hour of the week 2.25 2.77

TABLE 3.8: Ablation study of the national model
Starting from the best national model, we removed the inputs in the left
column one by one (with replacement) and evaluated the corresponding
performances on the training and the test sets (middle and right column).
These inputs have been sorted from the least important to the most impor-
tant, where importance is defined by the damage the removal of each input
does to the RMNMSE on the test sets.
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%

f15,924(`924) 28.90
f3(h) 12.85
f s7,924(T̄

s
924) 8.85

f s5 (Ts) 8.26
f s6,924(Ts924) 7.15
gs10(Ts, d) 5.14
f15,948(`948) 3.98
f s7,948(T̄

s
948) 3.72

g16,924(`924, h) 3.02
g16,948(`948, h) 2.92
g9(h, d) 2.72
f s6,948(Ts948) 2.43
f4(d) 2.24
β0 2.03
f s8,948(

¯
Ts948) 1.94

f s8,924(
¯
Ts924) 1.19

hs11(1sun, c
s) 0.84

h12(1hld, h) 0.62
γ2(t) 0.46
h14(1hld+ , h) 0.34
α1(1xmas) 0.24
h13(1hld− , h) 0.15

TABLE 3.9: Average norm of the effects in the national model
Average ratio 100× Etrain[ |fd|2 ]∑

e Etrain[ |fe|2 ]
for the different inputs over the training

set in the national load forecasting model.

Delays (hours) Performances

(24) (0.963, 2.0, 2.64)
(24, 48) (0.965, 1.92, 2.58)
(24, 48, 72) (0.963, 1.97, 2.62)
(24, 48, 72, 168) (0.936, 2.48, 3.22)
(24, 48, 168) (0.927, 2.57, 3.34)
(24, 168) (0.918, 2.68, 3.47)

TABLE 3.10: Delays for the temperatures and the past loads
Performances in the test year 2016 of the national model
(MMr2, MMMAPE, MRMNMSE) as defined in Section 2.7, with different sets
of delays.
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3.6.4 Tuning the national model

The complexity of the model must be tuned according to the regularity and the
quantity of the data in the training set. Once the inputs are fixed, we control it
with two sets of hyperparameters : the number of knots and the regularization
coefficients. From our experiments, we conclude that the data is more regular at
the national level, and we can afford to set relatively large numbers of knots with
the appropriate regularizations : the risk of overfitting is low. Therefore, we tend
to consider that the most promising leads for improvement at the national level are
to consider more inputs, higher order interactions or significantly different models.

As an illustration of the effect of the regularization with the day of the year, and
to justify our choice of hyperparameters, we analyze Figure 3.26 and select 128 knots
with λd = 10−3, between the small values of λd where overfitting occurs and the large
values where the bias has a negative impact on the RMNMSE. Besides, Figure 3.27
shows the evolution of the effect of the day of the year with 128 knots and penalized
by the ΩS2 penalty for different values of the regularization parameters.
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FIGURE 3.26: Regularization of the effect of the day of the year
Performances on a test set of different number of knots for the univariate
effect of the day of the year. Note the difference obtained with the two
possible regularizations : Ridge and the ΩS2 regularization. We selected for
the national model 128 knots and the ΩS2 regularization even though the
results are slightly better with 256 knots because doubling the number of
degrees of freedom is a significant risk of overfitting.

Similarly to Figure 3.27, we present in Figure F.49 the evolution of the univariate
effect of the hour of the week for different values of the associated regularization pa-
rameter. The performances of the model are not very sensitive to this regularization
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FIGURE 3.27: Evolution of the effect of the day of the year
Evolution of the univariate effect of the day of the year regularized with the
ΩS2 penalty for different values of the regularization coefficient. Empirically,
we selected 0.001.

parameter. We believe that there are two main reasons. First, the risk of overfitting
is low because of the regularity of the data conditioned on the hour of the week.
Secondly, and this is probably the most important reason, the hour of the week is
also present in interactions and we believe that those can act like substitutes when
the regularization coefficient for the univariate features become large. A similar
phenomenon is observed with the instantaneous temperatures.

The regularization graphs for the other univariate features are presented in the
four Figures F.50 - Figure F.53. Finally, the regularization graphs for the interac-
tions are given in the seven Figures F.54 - Figure F.60.

3.6.5 Selecting the inputs for the local models

For the national short-term forecasting model, it is pretty natural that the only
past loads the model can access are past national loads and we did not question
this choice. Similarly, we followed the choices made in the literature for the national
model about the weather information and used the linear combination of the weather
stations given in Table F.1. However, the situation is different for other aggregation
levels. We decided that every substation should have access, in addition to the
calendar variables, to its own past loads and to the weather information at the 2
closest weather stations. We discuss these decisions in this section.
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Choice of the past loads At the substations level, it is legitimate to wonder
whether giving each substation access to the past loads of other substations might
improve the forecasting performances. The set of possibilities is combinatorial and
we had to limit our experiments. We tried to give each substation access to the past
national load or to a fixed number of other substations, the 2 geographically closest
for example. Empirically, we could not obtain any improvement and concluded that
every substation should only be aware of its own past loads.

Number of weather stations In the local load forecasting model of Pierrot
and Goude [2011], a meteorologist fixed one weather station for each substation.
Since we did not have access to this assignment, we explored two possibilities to try
and find an intermediary setting where each substation can access several weather
substations but not necessarily all of them, like in the multi-step variable selection
procedure proposed by Thouvenot [2015].

First, considering that the most informative weather station for a given substa-
tion is not necessarily the closest one, we have tried an automatic selection proce-
dure with a single optimization step : we have given each substation access to all the
weather stations but used a group-Lasso penalty so that only a subset is effectively
selected. We have also tried a non-convex version of the group-Lasso to reduce the
bias [Fan and Li, 2001; Zou, 2006, and references therein].

Secondly, we have given each substation access to a fixed number of the closest
weather stations. This provided the best results. According to Figure 3.28, it is best
for each substation to have access to the 2 closest weather stations.

Although we conclude here that on average, the local models need access to the
2 closest weather stations to obtain the best performances, it might be because the
loads of some substations are in fact more driven by the second closest weather
station and not necessarily a combination of the two. It could even be the third
closest, but other substations suffer in this case from overfitting. For these reasons,
we believe that this question would deserve a longer study.

Ablation study Like for the national model, we present an ablation study of the
inputs for the local models in Table 3.11.
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FIGURE 3.28: Selecting the number of weather stations
RMNMSE of the local models for different regularization hyperparameters and
numbers of weather stations injected in the inputs. For each number of
stations, we compute the value of the RMNMSE on a test set for different
values of the weather-related regularization coefficients, where the values
are obtained from the best configuration by multiplying them by the same
factor. This factor corresponds to the x-axis.
With only one weather station, the models do not overfit the training data
but it seems that adding more weather stations makes them more expressive
and able to better fit both the training and the test data, with the adequate
regularization. The best results are obtained with 2 weather stations.
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RMNMSEtrain RMNMSEtest

∅ 5.89 7.22
constant 5.89 7.23
timestamp 5.95 7.25
Christmas period 5.95 7.25
cloud cover and daylight 5.94 7.26
hour of the week and day of the year 6.08 7.28
past loads and hour of the week 5.98 7.29
minimum temperatures 6.04 7.31
day of the year 6.09 7.34
temperatures and day of the year 6.11 7.34
past holidays and hour of the week 6.10 7.35
maximum temperatures 6.16 7.35
coming holidays and hour of the week 6.23 7.43
delayed temperatures 6.13 7.44
temperature 6.16 7.49
hour of the week 6.41 7.52
holidays and hour of the week 6.50 7.62
delayed loads 6.66 8.44

TABLE 3.11: Ablation study of the local models
Presentation of the ablation study with the inputs at the level of the sub-
stations. Starting from the best local models, we removed the inputs in the
left column one by one (with replacement) and evaluated the corresponding
performances on the training and the test sets (middle and right columns).
These inputs have been sorted from the least important to the most impor-
tant, where importance is defined by the damage the removal does to the
RMNMSE on the test set. Compared with the ablation study of the national
model in Table 3.8, removing the univariate effects of the temperature, the
hour of the week or the delayed loads affect much more the local models.
On the contrary, removing the bivariate component related to the hour of
the week and the day of the year has on average a minor effect on the local
models while it is particularly useful for the national model.
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3.6.6 Tuning the local models

Contrary to the national aggregation level, overfitting is a more tangible risk at
the substations level because the local loads are more erratic. Both the number of
knots for each inputs and the regularization hyperparameters must be finely tuned.

Local univariate features We justify, like in Section 3.6.4, our choices of regu-
larization hyperparameters in Figure 3.29 for the hour of the week, in Figure 3.30
for the day of the year and for other inputs in Figures F.61 and F.62.
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FIGURE 3.29: Regularization for the hour of the week
Performances on a test set with different regularization coefficients and num-
ber of knots for the effect of the hour of the week with 2 possible regular-
izations : Ridge and the ΩS2 regularization.

For the day of the year, we select a smaller number of knots at the level of the
substations than at the national level. We believe that this is because we imposed
that this number should be the same for all substations and that some substations
suffer from overfitting when this number becomes large. Still, we believe that some
substations would benefit from a larger number of degrees of freedom and consider
that this question would deserve a longer study.

Local bivariate features Like for the univariate features, the complexity of the
model induced by the interactions at the level of the substations has to be limited
because the risk of overfitting is more tangible, as shown in Figures F.63, F.64
and F.65.

Regularizing the interactions to avoid overfitting has one main drawback : it in-
duces an additional bias since the regularization terms make the objective different
from the empirical estimate of the risk. That is why we have introduced in Sec-
tion 3.3 structural constraints. Indeed, the low-rank constraint of Equation (3.21)
and the sesquivariate constraint in Equation (3.23) significantly reduce the number
of parameters of the models as well as its complexity.
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FIGURE 3.30: Regularization of the day of the year
Performances on a test set of different number of knots for effect of the day of
the year with 2 possible regularizations : Ridge and the ΩS2 regularization.

Empirically, we have considered using the structural constraint for the interaction
between the temperature and the day of the year, the interaction between the day of
the year and the hour of the week and the interaction between the past loads and the
hour of the week. For the national load forecasting model, these constraints do not
improve the generalization performance. At the level of substations, we have found
that the low-rank constraint (3.21) does not perform better than the unstructured
case while the sesquivariate constraint (3.23) leads to results comparable with the
unstructured case.

Thereby, we could not conclude that these structures improve the generalization
performance. However, with the sesquivariate constraint that drastically reduces the
number of coefficients, we have observed that the convergence is much faster, even
though the problem is not necessarily convex. To simplify and keep convex optimiza-
tion problems, we do not consider these constraints in the rest of this manuscript.

3.7 Pending questions
In this section, we propose to emphasize the problems encountered and the limits

of the independent models that we have presented so far.

3.7.1 Important residuals on Mondays

At all levels of aggregation, the short-term models particularly struggle to predict
the loads on Mondays, as shown for instance in Figure 3.7. We consider that this is
due to the use of the past loads in the model and the fact that Mondays are preceded
by non-working days. Although the introduction of the interaction between the past
loads and the hour of the week leads to an improvement, it does not solve entirely
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the problem. How to deal with sequences of non-working and working days remains
unanswered so far, although essential.

3.7.2 Different regularizations for the local models

At disaggregated levels, we chose equal hyperparameters for the different time
series to forecast in order to control the dimension of the hyperparameters space
during the exploratory part of the work. When trying to fit the best models, this
constraint can be relaxed and we have observed empirically that this leads to bettter
performances on the test year 2016. However, this relaxation increases the risk of
overfitting the training sets and makes more difficult the search for any further
improvement of the models. At this point, we do not have a clear answer about the
best way to proceed.

Note that by choosing the same hyperparameters for the different models in a
same aggregation level, that is to say the same number of knots for the features and
the same regularization coefficients, we have somehow already considered the local
load forecasting models in a multi-task setting since choosing the best hyperparam-
eters on average let the different models interact together. This is is only a first step
towards the more general multi-task settings considered in Chapter 4.

3.7.3 Possibility of additional information

In addition to the delayed temperatures and their extremal values over 24 or 48
hours windows, we have considered different transformations of the weather data.
However, we did not obtain any clear improvement by feeding the models with, for
instance, univariate features for the cloud cover, exponential smoothing or differences
of past temperatures.

To improve the forecasts, we believe that the modeling rather needs other vari-
ables. However, in order to simplify the set of inputs and focus on the structure of
the models, we have ignored, following expert advice, some extra information that
nevertheless are known to marginally impact the demand [RTE, 2014].

Wind and humidity Wind speed and humidity were neglected because they are
considered to impact only slightly the electricity demand of end-users. However, the
recent evolution of the French electric power system should bring us to question this
consideration.

Indeed, the time series that we want to forecast are the demands at the different
substations, that correspond roughly to the end-users demand minus the local pro-
duction, as explained in Section 2.1. Although RTE corrected the load time series in
the database to account for the local production of energy that reduces the transit
of electricity on the high-voltage network, we know that this procedure might be
imperfect (c.f. Section 2.1). Therefore, changes of the weather conditions like the
wind speed and the intensity of the sunlight might still impact the electricity de-
mand through this mechanism because of the recent development of local renewable
energy farms.

Since the sunlight, or more exactly the cloud cover, is part of the inputs of
our model, we can hope that the local solar production is automatically taken into
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account. However, wind speed is not part of the data that we use. Put differently,
wind speed may not have a considerable impact on the demand of end-users but
probably has one on the load at the substations level. We believe that this question
requires further investigation.

Substations for national forecasting For the national load forecasting problem,
the historical model of EDF has access to a fixed weighted mean of the conditions at
32 weather stations [Pierrot and Goude, 2011], as explained in Section 2.5.2. This
choice of this meteorological information was not thoroughly questioned.

In order to better understand what this weighted mean is, we illustrate in Fig-
ure 3.31 its coordinates in the 2-dimensional space spanned by the 2 first princi-
pal components of the matrix whose columns are the temperatures at the different
weather stations, after its rows have been centered.
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FIGURE 3.31: Projection of stations on 2 principal components
Projection on the 2 principal components of the centered temperature ma-
trix, of the time series at different weather stations. The national uniform
mean and the weighted mean (c.f. Table F.1) are also plotted with crosses.

Besides, we assess in Figures F.66 and F.67 the possibility of summarizing the
information at the 32 weather stations in a lower dimension vector with the best
rank-r approximation of the temperature matrix.

In the national model, we could include the first principal components instead
of the weighted average to enrich the information about the weather. Alternatively,
we tried to find automatically a linear combination during the optimization of the
model, with and without variable selection penalties. However, none of our limited
experiments let us conclude that another combination of the weather stations could
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lead to better numerical performances at the national level. Therefore, we have kept
the weighted average of the 32 weather stations for the national model.

Weather forecasts for local models At the local level, we feed the models with
the weather at the 2 closest weather stations. Even though this number was selected
empirically, other settings should be considered.

In particular, Météo-France provides richer forecasts, at approximatively 4000
points of a grid covering the French territory. Using forecasts with this thinner
granularity can potentially improve the quality of the load forecasts, as long as the
relevant information is selected for each local model.

Special tariffs In France, some of EDF customers benefit from a reduced price
on electricity most days of the year in exchange for a high tariff on some (cold) days,
where the electricity demand is particularly high and expensive for the producers.
These are the so-called special-tariff contracts [RTE, 2014]. The high-price days
are announced the day before and logically impact the demand [Thouvenot, 2015,
Figure 2.3]. These days are made public on the Eco2Mix website [RTE, 2019a] but
we have ignored those to simplify the modeling.

At least, these days can be discarded when evaluating the numerical perfor-
mances of the model, as done by Pierrot and Goude [2011]. We have tried this
and since the relative order of the models remained the same, all the results in
this manuscript include those days. Other demand-response mechanisms, specific
to the electricity markets [Wikipedia, 2019], are not public but potentially impact
significantly the demand too.

Holidays In addition to the features related to the day of the year, we have
introduced in the load forecasting model an indicator of the Christmas period to
take into account the notable decrease of the economic activity during this period.
We have considered using a similar indicator for the summer break because of the
specificity of this period, from mid-July to the end of August but could not conclude
that it helped the models.

Given the improvement with the introduction of the Christmas period indicator
at the level of substations, we believe that taking into account other vacation periods
(winter, Easter, autumn) can potentially also improve the forecasts. However, these
vacations are not nationally synchronized and their introduction into the model
requires a more refined treatment.

Ignored Daylight Saving Time Every collected data was measured and injected
in the models hourly with UTC time. Thus, shift between Standard Time (ST) and
Daylight Saving Time (DST) are ignored during the measuring process. They are
also ignored in the modeling so far.

While it is difficult to measure how this change of regime impacts the forecasts
when it is not taken into account, we noticed the shift of the peaks in the morning
and in the evening in Figures 2.14 and 2.9. Besides, we illustrate the national load
demand near the shifts between ST and DST in Figure 3.32 and while we notice
differences before and after the shift, it is not clear how this issue should be dealt
with.
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FIGURE 3.32: Effect of Daylight Saving Time
National loads measured with the UTC time during the weeks in 2013 near
the shifts between Standard Time (ST) and Daylight Saving Time (DST)
in spring and fall. The shift occurs on Sunday morning (hours 144 to 168)
during the week before shift (blue). While the peaks during spring seem
to occur earlier on the yellow and the green curves (after the shift i.e.
DST) and earlier on the red and blue curves during fall (before the shift
i.e. DST), there is not a clear translation of 1 hour of the curves. Besides,
the weather conditions are not constant during these months, and the time
of the sunrise and the sunset evolve fast. A precise study would certainly
require to measure the loads with a smaller time step (in minutes instead
of hours).

Higher order interactions Finally, we limited our study to interactions between
pairs of inputs (considering that the hour of the week is a single input). However,
the effect of holidays, that depends on the day of the week, as shown in Figure 3.16,
probably also depends on the day of the year and this is not possible in our models.

We could consider higher order interactions with three inputs. The number of
triplets is combinatorial but they may increase the expressiveness of the model and
potentially helps fitting the data better. Note that they are possibly taken into
account by the highly non-linear tree-based models described in Section 2.9.2.
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3.7.4 Dataset shift

The electricity demand is a non-stationary time series. As a consequence, it
is not true that, the bigger the training set, the better the estimated model. In
this section, we identify some of the problems induced by the non-stationarity and
present potential remedies.

Dataset shift In order to describe the problems related to non-stationarity, con-
sider the abstract problem of forecasting at different times t ∈ R a target variable
yt ∈ R with a vector of covariates xt and an estimator ŷt = fθ(xt). Let ` denote
an arbitrary loss function, Ptrain and Ptest denote the joint distribution of (xt, yt)
respectively in the training set and in the test set. For simplicity, we assume that
these distributions are constant in each set.

The final objective is the minimization of EPtest [`(yt, fθ(xt))] and we estimate a
forecasting model by solving the empirical version of the following minimization
problem (regularization aside) :

min
θ

EPtrain [`(yt, fθ(xt))]. (3.35)

For this procedure to succeed, Ptrain and Ptest must be as close as possible.
Dataset shift is precisely the situation where Ptrain and Ptest are different. It
designates the variation over time of the joint distribution that can be written with
Bayes’ theorem :

Pt(xt, yt) = Pt(xt)Pt(yt|xt). (3.36)

In forecasting problems, we distinguish two subcases based on Equation (3.36) :

• Covariate shift [Sugiyama and Kawanabe, 2012] is the evolution over time
of the distribution Pt(xt),

• Concept drift [Gama et al., 2014] is the evolution over time of Pt(yt|xt).

Alternatively, these subcases can be linked with Equation (3.35) via the law of total
expectation :

Et [`(yt, fθ(xt))] = Ext

[
Eyt|xt [`(yt, fθ(xt))|xt]

]
. (3.37)

Both of these problems are essential for load forecasting since they have an
impact on the optimal length of the training sets and on the frequency of the model
updates, in particular at disaggregated levels where the non-stationarity is more
visible.

Covariate shift In operational conditions, the problem we are interested in only
consists in forecasting the loads for the next day, and ideally the forecasting model
is estimated the day before. This is a reasonable assumption since the model that
we study are estimated in a couple hours.

To learn the model, the training set should represent as well as possible the
day to forecast. That is in particular why we have considered well-balanced train-
ing and test sets in terms of hours of the weeks, since they both contained whole
weeks. However, the problem is more intricate for other inputs. Although, this
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problem concerns multiple inputs, we focus in this section on the temperatures, as
the interpretation appears simpler.

The training set should contain data samples with temperatures similar to the
day to forecast. Roughly put, to predict a day in January, we should mainly consider
in the training set data measured in January, possibly in different years. Immedi-
ately, this leads us to consider a discontinuous training set but this approach has
two noticeable drawbacks. First, parametrizing the form of the history increases
the number of hyperparameters. Secondly, this may lead to a smaller training set
while, originally, we would like as much data as possible. Besides, we could not
significantly improve the results with such a parametrization of the training history.

Alternatively, importance sampling is a promising lead. It consists in weighting
the data in the training set in order to mimic the distribution of the data in the
test set. Let ρ̂(xt) denote an estimator of the ratio of the densities of Ptest(xt) and
Ptrain(xt). A solution to the loss minimization over the test set can be estimated by
solving the empirical version of :

min
θ

EPtrain [ρ̂(xt)`(yt, fθ(xt))]. (3.38)

Although the density estimation problem is difficult in high dimensions, a sequence
of work is precisely dedicated to the estimation of ratio of densities [Sugiyama and
Kawanabe, 2012; Sugiyama et al., 2012].

While the differences of the marginal densities of the inputs can easily be illus-
trated, their impact on the numerical performances of the forecasting models cannot
be measured. Unfortunately, we could not significantly improve the results with such
weighting scheme but we consider that this problem demands a longer effort.

Concept drift The operational problem is inductive : given a training set, we
must extrapolate the available information, Past and Present, to forecast the Future.
Since concept drift induces the obsolescence of data, old observations only carry little
information about the current relationships between the loads and the covariates.

At the national level, it seems that concept drift is sufficiently weak so that using
the longest history (possible within the 5 years dataset) leads to the best results but
at disaggregated levels, our conclusions are different. Therefore, we cannot consider
that the more data we have to train the models, the better. In order to forecast
non-stationary time series, we have considered 2 patches.

First, the length of the training set should depend on the considered aggregation
level. Even between areas within the same aggregation level, empirical results indi-
cate that the optimal length of the training set can vary. It can even vary over time.
We present in Figure 3.33 the numerical performances of the short-term local mod-
els for different history lengths and for different frequencies of the model updates in
Figure 3.34.

Secondly, the addition of the timestamp among the inputs may help modeling
the concept drift and empirically, it leads to better results as presented in Tables 3.8
and 3.11 where we see that the results are not as good when the timestamp is
removed from the inputs. A more efficient treatment is the detrending procedure
presented by Goude et al. [2013, Section II-C] that significantly improves their re-
sults. Note that more exactly, their procedure accounts for the evolution over time
of Pt(yt).
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FIGURE 3.33: Results for different lengths of the training set
The local models are tested with the year 2017 for different lengths of the
training set. In the rest of the manuscript, we use 3-year-long training sets.
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FIGURE 3.34: Model updates frequency
MRNMSE for the local models with different frequencies to update the model
in 2016. The frequency is the same for all the substations and in the rest
of this manuscript, we update the model every 2 weeks.

Difficult marriage of covariate shift with concept drift. Given a day to
forecast, we would like on the one hand to have data as recent as possible because
of data obsolescence and on the other hand, we would also like to have data that
corresponds to similar conditions i.e. where all the inputs lie in a part of the input
space similar to the day to forecast. These two requirements are difficult to fulfill
jointly and at this point we consider that for the load forecasting problems :
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1. Selecting empirically the most appropriate length of the training set like in
Figure 3.33 is the first priority.

2. Integrating the detrending procedure of Goude et al. [2013] represents a low-
cost patch to concept drift in terms of implementation, and should be evalu-
ated.

3. Studying further the possibility of improving the model with importance sam-
pling may lead to potentially significant improvements.

3.7.5 Choice of the numerical criteria

Finally, we have introduced in Section 2.7.1 different possible numerical criteria
to optimize and assess the load forecasting models. The criteria to optimize the
models and the criteria to assess them should be the same but it is not clear to
domain-experts which one it should be. In fact, there is in the load forecasting
literature a contradiction as many models are optimized using squared errors while
they are commonly compared with the MAPE.

In our work, we have mainly focused on the RMNMSE for both optimization and
comparison of models, justifying in Section 2.7.1 its potential interest for the TSO.
Nevertheless, we believe that the numerical measure could be different if we take
into account for the local forecasts all the operational constraints and costs induced
by the errors for the TSO.

3.8 Conclusion of Chapter 3
In the beginning of this chapter, we have introduced a standard bivariate linear

model for load forecasting. We have detailed the parametrization at the national and
the local levels, particularly emphasizing the risk of overfitting and the importance
of regularizing appropriately the different univariate and bivariate effects.

The analysis of the local predictions let us identify the difficulties of local load
forecasting resulting, among others, from the non-stationarity of the electricity de-
mand. At all aggregation levels, we have identified Mondays as an important prob-
lem, due to their occurence after non-working days. While we admit that generic
Machine Learning models may not be the best tool to forecast the load during iso-
lated events like holidays, solar eclipses and World Cup Finals, we should be able
to deal with Mondays, the summer break and the Christmas period. In particular,
the way the past loads are introduced in the models is relatively basic and a more
sophisticated approach might be relevant.

At the level of substations, the more erratic behavior of the electricity demand
makes the forecasting problems more difficult. The aberrant values in the database
are clearly an important obstacle but even with a better procedure to clean the
database, there would remain jumps in the time series due to load reports. The
ability to detect these seems to be a key step before proposing more accurate load
forecasting model.

Finally, we have tried to emphasize the similarities between the local models but
how to measure this similarity properly and detect outliers remains an open question.
Still, this let us motivate the multi-task approach that we study in Chapter 4.
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Multi-task setting

The models studied in Chapter 3 are only single-task models. Effectively, the
national setting let us introduce a prototype of a load forecasting model and, at the
4 lower aggregation levels of Section 2.5.2, we only replicated the national model
for the multivariate forecasting problems to obtain a collection of single-task models
with heterogeneous inputs and adapted hyperparameters.

To estimate the coefficients of the different single-task models at a given ag-
gregation level, we solve Problem 3.25. The objective and the regularization are
separable since they are written as a sum over the different tasks and consequently,
every learning problem in Chapter 3 for a given area is isolated, or independent,
from the others.

In Section 3.5.5 and Section 3.5.6, we have had the opportunity to emphasize
the similarities between the coefficients learned for the different substations. Even
though it was definitely expected, the model found by itself resembling relationships
between the load and the inputs at the different substations. The main question
addressed in this chapter is the following :

Can we leverage this similarity structure in the multi-task
setting in order to guide the learning with constraints and
regularization ?

Put differently, this question asks whether information sharing between the different
areas within a given aggregation level can help to produce better forecasts.

By coupling the different tasks, we aim at reducing the complexity of the multi-
task model in some directions and avoid overfitting while simultaneously increasing
the complexity in other directions, altogether to obtain a better generalization per-
formance. It is possible for instance to reduce the complexity by mutualizing some
parameters between the substations or by regularizing their differences. On the
contrary, we may increase the complexity in other directions by reducing the regu-
larization hyperparameters. Sharing information between the substations may also
reduce the necessary amount of data in order to avoid dataset shift. Therefore, we
study in this chapter the possibility of an actual multi-task model, that is to say a
model that is not a mere collection of independent single-task models.

In Section 4.1, we go further in the analysis of the similarity structure among the
single-task models computed in Section 3.5.5 and Section 3.5.6. Related work and
off-the-shelf benchmarks for multi-task problems are presented in Section 4.2.
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In Section 4.3, we formally present possible ways to couple the models in a
multi-task setting. In Section 4.4 and Section 4.5, we present multi-task models
that rely on a structural assumption on the coefficient matrix, namely that some of
its columns are constrained to be identical or that they all lie in a low-dimensional
subspace. Finally in Section 4.6, we consider a multi-task model whose difference
with the models of Chapter 3 resides in the loss function.

4.1 Structure of the independent models
We compared in Section 2.4.2 the distribution of the input data for different

substations. In Section 3.5.5 and Section 3.5.6, we illustrated the distribution of
the coefficients learned by independent single-task models at the local level. In this
section, we additionally motivate the multi-task setting by presenting the similarities
in the forecasts and in the residuals of these models. The graphs presented in this
section follow the estimation of the models with the training years 2013 to 2015 and
the test year 2016.

4.1.1 Similarities between models

Because we are interested in coupling the models of the different substations, we
first analyze the similarities between the estimated coefficients.

Clustering A natural illustration of the potential similarities between the models
is to cluster the learned coefficient vectors and look for a visually apparent struc-
ture. However, we do not have a clear interpretation of the clusters presented in
Figure F.68. We study in more details the possibility of clustering the coefficients
in Section 4.4.

Rank of the coefficient matrix Alternatively, we propose in Figure 4.1 an il-
lustration of the spectrum of the learned coefficient matrix :

B :=

[
A
C

]
∈ Rp,K , (4.1)

where A is the bloc corresponding to the features shared by all the substations
and C is the bloc corresponding to the individual features in the model defined
by Equation (3.25), with the parametrization for the substations level described in
Section 3.4. Additionally, the spectrum of the prediction matrices are illustrated in
Figure F.69.

In both cases, a significant part of the spectrum is localized in the first com-
ponents of the approximations. This leads us to question whether these first com-
ponents could be shared by the substations. We develop this idea with a low-rank
constraint on the coefficient matrix in Section 4.5.

4.1.2 Commonly structured errors

While Section 4.1.1 is dedicated to the similarities between the local models, we
study in this section the structure of their residuals.
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FIGURE 4.1: Singular values of the coefficient matrices
Norm of the residuals after subtracting the best rank-r approximation of the
coefficient matrices whose rows have been centered. GivenM ∈ {B,A,C},
we denote M̃ the same matrix after its rows have been centered and for
r ∈ N, the matrix M̃ (r) is the closest rank-r approximation of M̃ in terms of
the Frobenius norm (c.f. Figure 2.22 for supplementary details). With the
parametrization of the local models described in Chapter 3, the matrix A
has dimension (3379, 1751), the matrix C containing the coefficients related
to the past loads and the weather conditions has dimension (510, 1751) and
the concatenation B has dimension (3889, 1751). The three functions equal
1 for r = 0 but the curves begin at r = 1 because of the logarithmic scale
of the x-axis.

Spatial Correlation A natural way ro represent the residual correlations between
the different substations is to represent them on maps. It seems indeed reasonable
to assume that there is a higher probability to be correlated for nearby substations.

We present these correlations for 9 different substations in Figure 4.2. A map
is associated with one substation k ∈ [[1, K]], indicated by the black circle, and the
color in another area ` represents the empirical correlations in the residuals with the
corresponding substation ` :

corrtest(yk − ŷk, y` − ŷ`) :=
Etest[(yk − ŷk)(y` − ŷ`)]√

Vartest[yk − ŷk]Vartest[y` − ŷ`]
, (4.2)

where Var denotes the variance, yk, y` ∈ R are the normalized loads defined in
Equation (3.33) and ŷk, ŷ` ∈ R are their estimates.

For a given substation, the closest substations in Figure 4.2 are not necessar-
ily the only ones that present an important positive correlation. However, a small
geographical distance between two substations seems to be a strong indicator of
potential correlations. Since we are interested in this section in sharing informa-
tion between different models for a multi-task models, it is essential to ask which
substations should be coupled.
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FIGURE 4.2: Spatially correlated residuals
Out of honesty, we illustrate the correlation of the residuals in the test
year 2016 for the 9 first substations in the database ordered alphabetically.
The residuals of the substation in the center are positively correlated with
the residuals of geographically close substations. On the contrary, there
are negative correlations for the substation in the center right. As for the
substation in the top right-hand corner, it has little correlation with the
others.

To emphasize the important correlations between the substations and their neigh-
bors, let Nk

ν′ denote the ν ′-th geographically closest neighbor of a substation k. The
average over the substations of the correlation between a substation k and its ν ′-th
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closest neighbor :

ρν′ :=
1

K

K∑

k=1

corrtest(yk − ŷk, yNk
ν′
− ŷNk

ν′
), (4.3)

is illustrated in Figure 4.3, as well as the average correlation with the ν closest
neighbors :

τν :=
1

ν

ν∑

ν′=1

ρν′ . (4.4)

Figure 4.3 confirms that positive correlations decrease on average with the geograph-
ical distance separating two substations.
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FIGURE 4.3: Residual correlations with closest neighbors
( top ) Average over the substations of the residual correlation in

the training and the test sets with the ν ′-th geographically
closest neighbor.

( bottom ) Average over the substations of the residual correlation in the
training and the test sets with the ν geographically closest
neighbors.

Temporal correlation In addition to the spatial correlations, we illustrate in
Figure 4.4 the average quantiles of the residuals and their norms for different values
of the hour of the week and over the test year 2016. The night and the summer
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are better predicted than the daytime and the winter for all the quantiles. The
fact that overestimation and underestimation of the loads occur simultaneously for
the 5 quantiles indicates the presence of commonly structured errors : the hardest
moments to predict seem common to a majority of the substations. We explore this
idea in Section 4.6.
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FIGURE 4.4: Temporally structured residuals
Quantiles and mean over the substations of the average residuals and aver-
age norm of the residuals conditioned on the different values of the hour
of the week h and of the day of the year d over the test year 2016.
( top left ) Average residuals conditioned with the hour of the week

Etest[ y − ŷ | h].
( bottom left ) Average norm of the residuals conditioned with the hour

of the week Etest[ |y − ŷ| | h].
( top right ) Average residuals conditioned with the day of the year

Etest[ y − ŷ | d].
( bottom left ) Average norm of the residuals conditioned with the day

of the year Etest[ |y − ŷ| | d].
The hour of the week h = 0 corresponds to Monday at 00:01 and the day
d = 0 is the 1st of January. The norms of the residuals are smaller during
the 7 nights of the week and from d = 120, that is the end of April, to
d = 270, the end of September. The goal of these graphs is to show that
the quantiles have similar variations, which means that the most difficult
periods of the week and of the year are the same for all the substations.
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4.2 Related work - Multi-task learning
Before the advent of the Machine Learning algorithms, analyzing the characteris-

tics of multiple individuals (or tasks) in a population has been the object of interest of
various statistical methods. In order to model a structured population, for instance
partitioned into different groups, the multilevel models were proposed to estimate
the relationships between those characteristics while taking into account the multi-
level structure. This led to the development of statistical frameworks including the
mixed effect models, a combination of fixed and random effect models and in par-
ticular with the Bayesian approach, to Bayesian hierarchical models [Good, 1980].
Given that many of the ideas employed nowadays in multi-task learning originate
from these statistical models, we first propose a description of the main hierarchi-
cal models encountered in the literature since the 1950s. Thereby, we extend the
presentation of Section 2.9.4 about the Generalized Additive and Linear Models.

Mixed effect models Consider K tasks and let yk denote the scalar target vari-
able and ξ(k) a D-dimensional vector of inputs for task k ∈ [[1, K]]. In a general
Linear Model (gLM), or multivariate-output regression model, the k-th component
yk of the target vector (y1, . . . , yK) follows the model :

yk = 〈ξ(k),β(k)〉+ εk, (4.5)

where εk contains the error and β(k) is an unknown fixed (non-random) coefficient
vector to be estimated from the data, typically via the minimization of a penal-
ized error. Besides, a gLM assumes that the vector (ε1, . . . , εK) follows a normal
distribution.

The extension to Generalized Linear Models (GLM) is the same as in the single-
task setting described in Section 2.9.4 : the target vector (y1, . . . , yK) is assumed to
be generated from an overdispersed exponential family and its mean value is related
to the covariates via :

E[y1, . . . , yK ] = g−1
(
〈ξ(1),β(1)〉, . . . , 〈ξ(K),β(K)〉

)
, (4.6)

where g is the link function like in Equation (2.31). Note that it is sometimes
required in gLM and GLM that the inputs are identical for all the tasks. Otherwise,
the inputs can be of the form :

ξ(k) :=

[
ξ(0)

ζ(k)

]
∈ RD, (4.7)

where ξ(0) is common to all the tasks and ζ(k) are task-specific inputs.
In the rest of this section, like in most papers about mixed-effect models, we

assume for simplicity that the link function is the identity. The extension to Gener-
alized Additive Models (GAM) is also similar to the case of univariate models, and
we emphasize the distinction between the linear and the nonlinear effects :

yk = 〈ξ(k),β(k)〉+
D∑

d=1

f
(k)
d (ξ

(k)
d ) + εk, (4.8)
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where the f (k)
d are unknown fixed (non-random) functions to be estimated, possi-

bly non-parametric. Similarly to the inputs in Equation (4.7), the effects may be
decomposed into local and common parts :

β(k) = α(0) + γ(k) f
(k)
d = f

(0)
d + g

(k)
d , (4.9)

to account for effects common to all the tasks and for task-specific effects.
So far, all the parameters of the model are fixed quantities to be estimated from

the data. That is why Fisher [1919] introduced Random Effects Models, to take
into account the correlations between the different tasks and deal with overdispersed
data. Combined with fixed effects, they are called Mixed Effects Models and have
become subsequently a major branch of Statistics1. The mixed effects modeling
version of the gLM given in Equation (4.5) is :

yk = 〈ξ(k),β(k)〉+ 〈χ(k), δ(k)〉+ εk, (4.10)

where εk contains the error, ξ(k) and χ(k) are two known vectors of inputs for task
k, β(k) is a fixed vector of coefficients to be estimated from the data and δ(k) is
the random coefficient vector for task k. Furthermore, (δ(1), . . . , δ(K)) is assumed to
follow a prior distribution parametrized by a hyperparameter θ.

The mixed-effects version of the GLM in Equation (4.6) leads to the so-called
Generalized Linear Mixed Model [Breslow and Clayton, 1993] and the extension of
the GAM in Equation (4.8) gives rise to the Generalized Additive Mixed Models,
for example with a Wiener process prior on the non-linear effects [Lin and Zhang,
1999]. We also denote the parameter of the prior θ for simplicity.

Depending on the structure of the modeled population and in particular its hier-
archical organization, the hyperparameter θ can be random and the parameters of
the hyperprior distribution of θ can themselves be parametrized with a hyperhyper-
prior, which is either fixed before any data is observed, random with an additional
layer of hyperparameters, or to be estimated from the data via its most likely value.
The latter approach is called the empirical Bayes method, also known as maxi-
mum marginal likelihood, and corresponds to an approximation of a fully Bayesian
setting [Robbins, 1956].

A complementary type of analysis of structured data lead to the development of
the Hierarchical Linear Models (HLM) [Lindley and Smith, 1972; Raudenbush and
Bryk, 2002], a subclass of Hierarchical Bayesian Network [Pearl, 1985], particularly
appropriate for the modeling of data organized in nested groups with a specific
attention devoted to the variance of the estimated coefficients.

Complex objects require complex modeling which justify the use of these second
(prior) and third (hyperprior) order probabilities. Following Occam’s razor principle
and quoting Good [1980], one should "stop when the guessed expected utility of
going further becomes negative if the cost is taken into account".

The Multi-task paradigm Multi-task learning emerged 20 years ago [Baxter,
2000; Caruana, 1997], from the ideas developed in relation with Mixed Effects Mod-
els, as a branch of Machine Learning focused on the estimation of several tasks in

1Note that the terminology for fixed and random effects may vary between statistical mod-
els [Gelman et al., 2005]. We use the adjective fixed to designate a non-random quantity.
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parallel, with the objective of finding an inductive bias, or alternatively learning to
learn [Heskes, 2000], by leveraging a common structure shared by the multiple tasks.
It is different from Transfer Learning that considers the more general ambition of
transferring knowledge between tasks, possibly sequentially from some source tasks
already learned to a target task yet to be learned.

With the multi-task approach, different problems are assumed to be related,
meaning that they share a common underlying structure. They are coupled to share
the information gathered for each individual task and improve the generalization
performance of all of them by resisting the fact that data may be scarce in some
regions of the input spaces. Indeed, as the complexity of the model increases in a
single-task problem to reduce the approximation error, the data relevant to estimate
each parameter becomes scarcer and the risk of overfitting is more important : the
estimation error may become larger. It is the case for example for the univariate
features introduced in Section 3.1.1 when the number of knots becomes too large or
for the interactions that we introduced in Section 3.1.2. The bet made by multi-task
models is that sharing information between different tasks can potentially prevent
overfitting in these more complex models and help to estimate robust coefficients.

The questions to be addressed when considering a multi-task problem are :
What to expect from a coupling ? Which tasks are re-
lated ? What is shared by the different tasks ? How to
couple them ?

Early works [Baxter, 2000; Ben-David and Schuller, 2003; Maurer, 2009] tried and
provided theoretical bounds to answer the first question. Although crucial, few
generic methods exist to determine which tasks are related and which ones are
outlier tasks. We motivated the multi-task setting in Section 4.1 but mostly rely
on empirical results to answer this second question. Indeed, imposing a common
structure on two unrelated tasks can lead to negative transfer [Perkins et al., 1992],
that is a deterioration of the performances on both tasks.

Zhang and Yang [2017] propose a survey of the larger literature concerning com-
mon structures that can be shared between tasks and possible ways to proceed.
Implicitly, available methods rely on different assumptions about this underlying
common structure. Rai et al. [2012] distinguish two possible structures : they pro-
pose to denote task structure the similarities encountered in the models learned
for different tasks, without taking into account the distribution of the inputs and
outputs, and to denote output structure similarities in the residuals produced by
the models corresponding to the different tasks. Besides, these structural assump-
tions may be formulated within a Bayesian framework, in connection with the early
works on multivariate-output regression, or may be integrated in the learning prob-
lem without any probabilistic considerations.

Task structure Essentially, a common task structure corresponds to the presence
of similarities in the parameters of the estimation models used for the different tasks.
These assumptions are enforced by leveraging a structural regularization, constraints
or common feature representations.

First, the parameters can be close in a geometric sense, in which case a clustering
of the coefficients is relevant [Bakker and Heskes, 2003; Evgeniou et al., 2005; Evge-
niou and Pontil, 2004]. Alternate minimization procedures have been proposed as
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well as convex relaxations of the resulting optimization problems [Jacob et al., 2009].
For each cluster, or groups of coefficient vectors, the data that can be leveraged to
estimate the average coefficients in a given cluster extends to the data available for
all the tasks in this cluster. Note that such an assumption often ignores the negative
correlations that can exist between different tasks.

Secondly, an alternative assumption considers that the coefficient vectors of
different tasks span a low-dimensional subspace, are close to a low-dimensional
subspace [Ando and Zhang, 2005] or to low-dimensional subspaces [Kumar and
Daume III, 2012]. Convex relaxation of optimization problems with low-rank con-
straints have been considered, notably with the introduction of the trace-norm in
the resulting optimization problems [Pong et al., 2010], leading to matrices of coeffi-
cients with a sparse spectrum. This constraint was also considered within Bayesian
frameworks. For instance, the subspace clustering problem considered by Elhami-
far and Vidal [2013] was equally considered by Wang et al. [2015] with a Bayesian
formulation and [Wipf, 2014] adopted a Bayesian formulation and a variational ap-
proximation to assess the possibility of smoothing local minimizers for matrix rank
minimization.

Thirdly, the common structure of the parameters for different tasks can reside
in their nonzero components. Group-Lasso penalizations have been considered for
joint variable selection [Obozinski et al., 2010] based on the generalized group version
of LASSO [Bakin et al., 1999; Yuan and Lin, 2006] or to selectively screen which
variables should be part of the shared components [Ando and Zhang, 2005], thereby
partially addressing the problem of negative transfer.

Output structure The second structure identified by Rai et al. [2012] refers to
similarities in the residuals of different tasks when conditioning on the inputs. This
can certainly be due to an insufficient amount of information in the inputs, a limited
expressiveness of the models present in the hypothesis space, or to a bad choice of
regularization, but it can also result from naturally correlated noises in the different
tasks. In this case, it is relevant to model the covariance structure in the outputs
conditioned on the inputs by introducing a structured loss function or a structured
regularization [Rai et al., 2012; Rothman et al., 2010].

Note that we have limited the presentation to shallow multi-task problems while a
vast literature about multi-task neural networks has been written in the last decade.
Multivariate-output tree-based models were also considered [Dumont et al., 2009].
However, for the specific problem of load forecasting, our attempts at finding a deep
or tree-based multi-task benchmark did not result in better performances than the
independent models of Chapter 3, which we consequently keep as a baseline in this
chapter to assess the relevance of the multi-task approach.

4.3 Framework for multi-task learning
In this section, we introduce a general framework used thereafter to present the

multi-task learning problems that we consider. The presentation is restricted to
settings in which learning problems are formulated as optimization problems.
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Notations We consider a problem with K tasks. We denote ξ(0) ∈ RD0 a set
of inputs common to all the tasks (e.g. the hour of the week) and for each task
k ∈ [[1, K]], we denote ζ(k) ∈ RD−D0 a set of individual inputs (e.g. the past loads or
the temperatures at a given weather station), where D ∈ N∗, D0 ∈ N and D ≥ D0.
The vector ξ(k) ∈ RD denotes the concatenation of ξ(0) with ζ(k) :

ξ(k) :=

[
ξ(0)

ζ(k)

]
∈ RD. (4.11)

Following the notations of Section 3.3, we denote x(0) ∈ Rp0 the vector of p0 ∈ N
common covariates obtained with the common inputs ξ(0) and the feature engineer-
ing of Section 3.1. For each task k ∈ [[1, K]], the vector of local covariates built
from ζ(k) is denoted z(k) ∈ Rp−p0 . Similarly to Equation (4.11), the vector x(k) ∈ Rp

denotes the concatenation of x(0) with z(k) :

x(k) :=

[
x(0)

z(k)

]
∈ Rp. (4.12)

We also define for each task k ∈ [[1, K]], the coefficient vectors a(k) ∈ Rp0 and
c(k) ∈ Rp−p0 respectively for the common and the local covariates like in Equa-
tion (3.25), b(k) ∈ Rp as the concatenation of a(k) and c(k) and the corresponding
matrices of coefficients as :

A :=
[
a(1) . . .a(K)

]
∈ Rp0,K , (4.13)

C :=
[
c(1) . . . c(K)

]
∈ Rp−p0,K , (4.14)

B :=
[
b(1) . . . b(K)

]
:=

[
A
C

]
∈ Rp,K . (4.15)

For each task k, the target variable yk ∈ R is modeled with a function
parametrized by b(k) :

fb(k) : RD → R, (4.16)

and given Ξ := (ξ(1), . . . , ξ(K)) ∈ RD,K , we denote the target vector and its multi-
variate estimate :

y :=



y1
...
yK


 ∈ RK and FB(Ξ) :=



fb(1)(ξ

(1))
...

fb(K)(ξ(K))


 =



〈x(1), b(1)〉

...
〈x(K), b(K)〉


 ∈ RK . (4.17)

Non-separable Model The most general form of multi-task model that we con-
sider is :

M ∼ FB(Ξ) ∈ RK , (4.18)

and for the minimization of a regularized empirical risk, the most general optimiza-
tion problem that we consider is defined for a set of observations (yi)i=1,...,n ∈ Rn,K

and (Ξi)i=1,...,n ∈ Rn,D,K as :

min
B∈Rp,K

1

n

n∑

i=1

L (yi, FB(Ξi)) + Ω(B), (4.19)

s.t. B ∈ Θ,
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for some general

loss function L : RK,2 → R+, (4.20)
regularization Ω : Rp,K → R+, (4.21)

and set of constraints Θ ⊂ Rp,K . (4.22)

The coupling between the different tasks in an optimization problem is determined
by a set of restrictions on the form of the model (fb(k))k=1,...,K , the loss L, the regu-
larization Ω and the set of constraints Θ. In particular, problems with less coupling
are defined with particular cases of Problem 4.19. Without explicitly mentioning it,
we already saw in Chapter 2 and Chapter 3 two restrictions in optimization problems
that prohibit the coupling between the different tasks, they are formalized below.

Separable over the substations The independent models defined in Chapter 3
can be completely decomposed into subproblems like Problem 3.20 since they have :

• a separable loss for the load vector y ∈ RK and its estimate ŷ ∈ RK :

L(y, ŷ) =
K∑

k=1

`(yk, ŷk), (4.23)

where ` : R2 → R+ is the same loss for the different tasks. Indeed, given
n ∈ N∗, a matrix of target observations Y ∈ Rn,K and design matrices X :=
(X(k))k=1,...,K ∈ Rn,p,K , we considered for Problem (3.25) the empirical risk :

1

2n

K∑

k=1

∥∥y(k) −X(k)b(k)
∥∥2

2
. (4.24)

• a separable regularization :

Ω(B) =
K∑

k=1

ω(b(k)), (4.25)

where ω : Rp → R+ is the same regularizer for the different tasks.

• and a separable set of constraints :

Θ =
K∏

k=1

Θ, (4.26)

where Θ ⊂ Rp is identical for the different tasks.

Separation of the substations and partition of the input domain For the
GAM introduced in Section 2.9.4, Goude et al. [2013] built one model per hour2

2 More exactly, their time series are recorded every 10 minutes instead of every hour and they
use the hour of the day and the day of the week instead of the hour of the week but this does not
modify the scope of this paragraph. They have consequently 24× 6 = 144 submodels.

139



Chapter 4

and per substation. Thouvenot [2015] proceeded similarly. However, they do not
consider other interactions between input variables. The hour h ∈ H := [[0, 167]],
which is one of the inputs, is used to divide the model into a collection of independent
submodels with distinct parameters (Bh)h∈H ∈ Rp,K,|H|. Indeed, the problem that
they consider is unconstrained and we can write the model and the regularization
as :

M1 ∼
∑

h∈H
1h=hFBh(Ξ) ∈ RK , (4.27)

Ω((b
(k)
h )k=1,...,K,h∈H) =

K∑

k=1

∑

h∈H
ω(b

(k)
h ), (4.28)

where ω : Rp → R+. This decomposition into subproblems amounts to partitioning
the database into different sets of samples corresponding to the different hours.

Scope of Chapter 4 In this chapter, we are interested in multi-task problems
without the restrictions identified in Equations (4.23), (4.25), (4.26), (4.27) and
(4.28). This aims at coupling the substations while it was not permitted in Chap-
ter 3.

Non-separable sets of constraints are considered in Section 4.4.1 and Sec-
tion 4.5.1. Non-separable regularizations are presented in Section 4.4.2 and Sec-
tion 4.5.2. Finally, a problem with a non-separable loss is introduced in Section 4.6.

For the national level, the RTE regions, the Administrative regions and the
districts level, the parametrization of the models in this chapter is the same as in
Chapter 3, it is described in Tables 3.2, 3.3 and 3.4 . The number of knots and the
interaction of the load forecasting models for the substations are also identical to
Chapter 3 and given in Tables F.2, F.3 and F.4. However, we precise in this chapter
when the set of regularization hyperparameters may change.

4.4 Clustering of the substations
This section is dedicated to studying the possibility of clustering the substations

such that in each group, the coefficient vectors used to forecast the normalized loads
are close, where the normalization is given in Equation (3.33). In Section 4.4.1,
we impose a strict equality condition : the same model is learned for all the tasks
in a same cluster. A possible relaxation of this hard constraint is proposed in
Section 4.4.2. Finally, experiments are presented in Section 4.4.3.

The models and results of this section are extracted from the internal report
written by Duchemin [2018], after our collaboration during his internship in our
team, at École Nationale des Ponts et Chaussées. For pragmatic and confidentiality
reasons, the database used for the experiments in Section 4.4.3 is different from
the database provided by RTE. Instead, the experiments were performed with the
GEFCom 2012 database [Hong et al., 2014].

This database was produced for a competition and little information is given
about the substations and the weather stations. As a consequence, selecting the
relevant weather stations to forecast each load was one of the expected challenges
and the models described in this section precisely perform variable selection.
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4.4.1 Formulation of the hard clustering problem

Clustering For the hard clustering problem, we consider the empirical risk given
in Equation (4.24) and we make the assumption, similarly to [Bakker and Heskes,
2003], that the different tasks can be grouped into R ∈ N∗ clusters such that all
the tasks in one cluster are forecast with an identical coefficient vector. The set of
constraints that we consider has consequently the non-separable form :

ΘHC :=
{
B ∈ Rp,K |

∣∣{b(1), . . . , b(K)
}∣∣ ≤ R

}
, (4.29)

where
∣∣{b(1), . . . , b(K)

}∣∣ denotes the cardinal of the set of column vectors{
b(1), . . . , b(K)

}
and typically, R� K.

Given B ∈ ΘHC, let U ∈ Rp,R whose columns are the R possible values for
the columns of B. Also, let V ∈ {0, 1}K,R such that for any k ∈ [[1, K]], if the
k-th column of B is u(r) with r ∈ [[1, R]], then the k-th row of V is the indicator
vector vk ∈ {0, 1}R with a non-zero coefficient in position r. Thereby, we can write
B = UV T . In other words, an explicit parametrization of ΘHC with pR+K degrees
of freedom is given by :

ΘHC =
{
UV T | U ∈ Rp,R,V ∈ {0, 1}K,R s.t. V 1R = 1K

}
, (4.30)

where 1R and 1K are constant vectors only containing ones. We use this parametriza-
tion below to minimize the emiprical risk.

Likelihood and Regularization Since the parametrization of the elements of
ΘHC depends on hidden variables, we introduce a Bayesian formulation with latent
classes as in [Hofmann and Puzicha, 1999; Kass and Steffey, 1989] and apply an
Expectation-Maximization (EM) algorithm to learn the coefficient matrix B. To
this end, we formulate below the minimization of the error as a maximum-likelihood
problem.

Let X := (X(k))k=1,...,K ∈ Rn,p,K be the local design matrices for the K different
tasks, with n the number of observations and p the common number of features, and
let Y ∈ Rn,K be the target observation matrix. To model the cluster assignment of
the substations and write the maximum-likelihood problem, we consider a coefficient
matrix U ∈ Rp,R and a cluster assignment matrix V ∈ {0, 1}K,R such that V 1R =
1K like in Equation (4.30). Besides, we introduce an a priori discrete probability
distribution of the cluster assignments (πr)r=1,...,R and the variances within each
cluster (σ2

r)r=1,...,R ∈ RR
+. This is formalized with the following assumptions :

1. The random vectors (vk)k=1,...,K are independent and such that for each k ∈
[[1, K]], the vector vk follows a multinomial distributionM(1, π1, . . . , πR).

2. Conditionally on vrk = 1, the vector y(k) follows a normal distribution with
mean X(k)u(r) and covariance matrix σ2

rIn. Formally, we have :

(y(k)|vrk = 1) = X(k)u(r) + σrε
(k), (4.31)

where ε(k) ∈ Rn follows the normal distribution N (0, In) with mean 0 and the
identity covariance matrix In.
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3. Conditionally on the cluster assignment matrix encoded in the matrix V , the
random variables (yki )i=1,...,n,k=1,...,K are independent.

In order to regularize the coefficient vector of each cluster and perform variable
selection, we add an Elastic Net penalization [Zou and Hastie, 2005] with hyper-
parameters λ > 0 and α ∈ [0, 1]. The regularized maximum-likelihood problem
is :

max
U∈Rp,R,σ∈RR+

EV [log p(Y ,V )]− λ
(
α ‖U‖1 +

1− α
2
‖U‖2

F

)

= max
U∈Rp,R,σ∈RR+

EV

[
K∑

k=1

R∑

r=1

vrk

(
log(πr)−

n

2
log(2πσ2

r)−
1

2σ2
r

∥∥X(k)u(r) − y(k)
∥∥2

2

)]

− λ
(
α ‖U‖1 +

1− α
2
‖U‖2

F

)
, (4.32)

where p(Y ,V ) denotes the density function of the pair (Y ,V ), the assignments
(vrk)r=1,...,R,k=1,...,K are unknown random variables, Y and X are fixed observations
while (πr)r=1,...,R, (u(r))r=1,...,R and (σr)r=1,...,R are unknown parameters.

EM algorithm The E-step of the EM algorithm applied to Problem 4.32 consists
in computing for all r ∈ [[1, R]] and k ∈ [[1, K]] the a posteriori probability of
assignment γkr := E [vrk|Y ] while the parameters (πr)r=1,...,R, U and (σ2

r)r=1,...,R are
kept fixed.

As for the M-step of the EM algorithm, it consists in minimizing with respect
to U ∈ Rp,R, (σ2

r)r=1,...,R ∈ RR
+ and (πr)r=1,...,R, all other variables being fixed, the

regularized expectation :

EV

[
K∑

k=1

R∑

r=1

γkr

(
log(πr)−

n

2
log(2πσ2

r)−
1

2σ2
r

∥∥X(k)u(r) − y(k)
∥∥2

2

)]

− λ
(
α ‖U‖1 +

1− α
2
‖U‖2

F

)
. (4.33)

Given the presence of the non-differentiable Elastic Net regularization, a
proximal-gradient algorithm is applied. The details of the computations and of
the algorithms can be found in [Duchemin, 2018, Section 1.2].

4.4.2 Formulation of the soft clustering problem

Likelihood The exact Equality (4.29) on the coefficient vectors of the substations
within a cluster is a relatively strong assumption as it drastically reduces the number
of degrees of freedom from pK to pR + K. Besides, we see in Section 4.4.3 that
empirically, the results with this strict assumption are not fully satisfying. Therefore,
we introduce in this section a relaxed version of this constrained model where the
columns of the coefficient matrix lie close to one of a few cluster centers :

B = UV T + F , (4.34)
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where UV T ∈ ΘHC and the norm of F is penalized such that B is close to ΘHC.
Put differently, we assume with the same notations as in Section 4.4.1, that

the coefficient vectors (b(k))k=1,...,K are gathered around the centers (u(r))r=1,...,R of
a few clusters such that for each r ∈ [[1, R]], the within-cluster variance, given by
∑K

k=1 v
r
k

∥∥∥b(k) −∑K
`=1 v

r
`b

(`)
∥∥∥

2

F
, is small.

Formally, in place of Equation (4.31), we assume in this section the following
Bayesian model for each task k ∈ [[1, K]] :

{
(b(k)|vrk = 1) = u(r) + τν(k)

(y(k)|b(k)) = X(k)b(k) + σkε
(k),

(4.35)

where τ > 0 and (σk)k=1,...,K are unknown parameters and for each k ∈ [[1, K]], the
vector ν(k) ∈ Rp follows a normal distribution N (0, Ip) while the vector ε(k) ∈ Rn

follows a normal distribution N (0, In).
With this model, the regularized expected likelihood is :

EV ,B [log p(Y ,B,V )]− λ
(
α ‖U‖1 +

1− α
2
‖U‖2

F

)

= EV ,B

[
K∑

k=1

R∑

r=1

vrk

(
log(πr)−

n

2
log(2πσ2

k)−
1

2σ2
k

∥∥X(k)b(k) − y(k)
∥∥2

2

−p
2

log(2πτ 2)− 1

2τ 2

∥∥b(k) − u(r)
∥∥2

2

)]

− λ
(
α ‖U‖1 +

1− α
2
‖U‖2

F

)
, (4.36)

where p(Y ,B,V ) denotes the density function of the triplet (Y ,B,V ), the as-
signments (vrk)r=1,...,R,k=1,...,K and the coefficient matrix B are unknown random
variables, Y and X are fixed observations and (πr)r=1,...,R, (u(r))r=1,...,R, τ and
(σk)k=1,...,K are unknown parameters. The details of the EM algorithm used to
maximize this log-likelihood can be found in [Duchemin, 2018, Section 3.2].

4.4.3 Experiments

GEFCom 2012 The database presented by [Hong et al., 2014] and used in this
section contains the measurements of the weather at 11 weather stations and the
load of 20 substations in British Columbia with an average load of 82 MWh. In
terms of aggregation and load levels, this setting lies between the level of districts
and the level of substations described in Table 2.1.

Numerical performances The results for the hard and soft clustering methods
are presented in Table 4.1. They are compared with the independent models of
Chapter 3. We expected the hard clustering assumption in Equation (4.31) to be
too restrictive and indeed, the obtained results are not the best. Although the
Bayesian model introduced in Section 4.4.2 leads to an improvement, it does not
perform better than the independent models.

The clustering method presented in this section leads to a small but still tangible
degradation of the results. The number of parameters was drastically reduced and

143



Chapter 4

MMr2 MMMAPE MRMNMSE
Independent models 0.87 7.11 8.81

Hard clustering in Equation (4.29) 0.852 7.73 9.70
Soft clustering in Equation (4.35) 0.862 7.49 9.34

TABLE 4.1: Results of the clustering methods
Numerical performances on the GEFCom 2012 database of the clustering
methods of Section 4.4, compared with the independent models of Chap-
ter 3. While there are 20 load time series in the database, a clustering with
4 groups typically led to the best results with the soft clustering model.

clearly, the clustering assumption that we made is too restrictive and does not lead
to a better generalization performance.

Difficulties In terms of optimization, the two main drawbacks of these cluster-
ing methods are the slow speed of convergence of the algorithms that we imple-
mented and the existence of local minima. For the latter, we explored three pos-
sible solutions, namely a non-random initialization of the algorithm with Ward’s
method [Ward Jr, 1963], an annealing method [Ueda and Nakano, 1995] to guide
the algorithms during the first iterations and resuscitating empty clusters when
they occur. In spite of these patches, the algorithms can still converge towards local
minima.

The priorities for further investigation seem to be the possibility of clustering
only the coefficients corresponding to inputs that are common to all the substations
and an improvement of the speed of the algorithms to allow larger experiments.

4.5 Low-rank models
In this section, we also discuss the possibility of imposing a structural constraint

on the coefficient matrix in order to reduce the number of parameters of the models.
However, instead of the clustering constraints presented in Equation (4.31) and
Equation (4.35) that appeared as too restrictive, we introduce in this section a
low-rank constraint. This is motivated by the similarity of the tasks enhanced in
Section 2.4.2 and Section 4.1, in particular the rapid decrease of the singular values
of the coefficient matrices learned with independent models in Figure 4.1.

In order to obtain a low-dimensional representation of the features and improve
the generalization performance on different tasks, the low-rank assumption on the
coefficient matrix was studied 20 years ago by Intrator and Edelman [1996]. An
in-depth theoretical analysis [Ando and Zhang, 2007] later confirmed the interest
of this structural assumption and motivated the study of the resulting optimization
problems [Bunea et al., 2011, and references therein].

In Section 4.5.1, we introduce a model where the coefficient matrix must be
exactly low-rank. In order to select covariates that are relevant to all the tasks, we
define in Section 4.5.2 a non-separable regularization that performs joint variable
selection. Finally, experiments with the database provided by RTE are discussed in
Section 4.5.4.
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4.5.1 The low-rank constraint

In the low-rank formulation, we constrain the set of coefficient vectors for the
different tasks concatenated into the matrix B ∈ Rp,K , not to be of cardinal R ∈ N∗
like in Equation (4.29), but to span a subspace of dimension at most R :

rank(B) ≤ R, (4.37)

where rank(B) denotes the rank of the matrix B. Of course, this constraint is
effective only if R < min(p,K).

To highlight the implications of this constraint and how it couples the different
tasks, consider B ∈ Rp,K with rank(B) ≤ R and a pair (U ,V ) ∈ Rp,R ×RK,R such
that :

B = UV T . (4.38)

Consider a task k ∈ [[1, K]] and a vector of covariates x(k) ∈ Rp. With the linear
model defined in Section 3.2, we have :

ŷk := 〈x(k), b(k)〉 =

p∑

j=1

xkj b
k
j =

R∑

r=1

〈x(k),u(r)〉vrk, (4.39)

where u(r) is the r-th column of U and vrk is the element in the k-th row and r-th
column of V .

The right member of Equation (4.39) is a linear combination of the new covariates
(〈x(k),u(1)〉, . . . , 〈x(k),u(R)〉). In other words, by enforcing the low-rank constraint of
Equation (4.37), we force the different tasks to choose collectively a linear transfor-
mation of the covariates x 7→ (〈x,u(1)〉, . . . , 〈x,u(R)〉), characterized by the matrix
U ∈ Rp,R, that performs a dimensionality reduction since R < min(p,K) and such
that all tasks can be forecast correctly with the coefficients given by the matrix
V ∈ RK,R.

Therefore, the regularized empirical risk minimization problem that we consider
follows from Problem (3.25) with an additional low-rank constraint :

min
B∈Rp,K

1

2n

K∑

k=1

∥∥y(k) −X(k)b(k)
∥∥2

2
+ Ω(B), (4.40)

s.t. rank(B) ≤ R,

with a regularization Ω : Rp,K → R+.

Remark 6. The low-rank constraint is a strong restriction on the model and just
like we introduced the soft version of Equation (4.29) in Equation (4.35), we can
define a less restrictive formulation of the low-rank constraint, similarly to [Ando
and Zhang, 2007]. Instead of imposing the rank of the coefficient matrix, we may
require that it is close to a low-rank matrix i.e. it is the sum of a low-rank matrix
with a small perturbation :

B = E + F , (4.41)

where E ∈ Rp,K is such that rank(E) ≤ R and F ∈ Rp,K. To pull the component F
towards zero, we may add to the objective a regularization, the regularized empirical
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risk minimization problem being in this case :

min
E∈Rp,K ,F∈Rp,K

1

2n

K∑

k=1

∥∥y(k) −X(k)(e(k) + f (k))
∥∥2

2
+ Ω(E) +

µ

2
‖F ‖2

F , (4.42)

s.t. rank(E) ≤ R,

with a regularization Ω : Rp,K → R+ and µ > 0. However, it is not clear yet that
this leads to interesting empirical results.

4.5.2 Joint variable selection

In addition to the low-rank constraint set in Problem (4.40), we have considered
a group-Lasso regularization [Bakin et al., 1999; Obozinski et al., 2010; Yuan and
Lin, 2006] like in Equation (2.2). It is defined for any matrix B ∈ Rp,K by :

‖B‖1,2 :=

p∑

j=1

‖bj‖2 =

p∑

j=1

√√√√
K∑

k=1

(bkj )
2, (4.43)

where (bj)j∈[[1,p]] are the rows of the matrix B. The group-Lasso regularization is
known for encouraging some of the groups to have zero norm. Thereby, it induces a
common sparsity structure among the tasks. Effectively, that a row bj of the matrix
B with j ∈ [[1, p]] is zero means that none of the tasks uses the associated covariates
(xkj )k=1,...,K . The minimization problem of the regularized empirical risk is in this
case :

min
B∈Rp,K

1

2n

K∑

k=1

∥∥y(k) −X(k)b(k)
∥∥2

2
+ λ ‖B‖1,2 , (4.44)

s.t. rank(B) ≤ R,

where λ > 0 is a regularization hyperparameter. Chapter 5 is dedicated to a de-
tailed analysis of this optimization Problem (4.44), with the important additional
assumption that the design matrix is the same for all the tasks i.e. X(1) = . . . =
X(K) := X ∈ Rn,p :

min
B∈Rp,K

1

2n

K∑

k=1

∥∥y(k) −Xb(k)
∥∥2

2
+ λ ‖B‖1,2 , (4.45)

s.t. rank(B) ≤ R.

4.5.3 Partially low-rank models

In Section 4.5.1, we have considered a low-rank constraint on the whole matrix
B ∈ Rp,K . In effect, it constrains the coefficients associated to all the features.
Yet, it appears also legitimate to constrain only the coefficients corresponding to
the inputs that are shared by all the tasks (e.g. the hour of the week and not the
past loads). In the experiments of Section 4.5.4, the constraint that we use is even
more detailed as we consider disjoint blocks of rows A1, . . . ,A` of the matrix A and
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we impose independent rank constraints on the different blocks. This is formulated
as the following optimization problem with partial low-rank constraints :

min
A∈Rp0,K ,C∈Rp−p0,K

1

2n

K∑

k=1

∥∥y(k) −X(0)a(k) −Z(k)c(k)
∥∥2

2
+ Ω(A,C), (4.46)

s.t. rank(A1) ≤ R1, . . . , rank(A`) ≤ R`,

where R1, . . . , R` ∈ N.

4.5.4 Experiments with partially low-rank models

So far, we have not obtained satisfying empirical results with a rank constraint
on the whole matrix like in Equation (4.40). Although the difference between the
results with and without a low-rank constraint on the entire matrix of coefficients
is less significant when working with middle-term models, we have concluded that
this constraint is not relevant.

Instead, we focus directly on the partially low-rank models of Equation (4.46).
Again, we could not improve the generalization performance of the local models with
low-rank constraints. Still, we have considerably reduced the number of degrees of
freedom for a minor degradation of the performance.

Indeed, in Figure 4.5, we compare the performances of the local models without
any rank constraints with the partially low-rank problem where the block of coeffi-
cients related to the hour of the week is constrained to be of rank rh and the block
related to the day of the year is constrained to be of rank rd. The best results with
the constraints is obtained for rh = rd = 20. Given that for each of the K = 1751
substations there are ph = 168 coefficients for the hour of the week and pd = 32
for the day of the year, the unconstrained model has about (ph + pd)K = 300 000
degrees of freedom for these inputs and the constrained model has approximatively
(ph +K)rh + (pd +K)rd = 40 000.

The penalizations that we have used to obtain Figure 4.5 are the same as in
Chapter 3. Unfortunately, the group-Lasso regularization that we have introduced
in Equation (4.44) does not lead to better results. It was effectively introduce to con-
sider a potential variable selection procedure, which is not the case here since first,
the past loads and the weather stations have already been selected in Section 3.6.5
and secondly, the family of features introduced for each input in Section 3.1 is not
redundant.

While it is disappointing not to improve the generalization performance, this
result still proves that the number of degrees of freedom in the independent models
is unnecessary large. Besides, the analysis of the estimated low-rank matrix is a
potential way of understanding the underlying structure.

4.6 Sum consistent local models
In Section 4.4 and Section 4.5, we have imposed specific structures on the coef-

ficient matrix with constraints and regularizations. These structures belong to the
task structure category proposed by Rai et al. [2012]. In this section, we focus on the
output structure and couple the tasks by introducing a multi-objective optimization
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FIGURE 4.5: Results with the low-rank model
MRMNMSE on the test year 2016 for different values of the rank rh of the
block of coefficients related to the hour of the week and different values of
the rank rd of the block of coefficients related to the day of the year. The
penalizations are the same as in Chapter 3 and the hyperparameters have
been optimized for each configuration.

problem defined by considering two levels : one for the individual substations and
one for aggregated loads.

There are different possibilities to leverage a multi-level structure in a forecast-
ing problem. First, the Hierarchical Linear Models (HLM) provide a framework
designed especially for problems with nested groups. Secondly, with a two-step fore-
casting and aggregating procedure based on specialized experts, Hyndman et al.
[2011] proposed an alternative model consistent both at the local and the aggre-
gated levels. Thirdly, a multivariate problem similar to the sum consistent model of
this section has been studied by the mathematical finance community. Avellaneda
and Boyer-Olson [2002]; Cont and Deguest [2013]; Durrleman and El Karoui [2008];
Jourdain and Sbai [2012] studied different approaches to ensure the consistency be-
tween observed index options (value of a basket of options) and options on index
components (values of the individual options). The model that we consider here for
load forecasting is inspired from this third possibility, the analogous of a basket of
options being the aggregated load of a group of substations.

4.6.1 Multi-objective loss

The model that we consider is similar to the models defined in Chapter 3, only
the loss is different. The proposed sum consistent loss has two components : it still
includes the part that measures the error for each load time series, it also measures
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the errors made on the aggregated time series. Effectively, we add an augmented
data-fitting term to the squared Frobenius norm that measures the individual errors.
Let M ∈ RK,K , µ > 0 and (y, ŷ) ∈ RK,2, we define the sum-consistent loss as :

LM ,µ(y, ŷ) :=
1

2
‖y − ŷ‖2

2 +
µ

2
‖M (y − ŷ)‖2

2 . (4.47)

The matrix M is simply a fixed parameter and not a representation of the
covariance of the outputs, its goal is to ensure that the local forecasts are consistent
with the loads aggregated at a higher level.

In Example 7 and Example 8, we show how, choosing M appropriately, the sum
consistent loss can measure the error committed on aggregated normalized loads.
Thereby, the minimization of LM ,µ on a datasets leads to a compromise between
the local errors and the aggregated errors.

Example 7. Consider for example M =
1K1TK
K

, in this case we have :

1

2
‖M (y − ŷ)‖2

2 =
K

2

∥∥∥∥∥
1

K

K∑

k=1

(yk − ŷk)

∥∥∥∥∥

2

F

. (4.48)

The augmented data-fitting term in Equation (4.48) encourages the model to make
an accurate prediction of the normalized and uniformly aggregated load

∑K
k=1 yk.

Example 8. A second example of interest for the substations level, that is the most
interesting empirically, is the case where (Zg)g∈[[1,G]] is a partition of the K substa-
tions into G ∈ N∗ groups and for all i, j ∈ [[1, K]], we set :

Mi,j =
G∑

g=1

1i∈Zg1j∈Zg
ηg

, (4.49)

where ηg := |Zg| is the number of substations in the group Zg. Up to a permutation
of the tasks, the matrix M is block diagonal. Let Jg := 1

ηg
1ηg1

T
ηg , we have :

M =




J1 0 . . . 0

0
. . . ...

... . . . 0
0 . . . 0 JG


 .

In this case, the augmented data-fitting term is :

∑

g∈[[1,G]]

ηg
2

∥∥∥∥∥∥
1

ηg

∑

k∈Zg
(yk − ŷk)

∥∥∥∥∥∥

2

2

. (4.50)

It is a weighted sum of the squared errors committed on the aggregated normal-
ized loads

∑
k∈Zg yk, in each group Zg with g ∈ [[1, G]], by the aggregated forecasts∑

k∈Zg ŷk. Note that in this case, the problem is separable over the different groups.
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4.6.2 Motivation for the multi-level consistency

We have illustrated in Figure 4.2 and Figure 4.3 the important correlations be-
tween the residuals at the local level. If the residuals tend to all point in the same
directions, then they should accumulate and lead to tangible errors at the aggregated
levels, which would be penalized by the sum consistent loss.

The purpose of the augmented data-fitting term is precisely to provide the model
with an additional (soft) constraint to help it being consistent, that is to say, making
forecasts that simultaneously have low local errors and reasonable errors on the
aggregated loads, altogether for a better generalization. Besides, it provides the
TSO with a guarantee that forecasts in the corresponding parts of the network
represent a reasonable prediction of the aggregated demands, at the national level
if we choose Example 7 and at the levels of the groups with Example 8.

To assess its potential, we compare in Table 4.2 the errors committed on the
aggregated loads by two groups of forecasting models, all defined like in Chapter 3
with the parametrization given in Tables 3.2, 3.3 and 3.4. The performances given in
the column Independent forecasts of Table 4.2 are measured on the aggregated loads
and the models for this column were precisely trained by minimizing the errors
on these aggregated loads. For the right column, there is only one model, that
is trained by minimizing the errors at the level of the substations. The forecasts
that it produces are then aggregated so that the performances given in the column
Aggregated local forecasts of Table 4.2 also correspond to the aggregated loads, while
they were estimated independently and only with the local loads.

Because the performances on the right column are not as good as the perfor-
mances in the middle column, we believe that there is room for improvement and
the sum consistent loss can potentially guide the local models and help them to
make more consistent forecasts.

Aggregation level Independent forecasts Aggregated local forecasts
National (0.983, 1.31, 1.69) (0.974, 1.55, 2.27)

RTE regions (0.959, 2.07, 2.71) (0.962, 1.99, 2.83)
Administrative (0.963, 2.07, 2.66) (0.957, 2.15, 3.06)

Districts (0.954, 2.27, 2.93) (0.947, 2.38, 3.33)

TABLE 4.2: Aggregated-load forecasts and aggregated forecasts
(MMr2, MMMAPE, MRMNMSE) as defined in Section 2.7 to compare the indepen-
dent short-term models defined in Chapter 3 with the parametrization given
in Tables 3.2, 3.3 and 3.4, estimated and evaluated with loads at the same
levels, with the forecasts obtained by aggregating the outputs of the local
models. The models presented in this table are all estimated by minimizing
a separable squared error term.

4.6.3 Results with the sum consistent loss

We focus on the load forecasting problem at the level of substations with the sum
consistent loss of Equation (4.47). We have considered different possibilities for the
experiments : namely a matrixM such that the error on the nationally aggregated
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load is penalized, a matrix M such that for each substation, the errors on the load
aggregated with the ν ∈ N∗ nearest neighbor is penalized, and finally a matrix M
defined like in Example 8, where the zones correspond to the districts defined in
Section 2.5.2. With the two first settings, we observed an undeniable degradation
of the forecasts at the level of substations. The last setting on the other hand, is
the most satisfactory and we illustrate the results below.

In other words, we minimize the sum of two terms : the errors committed at
the level of the substations and the errors on the load aggregated in each districts.
Let (Zg)g∈[[1,G]] denote the partition into the G = 32 districts of the K = 1751
substations. The corresponding loss is given by :

LM ,µ(y, ŷ) :=
1

2
‖y − ŷ‖2

2 +
µ

2

∑

g∈[[1,G]]

ηg

∥∥∥∥∥∥
1

ηg

∑

k∈Zg
(yk − ŷk)

∥∥∥∥∥∥

2

2

, (4.51)

where y ∈ RK contains the loads of the substations, ŷ ∈ RK is its estimate and
µ ≥ 0.

In short, we observed that :

• The forecasts of the aggregated loads are improved in all the districts.

• The RMNMSE defined for the whole set of substations is not better.

• The RMNMSE restricted to individual districts is not always improved, as illus-
trated in Figure 4.6.

• In some districts, the individual forecasts benefit from the sum consistent
loss and both the aggregated and the individual forecasts are improved, as
illustrated in Figure 4.7.

Out of the 32 districts, the sum consistent loss lead to better individual forecasts in
10 districts, like in Figure 4.7. In the 22 others, we have observed a degradation of
the numerical performances with the sum consistent loss.

These results let us believe that the districts are a relevant scale to couple the
different tasks while a coupling at the national level does not lead to better perfor-
mances. With the negative results in some districts however, we tend to conclude
that a coupling is not relevant for all the substations and a procedure to select which
substations should be coupled would be helpful.
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FIGURE 4.6: Failure with the sum consistent loss in District 7
The coefficient µ determines the compromise in Equation (4.51) between
the attention paid to the individual forecasts and the aggregated forecasts.
The coefficient α is used to multiply all the regularization hyperparameters
of the models : α < 1 corresponds to a weaker regularization and α > 1
corresponds to a stronger regularization.
( top left ) RNMSE on the training set of the forecasts aggregated in

District 7. It measures the error
∥∥∥ 1
η7

∑
k∈Z7

(yk − ŷk)
∥∥∥

2

2

( bottom left ) RNMSE on the test set of the forecasts aggregated in Dis-
trict 7.

( top right ) RMNMSE on the training set of the individual forecasts in
District 7. It measures the error 1

η7

∑
k∈Z7

(yk − ŷk)
2

( bottom left ) RMNMSE on the test set of the individual forecasts in Dis-
trict 7.

With the training and the test sets, the variations of the error measure are
monotone when µ increases, it consistently decreases at the aggregated level
as expected but increases for the individual forecasts. The sum consistent
loss does not help the model to make better local predictions.
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FIGURE 4.7: Success with the sum consistent loss in District 1
( top left ) RNMSE on the training set of the forecasts aggregated in

District 1. It measures the error
∥∥∥ 1
η1

∑
k∈Z1

(yk − ŷk)
∥∥∥

2

2
.

( bottom left ) RNMSE on the test set of the forecasts aggregated in Dis-
trict 1.

( top right ) RMNMSE on the training set of the individual forecasts in
District 1. It measures the error 1

η7

∑
k∈Z1

(yk − ŷk)
2.

( bottom left ) RMNMSE on the test set of the individual forecasts in Dis-
trict 1.

With the training set, the variations of the RMNMSE when µ increases are
monotone, it consistently decreases at the aggregated level and increases
for the individual forecasts, as expected. With the test set, the error on the
aggregated load decreases with µ as well meaning that the aggregated load
is better predicted : it is a guarantee for the TSO that in the district, the
local forecasts are more consistent with the demand of the whole district.
The most interesting graph is at the bottom right. The addition of the
augmented data-fitting term in the sum consistent loss helped the model to
make better forecasts at the level of the substations.
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4.7 Conclusion of Chapter 4
From the standard bivariate modeling described in Chapter 3, we have consid-

ered three different possibilities in Chapter 4 to couple the models in a multi-task
framework.

The clustering assumption made in Section 4.4 and the low-rank assumption in
Section 4.5 are quite similar, they both consider that the coefficient matrix with
p×K coefficients can be parametrized with less degrees of freedom. The former has
not lead to an improvement and we conclude that, as presented, this assumption is
too restrictive. However, the latter let us conclude that the number of parameters
in the independent models described in Chapter 3 is indeed unnecessarily large.

In Section 4.6, we have adopted a different approach where the number of pa-
rameters in the model is not changed but the forecasts for the individual substations
must be consistent with the observations at the districts level. The positive results
in Figure 4.7 show that an improvement of the local forecasts is possible with such
a coupling of the local models. In particular, we believe that coupling the mod-
els for the substations in the same district is more relevant than coupling all the
substations in France. This is consistent with the intuition that we can have with
Figure 4.2. Still, the negative results in Figure 4.6 show the importance of selecting
which substations can benefit from a coupling and identify which substations have
an outlying behavior and do not benefit from a multi-task approach.
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Fast algorithms for Sparse Reduced
Rank Regression

This chapter is dedicated to the study of the sparse and low-
rank regression Problem (4.45). The content is extracted from the
article [Dubois et al., 2019] accepted at the International Conference
on Artificial Intelligence and Statistics in 2019. The notations are
specific to this chapter.

Abstract We consider a reformulation of Reduced-Rank Regres-
sion (RRR) and Sparse Reduced-Rank Regression (SRRR) as a
non-convex non-differentiable function of a single of the two ma-
trices usually introduced to parametrize low-rank matrix learning
problems. We study the behavior of proximal gradient algorithms
for the minimization of the objective. In particular, based on an
analysis of the geometry of the problem, we establish that a proxi-
mal Polyak-Łojasiewicz inequality is satisfied in a neighborhood of
the set of optima under a condition on the regularization parameter.
We consequently derive linear convergence rates for the proximal
gradient descent with line search and for related algorithms in a
neighborhood of the optima. Our experiments show that our for-
mulation leads to much faster learning algorithms for RRR and
especially for SRRR.

5.1 Introduction
In matrix learning problems, an effective way of reducing the number of degrees

of freedom is to constrain the rank of the coefficient matrix to be learned. Low-
rank constraints lead however to non-convex optimization problems for which the
structure of critical points and the behavior of standard optimization algorithms, like
gradient descent, stochastic block coordinate gradient descent and their proximal
counterparts, are difficult to analyze. These difficulties have lead researchers to
either use these algorithms without guarantee or to consider convex relaxations in
which the low-rank constraint is replaced by a trace-norm constraint or penalty. In
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the last few years however, a better understanding of the geometry of these problems
[Li et al., 2016; Zhu et al., 2017b], new tools from non-convex analysis [Attouch and
Bolte, 2009; Csiba and Richtarik, 2017; Frankel et al., 2015; Karimi et al., 2016;
Khamaru and Wainwright, 2018] as well as results on the behavior of standard
algorithms around saddle points [Lee et al., 2017] were developed under regularity
assumptions to analyze their convergence and eventually prove rates of convergence.

Formulations that require to learn a low-rank matrix or its factors appear in
many problems in machine learning, from variants of Principal Components Analysis
and Canonical Correlation Analysis, to matrix completion problems and multi-task
learning formulations. Reduced-Rank Regression (RRR) is a fundamental model
of this family. It corresponds to the multiple outputs linear regression in which all
the vectors of parameters associated with the different dimensions are constrained
to lie in a space of dimension r ∈ N∗. Precisely, if X ∈ Rn,p is a design matrix
and Y ∈ Rn,k has columns corresponding to the multiple tasks, then the problem is
usually formulated with ‖·‖F the Frobenius norm as

min
W∈Rp,k: rank(W )≤r

1

2
‖Y −XW‖2

F . (5.1)

The solution of Problem (5.1) can be obtained in closed form [Velu and Reinsel,
2013] and requires to project the usual multivariate linear regression parameter
estimate on the subspace spanned by the top right singular vectors of the matrix
(XTX)−1/2XTY .

Sparse Reduced-Rank Regression (SRRR) is a variant in which the objective is
regularized by the group-Lasso norm ‖W‖1,2 =

∑
i(
∑

jW
2
ij)

1/2, in order to induce
row-wise sparsity in the matrix W , which corresponds to simultaneous variable
selection for all tasks. Given λ > 0, the optimization problem takes the form :

min
W∈Rp,k: rank(W )≤r

1

2
‖Y −XW‖2

F + λ ‖W‖1,2 . (5.2)

For this formulation, there is no closed form solution anymore, and the conceptu-
ally simple algorithms that have been proposed to solve Problem (5.2) are not so
computationally efficient.

In the last decade, many optimization problems of the form :

min
W∈Rp,k: rank(W )≤r

F(W ), (5.3)

with F a convex function have been tackled via the convex relaxation obtained by
replacing the rank constraint with a constraint or a regularization on the trace-norm
‖W‖∗. unfortunately, these formulations often lead to expensive algorithms and the
relaxation induces a bias. A recent literature revisited a number of these problems
based on an explicit parameterization of the low-rank matrix, as biconvex problems
of the form :

min
U∈Rp,r, V ∈Rk,r

F(UV T ). (5.4)

In particular, it is natural to formulate Problem (5.1) and Problem (5.2) in this
form.
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In this paper, we additionally impose V TV = Ir without loss of generality and
we reformulate the SRRR problem as a non-convex non-differentiable optimization
problem of a single thin matrix U . Based on the geometry of the objective described
in Corollary 14, we establish in Corollary 17 a generalized Polyak-Łojasewicz inequal-
ity [Karimi et al., 2016; Polyak, 1963] in a neighborhood of the minima which can
be leveraged to show in Corollary 18 asymptotic linear convergence of the proximal
gradient algorithm and of stochastic block coordinate proximal descent algorithms.
Our results are also relevant to solve very large-scale RRR instances for which the
direct computation of the closed form solution would not be possible.

The paper is structured as follows. In Section 5.2, we discuss related work. In
Section 5.3, we reformulate the RRR/SRRR problems. In Section 5.4, we obtain
global convergence results. To analyze the local convergence in Section 5.5, we review
the structure of RRR and establish properties based on the orthogonal invariance
of the objective as well as the convexity of its restriction on certain cones in a
neighborhood of the optima. Thus, we obtain a Polyak-Łojasiewicz inequality and
a generalized Polyak-Łojasiewicz inequality respectively for RRR and SRRR in a
neighborhood of the global minima. Finally, Section 5.6 illustrates with numerical
experiments the performances of the proposed algorithms.

5.2 Related Work
Velu and Reinsel [2013] studied Problem (5.1) and showed that it is one of the

few low-rank matrix problems which has a closed form solution. Baldi and Hornik
[1989] studied thoroughly the biconvex version of Problem (5.1) and identified its
critical points to show that its local minima are global. Bunea et al. [2011, 2012];
Chen and Huang [2012]; Ma and Sun [2014]; Mukherjee et al. [2015]; She [2017]
considered Problem (5.2) and highlighted the statistical properties of the estimator.
The algorithms proposed in these papers all consist essentially in optimizing alter-
natingly with respect to U and V an objective of the form (5.4) (and more precisely
the objective (5.5) introduced in Section 5.3) under the constraint V TV = Ir. The
full optimization w.r.t. V requires to compute an SVD of the matrix Y TXU ∈ Rk,r

which is of reasonable size, but the full optimization w.r.t. U requires to solve a full
group-Lasso problem.

Among others, iterative first-order algorithms that are classical for the jointly
convex setting may be applied to the non-convex Problem (5.4). Until recently,
precise convergence guarantees were relatively rare but the observation of good em-
pirical rates of convergence motivated a finer analysis. In particular, a number of
recent papers established stronger theoretical results for these algorithms in the
smooth non-convex case. Notably, Jain et al. [2017] obtained the first global linear
rate of convergence for the very particular case of the matrix square-root compu-
tation. For more general biconvex formulations, Park et al. [2016] and Wang et al.
[2016] established convergence rate guarantees for the gradient descent algorithm
for Problem (5.4) provided an appropriate initialization is used and penalties such
as 1

4
||UTU − V TV ||2F are added to the objective as regularizers.
As a consequence of the aforementioned performances, there was a regain of

interest for the biconvex problems like (5.4) and their geometry has been studied in
numerous papers. Bhojanapalli et al. [2016]; Boumal et al. [2016]; Ge et al. [2017,
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2016]; Kawaguchi [2016]; Li et al. [2017, 2018]; Zhu et al. [2017a] studied critical
points and made use of the strict saddle property to show global convergence results
for gradient descent and stochastic variants. Some of these works define a partition
of the space and characterize the behavior of gradient descent in each region [Li
et al., 2016; Zhu et al., 2017b].

Besides, it was shown recently that appropriate first-order algorithms cannot con-
verge to saddle points when the curvature of the objective is strict around them [Lee
et al., 2017; Panageas and Piliouras, 2016; Sun et al., 2015]. These algorithms ac-
tually spend only a limited amount of time near the saddle points if the Hessian is
Lipschitz [Du et al., 2017; Jin et al., 2017]. However, these papers do not provide
general convergence rate results, in particular not in the non-differentiable case.

From the performances of classical first-order algorithms originated attempts to
characterize convergence and to possibly prove rates based on the local geometry of
non-convex objective functions around minima. In particular, Karimi et al. [2016]
reviewed and provided a unified point of view of the recent literature on the Polyak-
Łojasiewicz inequality [Polyak, 1963]. This type of results was leveraged by Csiba
and Richtarik [2017] to prove convergence rates. A parallel thread of research focused
on the Kurdyka-Łojasiewicz inequality (KŁ), with the motivation that all semi-
algebraic functions satisfy it. Attouch and Bolte [2009]; Attouch et al. [2013]; Frankel
et al. [2015]; Ochs et al. [2014] were able to characterize asymptotic convergence
rates for the forward-backward algorithm under the KŁ inequality. These types of
results were extended for block coordinate descent schemes in Attouch et al. [2010];
Bolte et al. [2014]; Nikolova and Tan [2017]; Xu and Yin [2017], and for accelerated
proximal descent algorithms in Chouzenoux et al. [2014]; Li and Lin [2015]. However,
in general, it remains difficult to prove a specific rate for a given problem, because the
exact rate depends on the best exponent that can be obtained in the KŁ inequality,
and with the exception of some results provided in Li and Pong [2017], determining
this exponent remains difficult.

5.3 Reformulation and algorithm

5.3.1 New formulation for RRR/SRRR with one thin matrix
U

We reformulate the biconvex version of SRRR :

min
U∈Rp,r, V ∈Rk,r

1

2

∥∥Y −XUV T
∥∥2

F
+ λ

∥∥UV T
∥∥

1,2
, (5.5)

by eliminating V as follows. First, we can impose V TV = Ir as in Chen and Huang
[2012] without loss of generality. Then, expanding the Frobenius norm and using
the invariance of the norms to the transformation U 7→ UV T with V ∈ Rk,r such
that V TV = Ir, the objective becomes 1

2
‖XU‖2

F −〈Y,XUV T 〉+λ ‖U‖1,2 where 〈·, ·〉
is the Frobenius inner product. The value of the orthogonal Procrustes problem :

max
V ∈Rk,r:V TV=Ir

〈Y,XUV T 〉,
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is the trace-norm
∥∥Y TXU

∥∥
∗ (cf. Fact 33 in Appendix G.3). So, letting f(U) :=

f1(U)− f2(U) with :

f1(U) =
1

2
‖XU‖2

F and f2(U) =
∥∥Y TXU

∥∥
∗ ,

and F λ(U) := f(U) + λ ‖U‖1,2, RRR and SRRR are respectively reformulated as :

min
U∈Rp,r

f(U), (RRR)

min
U∈Rp,r

F λ(U). (SRRR)

The objectives, as differences of convex functions, are clearly non-convex. How-
ever, they are still orthogonal-invariant i.e. for any U ∈ Rp,r and R ∈ Rr,r such
that RTR = Ir, we have f(UR) = f(U) and F λ(UR) = F λ(U). Note that the above
derivations would still be valid if we replaced the row-wise group-Lasso ‖·‖1,2 by any
regularizer which is invariant when the argument is multiplied on the right by an
orthogonal matrix.

Also, note that although f involves a trace-norm, its argument, Y TXU , is of
dimensions k × r while, in convex relaxations of low-rank formulations like Prob-
lem (5.3), the rank constraint is substituted with a trace-norm regularizer ‖W‖∗
that is computed for a typically large matrix W of dimensions p× k.

5.3.2 Optima of the classical RRR formulation

Velu and Reinsel [2013] characterized the closed form solution of Problem (5.1)
when XTX is invertible as follows. Let W ∗ := (XTX)−1XTY denote the full-rank
least squares estimator. Let PSQT be the reduced singular value decomposition of
(XTX)−

1
2XTY . If the latter has rank ` then P ∈ Rp,` and Q ∈ Rk,` have orthonormal

columns and S ∈ R`,` is the diagonal matrix with singular values s1 ≥ . . . ≥ s` > 0.
The solution of Problem (5.1) is unique if sr > sr+1 : let Qr ∈ Rk,r be the matrix
obtained by keeping the first r columns of Q, the solution is W ∗

r := W ∗QrQ
T
r .

5.3.3 Algorithms and complexity

The algorithms that we consider are essentially proximal gradient algorithms with
line search, except for the fact that f2 is not differentiable when Y TXU is not full-
rank, which entails that f is not differentiable everywhere. To address this issue, and
given that f is a difference of a smooth convex function and a continuous convex
function, we consider the subgradient-type algorithms proposed in Khamaru and
Wainwright [2018].

Given U ∈Rp,r, the idea is to use a subgradient zU of f2. We assume that XTX
is invertible but consider a more general case in Appendix G.4.1.2 where we detail
the computations. Given R1DR

T
2 a singular value decomposition of Y TXU such

that Im R1 ⊂ Im Y TX, we compute zU = XTY R1R
T
2 with R1 ∈ Rk,r, RT

1R1 = Ir,
D = diag(d1 ≥ . . . ≥ dr) ∈ Rr,r with dr ≥ 0 and R2 ∈ Or. With a slight abuse
of notation, we define ∇f(U) := ∇f1(U) − zU . Note that this is the gradient of
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the natural DC programming upper bound. We introduce for any t > 0 the t-
approximation functions of f and F λ at U :

f̃t,U(U ′) := f(U) + 〈∇f(U), U ′ − U〉+
1

2t
‖U ′ − U‖2

F ,

and :
F̃ λ
t,U(U ′) := f̃t,U(U ′) + λ ‖U ′‖1,2 .

At each iteration of Algorithm 1, the matrix U is updated with Algorithm 2 to U+

the unique minimizer of F̃ λ
t,U if the line search condition :

F̃ λ
t,U(U+) ≥ F λ(U+), (LS)

is satisfied. Otherwise, t is decreased by a multiplicative factor β < 1. We explain
why Algorithm 2 terminates in Appendix G.5.2. The obtained algorithm is almost
a gradient descent algorithm when λ = 0 and a proximal gradient descent algorithm
when λ > 0 (see Appendix G.4.2). In practice, our algorithms stay away from points
where f is non-differentiable and reduce to plain gradient descent and plain proximal
gradient descent respectively. This motivated us to also consider for the experiments
the accelerated proximal gradient algorithm of Li and Lin [2015], designed for the
non-convex setting. We adapt in Section 5.4 parts of the global convergence results
of Khamaru and Wainwright [2018] to our algorithms.

Algorithm 1 Proximal Gradient Descent with LSP
Input: data X, Y , t̄, starting point Ū
Initialize k = 0, U0 ← Ū , t−1 ← t̄
while not converged do
Compute t, U+ with tk−1, Uk and Algorithm 2
tk ← t
Uk+1 ← U+

k = k + 1
end while

Algorithm 2 Line Search Procedure (LSP)
Input: tk−1, Uk, parameters β ∈ (0, 1), π ∈ (0, 1]
Set t← tk−1

β
with probability π, otherwise t← tk−1

U+ ← argminU ′ F̃
λ
t,Uk

(U ′)
while (LS) is not satisfied do
t← βt
U+ ← argminU ′ F̃

λ
t,Uk

(U ′)
end while
Output: t, U+

To discuss the complexity of the algorithm, we assume that XTX and Y TX
are computed in advance. Although the computation of zU requires an SVD of
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Y TXU , the latter costs only O(kr2). Computing ∇f(U) has then a complexity of
O(p2r + pkr). The biconvex formulation of Park et al. [2016] leads to iterations
with the same theoretical complexity for RRR but it is incompatible with SRRR.
Additionally, experiments show that our algorithm is faster (cf. Section 5.6 and
Appendix G.13).

5.4 Global convergence results
Although recent papers such as Lee et al. [2017] have shown that the gradient

descent algorithm escapes saddle points by leveraging the strict saddle property,
global convergence for Algorithm 1 is not obvious because f is not smooth. Besides,
to the best of our knowledge, none of the papers that exclude convergence towards
saddle points deals with regularizers or line search.

5.4.1 Convergence to a critical point for RRR

For RRR, results of Khamaru and Wainwright [2018] apply to our formulation
and show that our algorithm converges towards a critical point. Precisely, f1 is
continuously differentiable with Lipschitz gradients, f2 is continuous and convex
and the difference f is bounded below by −1

2
‖Y ‖2

F . Besides, as a difference of semi-
algebraic functions, f satisfies the Kurdyka-Łojasiewicz property whose definition
is given in Appendix G.2.4. Therefore, for gradient descent, our setting satisfies
the conditions of Theorems 1 and 3 of Khamaru and Wainwright [2018] and we
can prove that our algorithm converges from any initial point to a critical point
in the sense of Definition 29 in Appendix G.2.5. This is more formally stated in
Appendix G.6.1.

5.4.2 Convergence to a critical point for SRRR

In addition to the properties of f1 and f2 discussed above in Section 5.4.1, the norm
‖·‖1,2 is clearly proper, lower semi-continuous and convex so our setting for proximal
gradient descent satisfies the conditions of the first part of Theorem 2 in Khamaru
and Wainwright [2018]. The latter can be adapted to prove that all limit points
of the sequence are critical points in the sense of Definition 29 in Appendix G.2.5.
However, to prove actual convergence of the sequence, their Theorem 4 formally
requires that f2 is a function with locally Lipschitz gradient, which is not true when
Y TXU is not full-rank.

Actually, an inspection of the proof of Theorem 4 in Khamaru and Wainwright
[2018] shows that the local smoothness condition is only required in a neighborhood
of the limit points of the sequence. We prove in Appendix G.6.2 that if all groups
of at least r rows of XTY are assumed full-rank, which holds almost surely if X and
Y contain for example continuous additive noise, and unless local minima are so
sparse that the number of selected variables is strictly smaller than r, then any local
minimum U ∈ Rp,r is such that Y TXU is full-rank. As a consequence, if we assume
that the limit points of the sequence produced by the algorithm are a subset of the
local minima, then these limit points are contained within a compact set where the
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function is smooth and the proof of Theorem 4 of Khamaru and Wainwright [2018]
can be adapted in a straightforward manner to obtain global convergence.

5.5 Local convergence analysis
In this section, we prove linear convergence rates in a neighborhood of the global

minima for RRR and under a condition on the regularization parameter λ for SRRR.
Precisely, we first study the geometry around the optima of (RRR) via a change of
variables. Then, a continuity argument shows that the structure remains approxi-
mately the same for (SRRR) with a small λ > 0. Finally, we introduce and leverage
Polyak-Łojasiewicz inequalities to prove local linear convergence.

5.5.1 A key reparameterization for RRR

The relation between RRR and PCA and the form of the analytical solution given
by Velu and Reinsel [2013] will allow us to show that our study of the objective of
RRR can be reduced to the study of the particular case in which X and Y are
full-rank diagonal matrices, via a linear change of variables based on the singular
value decomposition PSQT introduced in Section 5.3.2 of the matrix (XTX)−

1
2XTY .

From now on, we assume that the rank parameter r is smaller than the rank of XTY
i.e. r ≤ ` := rank(XTY ). It makes sense to assume that the imposed rank is less
than the rank of the optimum for the unconstrained problem, otherwise the rank
constraint is essentially useless. We also assume1 that s1 > . . . > s` and that XTX
is invertible.

With the notations of Section 5.3.2, let P⊥ ∈ Rp,p−` be a matrix such that
P⊥

T
P⊥ = Ip−` and P TP⊥ = 0, and consider the linear transformation U = τ(A,C)

where :

τ :

{
R`,r × Rp−`,r → Rp,r

(A,C) 7→ (XTX)−
1
2 (PSA+ P⊥C)

. (5.6)

Defining fa(A) = 1
2
‖SA‖2

F − ‖S2A‖∗, we show in Appendix G.7.1 that :

(f ◦ τ)(A,C) = fa(A) +
1

2
‖C‖2

F . (5.7)

Since τ is invertible, the minimization in (RRR) w.r.t. U is equivalent to the
minimization of f ◦τ w.r.t. (A,C). We can therefore study the original optimization
problem by studying fa.

Similarly to Baldi and Hornik [1989], we characterize the minima of fa using the
connection between PCA and RRR, with a proof given in Appendix G.7.2.

Lemma 9. The set of minima of fa is :

Ω∗a :=
{
ĨR | R ∈ Or

}
with Ĩ :=

[
Ir

0`−r,r

]
∈ R`,r.

1These assumptions are also reasonable and will hold in particular if (X,Y ) are drawn from
a continuous density. We discuss the case where XTX is not invertible in Appendix G.7 and in
Appendix G.8.2, we show why these assumptions are needed.
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FIGURE 5.1: Graph of fa for A ∈ R2,1. In this particular case, Ω∗a =
{(1; 0), (−1; 0)} and O1 = {−1, 1}.

In words, Ω∗a is the image by the linear transformation R 7→ ĨR of the Stiefel
manifold Or :=

{
R ∈ Rr,r, RTR = Ir

}
. In particular, Ω∗a has two connected compo-

nents. We also classify the critical points of fa in Appendix G.7.3 :

Lemma 10. Rank-deficient matrices cannot be critical points of fa. Critical points
of fa among full-rank matrices are differentiable points and either global minima or
saddle points. Therefore, all local minima of fa are global.

5.5.2 Local strong convexity on cones

Although fa is not convex even in the neighborhood of its minima, we will show
that it is locally convex around them in the subspace orthogonal to the set of minima.
For any A ∈ Rp,r, let :

ΠΩ∗a(A) := argmin
B∈Ω∗a

‖B − A‖2
F

be the closest minima to A, and for any R ∈ Or, let Ca(R) be defined as follows :

Ca(R) := {A ∈ R`,r | ĨR ∈ ΠΩ∗a(A)}.

Ca(R) is the set of points that are associated with the same minimum parameterized
by ĨR. As shown in the following lemma, the sets Ca(R) are actually convex cones
that are images of each other by orthogonal matrices; this result is essentially a
consequence of the polar decomposition and of the orthogonal invariance of fa. Let
S+
r ⊂ Rr,r denote the set of positive-semidefinite matrices.

Lemma 11. For each R ∈ Or, Ca(R) is a cone in R`,r and :

Ca(Ir) =

{[
A1

A2

]
| A1 ∈ S+

r , A2 ∈ R`−r,r
}
, (5.8)

Ca(R) = {AR | A ∈ Ca(Ir)} and
⋃

R∈Or
Ca(R) = R`,r.
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a1
a 2

f a
(A
)

Ca(R)
0

fa|Ca(R)(A)

FIGURE 5.2: Schematic 2D graph of fa around one of the connected compo-
nents of Ω∗a when r ≥ 2. Here, the component of Ω∗a is a circle and the cones are
half-lines with extreme points at the origin.

Note that the cones Ca(R) do not form a partition of R`,r because if A1 is not
invertible, its polar decomposition is not unique so [AT1 AT2 ]T is in several cones.
However the relative interiors of all the cones partition the set of matrices [AT1 A

T
2 ]T

such that A1 is invertible (cf. Fact 59 in Appendix G.8.1). The decomposition on
these cones is motivated by the fact that for r ≥ 2, the function fa in a neighborhood
of each of the two connected components of Ω∗a can be informally thought of as having
the shape of the base of a glass bottle with a punt. This is illustrated in Figure 5.2.

Thus, given R ∈ Rr,r, we focus on the restriction fa|Ca(R) of fa on the cone Ca(R).
The next result states in particular that fa|Ca(R) is smooth and strongly convex2 in
a neighborhood of ĨR.

Theorem 12. For any 0 < µa < s2
`(1− s2r

s2r+1
), there exists a non-empty sublevel set

Va ⊂ R`,r of fa such that fa is s2
1-smooth in Va and for any R ∈ Or, the restriction

fa|Ca(R) is µa-strongly convex in Va ∩ Ca(R).

Via τ these properties of fa carry over to f . Let νX and LX be respectively
the smallest and largest eigenvalues of XTX and C(R) := τ(Ca(R),Rp−`,r) with τ
defined in Equation (5.6).

Corollary 13. For any 0 < µ < νX(1− s2r+1

s2r
), there exists a non-empty sublevel set

V0 of the function f that can be partitioned into disjoint convex elements {C(R) ∩
V0}R∈Or such that f is LX-smooth on V0 and is µ-strongly convex on every V0∩C(R).

To extend partially the previous result to (SRRR), we apply Theorem 6.4 of
Bonnans and Shapiro [1998] : given that (a) the objective F λ of (SRRR) is locally

2The definitions of µ-strong convexity, L-smoothness and sublevel sets are recalled in Ap-
pendix G.2.
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strongly convex on the cone C(Ir) around the minimum, (b) for every fixed λ in
some interval [0, λ̃), f is locally Lipschitz with a constant that does not depend on λ
and, (c) F λ − F 0 = λ‖ · ‖1,2 is locally Lipschitz with a constant √pλ which is O(λ),
then by Bonnans and Shapiro [1998, Theorem 6.4], there exists λ̌ > 0 such that for
all 0 ≤ λ < λ̌, the minimum of F λ in C(Ir) is a continuous function of λ. This is
detailed in Appendix G.8.4.

Corollary 14. There exists λ̄ > 0 such that for any 0 ≤ λ < λ̄ and 0 ≤ µ <

νX(1− s2r+1

s2r
), there exists a non-empty sublevel set Vλ of F λ that can be partitioned

into disjoint convex elements {C(R) ∩ Vλ}R∈Or so that f is LX-smooth on Vλ and
F λ is µ-strongly convex on every C(R) ∩ Vλ.

These characterizations of the geometry in a neighborhood of the optima imme-
diately lead to Polyak-Łojasiewicz inequalities that entail the linear convergence of
first-order algorithms.

5.5.3 P-Ł inequalities and proofs for linear convergence rates

Polyak-Łojasiewicz (PŁ) and Kurdyka-Łojasiewicz inequalities (KŁ) were intro-
duced to generalize to nonconvex functions (or just not strongly convex) proofs of
rates of convergence for first-order methods [Attouch and Bolte, 2009; Karimi et al.,
2016, and references therein]. In particular, PŁ generalizes the fact that, for a
differentiable and µ-strongly convex function f with optimal value f ∗,

f(x)− f ∗ ≤ 1

2µ
‖∇f(x)‖2 . (PŁ)

Karimi et al. [2016] and Csiba and Richtarik [2017] proposed a generalization to
a proximal PŁ inequality of relevance for forward-backward algorithms applied to
non-differentiable functions. In this section , we summarize an immediate extension
allowing a line search procedure, of results established for first-order algorithms
to prove locally a linear rate of convergence. Consider d ∈ N∗ and a function3

F λ = f + λh defined on Rd and with optimal value F λ,∗, where f is an L-smooth
function and h is a proper lower semi-continuous convex function. We define the
t-approximation f̃t,x and F̃ λ

t,x of f and F λ at x as in Section 5.3.3. The t-decrease
function is defined as :

γt(x) := −1

t
min
x′∈Rd

[
F̃ λ
t,x(x

′)− F λ(x)
]
. (5.9)

Given x, assume that the minimum in Equation (5.9) is attained at a point x+ for
t > 0 such that the (LS) condition F̃ λ

t,x(x
+) ≥ F λ(x+) is satisfied. Then the decrease

in the objective value F λ(x)− F λ(x+) is lower bounded by tγt(x), hence the name
t-decrease function (see Fact 41 in Appendix G.5.1). We make use of a natural
generalization of the proximal PŁ inequality proposed by Karimi et al. [2016] and
Csiba and Richtarik [2017]. For x such that F λ(x) > F λ,∗, with F λ,∗ the minimum
of F λ, we define the t-proximal forcing function :

αt(x) :=
γt(x)

F λ(x)− F λ,∗ .

3In this section we use a general variable x but we keep using f and Fλ.
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We can now state the following theorem that bounds the optimal gap for our
algorithm iteratively.

Theorem 15. [From Lemma 13 in Csiba and Richtarik, 2017] Let x ∈ Rd and x+ be
defined by x+ = argminx′ [F̃

λ
t,x(x

′)− F λ(x)], where t is chosen so that the line search
condition (LS) is satisfied. Then we have :

F λ(x+)− F λ,∗ ≤ [1− t αt(x)]
[
F λ(x)− F λ,∗] .

Given t > 0, we say that F λ satisfies the (t-strong proximal PŁ) inequality in a
set V ⊂ Rd if there exists α(t) > 0 such that for any x ∈ V where F λ(x) > F λ,∗, we
have :

αt(x) ≥ α(t). (t-strong proximal PŁ)

If λh = 0, then γt(x) = 1
2
‖∇f(x)‖2 and it is easy to see that (t-strong proximal PŁ)

boils down to (PŁ) with µ = α(t).

5.5.4 Proving local linear convergence

We now return to the functions f and F λ defined for (RRR) and (SRRR) with
minimal values f ∗ and F λ,∗, and we establish the (PŁ) and (t-strong proximal PŁ)
inequalities in a neighborhood of their respective global minima.

Corollary 16. Let 0 ≤ µ < νX(1− s2r+1

s2r
) and V0 as in Corollary 13. For all U ∈ V0,

we have :
f(U)− f ∗ ≤ 1

2µ
‖∇f(U)‖2

F .

In light of Corollary 14, we can also prove the (t-strong proximal PŁ) inequality
for F λ with small values of λ. To this end, we consider λ̄ > 0 as in Corollary 14.

Corollary 17. Let 0 ≤ µ < νX(1− s2r+1

s2r
) and 0 ≤ λ < λ̄. For any t > 0, F λ satisfies

the (t-strong proximal PŁ) inequality with α(t) := min( 1
2t
, µ). In other words, for

any t > 0 and U ∈ Vλ, we have :

γt(U) ≥ α(t)
[
F λ(U)− F λ,∗] ,

with γt(U) := −1

t
min

U ′∈Rp,r

[
F̃ λ
t,U(U ′)− F λ(U)

]
.

So, leveraging Theorem 15 and Corollary 16/17 for (RRR)/(SRRR), we obtain
the linear rate of convergence which is proved in Appendix G.10.3. Indeed, if LX
denotes the largest eigenvalue of XTX and β the step-size decrease factor in Algo-
rithm 2, then we have the following result.

Corollary 18. Let 0 ≤ λ < λ̄ and k ≥ 0. Assume that tk−1 >
β
LX

and Uk+1 is
generated as in Algorithm 1 from Uk ∈ Vλ. Then Uk+1 ∈ Vλ, tk > β

LX
and denoting

ρ = min(1
2
, β µ

LX
), we have :

F λ(Uk+1)− F λ,∗ ≤ (1− ρ)
[
F λ(Uk)− F λ,∗] .
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As explained in Fact 43 in Appendix G.5.2, there is only a finite number of steps
at the beginning of Algorithm 1 for which the assumption tk > β

LX
may fail. The

convergence is therefore linear. We propose a direct proof of Corollary 18 based
on Corollary 17 and Theorem 15. It should be noted that the geometric structure
leveraged for Corollary 17 can also be used to obtain Corollary 18 as a consequence
of the Kurdyka-Łojasiewicz inequality (cf. Appendix L).

5.6 Experiments on RRR and SRRR
We perform experiments on simulated data both for RRR and SRRR to assess

the performance of the algorithms in terms of speed.
For RRR, we compare gradient descent algorithms in U space and in (U, V )

space. In the former case, we just minimize (RRR), whereas in the latter, following
Park et al. [2016], we minimize F(UV >) + g(U, V ), with F(W ) = 1

2
‖Y −XW‖2

F and
g(U, V ) = 1

4
‖U>U − V >V ‖2

F ; this objective has the same optimal value as F(UV >),
but the regularizer g was shown to improve the convergence rate of the algorithm
(see Appendix G.13.1). Note that the formulation of Park et al. [2016] does not
apply to SRRR because the regularizer g is not compatible with the use of the
group-Lasso norm.

For SRRR, we implement proximal gradient descent algorithms and compare in
speed with the RRR case and with the alternating optimization algorithm proposed4

in Bunea et al. [2012]. In each case we consider variants of these first-order methods
with and without line search.

For the alternated procedure, each inner minimization of the matrix U is stopped
when a duality gap becomes smaller than the desired precision 10−4. Since it takes
more than seconds to optimize, it justifies the relevance of RRR/SRRR.

As in Bunea et al. [2012], we sample the rows of X from a zero-mean Gaussian
with a Toeplitz covariance matrix Σ where Σi,j = ρ|i−j| and ρ ∈ (0, 1). We set
n = 103, p = 300 and k = 200. We let W0 = U0V

>
0 for U0 ∈ Rp,r and V0 ∈ Rk,r

uniformly drawn from the set of orthonormal matrices with r0 = 30 columns. For
SRRR, each row of W0 is then set to zero with probability p0. Then we compute
Y = XW0 + E for E a matrix of i.i.d. centered scalar Gaussians with standard
deviation σ = 0.1. Finally, we solve all formulations for a matrix W of rank r = 20.
For all algorithms, we initialize U (and V if relevant) at random.

We report results for ρ = 0.6 in Figure 5.3 and in Appendix G.13 for additional
values of ρ and p0. For RRR, these results show that the algorithms based on
our proposed formulation are significantly faster, both in terms of the number of
function/gradient evaluations and in terms of time; moreover they benefit more
from the line search. We do not report curves with both line search and acceleration
because this combination does not yield any speed increase.

For (SRRR) and (RRR) all algorithms exhibit at least linear convergence. Com-
pared with (RRR), the convergence for (SRRR) typically seems as fast or faster.
Additionally, the line search plays a significant role in accelerating the convergence
of the algorithm.

4Ma and Sun [2014] consider a similar algorithm.
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FIGURE 5.3: (Left) RRR : Convergence of f(Uk) − f∗ for gradient de-
scent on our formulation in U with constant step size (GD_U_cst_st), with line
search (GD_U_ls), with the acceleration (GD_U_acc) proposed by Li and Lin [2015]
and gradient descent for the formulation of [Park et al., 2016] with constant
step size, line search and acceleration (GD_UV_cst_st, GD_UV_ls, GD_UV_acc).
(Right) SRRR with λ = 0.01 : Convergence for T large of F λ(Uk) − F λ(UT )
for proximal gradient descent on our formulation with and without line search
(ProxGD_U__ls, ProxGD_U__cst_st), compared with the alternating optimiza-
tion algorithm (ProxGD_U__exa) proposed in Bunea et al. [2012]. The running
time to reach a precision of 10−4 is given at the top right.

Conclusion of Chapter 5
We considered a reformulation of RRR and SRRR problems as non-convex and

non-differentiable optimization problems w.r.t. to a matrix U with r columns. We
proposed to apply subgradient-type algorithms studied by Khamaru and Wainwright
[2018], which correspond essentially to gradient descent for RRR and proximal gra-
dient descent for SRRR.

The algorithms are provably convergent to critical points under reasonable as-
sumptions. We show that for a certain range of regularization coefficients λ the
objective satisfies a Polyak-Łojasiewicz inequality in a neighborhood of the global
minima, which entails local linear convergence if the algorithm converges to them.

For RRR, gradient descent converges to a critical point and if a global minimum
of the original objective has been found, it can easily be certified.

Future work could try to determine if convergence to saddle points of SRRR
can be excluded and if global linear convergence results can be obtained. Another
interesting direction of research is to extend these types of results to other matrix
optimization problems with low-rank constraints.
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Conclusion of the manuscript

Description of the load forecasting problems We have proposed in Chapter 2
an introduction to the load forecasting problems and a preliminary exploration of
the database. Thus, we have had the opportunity to describe the 3 common cycles
of the electricity demand, namely the daily, weekly and yearly cycles, along with
the conditional expectations of the load with respect to the calendar information
and the meteorological conditions. We also described the different settings that we
consider and insisted on the variability, as well as the irrelevant values encountered
in the load measurements at the level of the substations. Chapter 2 also allowed us
to present the detection and correction procedures that we have used to clean the
database.

A standard bivariate linear model In Chapter 3, we have described a trans-
formation of the inputs to feed thereafter a linear model tuned by minimizing a
classical measure of the squared errors. The same model is proposed to model the
load both at the national level and the local levels, with adapted regularization hy-
perparameters. Unlike the state-of-the-art GAM that include different submodels
for the different hours of the day, we have introduced a single modeling, leading to
a reasonable computational time with performances comparable to state-of-the-art
results and to be used at all times of the day and the year. It is consequently simpler
to analyze. The observation of the results with this model allowed us in particular
to underline the importance of the interactions between some of the inputs.

Modeling difficulties Meanwhile, we illustrated in Chapter 3 the main diffi-
culties that we encountered. These difficulties are accentuated at the level of the
substations because of the higher variability of the load curves. For instance, non-
stationarity has been emphasized and we have pointed several works to alter the
resulting problems. We have also identified Mondays in particular as a difficult
time period to forecast. We consider that this is due to their following Sundays
and the fact that we use in the modeling the delayed loads in a rather basic man-
ner. Although we have considered simple patches, like the interaction between the
past loads and the hour of the week, we believe that a dedicated modeling would
be worth studying. In particular, we have not considered so far the possibility of
having different hyperparameters for the different days of the week.
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Implementation We have tried to propose an algorithmic framework simulta-
neously for the national and the local load forecasting problems and we have not
insisted in the manuscript on the problems related to the implementation of the
models. Nevertheless, the dimensions of the optimization problems associated to
the different levels of aggregation are significantly different. It was ambitious to
use a single tool for the different aggregation levels because the most efficient algo-
rithmic tools depend on the size of the problems. Thus, we believe that while we
encompassed the different problems in a single algorithm, some decisions are sub-
optimal and it might be relevant to consider a specific algorithm for each problem
separately from the others.

Similarity structure In the end of Chapter 3 and in the beginning of Chapter 4,
we illustrated the similarities between the independent models learned for each sub-
station in order to motivate the multi-task framework discussed in Chapter 4. We
consider that the proposed illustrations are not entirely satisfying so far : how to
measure quantitatively the similarities between different models with distinct inputs
remains an open question. In particular, we could not convincingly decide which
substations should be coupled and which ones should be isolated, if relevant. Still,
the presented figures illustrate the presence of a common structure in the learned co-
efficients for the different substations, that is the task structure, and in the residuals
of the models, which corresponds to the output structure.

Task structure The clustering models and in particular the low-rank models,
both leveraging the task structure, allowed us to conclude that the number of param-
eters in the independent models of Chapter 3 is unnecessarily large. The results with
the different variants of these models also point out that even if some parameters are
shared by the models, a sufficient flexibility is necessary to obtain results compara-
ble with the state-of-the-art models. We believe that it is worthwhile pursuing the
research of flexible multi-task models, mixing shared and individual components.

Sparse Reduced Rank Regression The interest for the low-rank constraint
motivated the analysis in Chapter 5 of Sparse Reduced Rank Regression, which is
a non-convex and non-differentiable optimization problem with respect to a thin
matrix U . In particular, we proved the convergence to critical points under rea-
sonable assumptions of a subgradient-type algorithm, which correspond essentially
to a proximal gradient descent. We also proved local linear convergence for a cer-
tain range of regularization coefficients leveraging a Polyak-Łojasiewicz inequality
satisfied by the objective in a neighborhood of the global minima.

Output structure In the last section of Chapter 4, we have considered the output
structure and the possibility of coupling the models at different scales. While we
have not found a procedure to screen information sharing, we have tried to identify
the relevant level to couple the models. We obtained positive results by ensuring that
the forecasts are consistent at the districts levels, thereby improving the accuracy
of the local models in some districts.
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Selectively screen the sharing of information As a conclusion, the models and
the results in Section 4.6 support the interest of a multi-task approach. They provide
a guarantee for the TSO of having reasonable forecasts both at local and aggregated
levels. Although we spent a significant time trying to couple the 1751 models of all
the substations, the empirical results also indicate that coupling at a smaller scale
is not only less demanding computationally speaking, it also seems more relevant.
Eventually, we consider that the research of the most relevant levels for coupling
the local models and the development of a procedure to screen information sharing
are the next priorities. The analysis of the estimated clusters in Section 4.4 and
the low-rank matrices in Section 4.5 is a potential way to illustrate the underlying
structure and screen information sharing.
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Notations

Sets of numbers

• The set of natural non-negative integers is denoted N, from which we define
N∗ := N\{0} and N\{0, 1}.

• The set of natural integers is denoted Z, from which we define Z∗.
• The set of real numbers is denoted R, the non-zero real numbers R∗ and the

non-negative real numbers R+.
• The interval between two numbers x ≤ y is denoted [x, y].
• The set of integers between p ∈ Z and q ∈ Z with p ≤ q is denoted [[p, q]].
• The set of equivalence classes of numbers modulo 1 is denoted with the torus
R/Z.

Variables

• Scalar observations and coefficients are written with a normal font e.g. b, x, y.
• Random scalar variables are written with a sans-serif font e.g. x, y.
• Vector of observations and coefficients are written in bold e.g. b,x,y.
• Random vectors are written with a sans-serif font in bold e.g. x, y.
• The i-th element of a vector b is denoted bi, unless explicitly stated otherwise.
• Matrices of observations and coefficients are capitalized and bold e.g.
B,X,Y .

• The i-th row of a matrix B is denoted bi, unless explicitly stated otherwise.
• The j-th column of a matrix B is denoted b(j).
• The element in the i-th row and j-th column of a matrix B is denoted bji .
• Tensors of observations and coefficients are capitalized e.g. X .
• Given two vectors a ∈ Rp and b ∈ Rq, the element in the i-th row and j-th

column of the matrix a⊗ b ∈ Rp,q is aibj.
• Given s ∈ Rp, diag(s1, . . . , sp) ∈ Rp,p is a diagonal matrix with elements
s1, . . . , sp on the diagonal.

• Given a vector ` ∈ Rn, the average of its elements is denoted ¯̀.
• Given K ∈ N∗, the constant vector denoted 1K contains only 1s.
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Power sets

• The set of real-valued vector of size p is denoted Rp.

• The set of real-valued matrices of size (p, q) is denoted Rp,q.

• The set of real-valued tensors of size (p, q, r) is denoted Rp,q,r.

• Given two sets A and B, the set of functions from A to B is denoted BA, thus
the set of real-valued functions defined in R is denoted RR.

• A sequence of p ∈ N∗ real-valued functions defined in R is denoted (RR)p.

• An array of p× q real-valued functions defined in R is denoted (RR)p,q.

• An array with size (a, b) of elements included in {0, 1} is denoted {0, 1}a,b.

Attributes

• The rank of a matrix M is denoted rank(M).

• The transpose of a matrix M is denoted MT .

• The cardinal of a set S is denoted |S|.
• The positive part of a number x is denoted (x)+ := max(x, 0).

• The factorial of a non-negative number n ∈ N is denoted n!.

• The binomial coefficient indexed by k ≤ n is denoted
(
n
k

)
.

Norms

• The 2-norm of a vector b is denoted ‖b‖2.

• The Frobenius norm of a matrix M is denoted ‖M‖F .
• The Frobenius scalar product between vector or matrices is denoted 〈 · , · 〉.
• The trace-norm of a matrix M is denoted ‖M‖∗, it is the sum of its singular

values.
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Data cleansing procedure

B.1 Detection of anomalies
In this section, we highlight the fact that the database contains a significant

number of irrelevant values. We also present ad hoc tools to detect these anomalies.
These irrelevant values can be due to errors in measurements, errors in the correction
procedure of Section 2.1 or modifications of the network configuration.

Errors in measurements There are three types of errors in the database that
are particularly easy to detect : the Not a number values, the negative values and
the zero or very close to zero values. The Not a number values and the zero val-
ues probably correspond to errors in measurements while the negative values may
follow from an overestimation of the local renewable production in the procedure
of Section 2.1. The distribution of the number of anomalous values is presented in
Figure B.1.
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FIGURE B.1: Number of anomalous values in the database
Repartition of the anomalous values among the substations. For instance,
200 substations have at least 300 anomalous values.
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Load reports and anomalies There are in the database inconsistencies that are
more difficult to detect. Load reports for instance, correspond to the transfer of a
fraction of the load of one substation on another substation. This mechanism leads
to load curves like in Figure B.2. There are other anomalies in the database that we
cannot, for sure, attribute to load reports. However, the tools that we use to detect
them are the same.
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FIGURE B.2: Illustration of a load report
Average load per day over one year to illustrate a load report at one of
the substation in the database. A fraction of the load of the substation is
reported on other substations from August to November, thus leading to
the jumps and the decrease of the load during this period.

Detection with trimmed means In order to detect anomalies in the database,
we first use trimmed means. Given an observation instant i and a measurement of
the load `i at a substation whose mean is denoted ¯̀, we extract from the database the
loads {`i+24j}j=−14,...,14 at the same hour of the day during the preceding two weeks
and the following two weeks. From this set, we remove the maximum and minimum
values and compute the mean µi of the remaining samples. Given a threshold τ =

¯̀

10
,

the observation instant i is classified as an error if |`i − µi| > τ . The choice of the
threshold and the 1 month long window have not been optimized.

Detection with middle-term models Another trick to detect anomalies relies
on the observation of the residuals with a load forecasting model that is only based
on calendar and weather information and does not include the recent loads. Such
models are called middle-term models and are detailed in Section 2.5.1.

Empirically, we observed that large residuals at a given observation instant usu-
ally correspond to a jump of the load time series. This procedure is not automatic
but still allowed us to manually identify substations with irregularities.
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Altogether, about 800 substations present notable anomalies. A large part of
them are corrected as explained in Section B.2

B.2 Correction of anomalous values
After detecting the irrelevant values with the procedure described in Section B.1,

we consider two possibilities : either modifying these values to make the load curves
more consistent or squarely remove the concerned substation from the database.

To propose a correction, when an irrelevant value is detected, we could resort to
the trimmed mean presented in Section B.1. However, the corrupted data are often
consecutive and occur on periods of several days or even weeks, which makes the
trimmed mean an irrelevant substitute. Instead, we take advantage of the following
observations : Given a set K0 of substations in the database where no irrelevant value
was detected, and a substation κ∗ with an irrelevant value at the observation instant
i ∈ N, a remarkably accurate way to forecast the load `κ∗i at the substation κ∗ and
instant i, is to regress it on the loads (`κi )κ=1,...,K,κ6=κ∗ at the other substations and
the same instant i. Of course, this method cannot be applied for load forecasting
because it requires the oracles (`κi )κ=1,...,K,κ6=κ∗ but we can use it to correct the
irrelevant values in the database, with a model estimated on a different time period.

In practice, we choose indeed forK0 the set of substations where no irrelevant value
was detected, there are about 1200 such substations and, given κ∗ a substation with
irrelevant values at observation instants I∗, we randomly partition the set of sane
observation instants instants into 2 subsets Itrain and Itest, respectively containing
80 % and 20 % of the sane observations. Then, we train a regression model with
the data in Itrain to predict the load at κ∗ with the loads at the substations in K0

and compute the coefficient of determination (presented in Section 2.7.1) on the test
set Itest. Given a threshold τ = 0.8, we keep the substation κ∗ in the database if
the coefficient of determination on Itest is above τ and modify the irrelevant values
with the trained models for observation instants in I∗. Otherwise, the substation is
eliminated from the database.

Obviously, keeping as many substations in the database with consistent values
would be ideal but, since our final objective is to study a multi-task forecasting
model, the irrelevant values at some substations can represent a significant hindrance
for this model. Therefore we allow ourselves, adopting a pragmatical approach, to
choose the second option. In practice, 10 to 15 % of the substations are thereby
discarded : the resulting database contains 1751 substations.

We do not pretend that these detection and correction mechanisms are optimal
but consider that they are sufficient to clean the database from significant errors. We
used random forests or regression models with a LASSO penalty for the correction
but did not work on the best hyperparameters. This requires further work.
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The design matrices

We described in Chapter 3 a general procedure to build a standard bivariate linear
model from a set of inputs. In the beginning we have a dataset containing different
categories of inputs as distinguished in Table 3.1 and target variables. To describe
a procedure as generic as possible, we assumed that all the inputs except for the
timestamp lie in the interval [0, 1] after affine transformations. We then proceeded
to the feature engineering of Section 3.1. These transformations are described here.

C.1 Restriction to [0, 1]

The timestamp The input corresponding to the timestamp is affinely trans-
formed so that the value of the first day in the dataset is 0 and the value of the
365th day is 1. If there are 5 years in the dataset, the maximum value after the
affine transformation is 5.

The indicators We used binary indicators for the Christmas period, the holidays,
and the hours between the sunrise and the sunset. These inputs are not transformed.

Continuous acyclic inputs The temperatures, the cloud covers and the past
loads are continuous acyclic inputs. Originally, they have different scales but they are
affinely transformed to lie in the interval [0, 1]. For instance, consider a temperature
measured at a given substation with extremal values in a training set Tmin and Tmax.
Then the following transformation is applied to this input so that it ends in [0, 1] :

T 7→ T − Tmin

Tmax − Tmin

. (C.1)

Similar transformations are used for the past loads and the cloud covers, both for
the training sets and the test sets.

Cyclic inputs The cyclic inputs are the day of the year and the hour of the week.
For instance, the hour of the week with values in [0, 167] is transformed with

x 7→ x

168
. (C.2)
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The extremal values after this transformation are 0 and 167
168

. We can therefore con-
sider that both ends of the intervals [0, 1] coincide for this cyclic variable. Similarly,
the day of the year is transformed with

x 7→ x

366
. (C.3)

We consider that no specific treatment is needed for leap years as the effect should
be marginal.

C.2 Centering and normalization
Feature engineering After the inputs have been affinely transformed as de-
scribed in Section C.1, we build the covariates with the feature engineering presented
in Section 3.1.1 for the univariate features and in Section 3.1.2 for the bivariate fea-
tures. This procedure leads for each observation to a vector of covariates

x :=
(
1, [φd(ξd)]d∈U , [Φd,e(ξd, ξe)](d,e)∈B

)
∈ Rp, (C.4)

that is obtained by concatenating all the covariates built with the features from the
inputs (ξ1, . . . , ξD) ∈ RD.

The design matrix is then obtained by concatenating this covariate vector for
the different observations as described in Section 3.3. However, before proceeding to
the minimization of the different problems considered in this manuscript, we center
and normalize each group of columns by computing for each group of covariates
φd(ξd) with d ∈ U or Φd,e(ξd, ξe) with (d, e) ∈ B, the variance and the mean of
the associated splines. There is only one variance and one mean computed for each
d ∈ U or (d, e) ∈ B.
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Implementation of GAM benchmarks

In order to ensure the reproducibility of the comparison between our models and
the GAM benchmarks in Section 3.5, we detail in this section the implementation
that we have used for the GAM. Because the available information is slightly different
from the national setting considered by Pierrot and Goude [2011] and the local
setting considered by Goude et al. [2013], we provide here the complete formulas
used in R with the MGCV library presented in Section 2.9.4.

National GAM The formula used in R to compute the numerical performances
of the GAM proposed by Pierrot and Goude [2011] at the national level is :

ŷ ∼
7∑

d=1

1weekday=d

+ s(T0) + s(T0
924) + s(T̄

0
924) + s(

¯
T0

924) + s(T0
948)

+ s(c0, k = 8) + t + s(d) + s(d, by = 1week-end)

+
7∑

d=1

s(`924, by = 1weekday=d). (D.1)

We recall that there is one model for each of the 24 hours of the day and we refer
the reader to Wood and Wood [2015] for details on these formulas.

Local GAM The formula used to compute the numerical performances of the
independent GAM proposed by Goude et al. [2013] at the level of the substations
is :

ŷ ∼
7∑

d=1

1weekday=d

+
2∑

s=1

[s(Ts) + s(Ts924) + s(Ts948) + s(T̃
s

999)]

+ 1hld + s(d) + s(`924). (D.2)

where s = 1, 2 designates the 2 geographically closest weather station to the consid-
ered substation and T̃

s

999 is the exponential smoothing of the temperature proposed
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by Goude et al. [2013]. We recall that there is one model for each of the 24 hours of
the day. Again, we refer the reader to Wood and Wood [2015] for details on these
formulas.
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Implementation details

Except for the GAM models that is based on the MGCV library in R, all our
models were implemented in Python and rely heavily on the NumPy Library.

The Scipy.sparse library Large matrices were stored using the sparse formats
proposed in the SciPy Library. However, no acceleration was observed when per-
forming computations with this library, it was mainly to reduce the use of the
Random Access Memory (RAM). We believe that the absence of an acceleration is
due to the relatively small size of the matrices that we consider and the fact that
they are not sparse enough for the offset caused by the use of the sparse library to
be neglected.

Speedup with a collective optimization A significant amount of time was
devoted to accelerating the computations. For instance, for the minimization of
Problem (3.25) where the models for each substation are learned independently, we
have observed that it is faster to proceed to a single minimization collectively for all
the substations at once, instead of solving sequentially the problems for the different
substations.

We believe that this is due to the relatively small dimensions of the matrices
that we consider and to the fact that the basic rules to estimate the computational
complexity of an algorithm do not apply with such small matrices because the times
for reading and writing cannot be neglected. Thereby, we enjoy an acceleration of
the computations by collectively solving Problem (3.25) with the tools provided by
the NumPy library.

This decision raises questions concerning the stopping criteria and when a line
search is used, as described in Chapter 5. More precisely, we had to decide wether
those quantities should be the same for all the substations. Not having observed
significant differences, we do not detail these questions.

Optimization algorithms We have considered two different possible algorithms
for the minimization problems presented in this manuscript. In most cases, the
problems that we consider are twice continuously differentiable. It is in particular
the case when Ridge or Smoothing Splines penalties are used. We have consequently
leveraged the speed of the quasi-Newton method of Broyden, Fletcher, Goldfarb, and
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Shanno (L-BFGS) [Liu and Nocedal, 1989; Zhu et al., 1997] implemented in the
SciPy library [Jones et al., 2001].

However, we have considered multiple times variable selection procedures, in par-
ticular in Chapter 5 with non-differentiable penalties like LASSO or group-LASSO.
In this case, we have implemented in Python a Block-Coordinate Descent (BCD)
algorithm with a line search and an active set procedure. The optimization is slower
with this first-order descent algorithm.
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Additional Figures and Tables

F.1 Additional Figures and Tables for Chapter 2

F.1.1 Weather information

Weights (%)
Weather stations

Abbeville 1.0
Bale-Mulhouse 2.0
Bordeaux 4.0
Boulogne-Sur-Mer 1.0
Bourg-Saint-Maurice 2.75
Bourges 4.2
Brest-Guipavas 4.2
Caen 2.5
Clermont-Ferrand 2.75
Dijon 1.0
Le Luc 1.2
Lille 3.0
Limoges-Bellegarde 3.2
Lyon-Satolas 5.5
Marignane 2.4
Montpellier 1.6
Nancy-Essey 3.0

Weights (%)
Weather stations

Nantes 4.2
Nevers 1.5
Nice 3.6
Nimes-Courbessac 2.4
Orange 1.2
Paris-Montsouris 11.25
Paris-Orly 0.0
Perpignan 1.6
Reims 0.0
Rennes 4.2
Saint-Auban 1.2
Strasbourg 1.0
Tarbes-Ossuns 4.0
Toulouse-Blagnac 1.6
Tours 4.2
Trappes 11.25
Troyes 1.5

TABLE F.1: Weights of the weather stations
Weights associated to the different weather stations for the national load
forecasting problem in the historical model [RTE, 2011].
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FIGURE F.1: Box plots of the cloud cover index
Box plots of the weighted average cloud cover for each month in the dataset.
The box extends from the lower to upper quartile values of the data, with a
line at the median. The whiskers extends from the 1st to the 99th percentiles.
Points outside these bounds are plotted individually.
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F.1.2 Conditional distributions of the national load

FIGURE F.2: Load conditioned on the hour of the day
Empirical distribution of the national load conditionally on the hour of the
day .

FIGURE F.3: Load conditioned on the hour of the week
Empirical distribution of the national load conditionally on the hour of the
week. The variations within a day visible in Figure F.2 cannot be seen here
because the window size used with kernel density estimation is too large in
this graph.
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FIGURE F.4: Load conditioned on the day of the year
Empirical distribution of the national load conditionally on the day of the
year.

FIGURE F.5: Load conditioned on the averaged temperature
Empirical distribution of the national load conditionally on the value of the
average temperature.
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FIGURE F.6: Load conditioned on the cloud cover index
Empirical distribution of the load conditionally on the value of the average
cloud cover index.
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F.1.3 Notable bivariate conditional expectations

FIGURE F.7: Load conditioned on hours and temperatures
Expectation of the nationally aggregated load conditioned on the hour of the
week and the average temperature. Blank parts correspond to low-density
regions of the input space.

FIGURE F.8: Load conditioned on temperatures and days
Expectation of the nationally aggregated load conditioned on the average
temperature and the day of the year.
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FIGURE F.9: Load conditioned on hours and days of the year
Expectation of the nationally aggregated load conditioned on the hour of
the day and the day of the year.

FIGURE F.10: Load conditioned on hours and temperatures
Expectation of the nationally aggregated load conditioned on the hour of
the day and the average temperature.
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FIGURE F.11: Load conditioned on the hour and the cloud cover
Expectation of the nationally aggregated load conditioned on the hour of
the day and the average cloud cover index.

FIGURE F.12: Load conditioned on hours and cloud covers
Expectation of the nationally aggregated load conditioned on the hour of
the week and the average cloud cover index. The blank parts correspond to
low density regions.
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FIGURE F.13: Load conditioned on days and the cloud cover
Expectation of the nationally aggregated load conditioned on the average
cloud cover index and the day of the year.

FIGURE F.14: Load conditioned on weather conditions
Expectation of the nationally aggregated load conditioned on the average
temperature and the average cloud cover index.
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F.1.4 Erratic local loads

FIGURE F.15: Correlations between the substations
Pairwise correlations of the load of the different substations, computed with
the 5-year-long dataset.
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FIGURE F.16: Correlation between the detrended substations
Correlation of the loads at the different substations after an estimate of
the load for each day of the year and hour of the week is subtracted. The
estimate is obtained with a kernel regression on the observations.
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FIGURE F.17: Local loads conditioned on the day of the year
Empirical expectations of the normalized load at 4 different substations con-
ditioned on the day of the year. The load in Figure F.17a is rather similar to
the national load presented in Figure 2.11, the 3 others are quite different.
There is a relatively larger reduction of the load during the summer in Fig-
ure F.17c. On the contrary, Figure F.17b and Figure F.17d that correspond
to substations in the Alps and near the French Riviera present a substantial
increase of the load during the vacation periods.
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FIGURE F.18: Local loads conditioned on the hour of the day
Quantiles over the substations of the expectations conditioned on the hour
of the day of the centered and normalized loads.
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FIGURE F.19: Local loads conditioned on the temperature
Quantiles over the substations of the expectations conditioned on the tem-
perature of the centered normalized loads.
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FIGURE F.20: Local loads conditioned on the cloud cover
Quantiles over the substations of the expectations conditioned on the cloud
covers of the centered normalized loads.
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FIGURE F.21: Quantiles of the smoothed local loads smoothed
Quantiles over the substations of the centered normalized loads smoothed
over the 5 years in the database.
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FIGURE F.22: Local loads conditioned on the day of the year
Quantiles over the substations of the expectations conditioned on the day
of the year of the centered normalized loads. The vertical lines separate the
different months.
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F.2 Additional Figures and Tables for Chapter 3

F.2.1 Parametrization for the substations

Category Name Symbol

Date
and
time

cyclic hour of the week h
day of the year d

indicators holidays 1hld

days before a holiday 1hld−

days after a holiday 1hld+

Christmas period 1xmas

Sun is up 1sun

absolute time timestamp t

Weather
acyclic temperatures Ts

δ hours-delayed temperatures Ts9δ
maximum over a δ hours window T̄

s
9δ

minimum over a δ hours window
¯
Ts9δ

cloud covers cs

Past loads acyclic δ hours-delayed load `9δ

TABLE F.2: Inputs to the short-term load forecasting models
There are 2 copies of the weather-related inputs corresponding to the 2
closest weather station and one copy of the past information for each δ ∈
{24, 48}.

Name Symbol Parametrization
hour of the week h 168 knots
day of the year d 32 knots
Christmas period 1xmas indicator
timestamp t linear function
temperatures Ts 9 knots
δh delayed temperatures Ts9δ 9 knots
last δh maxima T̄

s
9δ 9 knots

last δh minima
¯
Ts9δ 9 knots

δh-delayed load `9δ 3 knots

TABLE F.3: Univariate features for the local forecasts
Set U of univariate features with the corresponding parametrization for the
short-term local load forecasting models.
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Names Symbols Parametrization
cloud covers and day/night (cs, 1sun) 3 knots & indicator
hour of the week and holiday (h, 1hld) 168 knots & indicator
hour of the week and day before a holiday (h, 1hld−) 168 knots & indicator
hour of the week and day after a holiday (h, 1hld+) 168 knots & indicator
hour of the week and δh-delayed load (h, `9δ) 42 knots & linear
hour of the week and day of the year (h, d) 168 & 16 knots
temperatures and day of the year (Ts, d) 9 & 16 knots

TABLE F.4: Bivariate features for the local forecasting models
Set B of bivariate features with the corresponding parametrization for the
short-term load forecasting models.
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F.2.2 Estimated univariate effects for the national model

FIGURE F.23: Estimated effect of the 48 h-delayed temperature
( top left ) Effect β0+f s6,948(Ts948) learned by the national short-term

model for the 48 hours-delayed weighted temperature de-
fined with Table F.1.

( bottom left ) Norm of the conditional residuals Etrain[|`− ˆ̀||Ts948] and
Etest[|`− ˆ̀||Ts948].

( top right ) Conditional loads Etrain[`|Ts948] and Etest[`|Ts948] with the
conditional forecasts Etrain[ˆ̀|Ts948] and Etest[ˆ̀|Ts948].

( bottom left ) Density of the data in the training and the test sets.
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FIGURE F.24: Estimated effect of the 24 h max temperature
( top left ) Effect β0 +f s7,9δ(T̄

s
924) learned by the national short-term

model for the maximum over 24 hours of the weighted
temperature defined with Table F.1.

( bottom left ) Norm of the conditional residuals Etrain[|`− ˆ̀||T̄s924] and
Etest[|`− ˆ̀||T̄s924].

( top right ) Conditional loads Etrain[`|T̄s924] and Etest[`|T̄s924] with the
conditional forecasts Etrain[ˆ̀|T̄s924] and Etest[ˆ̀|T̄s924].

( bottom left ) Density of the data in the training and the test sets.
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FIGURE F.25: Estimated effect of the 48 h max temperature
( top left ) Effect β0 +f s7,9δ(T̄

s
948) learned by the national short-term

model for the maximum over 48 hours of the weighted
temperature defined with Table F.1.

( bottom left ) Norm of the conditional residuals Etrain[|`− ˆ̀||T̄s948] and
Etest[|`− ˆ̀||T̄s948].

( top right ) Conditional loads Etrain[`|T̄s948] and Etest[`|T̄s948] with the
conditional forecasts Etrain[ˆ̀|T̄s948] and Etest[ˆ̀|T̄s948].

( bottom left ) Density of the data in the training and the test sets.
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FIGURE F.26: Estimated effect of the 24 h min temperature
( top left ) Effect β0+f s8,924(

¯
Ts924) learned by the national short-term

model for the minimum over 24 hours of the weighted
temperature defined with Table F.1.

( bottom left ) Norm of the conditional residuals Etrain[|`− ˆ̀||
¯
Ts924] and

Etest[|`− ˆ̀||
¯
Ts924].

( top right ) Conditional loads Etrain[`|
¯
Ts924] and Etest[`|

¯
Ts924] with the

conditional forecasts Etrain[ˆ̀|
¯
Ts924] and Etest[ˆ̀|

¯
Ts924].

( bottom left ) Density of the data in the training and the test sets.
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FIGURE F.27: Estimated effect of the 48 h min temperature
( top left ) Effect β0+f s8,948(

¯
Ts948) learned by the national short-term

model for the minimum over 48 hours of the weighted
temperature defined with Table F.1.

( bottom left ) Norm of the conditional residuals Etrain[|`− ˆ̀||
¯
Ts948] and

Etest[|`− ˆ̀||
¯
Ts948].

( top right ) Conditional loads Etrain[`|
¯
Ts948] and Etest[`|

¯
Ts948] with the

conditional forecasts Etrain[ˆ̀|
¯
Ts948] and Etest[ˆ̀|

¯
Ts948].

( bottom left ) Density of the data in the training and the test sets.
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FIGURE F.28: Estimated effect of the 48 h-delayed load
( top left ) Effect β0+f15,948(`948) learned by the national short-term

model for the 48 hours-delayed load.
( bottom left ) Norm of the conditional residuals Etrain[|` − ˆ̀||`948] and

Etest[|`− ˆ̀||`948].
( top right ) Conditional loads Etrain[`|`948] and Etest[`|`948] with the

conditional forecasts Etrain[ˆ̀|`948] and Etest[ˆ̀|`948].
( bottom left ) Density of the data in the training and the test sets.
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F.2.3 Estimated bivariate effects for the national model

FIGURE F.29: Interaction between past loads and week hours
( top left ) Interaction g16,948(h, `948) of the past load and the hour

of the week in the short-term national model.
( bottom left ) Estimated marginal density µtest(h, `948) of the inputs in

the test set.
( top right ) Average residuals in the test set Etest[ |`− ˆ̀| |h, `948].

206



Chapter F

10 20 30 40 50 60
ℓ948 (GWh)

0

20

40

60

80

100

120

140

160

h
(h
ou

rs
)

32

52

(G
W

h
)

FIGURE F.30: Total effect of the 48 h-delayed load
Sum of the effect related to the 48 hours-delayed loads and the hour of the
week β0 + f3(h) + f15,948(`948) + g16,948(h, `948) in the short-term national
model.
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FIGURE F.31: Interaction between hours and coming holidays
(1st row) Interaction β0 + 1hld−h13(h) between the indicator of the days

before a holiday and the hour of the week.
(2nd row) Target loads Etrain[`|1hld− , h] and Etest[`|1hld− , h] with the fore-

casts Etrain[ˆ̀|1hld− , h] and Etest[ˆ̀|1hld− , h].
(3rd row) Marginal norm of the residuals Etrain[|` − ˆ̀||1hld− , h] and

Etest[|`− ˆ̀||1hld− , h].
The marginal loads, forecasts and residuals are incomplete in the column
1hld− = 1 because there was no holiday on Wednesdays and Saturdays in
2016.
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FIGURE F.32: Interaction between week hours and past holidays
(1st row) Interaction β0 + 1hld+h14(h) between the indicator of the days

after a holiday and the hour of the week.
(2nd row) Target loads Etrain[`|1hld+ , h] and Etest[`|1hld+ , h] with the fore-

casts Etrain[ˆ̀|1hld+ , h] and Etest[ˆ̀|1hld+ , h].
(3rd row) Marginal norm of the residuals Etrain[ |` − ˆ̀| |1hld+ , h] and

Etest[|`− ˆ̀||1hld+ , h].
The marginal loads, forecasts and residuals are incomplete in the column
1hld+ = 1 because there was no holiday on Wednesdays and Saturdays in
2016. Our interpretation for the upper right plot is that a day following
a holiday has to compensate for the decrease of the load that impacts the
effect of the past load.
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FIGURE F.33: Interaction between year days and temperatures
( top left ) Interaction gs10(Ts, d) between the past load and the hour

of the week in the short-term national model.
( bottom left ) Estimated marginal density µtest(T

s, d) of the inputs in
the test set.

( top right ) Average residuals in the test set Etest[ |y − ŷ| |Ts, d].
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FIGURE F.34: Interaction between hours and days of the year
( left ) Interaction g9(h, d) between the hour of the week h and the

day of the year d in the short-term national model.
( right ) Average residuals in the test set Etest[ |y − ŷ| |h, d].
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F.2.4 Quantiles of the local univariate effects
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FIGURE F.35: Local effects of the day of the year
Quantiles of the univariate effect associated to the effect of the day of the
year at each of the 32 knots. Since the substations have different amplitudes,
the coefficients correspond to the forecasting models of the normalized loads.
The regularization hyperparameter for the day of the year equals 100. It
has been selected empirically and is quite large. The corresponding effects
in the local models are consequently very limited.
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FIGURE F.36: Local effects of the 24 h max temperatures
Quantiles of the univariate effects associated to the maximum temperatures
over the last 24 hours at each of the 9 knots. Since the substations have
different amplitudes, the coefficients correspond to the forecasting models
of the normalized loads.
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FIGURE F.37: Local effects of the 24 h min temperatures
Quantiles of the univariate effect associated to the minimum temperatures
over the last 24 hours at each of the 9 knots. Since the substations have
different amplitudes, the coefficients correspond to the forecasting models
of the normalized loads.
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FIGURE F.38: Local effects of the 48 h-delayed temperatures
Quantiles of the univariate effects associated to the 48 hours-delayed tem-
peratures at each of the 9 knots. Since the substations have different ampli-
tudes, the coefficients correspond to the forecasting model of the normalized
loads.
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FIGURE F.39: Local effects of the 48 h max temperatures
Quantiles of the univariate effect associated to the maximum temperatures
over the last 48 hours at each of the 9 knots. Since the substations have
different amplitudes, the coefficients correspond to the forecasting models
of the normalized loads.
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FIGURE F.40: Local effects of the 48 h min temperatures
Quantiles of the univariate effect associated to the minimum temperatures
over the last 48 hours at each of the 9 knots. Since the substations have
different amplitudes, the coefficients correspond to the forecasting models
of the normalized loads.
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FIGURE F.41: Local effects of the 48 hours-delayed loads
Quantiles of the univariate effects associated to the 48 hours-delayed load
at each of the 3 knots. Since the substations have different amplitudes, the
coefficients correspond to the forecasting models of the normalized loads.
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FIGURE F.42: Interactions of 48 h-delayed loads with hours
In the local model, the features for the past loads used to build the inter-
action with the hours of the week consist of a single linear function : there
exists a function h16,948 such that g16,948(`948, h) = `948h16,948(h). The quan-
tiles represented on the graph are the quantiles over the substations of the
function h16,948(h).
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FIGURE F.43: Local effects of coming holidays
Quantiles of the local effects h13(h) of the coming holidays for the different
hours of the week.
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FIGURE F.44: Local effects of the holidays
Quantiles of the local effects h12(h) of the holidays for the different hours
of the week.
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FIGURE F.45: Local effects of past holidays
Quantiles of the local effects h14(h) of the past holidays for the different
hours of the week.
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FIGURE F.46: Local effects of the cloud cover
Quantiles of the local effects hs11(cs) during the day of the cloud cover.
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FIGURE F.47: Interactions of hours of the week with year days
Standard deviation over the substations of the interaction between the hour
of the week and the day of the year.
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FIGURE F.48: Interactions between temperatures and year days
Standard deviation over the substations of the interaction between the tem-
perature and the day of the year.
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F.2.5 Evolution of the regularized univariate effects
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FIGURE F.49: Regularized effect of the hour of the week
Evolution of the univariate effect of the hour of the week in the national
model, for different values of the regularization hyperparameter associated
to the Ridge penalty. Empirically, we selected 10−8.
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F.2.6 Regularization of the national model
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FIGURE F.50: Regularization of the 24 h-delayed temperature
Performances with the national model on a test set of different number
of knots for the 24 hours-delayed temperature univariate effect and two
possible regularizations : Ridge and the ΩS2 regularization.
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FIGURE F.51: Regularization of the past max temperatures
Performances with the national model on a test set of different number
of knots for the univariate effect of the maximum temperatures and two
possible regularizations : Ridge and the ΩS2 regularization.
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FIGURE F.52: Regularization of the past min temperatures
Performances with the national model on a test set of different number
of knots for the univariate effect of the minimum temperatures and two
possible regularizations : Ridge and the ΩS2 regularization.
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FIGURE F.53: Regularization of the effect of the timestamp
Performances with the national model on a test set of different parametriza-
tion of the timestamp univariate effect and with a Ridge regularization.
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FIGURE F.54: Regularization of the holidays
Performances with the national model on a test set of different number of
knots for the interactions between the indicator of holidays and the hour of
the week with two possible regularizations : Ridge and the ΩS2 regulariza-
tion.
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FIGURE F.55: Regularization of the coming holidays
Performances with the national model on a test set of different number of
knots for the interactions between the indicator of days before a holiday
and the hour of the week with two possible regularizations : Ridge and the
ΩS2 regularization.
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FIGURE F.56: Regularization of the past holidays
Performances with the national model on a test set of different number of
knots for the interactions between the indicator of days before a holiday
and the hour of the week with two possible regularizations : Ridge and the
ΩS2 regularization.
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FIGURE F.57: Regularization of the cloud cover during the day
Performances with the national model on a test set of different number of
knots for the interactions between the indicator of the daylight and the cloud
cover with two possible regularizations : Ridge and the ΩS2 regularization.
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FIGURE F.58: Regularized past loads and hours of the week
Performances with the national model on a test set of different number of
knots for the interactions between the past loads and the hour of the week
with two possible regularizations : Ridge and the ΩS2 regularization.
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FIGURE F.59: Regularized temperatures and days of the year
Performances with the national model on a test set of different number of
knots for the interactions between the temperature and the day of the year
with two possible regularizations : Ridge and the ΩS2 regularization.
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FIGURE F.60: Regularized hours and days of the year
Performances with the national model on a test set of different number of
knots for the interactions between the hour of the week and the day of the
year with two possible regularizations : Ridge and the ΩS2 regularization.
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F.2.7 Regularization of the local models
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FIGURE F.61: Regularization of the effects of past temperatures
Performances with the local models on a test set of different number of
knots for the univariate effect of the 24 hours-delayed temperature and two
possible regularizations : Ridge and the ΩS2 regularization.
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FIGURE F.62: Regularization of the local past loads
Performances with the local models on a test set of different number of
knots for the univariate effect of the 24 hours-delayed load and two possible
regularizations : Ridge and the ΩS2 regularization.
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FIGURE F.63: Regularization of local past loads and hours
Performances with the local models on a test set of different number of
knots for the interactions between the past loads and the hour of the week
with two possible regularizations : Ridge and the ΩS2 regularization.
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FIGURE F.64: Regularization of past temperatures and days
Performances with the local models on a test set of different number of
knots for the interactions between the temperature and the day of the year
with two possible regularizations : Ridge and the ΩS2 regularization.
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FIGURE F.65: Regularization of the hours and the year days
Performances with the local models on a test set of different number of
knots for the interactions between the hour of the week and the day of the
year with two possible regularizations : Ridge and the ΩS2 regularization.
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F.2.8 Analysis of the temperatures
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FIGURE F.66: Correlations of the 32 weather stations
Correlations between the columns of the matrix T̃ , obtained by centering
the rows of the original temperature matrix T ∈ Rn,W containing the tem-
peratures for the n observations during the 5 years in the dataset at the W
different weather stations. The weather stations are sorted from North to
South.

230



Chapter F

0 10 20 30
r

0.0

0.2

0.4

0.6

0.8

1.0 ‖T̃−T̃ (r)‖2

F

‖T̃‖2

F

FIGURE F.67: Low-rank approximation of the temperatures
Norm of the residual matrix after subtracting the best rank-r approxima-
tion of the centered temperatures matrix T . The matrix T̃ is obtained by
centering the rows of the original temperature matrix T ∈ Rn,W containing
the temperatures for the 5 years in the dataset at the W different weather
stations. For r ∈ N, the matrix T̃ (r) is the closest rank-r approximation
of T̃ in terms of the Frobenius norm (See Figure 2.22 for supplementary
details).
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F.3 Additional Figures and Tables for Chapter 4
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FIGURE F.68: Clustering of the coefficient vectors
The coefficient vectors estimated independently for the forecasting of the
normalized loads of the different substations are clustered with a Kmeans
algorithm.
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FIGURE F.69: Singular values of the prediction matrices
Norm of the residuals after subtracting the best rank-r approximation of the
prediction matrices whose columns have been centered, from the common
covariates, the individual covariates, and the sum of both.
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Appendix to Chapter 5

G.1 Summary of results
We summarize the main steps of our paper, in red for RRR and in cyan for SRRR.

Corollary 13/14 : Corollary 16/17 : Corollary 18 :
Strong convexity (proximal) Local linear
on cones of f/F λ ⇒ PŁ inequality ⇒ convergence
for RRR/SRRR with Theorem 15

We also summarize the different results obtained.

Results RRR (λ = 0) SRRR (0 < λ)

Local minima are
global minima

3
Lemma 10 7

Algorithm cst_st ls cst_st ls

Global convergence
to a critical point

3
Theorem 48

3
Theorem 48

(∗)
Theorem 51

(∗)
Theorem 51

Local linear
convergence

3
Corollary 18

3
Corollary 18

3(λ < λ̄)
Corollary 18

3(λ < λ̄)
Corollary 18
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• cst_st : Algorithm 1 with fixed step size t ≤ 1
LX

.

• ls : Algorithm 1 with line search.

• (∗) : All limit points of the sequence are critical points. If these limit points
are local minima and if for any S ⊂ {1, . . . , p} of cardinality at least r, the
matrix XT

S Y is full-rank, then Algorithm 1 converges to a local minimum (see
Appendix G.6.2).

G.2 Additional definitions and classical results
In Sections G.2.1, G.2.2 and G.2.3, we give a few definitions that are used through-

out the paper. We also recall classical results in Fact 20 and Fact 23. In Sec-
tion G.2.4, we present the limiting subdifferential and a result for subanalytic func-
tions in Lemma 28.

G.2.1 Strong convexity

Definition 19. Given d > 0, µ > 0 and a convex set V ⊂ Rd, a function f : x ∈
V 7→ f(x) is µ-strongly convex if :

for all x, y ∈ V, t ∈ [0, 1], f(tx+(1−t)y) ≤ tf(x)+(1−t)f(y)−µ
2
t(1−t) ‖y − x‖2 .

Fact 20. Given d > 0, µ > 0, a convex set V ⊂ Rd and a differentiable function
f : x ∈ V 7→ f(x), f is µ-strongly convex if and only if :

for all x, y ∈ V, f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖2 .

G.2.2 Smoothness and Lipschitz gradients

Definition 21. Given d > 0, L > 0 and a set V ⊂ Rd, we say that a differentiable
function f : x ∈ V 7→ f(x) has L-Lipschitz gradients in V if :

for all x, y ∈ V, ‖∇f(x)−∇f(y)‖ ≤ L ‖y − x‖ .

Definition 22. Given d > 0, L > 0 and a set V ⊂ Rd, we say that a function
f : x ∈ V 7→ f(x) is L-smooth in V if it is differentiable and such that :

for all x, y ∈ V, f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖2 .

Fact 23. If f has L-Lipschitz gradients and V is convex, then f is L-smooth. If f
is convex and L-smooth, then f has L-Lipschitz gradients.

G.2.3 Sublevel sets

Definition 24. Given a set X and a function f : x ∈ X 7→ f(x), a set V ⊂ X is
called a sublevel set of the function f if there is c ∈ R such that :

V = {x ∈ X , f(x) ≤ c} .
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G.2.4 Subdifferentials, graph continuity and the KŁ property

Definition 25. Given a real-valued extended function F : Rd 7→ R ∪ {∞}, let
dom F :=

{
x ∈ Rd | F (x) <∞

}

denote its domain. For each x ∈ dom F , the Fréchet subdifferential of F at x,
written ∂̂F (x), is the set of vectors v ∈ Rd which satisfy :

lim inf
y 6=x, y→x

1

‖y − x‖ [F (y)− F (x)− 〈v, y − x〉] ≥ 0.

When x /∈ dom F , we set ∂̂F (x) = ∅. Given x ∈ Rd, The limiting-subdifferential
∂F (x) is defined as :

∂F (x) :=
{
v ∈ Rd | ∃ xk → x, f(xk)→ f(x), vk ∈ ∂̂F (xk)→ v

}
,

dom ∂F :=
{
x ∈ Rd | ∂F (x) 6= ∅

}
and the graph of ∂F is defined as :

graph(∂F ) :=
{

(x, u) ∈ Rd × Rd | u ∈ ∂F (x)
}
.

Fact 26. [From Rockafellar and Wets, 2009] Let F : Rd 7→ R be a lower semi-
continuous function and consider a sequence {(xk, uk)}k≥0 ∈ graph(∂F )N such that
the sequence {(xk, uk, F (xk))}k≥0 converges to a point {(x, u, F (x))}. Then (x, u) ∈
graph(∂F ).

Definition 27. [From Attouch et al., 2013] The function F : Rp → R ∪ {∞} is
said to have the Kurdyka-Łojasiewicz property at x∗ ∈ dom ∂F if there exists η ∈
(0,+∞], a neighborhood U of x∗ and a continuous concave function ϕ : [0, η)→ R+

such that :

1. ϕ(0) = 0,

2. ϕ is C1 on (0, η) and continuous at 0,

3. for all s in (0, η), ϕ′(s) > 0,

4. for all x ∈ U ∩ {y | F (x∗) < F (y) < F (x∗) + η}, the Kurdyka-Łojasiewicz in-
equality holds

ϕ′(F (x)− F (x∗)) dist(0, ∂F (x)) ≥ 1.

Proper lower semi-continuous functions which satisfy the Kurdyka-Łojasiewicz in-
equality at each point of dom ∂F are called KŁ functions. Besides, KŁ with exponent
α means the KŁ property with a function ϕ : s 7→ cs1−α where c > 0. We denote
this property KŁ-α.

Lemma 28. [From Bolte et al., 2007] Let F : Rd → R ∪ {+∞} be a subanalytic
function with closed domain and assume that F |dom F is continuous. Then for any
x ∈ dom F , there exist a neighborhood V ⊂ Rd of x, an exponent θ ∈ [0, 1) and a
constant C > 0 such that for all y ∈ V, we have :

|F (y)− F (x)|θ ≤ Cdist(0, ∂F (y)).

Note that norms and in particular the Frobenius norm, the trace-norm and the
group-Lasso norm satisfy the KŁ property, so the functions that we consider in this
paper satisfy this property.
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G.2.5 Critical and KW-stationary points

Definition 29. We say that x ∈ Rd is a critical point of F if 0 ∈ ∂F (x) where
∂F (x) is defined in Definition 25.

Definition 30. Given a function F := f1 − f2 + λh where f1 is differentiable while
f2 and h are proper, lower semi-continuous and convex, we say that x ∈ Rd is a
KW-stationary point if there exist u(x) ∈ ∂f2(x) and v(x) ∈ ∂h(x) such that :

∇f1(x)− u(x) + v(x) = 0.

Remark 31. Note that the Definition 29 of critical points and the Definition 30 of
KW-stationary points coincide when the function f2 is differentiable.

G.3 The Orthogonal Procrustes Problem
Given a matrix M ∈ Rp,k with p ≥ k, we use at several points in the paper the

following results that were presented in the Proof of Lemma 6 in [Ge et al., 2017].

Fact 32. If M = MT
1 M2, then

max
V ∈Rp,k: V TV=Ik

〈M,V 〉 has the same set of optima as min
V ∈Rp,k: V TV=Ik

1

2
‖M2 −M1V ‖2

F .

Fact 33. The optimal value of the following orthogonal Procrustes problem is given
by :

max
V ∈Rp,k: V TV=Ik

〈M,V 〉 = ‖M‖∗ .

Fact 34. If R1ΣRT
2 is a complete singular value decomposition ofM where R1 ∈ Rp,p

is such that RT
1R1 = Ip, Σ ∈ Rp,k

+ has non-zero elements σ1 ≥ . . . ≥ σk ≥ 0 only on
the diagonal and R2 ∈ Rk,k is such that RT

2R2 = Ik, then an optimal solution of the
orthogonal Procrustes problem is given by

R1

[
Ik

0p−k,k

]
RT

2 ∈ argmax
V ∈Rp,k: V TV=Ik

〈M,V 〉.

Fact 35. With the same notations as in Fact 34, if M is full-rank then, although
R1 and R2 are not uniquely defined, the following Procrustes problem has a unique
solution :

argmax
V ∈Rp,k: V TV=Ik

〈M,V 〉 =

{
R1

[
Ik

0p−k,k

]
RT

2

}
.

Fact 36. If p = k then Ir ∈ argmaxV ∈Rp,p: V TV=Ip〈M,V 〉 if and only if M is positive-
semidefinite.

Proof. Fact 32 comes by seeing that for any V ∈ Rp,k such that V TV = Ik, we have :

1

2
‖M2 −M1V ‖2

F =
1

2
‖M2‖2

F +
1

2
‖M1V ‖2

F − 2〈M2,M1V 〉

=
1

2
‖M2‖2

F +
1

2
‖M1‖2

F − 2〈MT
1 M2, V 〉.
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To prove Fact 33 and Fact 34, let R1ΣRT
2 be a singular value decomposition

of M where R1 ∈ Rp,k is such that RT
1R1 = Ik, Σ ∈ Rk,k

+ has nonzero elements
σ1 ≥ . . . ≥ σk ≥ 0 only on the diagonal and R2 ∈ Rk,k is such that RT

2R2 = Ik.
Also, let R⊥1 ∈ Rp,p−k such that R :=

[
R1 R⊥1

]
satisfies RTR = Ip. Writing

M = R1ΣRT
2 and using the change of variables V = R1AR

T
2 +R⊥1 BR

T
2 , we have :

max
V ∈Rp,k: V TV=Ik

〈M,V 〉 (G.1)

= max
A∈Rk,k, B∈Rp−k,k:ATA+BTB=Ik

〈R1ΣRT
2 , R1AR

T
2 +R⊥1 BR

T
2 〉

= max
A∈Rp,p, B∈Rp−k,k:ATA+BTB=Ik

〈
[

Σ
0p−k,k

]
,

[
A
B

]
〉

= max
C∈Rp,k: CTC=Ik

〈
[

Σ
0p−k,k

]
, C〉.

Let C ∈ Rp,k such that CTC = Ik, we have :

〈
[

Σ
0p−k,k

]
, C〉 =

k∑

i=1

σiCi,i

≤
k∑

i=1

σi (G.2)

= ‖Σ‖∗
= ‖M‖∗ .

We have Inequality (G.2) since Σ has only nonnegative coefficients and the columns
of C have unit norm so Ci,i ≤ 1 for all 1 ≤ i ≤ k. Besides, Inequality (G.2) is attained

for C =

[
Ik

0p−k,k

]
which corresponds in Problem (G.1) to V = R1

[
Ik

0p−k,k

]
RT

2 . This

proves Fact 33 and Fact 34.

To prove Fact 35, that is to say that argmaxV ∈Rp,k: V TV=Ik
〈M,V 〉 is a singleton if

M is full-rank, it is sufficient to notice that Inequality (G.2) is strict if all the σi are
non-zero and Ci,i 6= 1 for some 1 ≤ i ≤ k.

To prove Fact 36, note that Ir ∈ argmaxV ∈Rp,p: V TV=Ip〈M,V 〉 implies tr(M) =
‖M‖∗ with Fact 33 and this is only true for positive-semidefinite matrices. Con-
versely, if M is positive-semidefinite, then by Fact 34, we have :

Ir ∈ argmax
V ∈Rp,p: V TV=Ip

〈M,V 〉.

G.4 The Forward-Backward Descent Algorithm 1
Given U ∈ Rp,r, we recall that we compute the forward direction for Algo-

rithm 1 with the gradient XTXU of U ′ 7→ 1
2
‖XU ′‖2

F and zU a subgradient of
U ′ 7→

∥∥Y TXU ′
∥∥
∗ whose computation is detailed in Appendix G.4.1.2. Setting with
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a slight abuse of notation ∇f(U) := XTXU − zU , then t and U+ are obtained with
Algorithm 2 such that the (LS) condition F̃ λ

t,U(U+) ≥ F λ(U+) is satisfied where :

U+ = argmin
U ′∈Rp,r

f(U) + 〈∇f(U), U ′ − U〉+
1

2t
‖U ′ − U‖2

F + λ ‖U ′‖1,2 . (G.3)

G.4.1 Subgradients for the descent direction

If we strictly applied the subgradient-type algorithm proposed by Khamaru and
Wainwright [2018] and computed a forward direction for Algorithm 1 with Fact 37,
we could only prove global convergence to a KW-stationary point. Instead, we
introduce in Appendix G.4.1.2 an additional condition on the subgradient that is
leveraged in Appendix G.6 to guarantee convergence to a critical point.

G.4.1.1 Subgradients of U 7→
∥∥Y TXU

∥∥
∗.

Thanks to Fact 33 and Fact 34, we can easily compute subgradients of f2 : U 7→∥∥Y TXU
∥∥
∗.

Fact 37. Let n, p ≥ 0, r ≤ min(n, p), X ∈ Rn,p, Y ∈ Rn,k, U ∈Rp,r and R1DR
T
2

be a singular value decomposition of Y TXU with R1 ∈ Rk,r, RT
1R1 = Ir, D ∈ Rr,r a

diagonal matrix with nonnegative coefficients, R2 ∈ Rr,r and RT
2R2 = Ir. We denote

V = R1R
T
2 ∈ Rk,r. For any U ′ ∈ Rp,r, we have :

∥∥Y TXU ′
∥∥
∗ ≥

∥∥Y TXU
∥∥
∗ + 〈XTY V, U ′ − U〉.

Therefore, XTY V is a subgradient of f2 : U ′ 7→
∥∥Y TXU ′

∥∥
∗ at U .

Proof. Let U ∈ Rp,r and V ∈ Rk,r be defined as in Fact 37. Since V TV =
R2R

T
1R1R

T
2 = Ir, we have by Fact 33 and Fact 34 :

∥∥Y TXU
∥∥
∗ = 〈V, Y TXU〉. (G.4)

By Fact 33, we also have for any U ′ ∈ Rp,r,
∥∥Y TXU ′

∥∥
∗ ≥ 〈V, Y

TXU ′〉. (G.5)

Combining Equation (G.4) and Equation (G.5), we obtain :
∥∥Y TXU ′

∥∥
∗ ≥

∥∥Y TXU
∥∥
∗ + 〈V, Y TX(U ′ − U)〉.

Remark 38. We could also obtain subgradients of f2 using Danskin’s Theorem [Dan-
skin, 1967] but the proposed analysis in the proof of Fact 37 seems more explicit.
Besides, the choice of a specific subgradient in Lemma 40 is pivotal for the global
convergence analysis in Appendix G.6, as explained in Remark 39.
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G.4.1.2 Computations of zU for Algorithm 1.

Here, we present how, given U ∈ Rp,r, the subgradient of f2 : U 7→
∥∥Y TXU

∥∥
∗

is built for Algorithm 1 and we do not assume necessarily that XTX is full-rank.
Therefore, we denote (XTX)

†
2 a square-root of the pseudo-inverse of XTX and,

PSQT the reduced singular value decomposition of (XTX)
†
2XTY . If the latter has

rank ` then P ∈ Rp,` and Q ∈ Rk,` have orthonormal columns and S ∈ R`,` is the
diagonal matrix with singular values s1 ≥ . . . ≥ s` > 0. We also denote M ∈ Rk,r a
matrix whose columns are orthonormal and belong to Im Y TX(XTX)

†
2 , we compute

this matrix only once at the beginning of Algorithm 1 with a Gram-Scmidt process.
When XTX is invertible, the computational cost is significantly reduced since we
then have Im Y TX(XTX)

†
2 = Im Y TX.

To compute zU for Algorithm 1 - given U ∈ Rp,r - we first compute a singular
value decomposition LDRT

2 of Y TXU with c = rank(Y TXU), L ∈ Rk,r, LTL = Ir,
D ∈ Rr,r a diagonal matrix with nonnegative coefficients, R2 ∈ Rr,r and RT

2R2 = Ir.
The computational cost is O(kr2) and we write :

L =
[
L>0 L0

]
, with L>0 ∈ Rk,c, L0 ∈ Rk,r−c,

D =

[
D>0 0c,r−c
0r−c,c 0r−c,r−c

]
, with D>0 ∈ Rc,c,

R2 =
[
R>0

2 R0
2

]
, with R>0

2 ∈ Rr,c, R0
2 ∈ Rr,r−c,

so that :

Y TXU = LDRT
2 =

[
L>0 L0

] [D>0 0c,r−c
0r−c,c 0r−c,r−c

] [
R>0,T

2

R0,T
2

]
.

Clearly, the columns of L>0 are in Im Y TX since D>0R>0
2 ∈ Rc,r is full-rank.

Then we apply the Gram-Schmidt process to the columns of the matrix :
[
L>0 M

]
∈ Rk,c+r,

starting from the first column ofM and until we obtain r−c new orthogonal vectors.
The computational cost is again O(kr2). Extracting these r−c vectors and denoting
L̄ ∈ Rk,r−c the matrix obtained by concatenation, we define R1 :=

[
L>0 L̄

]
∈ Rk,r

and

Y TXU = R1DR
T
2 =

[
L>0 L̄

] [ D>0 0c,r−c
0r − c, c 0r−c,r−c

] [
R>0,T

2

R0,T
2

]
.

Thus we obtain a singular value decomposition R1DR
T
2 of Y TXU with Im R1 ⊂

Im Y TX(XTX)
†
2 at a computational cost of O(kr2). Eventually, given U ∈ Rp,r, the

subgradient of U ′ 7→
∥∥Y TXU

∥∥
∗ at U that we choose for Algorithm 1 is :

zU = XTY R1R
T
2 . (G.6)

Remark 39. In this paper, the condition Im R1 ⊂ Im Y TX(XTX)
†
2 is only used

in Lemma 40 to guarantee that zU ∈ ∂(−f2)(U) where f2 : U ′ 7→
∥∥Y TXU ′

∥∥
∗. This

property is then leveraged to prove global convergence for RRR and SRRR of the
iterates produced by Algorithm 1 to a critical point in the sense of Definition 29. If
we do not impose this extra condition and compute a subgradient as in Fact 37, all

240



Chapter G

the results still hold except for the fact that we only guarantee global convergence to
a KW-stationary point in the sense of Definition 30. When XTX is invertible, we
have shown that the induced computations have the same complexity O(kr2) as the
computation of the SVD of Y TXU .

Lemma 40. Given U ∈ Rp,r let R1DR
T
2 be a singular value decomposition of Y TXU

with R1 ∈ Rk,r, RT
1R1 = Ir, Im R1 ⊂ Im Y TX(XTX)

†
2 , D ∈ Rr,r a diagonal

matrix with nonnegative coefficients, R2 ∈ Rr,r and RT
2R2 = Ir. The matrix −zU :=

−XTY R1R
T
2 belongs to the limiting subdifferential presented in Definition 25 of the

concave function U ′ 7→ −
∥∥Y TXU ′

∥∥
∗.

Proof. First, with the notations of Lemma 40 and Proposition 6 of [Grave et al.,
2011] that is recalled in Proposition 74, we know that when Y TXU is full-rank, the
function f2 : U ′ 7→

∥∥Y TXU ′
∥∥
∗ is differentiable at U with gradient XTY R1R

T
2 so

−XTY R1R
T
2 ∈ ∂(−f2)(U).

Secondly, we assume that Y TXU has rank c < r. To prove that −XTY R1R
T
2 ∈

∂(−f2)(U), we exhibit a sequence (Uk)k≥0 ∈ (Rp,r)N such that, as in Definition 25,

Uk → U,
∥∥Y tXUk

∥∥
∗ →

∥∥Y TXU
∥∥
∗ , and X

TY R1R
T
2 ∈ ∂̂(−f2)(Uk), (G.7)

where ∂̂(−f2) is the Fréchet subdifferential presented in Definition 25. Indeed, for
ε > 0, consider :

Uε := U + ε(XTX)
†
2PS−1QTR1R

T
2 ,

where PSQT is the reduced singular value decomposition of (XTX)
†
2XTY . We have :

Y TXUε = Y TXU + εY TX(XTX)
†
2PS−1QTR1R

T
2

= R1DR
T
2 + εQQTR1R

T
2

= R1DR
T
2 + εR1R

T
2 (G.8)

= R1(D + εIr)R
T
2 .

Equation (G.8) follows from QQTR1 = R1 because we assumed that Im R1 ⊂
Im Y TX(XTX)

†
2 and the columns ofQ are an orthonormal basis of Im Y TX(XTX)

†
2 .

The trace norm is therefore differentiable at Y TXUε that is full-rank and the gradient
of U ′ 7→

∥∥Y TXU ′
∥∥
∗ at Uε is XTY R1R

T
2 . Defining Uk := U 1

k
for all k > 0 leads

to (G.7).

G.4.2 The proximal operator of the group-Lasso norm

In order to highlight the fact that U+ is simply obtained by computing ∇f and
the proximal operator of the group-Lasso norm, we could equivalently write Equa-
tion (G.3) as :

U+ = argmin
U ′∈Rp,r

1

2
‖U ′ − (U − t∇f(U))‖2

F + λt ‖U ′‖1,2 . (G.9)

An explicit form of this proximal operator is for instance given in Equation (3.7)
in [Bach et al., 2012]. Given 1 ≤ i ≤ p, let [U+]i, : and [U−t∇f(U)]i, : denote the i-th
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lines of the matrices U+ and U−t∇f(U) respectively. Assume that [U−t∇f(U)]i, : 6=
0, then we have :

[U+]i, : = max

(
0, 1− λt

‖[U − t∇f(U)]i, :‖2

)
[U − t∇f(U)]i, :.

G.5 The Line Search Procedure in Algorithm 2
Given t > 0 and U ∈ Rp,r, we recall the definitions of f̃t,U , F̃ λ

t,U and γt(U) :

f̃t,U(U ′) = f(U) + 〈∇f(U), U ′ − U〉+
1

2t
‖U ′ − U‖2

F ,

F̃ λ
t,U(U ′) = f̃t,U(U ′) + λ ‖U ′‖1,2 , (G.10)

γt(U) = −1

t
min
U ′∈Rd

[
F̃ λ
t,U(U ′)− F λ(U)

]
. (G.11)

G.5.1 A lower-bound for the decrease in terms of function
values

As announced in Section 5.5.3, we prove that tγt(U) is a lower bound for the
decrease at each iteration in terms of function values.

Fact 41. Given U ∈ Rp,r, t and U+ obtained with Algorithm 2, the quantity tγt(U)
is a lower bound for the decrease in terms of function values from U to U+ :

tγt(U) ≤ F λ(U)− F λ(U+).

Proof. Indeed, we have :

tγt(U) = − min
U ′∈Rp,r

[
F̃ λ
t,U(U ′)− F λ(U)

]
(G.12)

= F λ(U)− F̃ λ
t,U(U+) (G.13)

≤ F λ(U)− F λ(U+). (G.14)

Equation (G.12) comes from the definition of γt in Equation (G.11). Equa-
tion (G.13) follows from the definition of U+ in Equation (G.9). We have Equa-
tion (G.14) since the (LS) condition F̃ λ

t,U(U+) ≥ F λ(U+) is satisfied for t and U+.

G.5.2 A lower bound on the step size with the Line Search
Procedure

In this section, we prove two additional results : that the (LS) condition is satisfied
as soon as t ≤ 1

LX
and, that there exists k̄ ∈ N such that for all k ≥ k̄, we have

tk >
β
LX

.
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Lemma 42. Let LX > 0 be the largest eigenvalue of XTX. For any t ≤ 1
LX

and
U, U ′ ∈ Rp,r, we have :

f(U ′) + λ ‖U ′‖1,2 ≤ f(U) + 〈∇f(U), U ′ − U〉+
1

2t
‖U ′ − U‖2

F + λ ‖U ′‖1,2 (G.15)

where yU := XTXU is the gradient of U ′ 7→ 1
2
‖XU ′‖2

F , zU is any subgradient of U ′ 7→∥∥Y TXU ′
∥∥
∗ and, with a slight abuse of notation, ∇f(U) := yU − zU . Equivalently,

for any t ≤ 1
LX

, the (LS) condition is satisfied i.e. we have

F λ(U ′) ≤ F̃ λ
t,U(U ′). (G.16)

In particular, Lemma 42 implies that Algorithm 2 terminates. This is illustrated
in Figure G.1.

Proof. Let U ∈ Rp,r. On the one hand, we have for all U ′ ∈ Rp,r :

1

2
‖XU ′‖2

F =
1

2
‖X(U + (U ′ − U))‖2

F

≤ 1

2
‖XU‖2

F + 〈XTXU,U ′ − U〉+
1

2
‖X(U ′ − U)‖2

F

≤ 1

2
‖XU‖2

F + 〈XTXU,U ′ − U〉+
LX
2
‖U ′ − U‖2

F , (G.17)

since LX > 0 is the largest eigenvalue of XTX. On the other hand, since zU is a
subgradient of U ′ 7→

∥∥Y TXU ′
∥∥
∗, we have for any U ′ ∈ Rp,r,

−
∥∥Y TXU ′

∥∥
∗ ≤ −

∥∥Y TXU
∥∥
∗ − 〈zU , U

′ − U〉. (G.18)

Summing Equation(G.17) and Equation(G.18), we obtain :

f(U ′) ≤ f̃ 1
LX

, U(U ′).

Additionally, for any 0 < t ≤ 1
LX

, we have :

f̃ 1
LX

, U(U ′) ≤ f̃t, U(U ′).

Consequently, for any U, U ′ ∈ Rp,r and 0 < t ≤ 1
LX

, we have

F λ(U ′) = f(U ′) + λ ‖U ′‖1,2 ≤ f̃t, U(U ′) + λ ‖U ′‖1,2 = F̃ λ
t,U(U ′),

which is the (LS) condition.

Fact 43. Let k ≥ 0, Uk ∈ Rp,r and tk−1 > 0. Let t > 0 be defined as in Algorithm 2 :
with probability π ∈ (0, 1], t is set to tk−1

β
, otherwise, t is set to tk−1. Let also t̄ denote

the initial step size, tk and tk+1 the stepsizes produced by Algorithm 2 at iteration k
and k + 1. We have the following properties :

• If β
LX

< t ≤ 1
LX

, then tk = t and tk+1 = t
β
or tk+1 = t depending on the (LS)

condition at iteration k + 1. In both cases, we have tk+1 >
β
LX

.
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Umin
t

Umin
βt

U0

F(U)
̃Fλ1/LX,U0̃U)
̃Fλt,U0̃U)
̃Fλβt,U0̃U)

FIGURE G.1: Schematic representation of the Line Search Procedure
in Algorithm 2. According to Equation (G.16), we have F̃ λ

1/LX ,U0
≥ F λ,

these two functions correspond to the dashed green line and the blue line.
Given U0 ∈ Rp,r and t > 0, we have represented F̃ λ

t,U0
and F̃ λ

βt,U0
under

the assumptions βt < 1
LX

< t and F̃ λ
t,U(Umin

t ) < F λ(Umin
t ) where Umin

t

is the minimizer of F̃ λ
t,U0

. First, Umin
t is computed in Algorithm 2. As

F̃ λ
t,U(Umin

t ) < F λ(Umin
t ), the (LS) condition is not satisfied. The minimizer

Umin
βt of F̃ λ

βt,U0
is then computed and since, the (LS) condition is now satis-

fied, U+ is set to Umin
βt . Indeed, with Lemma 42, we are guaranteed to find

j ∈ N such that F̃ λ
βjt,U(Umin

βjt ) ≥ F λ(Umin
t ) where Umin

βjt is the minimizer of
F̃ λ
βjt,U .

• If t ≤ β
LX

, then tk = t and tk+1 = t
β
with probability π, otherwise tk+1 = t.

• If t > 1
LX

, then tk > β
LX

.

• For all k ≥ 0, we have tk ≥ min( β
LX
, t̄).

Proof. First, in Lemma 42, we have shown that the (LS) condition is satisfied as
soon as t ≤ 1

LX
. Therefore, if t ≤ 1

LX
, the step is accepted in Algorithm 2 and tk = t.

At iteration k + 1, the step size is set to tk
β
with probability π and otherwise set to

tk. The step might only be rejected if the step size is set to tk
β
and tk

β
> 1

LX
. It would

then be decreased by a multiplicative factor β and the step would be accepted with
tk+1 = tk × 1

β
× β ≤ 1

LX
.

Secondly, assume that t ≤ β
LX

. Then t ≤ 1
LX

since β < 1, the step is accepted
in Algorithm 2 and tk = t. At iteration k + 1, t is set to tk

β
with probability π and

otherwise set to tk−1. Anyway, we have at the next iteration t ≤ 1
LX

so the (LS)
condition is satisfied and the step is accepted.

Thirdly assume that t > 1
LX

. By contradiction, suppose that tk ≤ β
LX

. The
backtracking line search in Algorithm 2 ensures that there exists j ∈ N such that
tk ≤ β

LX
< βjt ≤ 1

LX
and that the step size βjt was rejected because the (LS)

condition was not satisfied. By Lemma 42, this is not possible since βjt ≤ 1
LX

.
Consequently, if tk > β

LX
for a given k ≥ 0, then for all k′ ≥ k we have tk′ > β

LX
.
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Thus, if t̄ > β
LX

then for all k ≥ 0, we have tk > β
LX

. If t̄ ≤ β
LX

, the algorithm
progressively increases the value of t and after a few first iterations, say k, we have
tk >

β
LX

: the step size t will be larger than β
LX

after a number of steps which is
finite in expectation.

G.6 Study of the global convergence
Khamaru and Wainwright [2018] study the convergence of subgradient-type algo-

rithms to KW-stationary points (see Definition 30) of non-convex and non-smooth
functions that can be written as a sum of three terms F = f1 − f2 + λh where f1

is a smooth function, f2 is a continuous and convex function, h is a possibly non-
smooth, convex penalty and λ ≥ 0. Some of their results can be adapted to (RRR)
and (SRRR) by taking :

f1(U) :=
1

2
‖XU‖2

F ,

f2(U) :=
∥∥Y TXU

∥∥
∗ ,

and h(U) := ‖U‖1,2 .

First, we introduce the following results by Khamaru and Wainwright [2018] that
we invoke in Section G.6.1 and Section G.6.2 .

Lemma 44. [From Lemma 5 in Khamaru and Wainwright, 2018] Let λ ≥ 0 and
(Uk)k≥0 be the sequence generated by Algorithm 1 and (zk)k≥0 the corresponding
sequence of subgradients of f2. For all k ≥ 0, there is a subgradient sk+1 of U 7→
‖U‖1,2 at Uk+1 such that :

Uk+1 = Uk − tk [∇f1(Uk)− zk + λsk+1] , (G.19)

F λ(Uk)− F λ(Uk+1) ≥ 1

2tk
‖Uk+1 − Uk‖2

F . (G.20)

Furthermore, for any convergent subsequence (Ukj)j≥0 of the sequence (Uk)k≥0 with
Ukj → Ū , we have :

lim
j→+∞

∥∥Ukj+1

∥∥
1,2

=
∥∥Ū
∥∥

1,2
. (G.21)

Lemma 44 is due to the choice of the forward-backward Algorithm 1 while the
following Lemma 45 comes from the property of subanalytic functions [Attouch
et al., 2010; Bolte et al., 2007, and references therein] given by Lemma 28. Indeed,
norms and in particular the Frobenius norm, the trace-norm and the group-Lasso
norm are subanalytic so the functions f and F λ that we consider are subanalytic.

Lemma 45. [From Lemma 6 in Khamaru and Wainwright, 2018] Let λ ≥ 0, (Uk)k≥0

be the sequence generated by Algorithm 1 and (zk)k≥0 the corresponding sequence of
subgradients of f2. The function F λ is constant on the set of limit points Ū of the
sequence (Uk)k≥0. We denote F̄ λ this limit. If we assume that Ū contains only
critical points of F λ, then there exists constants θ ∈ [0, 1), C > 0 and k1 ∈ N such
that for all k ≥ k1, we have :

|F λ(Uk)− F̄ λ|θ ≤ Cdist(0,∇f1(Uk)− zUk + λ∂ ‖·‖1,2 (Uk)). (G.22)
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G.6.1 Global convergence to a critical point with Algorithm 1
for RRR

The function U 7→ 1
2
‖XU‖2

F is continuously differentiable and LX-smooth where
LX is the largest eigenvalue of XTX. The function U 7→

∥∥Y TXU
∥∥
∗ is continuous

and convex and the difference f(U) = 1
2
‖XU‖2

F −
∥∥Y TXU

∥∥
∗ is bounded below by

−1
2
‖Y ‖2

F , indeed we have used in Section 5.3.1 the fact that for any U ∈ Rp,r, we
have :

1

2
‖XU‖2

F −
∥∥Y TXU

∥∥
∗ +

1

2
‖Y ‖2

F = min
V ∈Rk,r:V TV=Ir

1

2

∥∥Y −XUV T
∥∥2

F
≥ 0.

Besides, f satisfies the Kurdyka-Łojasiewicz property, presented in Definition 27,
since it is the difference of two semi-algebraic functions. Therefore, our setting
satisfies the conditions of Theorem 1 and Theorem 3 in Khamaru and Wainwright
[2018] and we can prove that Algorithm 1 converges to a critical point from any
initial point.

G.6.1.1 Limit points are critical points

The following result, whose proof is inspired from Theorem 1 by Khamaru and
Wainwright [2018], ensures that any limit point Ū of the sequence generated by
Algorithm 1 for RRR satisfies 0 ∈ ∂f(Ū).

Theorem 46. Let (Uk)k≥0 be the sequence generated by Algorithm 1 with λ = 0.
The sequence of function values is decreasing and convergent. Besides, any limit
point is a critical point of the function f .

Proof. Equation (G.20) guarantees that the sequence of function values is decreas-
ing. Since f has a finite lower-bound, the sequence of function values is convergent.
Additionally, the iterates are bounded since the function is coercive i.e. f(U)→ +∞
if ‖U‖F →∞.

To establish that the limit points are critical, consider a subsequence (Ukj)j≥0

that converges to Ū and let (zkj)j≥0 be the associated subsequence of subgradients.
Since the sequence (Ukj)j≥0 converges to Ū , we must have by Equation (G.19),∥∥∇f1(Ukj)− zkj

∥∥
F
→ 0. The function f1 : U 7→ 1

2
‖XU‖2

F being continuously
differentiable, we have ∇f1(Ukj) → ∇f1(Ū) and consequently zkj → z̄ := ∇f1(Ū).
Besides, we know by Lemma 40 that for any j ≥ 0, we have −zkj ∈ ∂(−f2)(Ukj).

We conclude like in the proof of Theorem 1 by Khamaru and Wainwright [2018],
using the graph continuity of limiting subdifferentials which we recall in Fact 26, that
−z̄ ∈ ∂(−f2)(Ū) and ∇f1(Ū)− z̄ = 0, meaning that 0 ∈ ∂(f1−f2)(Ū) = ∂f(Ū).

Remark 47. Khamaru and Wainwright [2018] proved in an abstract but similar
framework that the limit points are KW-stationary point in the sense of Defini-
tion 30, meaning that they can be stationary points for Algorithm 1. Instead, The-
orem 46 guarantees, more standardly, that the limit points are critical in the sense
that the limiting subdifferentials at these points contain the element 0. This is per-
mitted by Lemma 40 which we obtained by imposing the condition Im R1 ⊂ Im Y TX
when computing a subgradient XTY R1R

T
2 of U ′ 7→ −

∥∥Y TXU ′
∥∥
∗, where R1DR

T
2 is
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a singular value decomposition of Y TXU . If the condition Im R1 ⊂ Im Y TX was
removed, exactly the same proof as for Theorem 46 would show that the limit points
are KW-stationary points.

G.6.1.2 Convergence for RRR of Algorithm 1

Since f satifies the KŁ property, we can prove the convergence to a critical point.

Theorem 48. [From Theorem 3 Khamaru and Wainwright, 2018] The sequence
(Uk)k≥0 produced by Algorithm 1 for RRR converges to a critical point.

The proof of Theorem 48 is identical to the proof of Theorem 3 by Khamaru and
Wainwright [2018]. We reproduce it here for completeness.

Proof. To prove that the sequence (Uk)k≥0 has a finite length i.e. that we have

+∞∑

k=0

‖Uk − Uk+1‖F < +∞,

we use the KŁ property for subanalytic functions given by Lemma 45. Let θ ∈ [0, 1),
C > 0, k1 ∈ N be defined as in Lemma 45, k ≥ k1 and let f̄ denote the limit of the
sequence {f(Uk)}k≥0. We have :

(f(Uk)− f̄)1−θ−(f(Uk+1)− f̄)1−θ

≥ (1− θ)(f(Uk)− f̄)−θ [f(Uk)− f(Uk+1)] (G.23)

≥ (1− θ)
2tk

(|f(Uk)− f̄ |)−θ ‖Uk − Uk+1‖2
F (G.24)

≥ (1− θ)
2Ctk ‖∇f1(Uk)− zk‖F

‖Uk − Uk+1‖2
F (G.25)

≥ (1− θ)
2C

‖Uk − Uk+1‖F . (G.26)

Inequality (G.23) follows from the concavity of t 7→ t1−θ and the inequalities
f(Uk) ≥ f(Uk+1) ≥ f̄ . Inequality (G.24) comes from Equation (G.20) and the
fact that {f(Uk)}k≥0 is decreasing and converges to f̄ . Inequality (G.25) comes
from Lemma 45. Finally, Inequality (G.26) follows from Equation (G.19). Summing
both sides of Inequality (G.26) from k = k1 to k = +∞, we obtain :

(f(Uk1)− f̄)1−θ =
+∞∑

k=k1

(f(Uk)− f̄)1−θ − (f(Uk+1)− f̄)1−θ

≥ (1− θ)
2C

+∞∑

k=k1

‖Uk − Uk+1‖F ,

which proves the finite length property and the convergence of the sequence (Uk)k≥0.
With Theorem 46, we know that this limit is a critical point.
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G.6.2 Global convergence to critical points with Algorithm 1
for SRRR

In this section, we justify global convergence of Algorithm 1 for SRRR to critical
points and present conditions leveraged in Lemma 52 that ensure convergence to a
unique point.

G.6.2.1 Limit points are critical points

The function f1 is smooth and convex, the function f2 is continuous and convex.
In addition, the function h : U 7→ ‖U‖1,2 is clearly proper, lower semi-continuous
and convex and F λ which is bounded below satisfies the KŁ property. Consequently,
our setting for proximal gradient descent satisfies the conditions of the first part of
Theorem 2 in Khamaru and Wainwright [2018] and we can adapt this result to
SRRR.

Theorem 49. Let (Uk)k≥0 be the sequence generated by Algorithm 1 with λ > 0.
The sequence of function values is decreasing and convergent. Besides, any limit
point is a critical point of the function F λ.

Proof. Equation (G.20) guarantees that the sequence of function values is decreas-
ing. Since F λ has a finite lower-bound, the sequence of function values is con-
vergent. Additionally, the iterates are bounded since the function is coercive i.e.
F λ(U)→ +∞ if ‖U‖F →∞.

To establish that the limit points are critical, consider a subsequence (Ukj)j≥0

that converges to Ū ∈ Rp,r and let (zkj)j≥0 be the associated subsequence of sub-
gradients, like in Equation (G.6). Since the sequence (Ukj)j≥0 converges to Ū and
f2 is continuous, the sequence {f2(Uk)}k≥0 converges to f2(Ū). Given the form of
the subgradients (zkj)j≥0 in Equation (G.6), they are bounded and we can assume,
passing to a subsequence if necessary, that they converge to z̄ ∈ Rd. Besides, we
know by Lemma 40 that for any j ≥ 0, we have −zkj ∈ ∂(−f2)(Ukj). Therefore,{

(Ukj ,−zkj ,−f2(Ukj))
}
j≥0

converges to (Ū,−z̄,−f2(Ū)) and, using the graph conti-
nuity of limiting subdifferentials which we recall in Fact 26, we have−z̄ ∈ ∂(−f2)(Ū).

We now show that −∇f1(Ū) + z̄ ∈ ∂(λ ‖·‖1,2)(Ū). Since (
∥∥Ukj − Ukj+1

∥∥
F

)j≥0

converges to zero, the sequence (Ukj+1)j≥0 converges to Ū and by Equation (G.19),
the sequence (

∥∥∇f1(Ukj)− zkj + λskj+1

∥∥
F

)j≥0 also converges to zero. Since f1 is
smooth, we know that

{
∇f1(Ukj)

}
j≥0

converges to ∇f1(Ū). Combined with the
convergence of (zkj)j≥0 to z̄, it shows that (λskj+1)j≥0 converges to λs̄ := −∇f1(Ū)+
z̄. With Equation (G.21) in Lemma 44, we also have that (λ

∥∥Ukj+1

∥∥
1,2

)j≥0 converges

to λ
∥∥Ū
∥∥

1,2
. All this leads to the convergence of

{
(Ukj+1, λskj+1, λ

∥∥Ukj+1

∥∥
1,2

)
}
j≥0

to (Ū, λs̄,
∥∥Ū
∥∥

1,2
). Consequently, the graph continuity in Fact 26 guarantees that

λs̄ ∈ ∂(λ ‖·‖1,2)(Ū). Finally, we conclude that ∇f1(Ū) − z̄ + λs̄ = 0 ∈ ∂F λ(Ū) i.e.
Ū is a critical point of F λ.

Remark 50. The same comments as in Remark 47 hold for Theorem 49 and the
comparison between its proof and the proof of Theorem 2 by Khamaru and Wain-
wright [2018].
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G.6.2.2 Convergence for SRRR of Algorithm 1

In order to prove convergence of the sequence (Uk)k≥0, Theorem 4 of Khamaru
and Wainwright [2018] formally requires that f2 is a smooth function, a requirement
which is not met by U 7→

∥∥Y TXU
∥∥
∗. Nonetheless, an inspection of the proof

shows that local smoothness in a neighborhood of the critical points of the function
is sufficient. More precisely, the same proof as for Theorem 4 in Khamaru and
Wainwright [2018] can be used for SRRR as long as we can guarantee that there
exists k1 ≥ 0 such that for all k ≥ k1, the iterates (Uk)k≥k1 lie in a compact subset
where f is locally smooth. We denote Ū the set of limit points of the sequence (Uk)k≥0

and for any S ⊂ {1, . . . , p}, XS is the matrix formed by keeping the columns of X
indexed by S.

Theorem 51. Assume that

• H1 : The step sizes (tk)k≥0 produced by Algorithm 1 are upper bounded by a
constant d > 0.

• H2 : The set of limit points Ū of the sequence produced by Algorithm 1 is a
subset of the local minima of F λ and contains only matrices with at least r
non-zero rows.

• H3 : For any S ⊂ {1, . . . , p} of cardinality at least r, the matrix XT
S Y is

full-rank.

Then the sequence (Uk)k≥0 produced by Algorithm 1 for SRRR converges to a critical
point.

The assumptions H1 and H2 are used in the proof of Theorem 51. The assump-
tion H2 will hold unless local minima are so sparse that the number of selected
variables is strictly smaller than r in which case the rank constraint becomes essen-
tially useless. The assumption H3 will hold with probability one if X and Y contain
for example additive noise. It is leveraged in Appendix G.11.1 to prove Lemma 52
that we introduce below with Lemma 53 and Lemma 54 before giving the proof of
Theorem 51.

Lemma 52. With Assumption H3, any local minimum U∗ of (SRRR) which has at
least r non-zero rows must be full-rank.

Put differently, Assumption H2 and Assumption H3 combined with Lemma 52
imply that the set of limit points Ū contains only full-rank matrices. The next lemma
ensures that the function f2 : U 7→

∥∥Y TXU
∥∥
∗ is differentiable at such points, it is

proved in Appendix G.11.2.

Lemma 53. With Assumption H3, let U∗ be a full-rank local minimum of (SRRR).
Necessarily, Y TXU∗ is full-rank.

Lemma 53 is essential to prove locally a Lipschitz gradients property which is
formalized in Lemma 54, proved in Appendix G.11.3.

Lemma 54. With Assumption H2 and Assumption H3, there exists M > 0 and
k1 ≥ 0 such that for any k ≥ k1, f is differentiable at Uk, Uk+1 and we have :

‖∇f(Uk)−∇f(Uk+1)‖F ≤M ‖Uk − Uk+1‖F . (G.27)
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Proof of Theorem 51 . Let k1 ≥ 0 be defined as in Lemma 54. For k ≥ k1 we denote
zk a gradient of f2 obtained through the update in Algorithm 1 and sk a subgradient
of U 7→ λ ‖U‖1,2 at Uk. Let k > k1, we have :

‖∇f1(Uk)− zk + λsk‖F
=

∥∥∥∥(∇f1(Uk)− zk) + (zk−1 −∇f1(Uk−1)) +
1

tk−1

(Uk−1 − Uk)
∥∥∥∥
F

(G.28)

≤ ‖(∇f1(Uk)− zk)− (∇f1(Uk−1)− zk−1)‖F +
1

tk−1

‖Uk−1 − Uk‖F (G.29)

= ‖∇f(Uk)−∇f(Uk−1)‖F +
1

tk−1

‖Uk−1 − Uk‖F

≤ (M +
1

tk−1

) ‖Uk − Uk−1‖F . (G.30)

Inequality (G.28) follows from the update in Algorithm 1. Inequality (G.29) comes
from the triangle inequality. Inequality (G.30) is due to Equation (G.27).

The second argument we give is similar to Equation (G.26) in the proof of The-
orem 48. Since the functions we consider are subanalytic, we can consider θ ∈ [0, 1),
C > 0 and k2 ≥ k1 defined as in Lemma 45. Let F̄ λ denote the limit of the sequence{
F λ(Uk)

}
k≥0

and k ≥ k2, we have :

(F λ(Uk)− F̄ λ)1−θ − (F λ(Uk+1)− F̄ λ)1−θ

≥ (1− θ)
[
F λ(Uk)− F̄ λ

]−θ [
F λ(Uk)− F λ(Uk+1)

]
(G.31)

≥ (1− θ)
2tk

[
|F λ(Uk)− F̄ λ|

]−θ ‖Uk − Uk+1‖2
F (G.32)

≥ (1− θ)
2Ctk ‖∇f(Uk) + λsk‖F

‖Uk − Uk+1‖2
F (G.33)

≥ (1− θ)
2Cd ‖∇f(Uk) + λsk‖F

‖Uk − Uk+1‖2
F . (G.34)

Inequality (G.31) follows from the concavity of t 7→ t1−θ and the inequalities
F λ(Uk) ≥ F λ(Uk+1) ≥ F̄ λ. Inequality (G.32) comes from Equation (G.20) and
the fact that

{
F λ(Uk)

}
k≥0

is decreasing and converges to F̄ λ. Inequality (G.33)
comes from Lemma 45. Finally, Inequality (G.34) follows from Assumption H1 in
Theorem 51. Combining Inequality (G.30) with Inequality (G.34), we obtain :

(F λ(Uk)− F̄ λ)1−θ−(F λ(Uk+1)− F̄ λ)1−θ

≥ (1− θ)
2Cd(M + 1

tk−1
)

‖Uk − Uk+1‖2
F

‖Uk−1 − Uk‖F

≥ (1− θ)
2Cd(M + 1

min( β
LX

, t−1)
)

‖Uk − Uk+1‖2
F

‖Uk−1 − Uk‖F
. (G.35)

Equation (G.35) follows from Fact 43. The rest of the proof leads to the fi-
nite length property and completely follows the proof of Theorem 4 in Khamaru
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and Wainwright [2018] since they also leverage only the local property of Lipschitz
gradients in a compact set. We denote :

∆k := C ′
[
(F λ(Uk)− F̄ λ)1−θ − (F λ(Uk+1)− F̄ λ)1−θ] , (G.36)

where C ′ :=
2Cd

[
M + max(LX

β
, 1
t−1

)
]

(1− θ) .

Equation (G.35) can be rewritten :

‖Uk − Uk+1‖F ≤
√

∆k ‖Uk−1 − Uk‖F .

Summing from j = k2 + 1 to j = k, we obtain :

k∑

j=k2+1

‖Uj − Uj+1‖F ≤
k∑

j=k2+1

√
∆j ‖Uj−1 − Uj‖F

≤
k∑

j=k2+1

1

2
∆j +

1

2
‖Uj−1 − Uj‖F (G.37)

≤ C ′

2
(F λ(Uk2+1)− F̄ λ)1−θ +

1

2

k∑

j=k2+1

‖Uj−1 − Uj‖F . (G.38)

Inequality (G.37) follows from the inequality of arithmetic and geometric means.
Inequality (G.38) comes from Equation (G.36). Rewriting Inequality (G.38), we
have for all k ≥ k2 + 2,

[
1

2

k−1∑

j=k2+1

‖Uj − Uj+1‖F

]
+

[
1

2

k∑

j=k2+2

‖Uj−1 − Uj‖F

]
+ ‖Uk − Uk+1‖F

≤ C ′

2
(F λ(Uk2+1)− F̄ λ)1−θ +

[
1

2

k∑

j=k2+2

‖Uj−1 − Uj‖F

]
+

1

2
‖Uk2 − Uk2+1‖F .

This last inequality implies that :

1

2

k−1∑

j=k2+1

‖Uj − Uj+1‖F

≤ C ′

2
(F λ(Uk2+1)− F̄ λ)1−θ +

1

2
‖Uk2 − Uk2+1‖F − ‖Uk − Uk+1‖F

≤ C ′

2
(F λ(Uk2+1)− F̄ λ)1−θ +

1

2
‖Uk2 − Uk2+1‖F

< +∞.

Eventually, we conclude that the sequence (Uk)k≥0 has finite length and therefore
converges to an element Ū ∈ Rp,r. With Theorem 49, we know that Ū is a critical
point.
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G.7 Proofs for section 5.5.1
In this section, we are going to prove Equation (5.7), Lemma 9 and Lemma 10.

We maintain the following assumptions :

r ≤ `, (G.39)

s1 > . . . > s`. (G.40)

At first, to widen the scope of our results, we will not make the assumption :

XTX is invertible. (G.41)

Assumption (G.41) will play a key role in the analysis and impact the results.
We will precise what it implies for the analysis when it is satisfied and when it is
not.

G.7.1 Proof of Equation (5.7)
While we assumed that X is full-rank in the core of the article, we do not make

this assumption in this section to prove a more general result than Equation (5.7).
Of course, the latter can be obtained as a special case. Let m ≤ p be the rank of X
and consider :

KD2KT the reduced singular value decomposition of XTX,

with K ∈ Rp,m, KTK = Im and D ∈ Rm,m a diagonal matrix with positive entries
on the diagonal. We also write :

(XTX)† := KD−2KT the pseudo-inverse of XTX,

(XTX)
†
2 := KD−1KT a square-root of (XTX)†,

and :
(XTX)

1
2 := KDKT a square root of XTX.

Let :
K⊥ ∈ Rp,p−m such that

[
K K⊥

]T [
K K⊥

]
= Ip.

Here, we denote PSQT the reduced singular values of (XTX)
†
2XTY , with ` :=

rank(XTX)
†
2XTY ≤ min(m, k), P ∈ Rp,`, S ∈ R`,` and Q ∈ R`,k. We also define

P⊥ ∈ Rp,m−` such that the columns of the matrix
[
P P⊥

]
form an orthonormal

basis of ImXT . IfX is full-rank, this definition corresponds indeed with the matrices
that were introduced in Section 5.5.1. The definition of τ is in this more general
case :

τ :





R`,r × Rm−`,r × Rp−m,r → Rp,r

(A,C,N) 7→ (XTX)
†
2

[
P P⊥

] [S 0
0 Im−`

] [
A
C

]
+K⊥N

. (G.42)

Of course, under the additional assumption that XTX is invertible, the term K⊥N
would be removed and τ would be the same as the one we defined in Equation (5.6).
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We define fa,c,n := f ◦ τ and we prove that :

fa,c,n(A,C,N) =
1

2
||SA||2F − ||S2A||∗ +

1

2
||C||2F . (G.43)

Equation (5.7) can be obtained similarly if XTX is invertible.

Proof of Equation (G.43). Let (A,C,N) ∈ R`,r × Rm−`,r × Rp−m,r, we have :

fa,c,n(A,C,N) = f ◦ τ(A,C,N) (G.44)

= f((XTX)
†
2 (PSA+ P⊥C) +K⊥N) (G.45)

=
1

2
||(XTX)

1
2 ((XTX)

†
2 (PSA+ P⊥C) +K⊥N)||2F

− ||Y TX((XTX)
†
2 (PSA+ P⊥C) +K⊥N)||∗ (G.46)

=
1

2
||(XTX)

1
2 (XTX)

†
2 (PSA+ P⊥C)||2F

− ||Y TX(XTX)
†
2 (PSA+ P⊥C)||∗ (G.47)

=
1

2
||PSA||2F +

1

2
||P⊥C||2F − ||QSP T (PSA+ P⊥C)||∗, (G.48)

=
1

2
||SA||2F +

1

2
||C||2F − ||QS2A||∗ (G.49)

=
1

2
||SA||2F − ||S2A||∗ +

1

2
||C||2F . (G.50)

Equation (G.44) follows from the definition of fa,c,n and Equation (G.45) from
the definition of τ . Equation (G.46) follows from the definition of f and since
for all M ∈ Rp,r, we have ||XM ||2F = ||(XTX)

1
2M ||2F . We have Equation (G.47)

since XK⊥ = 0. Equation (G.48) comes from the facts that P, P⊥ ∈ Im X and
(XTX)

1
2 (XTX)

†
2 acts like the identity on Im XT for the first term and QSP T =

Y TX(XTX)
†
2 for the second term. We have Equation (G.49) because

[
P P⊥

]
is

orthogonal and Equation (G.50) because the columns of Q are orthogonal.

G.7.2 Proof of Lemma 9

We denote Ω∗a the set of minima of fa : A ∈ R`,r 7→ 1
2
‖SA‖2

F − ‖S2A‖∗ where
S = diag(s1 > . . . > s`) ∈ R`,`. To prove that Ω∗a =

{
ĨR | R ∈ Or

}
with

Ĩ = (1i=j)1≤i≤`, 1≤j≤r ∈ R`,r, first note that the two following problems have the
same optimal value :

min
A∈R`,r, V ∈R`,r

fa,v(A, V ) where fa,v(A, V ) :=
1

2
||S − SAV T ||2F , (G.51)

min
A∈R`,r, V ∈R`,r: V TV=Ir

fa,v(A, V ). (G.52)

Indeed, for any A, V ∈ R`,r, there exists A′, V ′ ∈ R`,r such that V TV = Ir and
AV T = A′V ′T . For instance, the matrices can be obtained from the singular value
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decomposition R1ΣRT
2 of AV T by taking A′ = R1Σ and V ′ = R2. Besides, given

A ∈ R`,r and V ∈ R`,r, we have :

fa,v(A, V ) =
1

2
||S − SAV T ||2F =

1

2
||S||2F +

1

2
||SAV T ||2F − 〈S, SAV T 〉.

Defining VA ∈ argmaxV ∈R`,r: V TV=Ir〈S, SAV T 〉 and using Fact 33, we obtain :

1

2
||S − SAV T

A ||2F =
1

2
||S||2F +

1

2
||SA||2F −

∥∥S2A
∥∥
∗ .

Consequently, if A is a minimizer of :

min
A∈R`,r

fa(A), (G.53)

where fa(A) = 1
2
||SA||2F − ‖S2A‖∗, then (A, VA) is a minimizer of Problem (G.51).

This means in particular that SAV T
A is a minimizer of :

min
M∈R`,`: rank(M)≤r

1

2
||S −M ||2F .

The matrix SAV T
A must be equal to the best low-rank approximation for the Frobe-

nius norm of S and, by the Eckart-Young-Mirsky theorem, this best approximation

is SĨĨT with Ĩ =

[
Ir
0

]
∈ R`,r since we have assumed that the values on the diagonal

of S are strictly decreasing.
The matrix S is invertible so we must have AV T = Ĩ ĨT which is equivalent, if

A =

[
A1

A2

]
and V =

[
V1

V2

]
with A1, V1 ∈ Rr,r and A2, V2 ∈ R`−r,`−r, to :

[
A1V

T
1 A1V

T
2

A2V
T

1 A2V
T

2

]
=

[
Ir 0
0 0

]
. (G.54)

The second line A2V
T = 0 implies A2 = 0 since V TV = Ir. From the first line of the

matrices in Equation (G.54), A1V
T

1 = Ir implies that A1 is invertible so A1V
T

2 = 0
implies that V2 = 0 and A1 has to be orthogonal as it is the inverse of V T

1 . Put
differently, AT =

[
V T

1 0r,`−r
]

= V T
1 Ĩ

T where V1 is an orthogonal square matrix i.e
an orthogonal matrix. Thus, any optimum A belongs to Ω∗a :=

{
ĨR | R ∈ Or

}
.

Conversely, for any R ∈ Or we have fa(ĨR) = 1
2

∥∥∥SĨ
∥∥∥

2

F
−
∥∥∥S2Ĩ

∥∥∥
∗
: this implies that

all the elements in Ω∗a are optima.

G.7.3 Proof of Lemma 10

We show that all local minima of fa are global. The result is the same for f given
that f ◦ τ(A,C) = fa(A) + 1

2
‖C‖2

F and τ is the invertible linear transformation
defined in Equation (G.42). First we start by eliminating the possibility of having
a local maximum other than 0 with the following result.

Lemma 55. Only 0 can be a local maximum of fa.
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Proof. For any A, the restriction of fa to the one-dimensional setDA := {αA, α ≥ 0}
is a convex polynomial function of degree 2. Indeed, for any α > 0, we have

fa(αA) =
α2

2
||SA||2F − α||S2A||∗.

Since S ∈ R`,` is an invertible diagonal matrix, only 0 can be a local maximum of
fa.

Corollary 56. The zero matrix is indeed a local maximum of the function fa.

Proof. Thanks to the equivalence of norms in finite dimensions and the fact that S
has only positive elements on its diagonal, we know that there exists c, d > 0 such
that for any A ∈ R`,r, t > 0, we have :

fa(0 + tA) ≤ c ‖A‖2
F t

2 − d ‖A‖F t.

The zero matrix is necessary a local maximum.

To deal with critical points, we treat separately rank-deficient matrices and full-
rank matrices. The following result, proved in Appendix G.11.4, considers the case
of rank-deficient matrices.

Lemma 57. Let A ∈ R`,r be a rank-deficient matrix, there exists B ∈ R`,r such that
‖B‖F = 1 and δ > 0 such that for all −δ < t < δ, we have :

fa(A+ tB) ≤ fa(A)− s2
`

2
|t|.

Therefore, no rank-deficient matrix can be a local minimum of fa.

In order to deal with full-rank matrices and having already described the set of
optima, we characterize the set of full-rank critical points. Consider the set P of
permutations π : [[1; `]] → [[1; `]] such that π(1) < . . . < π(r) and simultaneously
π(r + 1) < . . . < π(`). For any π ∈ P , we denote :

Ππ := (1i=π(j))1≤i≤`, 1≤j≤r ∈ R`,r. (G.55)

Note that the sole purpose of the condition π(r + 1) < · · · < π(`) is to have a one-
to-one correspondence between the set of permutations P and the set of matrices
{Ππ | π ∈ P}. We have the following result, proved in Appendix G.11.5.

Lemma 58. If the values of the diagonal matrix S are strictly decreasing i.e. S =
diag (s1 > . . . > s`), then the set Ωs

a of differentiable critical points for problem
(G.53) is the image by linear transformations from Rr,r to R`,r of Or :

Ωs
a = {ΠπR| π ∈ P , R ∈ Or} .

Besides, Ωs
a contains only global minima and saddle points.

We could have an even more precise description of the behavior of fa around the
saddle points with Theorem 63 and Corollary 65 (given below). Saddle points are
in fact strict saddle points i.e. the Hessian at these points has at least one negative
eigenvalue. However, that is not necessary here.

We can now prove Lemma 10.
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Proof of Lemma 10. We know from Lemma 57 that a rank-deficient matrix cannot
be a local minimum. The function fa is differentiable at A ∈ R`,r if and only if A
is full-rank1. Finally, Lemma 58 details all critical points where A is full-rank, they
are either global minima or saddle points.

G.8 Proofs for Section 5.5.2

G.8.1 Proof of Lemma 11

In Section 5.5.2, we have introduced for any A ∈ Rp,r,

ΠΩ∗a(A) := argmin
B∈Ω∗a

‖B − A‖2
F ,

and :
Ca(R) := {A ∈ R`,r | ĨR ∈ ΠΩ∗a(A)}. (G.56)

First, we prove Equation (5.8) that describes Ca(Ir). According to Lemma 9, Ω∗a ={
ĨR | R ∈ Or

}
, so with Fact 32, we could have equivalently defined ΠΩ∗a(A) with

A =

[
A1

A2

]
, A1 ∈ Rr,r and A2 ∈ R`−r,r as :

argmin
ĨR:R∈Or

‖ĨR− A‖2
F = argmax

ĨR:R∈Or
〈ĨR,A〉 = Ĩ argmax

R∈Or
〈R, ĨTA〉 = Ĩ argmax

R∈Or
〈R,A1〉.

(G.57)
By Fact 36, we have that Ir ∈ argmaxR:R∈Or〈R,A1〉 if and only if A1 is positive-
semidefinite. This proves Equation (5.8).

Secondly, the equality Ca(R) = {AR | A ∈ Ca(Ir)} basically stems from the
definition of ΠΩ∗a since :

‖Ĩ − A‖2
F = ‖ĨR− AR‖2

F . (G.58)

Indeed, Equation (G.58) implies that A ∈ Ca(Ir) if and only if AR ∈ Ca(R).
Finally, to prove that ∪R∈OrCa(R) = R`,r, consider M ∈ R`,r and :

BM ∈ argmin
B∈Ω∗a

‖B −M‖2
F .

According to Lemma 9, Ω∗a :=
{
ĨR | R ∈ Or

}
is compact. Therefore, there exists

R ∈ Or such that BM = ĨR. Obviously, the definition of Ca(R) given in Equa-
tion (G.56) implies that M ∈ Ca(R).

The following fact gives more details on the structure of the cones that we built.

Fact 59. The relative interiors2 of all the cones partition the set of matrices
[AT1 AT2 ]T such that A1 ∈ Rr,r is invertible and A2 ∈ R`−r,r.

1Details about the derivative of the trace-norm are given in Proposition 74.
2Given a set in a Euclidean space, its relative interior is the interior of this set within the

subspace spanned by its elements.
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Proof. First, since the relative interior of the set S+
r of positive-semidefinite matrices

is the set S++
r of positive-definite matrices, given R ∈ Or, the relative interior of

the cone Ca(R) is the set :
{[

A1

A2

]
R | A1 ∈ S++

r , A2 ∈ R`−r,r
}
.

Secondly, according to Equation (G.57), the matrix A = [AT1 AT2 ]T ∈ Ca(R) with
R ∈ Or if and only if R ∈ argmaxR′∈Or〈R′, A1〉. According to Fact 35, there is a
unique element in argmaxR′∈Or〈R′, A1〉 if A1 has full rank. Therefore, given [AT1 A

T
2 ]T

such that A1 ∈ Rr,r is invertible and A2 ∈ R`−r,r, there is a unique R ∈ Or such
that A ∈ Ca(R).

G.8.2 Proof of Theorem 12

First, in order to simplify the computations, we introduce the change of variables
M = SA and the function :

fm : M ∈ R`,r 7→ 1

2
‖M‖2

F − ‖SM‖∗ .

Note that for any M ∈ R`,r, we have fm(M) = fa(S
−1M) and minM fm(M) is the

form taken by (RRR) if X is the identity and Y = S is a diagonal matrix.
As in section G.7.3, we consider the set P of permutations π : [[1; `]]→ [[1; `]] such

that π(1) < . . . < π(r) and simultaneously π(r + 1) < . . . < π(`). For any π ∈ P ,
we denote :

Ππ := (1i=π(j))1≤i≤`, 1≤j≤r ∈ R`,r. (G.59)

With the proposed change of variables, the differentiable critical points of fm are
simply obtained from the critical points of fa given in Lemma 58.

Lemma 60. If the values of the diagonal matrix S are strictly decreasing, then the
set Ωs

m of differentiable critical points of fm is the image by linear transformations
from Rr,r to R`,r of Or :

Ωs
m = {SΠπR| π ∈ P , R ∈ Or} .

The following result describes the eigenvectors of the Hessian of fm at a critical
point SΠπR. It is proved in Appendix G.11.6. We write S2 = diag(σ1 > . . . > σ`)
with σ` > 0. For 1 ≤ i0 ≤ `, 1 ≤ j0 ≤ r, we denote Ei0, j0 = ei0e

T
j0
∈ R`,r.

Theorem 61. Let SΠπR be a differentiable critical point of fm, with π ∈ P and
R ∈ Or. Then fm is twice differentiable at SΠπR, let Hm denote its Hessian at
SΠπR.

• For 1 ≤ i < j ≤ r, S−1(Eπ(i),j + Eπ(j),i)R is an eigenvector of Hm associated
to the eigenvalue 1.

• For 1 ≤ i ≤ r, S−1Eπ(i),iR is an eigenvector of Hm associated to the eigenvalue
1.
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• For 1 ≤ i < j ≤ r, S(Eπ(i),j − Eπ(j),i)R is an eigenvector of Hm associated to
the eigenvalue 0.

• For r + 1 ≤ k ≤ `, 1 ≤ j ≤ r, Eπ(k),jR is an eigenvector of Hm associated to
the eigenvalue 1− σπ(k)

σπ(j)
.

Remark 62. At an optimum SĨR of fm with R ∈ Or, the largest eigenvalue of the
Hessian is 1 and the smallest positive eigenvalue is 1− σπ(r+1)

σπ(r)
.

Since we used the change of variables M = SA, Theorem 61 can be adapted to
the function fa.

Theorem 63. Let ΠπR be a differentiable critical point of fa, with π ∈ P and
R ∈ Or. Then fa is twice differentiable at ΠπR, let Ha denote its Hessian at ΠπR.

• For 1 ≤ i < j ≤ r, (Eπ(i),j +Eπ(j),i)R is an eigenvector of Ha associated to the
eigenvalue (σ−1

π(i) + σ1
π(j))

−1.

• For 1 ≤ i ≤ r, Eπ(i),iR is an eigenvector of Ha associated to the eigenvalue
σπ(i).

• For 1 ≤ i < j ≤ r, (Eπ(i),j − Eπ(j),i)R is an eigenvector of Ha associated to
the eigenvalue 0.

• For r + 1 ≤ k ≤ `, 1 ≤ j ≤ r, Eπ(k),jR is an eigenvector of Ha associated to
the eigenvalue σπ(k)

(
1− σπ(k)

σπ(j)

)
.

Proof. Let π ∈ P , R ∈ Or and ∆ ∈ R`,r. Using the change of variables M = SA
and denoting Ha and Hm the Hessian of respectively fa at ΠπR and fm at SΠπR,
we have the equality :

Ha[∆, ∆] = Hm[S∆, S∆].

After normalizing the eigenvectors of Hm given in Theorem 61, we obtain :

Ha[∆R, ∆R] = Hm[S∆R, S∆R]

=
∑

1≤i<j≤r

〈
(σ−1

π(i) + σ1
π(j))

− 1
2S−1(Eπ(i),j + Eπ(j),i), S∆

〉2

+
∑

1≤i≤r

〈
σ

1
2

π(i)S
−1Eπ(i),i, S∆

〉2

+
∑

r+1≤k≤`, 1≤j≤r

(
1− σπ(k)

σπ(j)

)〈
Eπ(k),j, S∆

〉2

=
∑

1≤i<j≤r
(σ−1

π(i) + σ1
π(j))

−1
〈
Eπ(i),j + Eπ(j),i, ∆

〉2

+
∑

1≤i≤r
σπ(i)

〈
Eπ(i),i, ∆

〉2

+
∑

r+1≤k≤`, 1≤j≤r
σπ(k)

(
1− σπ(k)

σπ(j)

)〈
Eπ(k),j, ∆

〉2
.

258



Chapter G

As a direct corollary of Theorem 63, we have the following result.

Corollary 64. With the notations used in Equation (G.59), an optimum ĨR of
fa corresponds to the identity permutation π = Id. At an optimum, the largest
eigenvalue of the Hessian Ha is σ1 and σπ(`)

(
1− σπ(r+1)

σπ(r)

)
> 0 is a lower bound of

the positive eigenvalues of Ha.

The following result is also a straightforward corollary of Theorem 63.

Corollary 65. All full-rank critical points that are not global minima are strict
saddle points i.e. the Hessian at these points has a negative eigenvalue.

Proof. Consider R ∈ Or and a permutation π : [[1; `]]→ [[1; `]] such that π(1) < . . . <
π(r) and simultaneously π(r + 1) < . . . < π(`) while π 6= Id. Necessarily, π(r+1) <
πr and σπ(r+1)(1− σπ(r+1)

σπ(r)
) < 0 is an eigenvalue of Ha at ΠπR by Theorem 63.

We can now prove Theorem 12.

Proof of Theorem 12. Consider a minimum ĨR of fa with R ∈ Or. From Lemma 11,
we know that :

Ca(R) =

{[
A1

A2

]
R | A1 ∈ S+

r , A2 ∈ R`−r,r
}
.

We denote the subspace spanned by Ca(R) :

E+
R := span [Ca(R)] =

{[
A1

A2

]
R | A1 ∈ Sr, A2 ∈ R`−r,r

}
,

where Sr is the set of symmetric matrices in Rr,r. We know from Theorem 63 that
E+
R is exactly the subspace spanned by the eigenvectors of the Hessian HĨR of fa at
ĨR associated to positive eigenvalues. Let σmin := σ`(1 − σr+1

σr
). As pointed out in

Corollary 64, σmin is a lower bound for the positive eigenvalue of the Hessian HĨR.
Thus, for all M ∈ span (Ca(R)), we have :

Vec(M)THĨRVec(M) ≥ σmin||M ||2F ,

where Vec(M) ∈ R`,r is the vectorization of M ∈ R`,r. Given the form of the
Hessian for the trace norm in Proposition 6 of [Grave et al., 2011] that is recalled in
Proposition 74, the existence of continuous bases for the singular subspaces [Stewart,
2012] of S2Ĩ and the converse of Taylor’s Theorem in [Oliver, 1954], we obtain that
the Hessian of fa is continuous at ĨR. Therefore, for any γ < 1 < δ, there exists
α > 0 such that for all M ∈ E+

R and A ∈ B(ĨR, α) ∩ E+
R where B(ĨR, α) is the ball

with center ĨR and radius α, we have

δσ1 ‖M‖2
F ≥ Vec(M)THAVec(M) ≥ γσmin||M ||2F . (G.60)

Consider two elements M,N ∈ B(ĨR, α). The Taylor expansions gives :

fa(N) = fa(M) + 〈∇fa(M), N −M〉

+
1

2

∫ 1

0

Vec(N −M)THtN+(1−t)MVec(N −M)dt

≥ fa(M) + 〈∇fa(M), N −M〉+
γσmin

2
||N −M ||2F .
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This inequality implies that fa is γσmin-strongly convex in B(ĨR, α) ∩ E+
R . We

conclude by defining a sublevel set Va inside ∪R∈OrB(ĨR, α).
Similarly, we could show from Equation (G.60) that for any A, A′ ∈ Va such that

[A,A′] ⊂ Va, the function fa has δσ1-Lipschitz gradients on [A,A′]. Unfortunately,
we can not deduce from this observation that fa has δσ1-Lipschitz gradients or is
δσ1-smooth in Va since the latter might be nonconvex. However, as in Equation G.15
of Lemma 42, s2

1 being the largest eigenvalue of S2, we have for any A, A′ ∈ R`,r,
such that fa is differentiable at A,

fa(A
′) ≤ fa(A) + 〈∇fa(A), A′ − A〉+

s2
1

2
‖A′ − A‖2

F .

Therefore, the function fa is s2
1-smooth.

Remark 66. Note that the assumption sr > sr+1 is essential here. In order to
highlight its importance, we can give an example to demonstrate that Theorem 12
would not be true if this assumption were not satisfied. Consider Y = X = I2 ∈ R2,2

and r = 1. Here, the assumptions sr > sr+1 is violated since s1 = s2 = 1. The cones

are R+ × R and R− × R. The matrix U =

[
1
0

]
is an optimum of :

min
U∈R2,1

1

2
‖XU‖2

F −
∥∥Y TXU

∥∥
∗ = min

U∈R2,1

1

2
‖U‖2

F − ‖U‖∗ .

However, in the direction ∆α :=

[
0
α

]
, there is no strong convexity. Indeed we have :

1

2
‖X(U + ∆α)‖2

F =
1

2
‖U + ∆α‖2

F =
1

2
(1 + α2)

and : ∥∥Y TX(U + ∆α)
∥∥
∗ = ‖U + ∆α‖∗ =

√
1 + α2 = 1 +

1

2
α2 + o(α2).

By taking the difference of these two equations we prove that there is no second

order dependance and consequently no strong convexity in the direction
[
0
1

]
. It

could have been seen directly with Theorem 63 : with r = 1, ` = 2, π = Id, then

Eπ(2),1 = E2,1 =

[
0
1

]
is an eigenvector associated to the eigenvalue σ1(1 − σ2

σ1
) = 0

since σ1 = σ2 = 1.

G.8.3 Proof of Corollary 13

Here, we do not assume that XTX is invertible and prove a more general result.
We show that for any R ∈ Or and N ∈ Rp−m,r, the function f restricted to the
affine cone C(R,N) = τ(Ca(R),Rm−`,r, N), where τ is the function defined in Equa-
tion (G.42), is strongly convex in a neighborhood of the optimum τ(R, 0, N) of f . If
we assumed that XTX is invertible, the proof would be very similar since we would
have m = p and the value of f ◦ τ does not depend on N .
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Given R ∈ Or and N ∈ Rp−m,r, consider U and U ′ in the same cone C(R,N)
as τ(R, 0, N). Using the linear change of variables τ , we know that there exists
A,A′ ∈ Ca(R) and C,C ′ ∈ Rm−`,r such that :

U = (XTX)
†
2 (PSA+ P⊥C) +K⊥N

= (XTX)
†
2 (PM + P⊥C) +K⊥N with M = SA,

and similarly U ′ = (XTX)
†
2 (PM ′ + P⊥C ′) +K⊥N with M ′ = SA′.

We know from Equation (G.43) that :

f(U) =
1

2
||M ||2F − ||SM ||∗ +

1

2
||C||2F .

In Theorem 61, we have computed the eigenvectors and the eigenvalues of fm :
M ′′ 7→ 1

2
‖M ′′‖2

F −‖SM ′′‖∗ at SĨR which is a minimum of fm. We invoke the same
arguments as in the proof of Theorem 12 : given the form of the Hessian for the
trace norm in Proposition 6 of [Grave et al., 2011] that is recalled in Proposition 74,
the existence of continuous bases for the singular subspaces [Stewart, 2012] of S2Ĩ
and the converse of Taylor’s Theorem in [Oliver, 1954], we obtain that the Hessian
of fm is continuous at SĨR. Therefore, for any γ < 1 < δ, there exists α > 0 such
that if S−1M, S−1M ′ ∈ B(ĨR, α) ∩ E+

R where B(ĨR, α) is the ball with center ĨR
and radius α, we have :

γ

2
(1− s2

r+1

s2
r

) ‖M ′ −M‖2
F ≤ fm(M)− fm(M ′)− 〈∇fm(M ′), M −M ′〉

≤ δ

2
‖M ′ −M‖2

F , (G.61)

since the smallest positive eigenvalue of the Hessian of fm at SĨR is 1 − s2r+1

s2r
and

the largest is 1.
The variables U and U ′ being obtained from (M,C,N) and (M ′, C ′, N) with a lin-

ear transformation, we can define a neighborhood V(R,N) ⊂ C(R,N) of τ(ĨR, 0, N)
such that U, U ′ ∈ V(R,N) if and only if S−1M, S−1M ′ ∈ B(ĨR, α) ∩ E+

R and then
transfer Equation (G.61) to U and U ′ :

γ

2
(1− s2

r+1

s2
r

)

[
‖C − C ′‖2

F +
1

2
‖M ′ −M‖2

F

]

≤ 1

2
‖C − C ′‖2

F +
γ

2
(1− s2

r+1

s2
r

) ‖M ′ −M‖2
F

≤ f(U)− f(U ′)− 〈∇f(U ′), U − U ′〉.

Also, since U −U ′ = (XTX)
†
2 (P (M −M ′) +P⊥(C −C ′)) we have the following

inequality :
‖U − U ′‖2

F ≤ d2
max

[
‖M −M ′‖2

F + ‖C − C ′‖2
F

]
,

where dmax is the largest eigenvalue of (XTX)
†
2 . If XTX is invertible, 1

d2max
is the

smallest eigenvalue of XTX. Eventually, we obtain :

γ

2d2
max

(1− s2
r+1

s2
r

) ‖U − U ′‖2
F ≤ f(U)− f(U ′)− 〈∇f(U ′), U − U ′〉.
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Setting µ := γ
d2max

(1− s2r+1

s2r
), we have proved that the restriction of f to the affine

cone C(R,N) is µ-strongly convex in the neighborhood V(R,N) of the optimum
τ(ĨR, 0, N). We conclude by defining a sublevel set V0 ⊂ ∪R∈Or, N∈Rp−m,rV(R,N) of
the function f .

The LX-smoothness of the function f is obtained directly from Equation (G.15)
in Fact 42.

Remark 67. Similarly, we can show from Equation (G.61) that there exists M >
LX such that for any U, U ′ ∈ V0 with [U,U ′] ⊂ V0, the function f has M-Lipschitz
gradients on [U,U ′], since the Hessian is bounded in V0. Unfortunately, we cannot
deduce from this observation that f has M-Lipschitz gradients in V0 or is M-smooth
in V0 since the latter might be nonconvex.

G.8.4 Proof of Corollary 14

To extend to (SRRR) the result that we proved for (RRR), we assume that XTX
is invertible.

Proof of Corollary 14. Let µ < νX

(
1 s2r
s2r+1

)
where νX is the samellest eigenvalue of

XTX and V0 be defined as in Corollary 13. As XTX is invertible, we know from
the orthogonal invariance of f(U) and λ ‖U‖1,2 that for any R ∈ Or, a minimum of
F λ(U) = f(U) + λ ‖U‖1,2 is attained in each cone C(R). Theorem 6.4 of Bonnans
and Shapiro [1998] guarantees, if its conditions are satisfied, the existence of λ̌ such
that for any R ∈ Or, the minimum in each cone C(R) depends continuously on
λ ∈ [0, λ̌). The assumptions of the Theorem 6.4 are indeed satisfied and we detail
those below :

(a) The objective F λ of (SRRR) is locally strongly convex on the cone C(Ir)
around the minimum : indeed, the restriction to C(Ir) of f : U 7→ 1

2
‖XU‖2

F −∥∥Y TXU
∥∥
∗ is strongly convex according to Corollary 13 and λ ‖U‖1,2 is convex.

(b) For every fixed λ in some interval [0, λ̃), f is locally Lipschitz with a constant
that does not depend on λ and the group-Lasso norm is Lipschitz.

(c) The difference F λ − F 0 = λ‖ · ‖1,2 is locally Lipschitz with a constant √pλ
which is O(λ).

Thus, according to Theorem 6.4 of Bonnans and Shapiro [1998], there exists 0 <
λ̄ < λ̌ such that for any 0 ≤ λ ≤ λ̄, the optimum of (SRRR) in each cone remains in
the neighborhood V0 where f is LX-smooth and F λ is µ-strongly convex, with the
same constants as f for (RRR). To conclude and obtain Corollary 14, there only
remains to define a new open sublevel set Vλ of F λ inside the sublevel set V0 of f .

G.9 Proofs for Section 5.5.3

G.9.1 Proof of Theorem 15

The sequence of inequalities to prove Theorem 15 is the same as in Proof B.1 of
Csiba and Richtarik [2017] except for the line search condition that plays the role
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of their smoothness condition. Indeed, the result remains true if the function is not
smooth as long as the condition (LS) is satisfied. Let F λ,∗ denote the minimum of
F λ. We define define the optimality gap function :

ξ : x 7→ F λ(x)− F λ,∗.

Given t > 0 and a point x ∈ Rd, we have also defined :

f̃t,x(x
′) : = f(x) + 〈∇f(x), x′ − x〉+

1

2t
‖x′ − x‖2

F ,

F̃ λ
t,x(x

′) : = f̃t,x(x
′) + λh(x′), (G.62)

and x+ is the unique minimum of the strongly convex function F̃ λ
t,x.

Proof of Theorem 15. Let x ∈ Rd and t > 0 such that the condition (LS) is satisfied
i.e. F̃ λ

t,x(x
+) ≥ F λ(x+). We have :

ξ(x+) = F λ(x+)− F λ,∗ (G.63)

≤ F̃ λ
t,x(x

+)− F λ,∗ (G.64)

= f(x) + λh(x)− F λ,∗ + 〈∇f(x), x+ − x〉

+
1

2t
||x+ − x||2 + λh(x+)− λh(x) (G.65)

= ξ(x) + min
y∈Rd

[
〈∇f(x), y − x〉+

1

2t
||y − x||2 + λh(y)− λh(x)

]
(G.66)

= ξ(x)− tγt(x) (G.67)
= ξ(x) [1− tαt(x)] . (G.68)

Equation (G.63) follows from the definition of ξ. We have Equation (G.64) since the
condition (LS) is satisfied. Equation (G.65) comes from Equation (G.62). Equa-
tion (G.66) follows from the definition of x+, Equation (G.67) from the definition of
γt and Equation (G.68) from the definitions of αt and ξ.

Remark 68. A similar result would hold if we used stochastic block coordinate
descent like in Lemma 13 of Csiba and Richtarik [2017], the proof would again
follow Proof B.1 in Csiba and Richtarik [2017], with the same modification about
the condition (LS).

G.10 Proofs for Section 5.5.4

G.10.1 Proof of Corollary 16

Let µ and V0 be defined as in Corollary 13. Let R ∈ Or and U ∈ C(R) ∩ V0.
According to Corollary 13, f is µ-strongly convex on C(R) ∩ V0. Since the minimal
value f ∗ of f is attained on each cone, let U∗ ∈ C(R) be an optimum of f . As
C(R) ∩ V0 defines a sublevel set of the restriction of f to C(R) that is a convex
function, it is a convex set. Therefore, the segment [U∗, U ] is included in C(R)∩V0.
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As a µ-strongly convex function, the restriction f |C(R)∩V0 of f to the convex set
C(R) ∩ V0 satisfies :

f |C(R)∩V0(U∗) ≥ f |C(R)∩V0(U) + 〈∇f |C(R)∩V0(U), U∗ − U〉+
µ

2
‖U∗ − U‖2

F .

Since we have :

〈∇f |[U,U∗](U), U ′ − U〉 = lims→0+
f(U + s(U ′ − U))− f(U)

s
= 〈∇f(U), U ′ − U〉,

we obtain :

f(U)− f ∗ ≤ 〈∇f(U), U − U∗〉 − µ

2
‖U − U∗‖2

F

=
µ

2

(∥∥∥∥
1

µ
∇f(U)

∥∥∥∥
2

F

−
∥∥∥∥U − U∗ −

1

µ
∇f(U)

∥∥∥∥
2

F

)

≤ 1

2µ
‖∇f(U)‖2

F .

G.10.2 Proof of Corollary 17

First, we need to introduce the following lemma. It is a light modification of
Theorem 15 of Csiba and Richtarik [2017]. Apart from the substitution of the
Lipschitz constant with 1

t
, the proof follows Proof B.2 of Csiba and Richtarik [2017].

Lemma 69. Let λ ≥ 0, µ ≥ 0, C ⊂ Rp,r a convex set, f : Rp,r → R be a differentiable
function such that its restriction to C is µ-strongly convex, h : Rp,r → R be a convex
function and F λ = f + λh. We denote f̄ , h̄ and F̄ λ the restrictions of f , h and F λ

to C. F λ,∗ denotes the optimal value of F̄ λ in C. Given U, U ′ ∈ C and t > 0, we
denote :

˜̄F λ(U ′) := f̄(U) + 〈∇f̄(U), U ′ − U〉+
1

2t
‖U ′ − U‖2

F + λh̄(U ′) (G.69)

γ̄t(U) := −1

t
min
U ′∈C

[
˜̄F λ(U ′)− F̄ λ(U)

]
. (G.70)

Let U ∈ C, t > 0 and U+ = argminU ′∈C

[
˜̄F λ(U ′)− F̄ λ(U)

]
. We have :

γ̄t(U) ≥ min

(
1

2t
, µ

)[
F̄ λ(U)− F̄ λ,∗] .

Proof. Let U ∈ C such that F̄ λ > F̄ λ,∗, t > 0 and :

U+ = argmin
U ′∈C

[
˜̄F λ(U ′)− F̄ λ(U)

]
.
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Then, we have :

tγ̄t(U) = −min
U ′∈C

[
〈∇f̄(U), U ′ − U〉+

1

2t
‖U ′ − U‖2

F + λh̄(U ′)− h̄(U)

]
(G.71)

= F̄ λ(U)−min
U ′∈C

[
f̄(U) + 〈∇f̄(U), U ′ − U〉+

1

2t
‖U ′ − U‖2

F + λh̄(U ′)

]

≥ F̄ λ(U)−min
U ′∈C

[
f̄(U ′)− µ

2
‖U ′ − U‖2

F +
1

2t
‖U ′ − U‖2

F + λh̄(U ′)

]
(G.72)

= F̄ λ(U)−min
U ′∈C

[
F̄ λ(U ′)− 1

2

(
µ− 1

t

)
‖U ′ − U‖2

F

]
. (G.73)

Equation (G.71) follows from Equation (G.69) and Equation (G.70). Equa-
tion (G.72) is due to the µ-strong convexity of f̄ . We denote U∗ ∈ C the opti-
mum of F̄ λ and for all U ′ ∈ C, ξ(U ′) := F̄ λ(U ′) − F̄ λ,∗. Let 0 ≤ δ ≤ 1, setting
U ′ = U + δ(U∗ − U) in Equation (G.73), we obtain :

tγ̄t(U) ≥ F̄ λ(U)− F̄ λ(δU∗ + (1− δ)U) +
1

2
δ2

(
µ− 1

t

)
‖U∗ − U‖2

F

≥ F̄ λ(U)− δF̄ λ(U∗)− (1− δ)F̄ λ(U)

+
1

2

[
µδ(1− δ) + δ2

(
µ− 1

t

)]
‖U∗ − U‖2

F (G.74)

= δ
(
ξ(U) +

µ

2
‖U∗ − U‖2

F

)
− δ2

2t
‖U∗ − U‖2

F . (G.75)

Equation (G.74) comes from the µ-strong convexity of F̄ λ. We impose :

δ = min

(
1,
ξ(U) + µ

2
‖U − U∗‖2

F

1
t
‖U − U∗‖2

F

)
. (G.76)

Consider the two possible values for δ in Equation (G.76). First, if 1
t
‖U − U∗‖2

F ≤
ξ(U) + µ

2
‖U − U∗‖2

F we have δ = 1 and :
(
µ− 1

t

)
‖U − U∗‖2

F ≥
(
µ

2
− 1

t

)
‖U − U∗‖2

F ≥ −ξ(U). (G.77)

Combining Equation (G.75) with Equation (G.77) in the case δ = 1, we obtain :

tγ̄t(U) ≥ ξ(U) +
1

2

(
µ− 1

t

)
‖U∗ − U‖2

F ≥
1

2
ξ(U). (G.78)

Secondly, if 1
t
‖U − U∗‖2

F ≥ ξ(U) + µ
2
‖U − U∗‖2

F , we obtain with Equation (G.75) :

tγ̄t(U) ≥
(
ξ(U) + µ

2
‖U∗ − U‖2

F

)2

2
t
‖U∗ − U‖2

F

. (G.79)
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Therefore, with Equation (G.78) and Equation (G.79), we have :

γ̄t(U) ≥ min

(
1

2t
ξ(U),

(
ξ(U) + µ

2
‖U∗ − U‖2

F

)2

2 ‖U∗ − U‖2
F

)

≥ min

(
1

2t
ξ(U),

2ξ(U)µ ‖U∗ − U‖2
F

2 ‖U∗ − U‖2
F

)
(G.80)

≥ min

(
1

2t
, µ

)
ξ(U) = min

(
1

2t
, µ

)[
F̄ λ(U)− F̄ λ,∗] .

Equation (G.80) comes from the inequality of arithmetic and geometric means.

We can now prove Corollary 17. Let Vλ be the sublevel set defined in Corol-
lary 14. Let R ∈ Or and U ∈ C(R)∩Vλ. According to Corollary 14, F λ is µ-strongly
convex on C(R) ∩ Vλ. Since the minimal value F λ,∗ is attained on each cone, let
U∗ ∈ C(R) be an optimum of F λ,∗. As C(R) ∩ Vλ defines a sublevel set of the re-
striction of F λ to C(R) that is a convex function, it is a convex set. Therefore, the
segment [U∗, U ] is included in C(R) ∩ Vλ.

We define for any U ′ ∈ [U, U∗] the surrogate (F̃ λ|[U,U∗])t,x(U ′) of the restriction
of F λ to [U,U∗] like in section 5.5.3 :

(F̃ λ|[U,U∗])t,U(U ′) = f(U) + 〈∇f |[U,U∗](U), U ′ − U〉+
1

2t
‖U ′ − U‖2

F + λ ‖U ′‖1,2 .

From Lemma 69, we obtain the following inequality for any U ′ ∈ [U,U∗] such that
the condition (LS) is satisfied :

−1

t
min

U ′∈[U,U∗]

[
(F̃ λ|[U,U∗])t,U(U ′)− F λ|[U,U∗](U)

]

≥ min(
1

2t
, µ)
[
F λ(U)− F λ,∗] . (G.81)

Since

〈∇f |[U,U∗](U), U ′ − U〉 = lims→0+
f(U + s(U ′ − U))− f(U)

s
= 〈∇f(U), U ′ − U〉,

Inequality (G.81) becomes :

−1

t
min

U ′∈[U,U∗]

{
F̃ λ
t,U(U ′)− F λ(U)

}
≥ min(

1

2t
, µ)
[
F λ(U)− F λ,∗] .

The minimum over the segment being lower bounded by the minimum over the
whole space, we deduce that :

γt(U) ≥ min(
1

2t
, µ)
[
F λ(U)− F λ,∗] .
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G.10.3 Proof of Corollary 18

Let λ ≥ 0 and Vλ be a non-empty sublevel set of F λ such that for all U ∈ Vλ,
F λ satisfies the t-strong proximal -PL inequality, as in Corollary 17. Let k ≥ 0,
tk−1 > β

LX
and Uk ∈ Vλ. If Uk+1 and tk are generated as in Algorithm 1 from

Uk ∈ Vλ and tk−1 such that the (LS) condition F λ(Uk+1) ≤ F̃ λ
tk,Uk

(Uk+1) is satisfied,
then we know from Fact 43 that the inequality tk > β

LX
is satisfied.

Besides, since we have :

F λ(Uk+1) ≤ F̃ λ
tk,Uk

(Uk+1) = min
U ′∈Rp,r

F̃ λ
tk,Uk

(U ′) ≤ F̃ λ
tk,Uk

(Uk) = F λ(Uk)

and Vλ is a sublevel set, it is clear that Uk+1 ∈ Vλ.
To obtain Equation (18), we can apply Theorem 15 since F λ satisfies the tk-

strong proximal -PL inequality by Corollary 17 with α(tk) := min( 1
2tk
, µ) :

F λ(Uk+1)− F λ,∗ ≤ [1− tkα(tk)]
[
F λ(Uk)− F λ,∗]

≤
[
1−min(

1

2
, µtk)

] [
F λ(Uk)− F λ,∗]

≤ [1− ρ]
[
F λ(Uk)− F λ,∗] ,

where ρ = min(1
2
, β µ

LX
) ≤ min(1

2
, µtk).

G.11 Supplementary Results and Proofs

G.11.1 Proof of Lemma 52

First, we prove the following fact.

Fact 70. If U is a local minimizer of F λ, then denoting :

VU ∈ argmax
V ∈Rk,r: V TV=Ir

〈V, Y TXU〉, (G.82)

the matrix W := UV T
U ∈ Rp,k has to be a local minimizer of Fw : W 7→ 1

2
‖XW‖2

F −
〈Y,XW 〉+ λ ‖W‖1,2 among matrices of Rp,k whose rank is smaller than r.

Proof. We prove Fact 70 by contradiction, supposing that W := UV T
U is not a local

minimizer. Without loss of generality, we can assume since F λ is invariant when
its argument is multiplied on the right by an orthogonal matrix that the columns
of U are orthogonal. Indeed, if the SVD of U is R1ΣRT

2 , we can consider instead
U ′ = R1Σ and modify VU accordingly. With this assumption, the right singular
vectors of W := UV T

U with VU defined by Equation (G.82) are exactly the columns
of VU . Since we supposed that W is not a local minimizer, there exists a sequence of
matrices (Wk)k≥0 with rank smaller than r and with limitW such that for each k ≥ 0,
Fw(Wk) < Fw(W ). For each k ≥ 0, let Vk be a matrix with r columns containing
at least the right singular vectors of Wk such that V T

k Vk = Ir. In particular, using
the continuity of the singular spaces [Stewart, 2012, Theorem V.2.7], we can impose
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that the sequence (Vk)k≥0 has limit VU . The sequence (Uk)k≥0 defined for each k ≥ 0
by Uk = WkVk has limit U . For k ≥ 0, this would mean Wk = UkV

T
k and :

f(Uk) + λ ‖Uk‖1,2 = F λ(Uk) ≤ Fw(UkV
T
k ) < Fw(UV T

U ) = f(U) + λ ‖U‖1,2 .

This would contradict the fact that U is a local minimizer. Therefore W = UV T
U

must be a local minimizer of Fw.

Proof of Lemma 52. We assume that for any S ⊂ {1, . . . , p} of cardinality at least r,
the matrix XT

S Y is full-rank, where XS is the matrix formed by keeping the columns
of X indexed by S. We prove Lemma 52 by contradiction, assuming that U is a
local minimum which has at least r non-zero rows and a rank strictly smaller than r.
Again, we denote VU ∈ argmaxV TV=Ir〈V, Y TXU〉 and consider W := UV T

U . First,
we write without loss of generality :

W =

[
WS

0

]
, with |S| ≥ r and WS ∈ R|S|,k only has non-zero rows.

Secondly, rank(WS) < r sinceWS is extracted fromW whose rank is smaller than r.
According to Fact 70,W is a local minimizer of Fw among matrices with rank smaller
than r so for any vectors u ∈ Rp, v ∈ Rk, the function t 7→ 1

2

∥∥Y −X(W + tuvT )
∥∥2

F
+

λ
∥∥W + tuvT

∥∥
1,2

has a minimum at zero. The first-order condition is :

uTXT (Y −XW )v + λ
∑

i

uiz
T
i v = 0,

where ui ∈ R and denoting Wi,: the i-th row of W , zTi =
Wi,:

‖Wi,:‖2
if Wi,: is different

from zero and zi has a norm smaller than 1 otherwise. If we impose v ∈ Ker WS,
we get Wv = 0 and zTi v = 0 for i ∈ S. Therefore we have :

uTXTY v + λ
∑

i/∈S
uiz

T
i v = 0. (G.83)

Since Equation (G.83) holds in particular for any u ∈ Rp such that ui = 0 when
i /∈ S, we necessarily have for any v ∈ Ker WS :

XT
S Y v = 0.

In other words, we have Ker WS ⊂ Ker XT
S Y . This implies that dim(Ker XT

S Y ) ≥
dim(Ker WS) > k − r since WS has rank strictly smaller than r. Therefore XT

S Y ∈
R|S|,k has rank strictly smaller than r. This is in contradiction with the assumption
in Lemma 52.

G.11.2 Proof of Lemma 53

Let U∗ be a full-rank local minimum of F λ : U 7→ 1
2
‖XU‖2

F−
∥∥Y TXU

∥∥
∗+λ ‖U‖1,2.

Without loss of generality, we denote S the support of the rows of U∗ and we write :

U∗ =

[
US

0p−m,r

]
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where m is the number of non-zero rows of U and US ∈ Rm,r. We also denote :

X =
[
XS XSc

]
,

with XS ∈ Rn,m and XSc ∈ Rn,p−m. Let V ∈ argminV ∈Rk,r: V TV=Ir〈Y TXU∗, V 〉 and
Gλ : U 7→ 1

2
‖XU‖2

F − 〈Y TXU, V 〉+ λ ‖U‖1,2. By Fact 33, we have on the one hand
Gλ ≥ F λ and on the other hand Gλ(U∗) = F λ(U∗) so U∗ is a local minimum of Gλ.
The first order conditions restricted to the rows in the set S are :

XT
SXSUS −XT

S Y V + λZS = 0, (G.84)

where ZS := DUS ∈ R|S|,r with D := diag( 1
‖U∗1 ‖2

, . . . , 1
‖U∗m‖2 ) ∈ R|S|,|S| and the norms

of the rows of US are denoted ‖U∗1‖2, . . . , ‖U∗m‖2. In particular, Equation (G.84)
implies that :

UT
S

[
XT
SXS +D

]
US = UT

SX
T
S Y V.

Since we assumed that |S| ≥ r, the matrix UT
S

[
XT
SXS +D

]
US has rank r. Neces-

sarily, UT
SX

T
S Y = U∗TXTY also has rank r.

G.11.3 Proof of Lemma 54

Lemma 52 and Lemma 53 combined with Assumption H2 ensure that for any
limit point U ∈ Ū , the matrix Y TXU is full-rank. Since the set of limit points Ū
is closed and bounded, there exist ζ > 0 and δ > 0 such that for all U ∈ Rp,r,
dist(U, Ū) ≤ δ implies that the eigenvalues of Y TXU are lower bounded by ζ, where
dist(U, Ū) is the Euclidean distance between U and the compact set Ū . We denote
Kδ :=

{
U ∈ Rp,r|dist(U, Ū) ≤ δ

}
and K δ

2 :=
{
U ∈ Rp,r|dist(U, Ū) ≤ δ

2

}
.

Proposition 6 of [Grave et al., 2011] that is recalled in Proposition 74, describes
the Hessian of the trace-norm at full-rank matrices : since for any U ∈ Kδ, the
eigenvalues of Y TXU are lower bounded by ζ, there exists M > 0 such that the
Hessian of f is bounded on Kδ by M . Therefore, for any U, U ′ ∈ Kδ such that
[U, U ′] ⊂ Kδ, we have :

‖∇f(U)−∇f(U ′)‖F ≤M ‖U − U ′‖F . (G.85)

Fact 43 and Lemma 44 ensure that limk→+∞ ‖Uk+1 − Uk‖F = 0 so there exists k1 ≥ 0

such that for any k ≥ k1, we have Uk ∈ K
δ
2 and ‖Uk+1 − Uk‖F ≤ δ

2
. The triangle

inequality implies that [Uk, Uk+1] ⊂ Kδ. Consequently we have, by Equation (G.85),
for all k ≥ k1 :

‖∇f(Uk)−∇f(Uk+1)‖F ≤M ‖Uk − Uk+1‖F .

G.11.4 Proof of Lemma 57

Let A ∈ R`,r be a rank deficient matrix and R1DR
T
2 be a singular value de-

composition of the matrix S2A. Since S2A is rank deficient, we can assume that
R1 ∈ R`,r−1, D ∈ Rr−1,r−1 and R2 ∈ Rr,r−1. Up to a multiplication on the right by
an orthogonal matrix, we can assume, using the orthogonal invariance of fa, that :

S2A = R1D
[
Ir−1 0r−1

]
, where Ir−1 ∈ Rr−1,r−1, 0r−1 ∈ Rr−1.
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Let er ∈ Rr be the vector whose components are 0 except for the last one that is
1. Let t ∈ R and ã ∈ R` be a unit-norm vector such that S2ã is orthogonal to the
columns of R1 and therefore to the columns of S2A. We have

∥∥ãeTr
∥∥
F

= 1. On the
one hand, we can separate the Frobenius norm of S(A+ tãeTr ) as follows :

1

2
||S(A+ tãeTr )||2F =

1

2
||SA||2F +

1

2
t2||SãeTr ||2F =

1

2
||SA||2F +

1

2
t2||Sã||2F =

1

2
||SA||2F + o(t).

On the other hand, for any t 6= 0, a singular value decomposition of S2(A + tãeTr )
is :

S2(A+ tãeTr ) =
[
R1

S2ã
||S2ã||F

] [D 0
0 |t|||S2ã||F

] [
Ir−1 0r−1

0Tr−1
t
|t|

]
.

We can therefore easily compute the trace norm of S2(A+ tãeTr ) :

||S2(A+ tãeTr )||∗ = ||S2A||∗ + |t|||S2ã||F ≥ ||S2A||∗ + |t|s2
` ,

where s` is the smallest eigenvalue of S. So finally, we obtain :

fa(A+ tãeTr ) ≤ fa(A)− s2
` |t|+ o(t).

G.11.5 Proof of Lemma 58

Proof. Let A be a critical point of fa : A 7→ 1
2
||SA||2F − ‖S2A‖∗ and denote VA ∈

argmaxV ∈R`,r:V TV=Ir〈S, SAV T 〉. We know from Lemma 57 that A is full-rank and
applying Danskin’s Theorem [Danskin, 1967], we have :

∇fa(A) = S2(A− VA) = 0. (G.86)

Besides, writing ΠΣR the singular value decomposition of S2A with Π ∈ R`,r a
matrix whose columns are orthogonal, Σ ∈ Rr,r a diagonal matrix whose entries are
denoted σ1, . . . , σ` and R ∈ Rr,r an orthogonal matrix, we know that A = VA from
Equation (G.86) and that VA = ΠR by Fact 35. Therefore, we have :

S2A = S2ΠR

⇒ ΠΣR = S2ΠR since ΠΣR is the SVD of S2A,
⇒ ΠΣ = S2Π since RRT = Ir. (G.87)

Let i ∈ [[1, r]], w := (w1, . . . , w`)
T be the i-th column of Π. Equation (G.87) implies

that :

σiw =



s2

1w1
...

s2
`w`


 ,

⇒ ∀j ∈ [[1, r]], (σi − s2
j)wj = 0.

Since we assumed that s1, . . . , s` are all different, only one wj can be different from
zero and must be 1 since w has norm 1. Given that the columns of the matrix Π
are orthogonal and contain only one nonzero coefficient, up to a permutation of its
columns, the matrix Π has the form given in Lemma 58.
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With Lemma 55, we know that A is not a local maximum of fa. If A = ĨR, we
have proved in Lemma 9 that A is a global minimum. Now assume that A = ΠπR,
with π and Ππ as in Equation (G.55) and that there exists i ∈ {1, . . . , r} such that
π(i) > i and for all i′ < i, π(i′) = i′. We have :

1

2

∥∥S(A+ teie
T
i R)

∥∥2

F
=

1

2
‖SA‖2

F +
t2

2
s2
i . (G.88)

Since the Frobenius norm of the i-th column of S2(A+ teie
T
i R) is

√
s4
π(i) + t2s4

i and

the columns of S2(A+ teie
T
i R) have disjoint supports, we also have :

∥∥S2(A+ teie
T
i R)

∥∥
∗ =

∥∥S2A
∥∥
∗ − s

2
π(i) +

√
s4
π(i) + t2s4

i

=
∥∥S2A

∥∥
∗ − s

2
π(i) + s2

π(i)

(
1 +

t2

2

s4
i

s4
π(i)

)
+O(t4). (G.89)

Combining Equation (G.88) with Equation (G.89), we obtain :

fa(A+ teie
T
i R)− fa(A) =

t2s2
i

2

(
1− s2

i

s2
π(i)

)
+O(t4).

Since we have assumed that π(i) > i and the eigenvalues of the matrix S are strictly

decreasing, we have
(

1− s2i
s2
π(i)

)
< 0 and A is not a local minimum.

G.11.6 Proof of Theorem 61

As in section G.7.3, we consider a permutation π : [[1; `]] → [[1; `]] such that
simultaneously π(1) < . . . < π(r) and π(r + 1) < . . . < π(`). We denote :

Ππ := (1i=π(j))1≤i≤`, 1≤j≤r ∈ R`,r,

and define for i0 ∈ [[1, `]] and j0 ∈ [[1, r]] :

Ei0,j0 = (1i=i0, j=j0)1≤i≤`, 1≤j≤r ∈ R`,r.

We want to compute the Hessian Hm of fm : M 7→ 1
2
‖M‖2

F −‖SM‖∗ at the matrix
M = SΠπR. It is well defined according to Proposition 6 in [Grave et al., 2011] since
SM = S2ΠπR is full-rank. We recall this result below in Proposition 74. In order
to introduce the different eigenvectors of the Hessian of fm, we need the singular
value decomposition and the polar decomposition of SM . Since M = SΠπR and
S2Ππ = Ππdiag(s2

π(1), . . . , s
2
π(r)), a singular value decomposition of SM is given by :

SM = Ππdiag(s2
π(1), . . . , s

2
π(r))R, ΠT

πΠπ = Ir and RTR = Ir.

We have s2
π(1) > . . . > s2

π(r) because we assumed s1 > . . . > s` > 0 and π(1) < . . . <

π(r). Defining V = ΠπR ∈ R`,r and K = RTdiag(s2
π(1), . . . , s

2
π(r))R ∈ Rr,r, we obtain

the polar decomposition of SM :

SM = V K, V TV = Ir and K ∈ S++

r , (G.90)
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with S++
r the set of positive-definite matrices in Rr,r. We also denote Sr = {H ∈

Rr,r | HT = H} the set of symmetric matrices in Rr,r.
First we focus on a set of directions where the restriction of fm is exactly a

quadratic strongly convex function.

Fact 71. The restriction of M ′ 7→ ‖SM ′‖∗ to the affine subspace {M + S−2MH |
H ∈ Sr} is linear in a neighborhood of M , its Hessian at M is zero. Conse-
quently, the Hessian of fm : M 7→ 1

2
‖M‖2

F − ‖SM‖∗ restricted to the subspace
TK := {S−2MH | H ∈ Sr} is exactly the identity. A basis for TK is the concatena-
tion of (S−1(Eπ(i),j + Eπ(j),i)R)1≤i<j≤r with (S−1Eπ(i),iR)1≤i≤r.

Proof. For any matrix M̃ such that the polar decomposition of SM̃ has the form
V B with B ∈ S+

r , we have
∥∥∥SM̃

∥∥∥
∗

= 〈SM̃, V 〉. Indeed, if QDQT is a singular value

decomposition of B with Q ∈ Rr,r, QTQ = Ir and D ∈ Rr,r a diagonal matrix, then
(V Q)DQT is a singular value decomposition of V B. Using Fact 33 and Fact 35, we
have : ∥∥∥SM̃

∥∥∥
∗

= 〈SM̃, (V Q)QT 〉 = 〈SM̃, V 〉.

Consequently, we have :

fm(M̃) =
1

2

∥∥∥M̃
∥∥∥

2

F
− 〈SM̃, V 〉.

In particular, for any ∆ = S−1V H with H ∈ Sr such that K + H ∈ S+
r , we have

M + ∆ = S−1V (K +H) since M = S−1V K according to Equation (G.90) and :

fm(M + ∆) =
1

2
‖M + ∆‖2

F − 〈S(M + ∆), V 〉.

Therefore, the Hessian of ∆ 7→ fm(M + ∆) restricted to the subspace TK :=
{S−1V H, H ∈ Sr} is locally the identity. Note that S−1V = S−2SΠπR = S−2M
since V = ΠπR and M = SΠπR so :

TK = {S−2MH, H ∈ Sr}.

We can also use M = SΠπR to write :

TK = {S−1ΠπRH, H ∈ Sr}
= {S−1ΠπHR, H ∈ Sr}. (G.91)

For Equation (G.91), we have used the fact that for any orthogonal matrix R ∈ Rr,r,
the application H 7→ RTHR is an automorphism of Sr. We then obtain a basis for
TK using the fact that the concatenation of (Ei,j + Ej,i)1≤i<j≤r with (Ei,i)1≤i≤r is a
basis of Sr and for any 1 ≤ i, j ≤ r, ΠπEi,j = Eπ(i),j.

Secondly, the invariance of fm when its argument is multiplied on the right by
an orthogonal matrix gives a set of directions included in the kernel of the Hessian.

Fact 72. The subspace TR := {MT | T T = −T, T ∈ Rr,r} is included in the Kernel
of the Hessian of fm at M = SΠπR. Additionally, TK ⊕⊥ TR = {MF | F ∈ Rr,r}
and a basis for TR is (S(Eπ(i),j − Eπ(j),i)R)1≤i<j≤r.
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Proof. Since M is a critical point of fm which is invariant when its argument is
multiplied on the right by an orthogonal matrix, then by [Li et al., 2016, Theorem
2], the subspace that is tangent to the manifold {MR′ | R′ ∈ Or} is included in the
Kernel of the Hessian of fm at M . In Example 4, Li et al. [2016] show that this
subspace is exactly TR := {MT | T ∈ Rr,r, T T = −T}. Since M = SΠπR and the
set of antisymmetric matrices of Rr,r can be written {RTTR | T ∈ Rr,r, T T = −T},
a basis for TR is (S(Eπ(i),j − Eπ(j),i)R)1≤i<j≤r.

To show that {MF | F ∈ Rr,r} can be decomposed with the given orthogonal
sum, it is first important to notice that :

TK = {S−1V H | H ∈ Sr}
= {MK−1H | H ∈ Sr}. (G.92)

We have used Equation (G.90) to obtain Equation (G.92). It is then sufficient to
notice that both TK = {MK−1H | H ∈ Sr} and TR = {MT | T T = −T, T ∈ Rr,r}
are included in {MF,F ∈ Rr,r}, they are also orthogonal given the bases that we
have introduced and finally, their dimensions are respectively r(r+1)

2
and r(r−1)

2
since

M is full-rank so their sum must be equal to {MF | F ∈ Rr,r} which is of dimension
r2.

What remains to study is the eigenvectors and the corresponding eigenvalues of
the Hessian of fm at M in the subspace that is orthogonal to {MF | F ∈ Rr,r}.
Fact 73. For r+ 1 ≤ k ≤ ` and 1 ≤ j ≤ r, the matrix Eπ(k),jR is an eigenvector of
the Hessian of fm restricted to the subspace TV ⊥ := {C ∈ R`,r | MTC = 0} and the

corresponding eigenvalue is 1− s2
π(k)

s2
π(j)

.

To prove Fact 73, we use the following result.

Proposition 74. [Grave et al., 2011, Proposition 6] Let ` ≥ r, N ∈ R`,r be a
full-rank matrix and WΣZT ∈ R`,r be its singular value decomposition, with W ∈
R`,r, W TW = Ir, Σ = diag(σ1 ≥ . . . ≥ σr) ∈ Rr,r with σr > 0, Z ∈ Rr,r and ZTZ =
Ir. Let W0 ∈ R`,`−r such that W T

0 W0 = I`−r and W TW0 = 0. We denote (wi)1≤i≤r
the columns of W , (zj)1≤j≤r the columns of Z and (wk)r+1≤k≤` the columns of W0.
For any ∆ ∈ R`,r, we have :

‖N + ∆‖∗ = ‖N‖∗ + 〈WZT ,∆〉

+
1

2

∑

1≤i≤r, 1≤j≤r

(wTi ∆zj − wTj ∆zi)
2

2(σi + σj)

+
1

2

∑

r+1≤k≤`, 1≤j≤r

(wTk ∆zj)
2

σj
+ o(‖∆‖2

F ). (G.93)

Proof of Fact 73. Given a perturbation ∆R of the matrix M , we have

‖SM + S∆R‖∗ =
∥∥S2ΠπR + S∆R

∥∥
∗ , (G.94)

=
∥∥S2Ππ + S∆

∥∥
∗ (G.95)

Equation (G.94) comes from M = SΠπR and we have Equation (G.95) since the
trace-norm is orthogonal invariant. Thus, we apply Proposition 74 for a perturbation
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S∆ of the matrix S2Ππ whose singular value decomposition is Ππdiag(s2
π(1) > . . . >

s2
π(r)). With the notations of Proposition 74, this corresponds to W = Ππ, Σ =

diag(s2
π(1) > . . . > s2

π(r)) and Z = Ir. Let W0 ∈ R`,`−r be the matrix whose columns
wk are the eπ(k) for r + 1 ≤ k ≤ `, then W T

0 W0 = I`−r and W TW0 = 0. We have :

∥∥S2Ππ + S∆
∥∥
∗ =

∥∥S2Ππ

∥∥
∗ + 〈WZT , S∆〉

+
1

2

∑

1≤i≤r, 1≤j≤r

(wTi S∆zj − wTj S∆zi)
2

2(s2
π(i) + s2

π(j))

+
1

2

∑

r+1≤k≤`, 1≤j≤r

(wTk S∆zj)
2

s2
π(j)

+ o(‖∆‖2
F )

=
∥∥S2Ππ

∥∥
∗ + 〈Ππ, S∆〉

+
1

2

∑

1≤i≤r, 1≤j≤r

(sπ(i)e
T
π(i)∆ej − sπ(j)e

T
π(j)∆ei)

2

2(s2
π(i) + s2

π(j))

+
1

2

∑

r+1≤k≤`, 1≤j≤r

s2
π(k)

s2
π(j)

(eTπ(k)∆zj)
2 + o(‖∆‖2

F ).

Note that in the first sum, ∆ only intervenes through a product with the transpose
of an element eπ(i) that belongs to Im M . Since we already studied the effect of the
Hessian on the subspace {MF | F ∈ Rr,r} in Fact 71 and Fact 72, we focus on the
effect of the Hessian in the orthogonal subspace that is described in the second sum.
Given a perturbation ∆ of the form W0FZ

T with F ∈ R`−r,r, we have on the one
hand :

∥∥S2Ππ + S∆
∥∥
∗ =

∥∥S2Ππ

∥∥
∗ + 〈Ππ, S∆〉

+
1

2

∑

r+1≤k≤`, 1≤j≤r

s2
π(k)

s2
π(j)

(eTπ(k)W0FZ
T zj)

2 + o(‖∆‖2
F )

=
∥∥S2Ππ

∥∥
∗ + 〈Ππ, S∆〉

+
1

2

∑

r+1≤k≤`, 1≤j≤r

s2
π(k)

s2
π(j)

F 2
k−r,j + o(‖∆‖2

F ). (G.96)

Equation (G.96) comes from eTπ(k)W0 = (1i=k−r)T1≤i≤`−r and ZT zj = (1i=j)1≤i≤r.
On the other hand, we have :

1

2
‖M + ∆R‖2

F =
1

2
‖M‖2

F +
1

2
‖∆R‖2

F + 〈M, ∆R〉

=
1

2
‖M‖2

F +
1

2
‖∆‖2

F + 〈SΠπR, ∆R〉 (G.97)

=
1

2
‖M‖2

F +
1

2

∥∥W0FZ
T
∥∥2

F
+ 〈SΠπ, ∆〉 (G.98)

=
1

2
‖M‖2

F +
1

2

∑

1≤i≤`−r, 1≤j≤r
F 2
i,j + 〈SΠπ, ∆〉. (G.99)
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Equation (G.97) follows from M = SΠπR, Equation (G.98) from ∆ = W0FZ
TR

and Equation (G.99) from W T
0 W0 = I`−r and Z = Ir. Combining Equation (G.96)

with Equation (G.99), we obtain for ∆ = W0FZ
T :

fm(M + ∆R) = fm(M) +
1

2

∑

r+1≤k≤`, 1≤j≤r

(
1−

s2
π(k)

s2
π(j)

)
F 2
k−r,j + o(‖∆‖2

F ).

Since W0 ∈ R`,`−r is the matrix whose columns are the eπ(k) for r + 1 ≤ k ≤ ` and
Z = Ir, we obtain the last eigenvectors of the Hessian of fm : for r + 1 ≤ k ≤ `
and 1 ≤ j ≤ r, the matrix Eπ(k),jR is an eigenvector associated to the eigenvalue

1− s2
π(k)

s2
π(j)

.

Remark 75. Note that we could have directly used Equation (G.93) to prove si-
multaneously Fact 71, Fact 72 and Fact 73 but we believe that the proposed analysis
helps understanding the structure of the eigenspaces.

Eventually, we have proved that the Hessian of fm at M is block diagonal on the
three orthogonal subspaces :

• TK := {S−2MH | H ∈ Sr} where the eigenvalues are all equal to 1.

• TR := {MT | T T = −T} where the eigenvalues are all 0.

• TV ⊥ := {W0C | C ∈ R`−r,r} where the eigenvalues are the 1− s2
π(k)

s2
π(j)

for r+ 1 ≤
k ≤ `, 1 ≤ j ≤ r.

We summarize the eigenvectors of the Hessian of fm : M ′ 7→ 1
2
‖M ′‖2

F − ‖SM ′‖∗
at M = SΠπR in the table below.

Eigenvectors and Eigenvalues of the Hessian of
fm : M ′ 7→ 1

2
‖M ′‖2

F − ‖SM ′‖∗ at M = ΠπR

Indices Number of elements Eigenvectors Eigenvalues

1 ≤ i ≤ r r S−1Eπ(i),iR 1

1 ≤ i < j ≤ r r(r−1)
2

S−1(Eπ(i),j + Eπ(j),i)R 1

1 ≤ i < j ≤ r r(r−1)
2

S(Eπ(i),j − Eπ(j),i)R 0

r + 1 ≤ k ≤ `,
1 ≤ j ≤ r

r(`− r) Eπ(k),jR 1− s2
π(k)

s2
π(j)
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G.12 KŁ with exponent 1
2

As announced at the end of Section 5.5.4, we show in Section G.12.1 that the
geometric structure leveraged in Corollary 17 can be used to prove that F λ has the
KŁ property with exponent 1

2
near the set of optima. While in the core of the article,

we proposed a direct proof of Corollary 18 based on Corollary 17 and Theorem 15,
we present in Section G.12.2 an application of the framework developed by Csiba
and Richtarik [2017] to show that the KŁ property with exponent 1

2
(instead of the

PŁ inequality) also leads to linear convergence. The proofs appear simpler than the
ones encountered in [Attouch and Bolte, 2009; Attouch et al., 2013; Chouzenoux
et al., 2014; Frankel et al., 2015] as the algorithms considered in these papers are
more general while we restrain our study to the proximal gradient algorithm with
line search.

G.12.1 KŁ-1
2 on cones for (RRR / SRRR)

We assume that XTX is invertible. Let span C(Ir) be the subspace spanned by
C(Ir) = τ(Ca(Ir),Rp−`,r) with τ defined in Equation (5.6) and Ca(Ir) defined in
Equation (5.8). Let F λ

Ir
be the restriction of F λ to C(Ir) : it is defined for any

U ∈ span C(Ir) as F λ
Ir

(U) = F λ(U) if U ∈ C(Ir) and F λ
Ir

(U) = +∞ otherwise.
From the structure described in Corollary 14, and since τ is a linear invertible
change of variables, we know that F λ

Ir
◦ τ is strongly convex in a neighborhood of

(Ĩ , 0p−`,r) = (

[
Ir

0`−r,r

]
, 0p−`,r) included in Ca(Ir).

Fact 76. Let F be a proper lower semi-continuous function. If F is µ-strongly
convex in a set V ⊂ Rd then given x∗ ∈ V, F has the Kurdyka-Łojasiewicz property
at x∗ ∈ dom ∂F with exponent 1/2 : there exist η > 0 and a neighborhood U of x∗
such that for all x ∈ U ∩ {y | F (x∗) < F (y) < F (x∗) + η}, we have :

c√
F (x)− F (x∗)

dist(0, ∂F (x)) ≥ 1. (G.100)

Proof. Let x∗ ∈ V . First, if 0 /∈ ∂F (x∗), then by Lemma 2 of Attouch et al. [2010],
there is c > 0 and a neighborhood U of x∗ such that for any x ∈ U , we have :

dist(0, ∂F (x)) ≥ 1

c
and F (x)− F (x∗) ≤ 1,

so Equation (G.100) holds for any x ∈ U .
Secondly, assume that 0 ∈ ∂F (x∗). Let x ∈ V such that F (x) > F (x∗) and

276



Chapter G

v ∈ ∂F (x). Since F is µ-strongly convex, we have :

F (x)− F (x∗) ≤ 〈v, x− x∗〉 − µ

2
‖x− x∗‖2

=
µ

2

[
1

µ2
‖v‖2 − 1

µ2
‖v‖2 + 2〈 1

µ
v, x− x∗〉 − ‖x− x∗‖2

]

=
µ

2

[
1

µ2
‖v‖2 −

∥∥∥∥x− x∗ −
1

µ
v

∥∥∥∥
2
]

≤ 1

2µ
‖v‖2 .

Therefore, we obtain Equation (G.100) with c = 1√
2µ

:

1√
2µ

1√
F (x)− F (x∗)

dist(0, ∂F (x)) ≥ 1.

Since F λ
Ir

is strongly convex, it is a KŁ-1
2
function by Fact 76. This is key to

apply the following result.

Theorem 77. [Theorem 3.2 in Li and Pong, 2017] Consider a ≥ b ≥ 1, g : Rb → R
a proper closed function and h : Ra → Rb a continuously differentiable mapping.
Suppose in addition that g is a KŁ function with exponent α ∈ [0, 1) and the Jacobian
Jh(x̄) ∈ Rb,a is a surjective mapping at some x̄ ∈ dom g ◦ h. Then g ◦ h has the KŁ
property at x̄ with exponent α.

Let Ip−`,r : Rp−`,r 7→ Rp−`,r be the identity function and σ̄ : R`,r → C(Ir) be the
function defined for full-rank matrices based on the polar decomposition :

σ̄ :

[
B1

B2

]
R ∈ R`,r 7→

[
B1

B2

]
,

where B1 ∈ S++
r , R ∈ Or. This definition is correct as the polar decomposition of

a full-rank matrix B1 is unique. Given the orthogonal invariance of F λ and F λ ◦ τ ,
we have :

F λ = F λ
Ir ◦ τ ◦ (σ̄, Ip−`,r) ◦ τ−1.

Before applying Theorem 77 with g = F λ
Ir
◦ τ and h = σ̄ ◦ τ−1, we first have to

prove that its assumptions are satisfied. Clearly, the Jacobian of τ , τ−1 and Ip−`,r
are surjective since these are linear invertible functions.

Proposition 78. Let A =

[
A1

A2

]
∈ R`,r such that A1 ∈ Rr,r is a square invertible

matrix and A2 ∈ R`−r,r. The Jacobian Jσ̄(A) is a surjective mapping.

Proof. Thanks to the polar decomposition, we know that there exists B1 ∈ S++
r ,

B2 ∈ R`−r,r and R ∈ Or such that :

A =

[
B1

B2

]
R.
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Consequently, we have σ̄(A) =

[
B1

B2

]
.

Also, given ∆ =

[
∆1

∆2

]
∈ R`,r such that ∆1 ∈ Rr,r, ∆2 ∈ R`−r,r and A+ ∆ ∈ CR,

we can write
[
∆1

∆2

]
=

[
M1

M2

]
R where M1 ∈ Rr,r is a symmetric matrix, M2 ∈ R`−r,r

and :
σ̄(A+ ∆) = (A+ ∆)RT = σ̄(A) + ∆RT = σ̄(A) +

[
M1

M2

]
.

Therefore, we can identify the differential of σ̄ on the set of matrices
[
M1

M2

]
R

with M1 symmetric with the linear application M 7→MRT . The surjectivity of this
differential is obvious.

Corollary 79. Let 0 ≤ λ < λ̄ and a sublevel set Vλ be defined as in Corollary 14.
The function F λ has the KŁ property with exponent 1/2 in the sublevel set Vλ.
Proof. According to Fact 76, F λ

Ir
◦ τ is a KŁ-1

2
function around its optimum since

it is locally strongly convex. Consequently, F λ =
[
F λ
Ir
◦ τ
]
◦ [(σ̄, Ip−`,r) ◦ τ−1] is the

composition in the sublevel set Vλ of a KŁ-1
2
function with a smooth function that

has a surjective Jacobian mapping, according to Proposition 78. We deduce with
Theorem 77 that F λ has the KŁ property with exponent 1

2
in Vλ.

G.12.2 From KŁ with exponent 1
2 to (t-strong proximal PŁ)

Here, we prove that the KŁ-1
2
property in Vλ for the function F λ of SRRR leads

to linear convergence for Algorithm 1. This result differs from Theorem 15 of Csiba
and Richtarik [2017] for which they assumed strong-convexity instead of the KŁ
property with exponent 1

2
.

As in Theorem 51 we make the assumptions H2 and H3 in this section so that
we can use Lemma 54. Indeed, we need these extra assumptions because although
the function f we consider for SRRR is LX-smooth with LX the largest eigenvalue
of XTX, it may not have Lipschitz gradients in the entire sublevel set defined in
Corollary 14, mainly because the latter is not convex.

We denote for any U ∈ Vλ, and t > 0 :

F̃ λ
t,U(U ′) := f(U) + 〈∇f(U), U ′ − U〉+

1

2t
‖U ′ − U‖2

+ λ ‖U ′‖1,2 , (G.101)

γt(U) := −1

t
min

U ′∈Rp,r

[
F̃ λ
t,U(U ′)− F λ(U)

]
. (G.102)

Before obtaining in Proposition 81 a result similar to the (t-strong proximal PŁ)
property, we first need to introduce the following result. It is highly similar to
Lemma 44 but is is adapted to the present context.

Lemma 80. Let U ∈ Vλ and U+ := argminU ′∈Rp,r
[
F̃ λ
t,U(U ′)− F λ(U)

]
. There is a

subgradient sU+ of ‖·‖1,2 at U+ such that :

U+ − U = −t (∇f(U) + λsU+), (G.103)

γt(U) ≥ 1

2
||∇f(U) + λsU+||2. (G.104)
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Proof. Equation (G.103) is a direct consequence of the first-order optimal conditions
for Problem (G.102). We also have :

F̃ λ
t,U(U+)− F λ(U) = f(U) + 〈∇f(U), U+ − U〉+

1

2t
||U+ − U ||2F

+ λ ‖U+‖1,2 − f(U)− λ ‖U‖1,2 (G.105)

= 〈∇f(U) + λsU+ , U+ − U〉+
t

2
||∇f(U) + λsU+||2F

+ λ
[
‖U+‖1,2 + 〈sU+ , U − U+〉 − ‖U‖1,2

]
(G.106)

≤ − t
2
||∇f(U) + λsU+||2F . (G.107)

In Equation (G.105), we simply use Equation (G.101). Equation (G.106) follows
from Equation (G.103). Equation (G.107) follows again from Equation (G.103) and
from the convexity of ‖·‖1,2. Therefore, we have :

γt(U) ≥ 1

2
||∇f(U) + λsU+||2.

Proposition 81. Let k1 ≥ 0 be defined as in Lemma 54, k ≥ k1 and assume that
Uk ∈ Vλ\Ω∗. Let Uk+1 = argminU ′∈Rp,r

[
F̃ λ
tk,Uk

(U ′)− F λ(Uk)
]
. We have :

c2(1 + (Mtk)
2)γtk(Uk) ≥ F λ(Uk+1)− F λ,∗. (G.108)

Proof. We know from Lemma 80 that there exists a subgradient sUk+1
of U ′ 7→

‖U ′‖1,2 at Uk+1 such that :

Uk+1 = Uk − tk
[
∇f(Uk) + λsUk+1

]
. (G.109)

We have :

||∇f(Uk+1) + λsUk+1
||2 ≤ 2||∇f(Uk) + λsUk+1

||2 + 2||∇f(Uk)−∇f(Uk+1)||2 (G.110)
≤ 2||∇f(Uk) + λsUk+1

||2 + 2M2||Uk − Uk+1||2 (G.111)
≤ 2||∇f(Uk) + λsUk+1

||2
+ 2(Mtk)

2||∇f(Uk) + λsUk+1
||2 (G.112)

≤ 2(1 + (Mtk)
2)||∇f(Uk) + λsUk+1

||2 (G.113)
≤ 4(1 + (Mtk)

2)γt(Uk) (G.114)

We obtain Equation (G.110) using the triangle inequality and the inequality of
arithmetic and geometric means. Equation (G.111) is due to Lemma 54. We have
Equation (G.112) thanks to Equation (G.103). Equation (G.113) follows from Equa-
tion (G.104) in Lemma 80.

Since ||∇f(Uk+1) + λsUk+1
||2 is an upper bound of dist(0, ∂F λ(Uk+1))2, Equa-

tion G.114 implies that :

dist(0, ∂F λ(Uk+1))2 ≤ 4(1 + (Mtk)
2)γtk(Uk).
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Besides, we know from Corollary 79 that there exists c > 0 such that for any
U ′ ∈ Vλ, the function F λ satisfies the inequality :

dist
(
0, ∂F λ(U ′)

)
≥ 2

c

√
F λ(U ′)− F λ,∗. (G.115)

The element Uk+1 being in the sublevel set Vλ since F λ(Uk+1) ≤ F λ(Uk) and
Uk ∈ Vλ, we finally obtain with Equation (G.115) :

(1 + (Mtk)
2)γt(Uk) ≥

1

c2
(F λ(Uk+1)− F λ,∗)

Remark 82. Note that Equation (t-strong proximal PŁ) in Section 5.5.3, that is
to say in the PŁ framework, can be written :

γt(U) ≥ c1[F λ(U)− F λ,∗] with c1 > 0,

while Equation G.108, in the KŁ framework, can be written :

γt(U) ≥ c2[F λ(U+)− F λ,∗] with c2 > 0.

The right term depends either on U or U+ and this is the main reason for the
differences found in the computations between the two frameworks.

Proposition 81 finally leads to local linear convergence, as encountered in Propo-
sition 5.1 of Li and Pong [2017] for batch proximal gradient descent. As in Propo-
sition 5.1 of Li and Pong [2017], we have to use an upper bound d > 0 on the step
size t while this was not necessary when we used the Polyak-Łojasiewicz inequality
instead of the Kurdyka-Łojasiewciz inequality. We denote :

ξ : U ′ 7→ F λ(U ′)− F λ,∗.

Proposition 83. Let k1 ≥ 0 be defined as in Lemma 54. Assume that there is d > 0
such that for any k ≥ k1, we have tk ≤ d. There is 0 < ρ < 1 such that for any
k ≥ k1, if Uk ∈ Vλ\Ω∗, then we have :

ξ(Uk+1) ≤ (1− ρ)ξ(Uk).

Therefore, the convergence of Algorithm 1 is locally linear.

Proof. Let k ≥ k1, Uk ∈ Vλ and :

Uk+1 = argmin
U ′∈Rp,r

[
F̃ λ
tk,Uk

(U ′)− F λ(Uk)
]
.

First, from Equation (G.108) in Proposition 81, we have :

γtk(Uk)

ξ(Uk+1)
≥ 1

c2(1 + (Mtk)2)
. (G.116)
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Secondly, we have :

ξ(Uk+1) ≤ ξ(Uk)− tkγtk(Uk) (G.117)

≤ ξ(Uk)− tk
γt(Uk)

ξ(Uk+1)
)ξ(Uk+1)

≤ ξ(Uk)− tk
1

c2(1 + (Mtk)2)
ξ(Uk+1) (G.118)

≤ ξ(Uk)− tk
1

c2(1 + (Md)2)
ξ(Uk+1). (G.119)

Equation (G.117) comes from Fact 41. Equation (G.118) follows from Equa-
tion G.116 and Equation (G.119) follows from the assumption tk ≤ d. Consequently,
we have :

ξ(Uk+1) ≤ 1

1 + tk
c2(1+(Md)2)

ξ(Uk)

≤ 1

1 + β
c2LX(1+(Md)2)

ξ(Uk) (G.120)

≤ (1− ρ)ξ(Uk) with ρ := 1− 1

1 + β
c2LX(1+(Md)2)

.

We have Inequality (G.120) since tk > β
LX

for k sufficiently large by Fact 43.

Proposition 83 finally leads to local linear convergence for the proximal-gradient
algorithm applied to (SRRR). The proof in this section is different from the core of
the article since we used KŁ inequalities instead of PŁ inequalities.

G.13 Additional details and results on the experi-
ments

G.13.1 Algorithm of Park et al. [2016]

To evaluate the performance of Algorithm 1 for RRR, we compare it with the
algorithm proposed in Park et al. [2016], which minimizes the biconvex formulation
of Problem (5.1) i.e. with the form of Equation (5.4) . To avoid the scaling issue
due to the invariance of the objective by any transformation (U, V ) 7→ (UC, V C−T )
where C is a square invertible matrix, the formulation that they propose has an ad-
ditional regularizer (U, V ) 7→ 1

4
||UTU − V TV ||2F which does not change the optimal

value of the function. With this differentiable function, simultaneous gradient de-
scent in U and V is feasible. However, this regularization scheme is not applicable if
a group-Lasso penalty is added, because the latter is not compatible with imposing
the constraint UTU = V TV at the optima.

G.13.2 Different values of the correlation coefficient ρ

Given that the choice of the correlation coefficient ρ has a strong impact on the
running time, we report in Figure G.2 and Figure G.3 additional results for different
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values of the parameter ρ. Apart from this modification, we test the algorithms
with the same setting as in Section 5.6. This change corresponds to modifying the
correlation between the columns of the design matrix X. Although the speed of the
algorithms decreases when ρ increases, the relative order of the methods remains
the same.
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FIGURE G.2: (Left) RRR : ρ = 0.4. (Right) RRR : ρ = 0.8. Times
reported are times to reach a gap of 10−4
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FIGURE G.3: (Left) SRRR : ρ = 0.4. (Right) SRRR : ρ = 0.8. Times
reported are times to reach a gap of 10−4.

G.13.3 Different sparsity scenarios

To assess the quality of the algorithm when the proportion of zero rows in W0

varies, we present Figure G.4 where the proportion p0 of zero rows is respectively
0.5 and 0.8, that is W0 has 50% and 80% of zero rows.

282



Chapter G

0 200 400 600 800 1000 1200
number of function/gradient evaluations

10−5

10−4

10−3

10−2

10−1

100

101

102

103

F
λ
(U

k
)−

F
λ
(U

T
)

F
λ
(U

T
)

SRRR - ρ =0.6, p0 =0.5, λ =0.02

ProxGD U cst st - 1.1 sec

ProxGD U ls - 0.66 sec

ProxGD U exa - 37.0 sec

0 200 400 600 800 1000 1200
number of function/gradient evaluations

10−5

10−4

10−3

10−2

10−1

100

101

102

103

F
λ
(U

k
)−

F
λ
(U

T
)

F
λ
(U

T
)

SRRR - ρ =0.6, p0 =0.8, λ =0.02

ProxGD U cst st - 0.61 sec

ProxGD U ls - 0.36 sec

ProxGD U exa - 17.0 sec

FIGURE G.4: (Left) SRRR : ρ = 0.6, p0 = 0.5 and λ = 0.02. (Right)
SRRR : ρ = 0.6, p0 = 0.8 and λ = 0.02. Times reported are times to reach
a gap of 10−4.

283



References

Akaike, H. (1974). A new look at the statistical model identification. In Selected
Papers of Hirotugu Akaike, pages 215–222. Springer.

Andersen, E. B. (1970). Sufficiency and exponential families for discrete sample
spaces. Journal of the American Statistical Association, 65(331):1248–1255.

Ando, R. K. and Zhang, T. (2005). A framework for learning predictive structures
from multiple tasks and unlabeled data. Journal of Machine Learning Research,
6(Nov):1817–1853.

Ando, R. K. and Zhang, T. (2007). Two-view feature generation model for semi-
supervised learning. In Proceedings of the 24th international conference on
Machine learning, pages 25–32. ACM.

Antoniadis, A., Brosat, X., Cugliari, J., and Poggi, J.-M. (2012). Prévision d’un
processus à valeurs fonctionnelles en présence de non stationnarités. application
à la consommation d’électricité.

Antoniadis, A., Brosat, X., Cugliari, J., and Poggi, J.-M. (2014). Une approche fonc-
tionnelle pour la prévision non-paramétrique de la consommation d’électricité.
Journal de la Société Française de Statistique, 155(2):202–219.

Antoniadis, A., Paparoditis, E., and Sapatinas, T. (2006). A functional wavelet–
kernel approach for time series prediction. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 68(5):837–857.

Arnold, V. I. (1957). On functions of three variables. In Doklady Akademii Nauk,
volume 114, pages 679–681. Russian Academy of Sciences.

Attouch, H. and Bolte, J. (2009). On the convergence of the proximal algorithm for
nonsmooth functions involving analytic features. Mathematical Programming,
116(1-2):5–16.

Attouch, H., Bolte, J., Redont, P., and Soubeyran, A. (2010). Proximal alternating
minimization and projection methods for nonconvex problems: An approach
based on the kurdyka-łojasiewicz inequality. Mathematics of Operations Re-
search, 35(2):438–457.

Attouch, H., Bolte, J., and Svaiter, B. F. (2013). Convergence of descent methods
for semi-algebraic and tame problems: proximal algorithms, forward-backward
splitting, and regularized Gauss-Seidel methods. Mathematical Programming,
137(1-2):91–129.

284



Chapter G

Auder, B., Cugliari, J., Goude, Y., and Poggi, J.-M. (2018). Scalable clustering of
individual electrical curves for profiling and bottom-up forecasting. Energies,
11(7):1893.

Avellaneda, M. and Boyer-Olson, D. (2002). Reconstruction of volatility: pricing
index options by the steepest descent approximation. Courant Institute-NYU
Working Paper.

Bach, F., Jenatton, R., Mairal, J., Obozinski, G., et al. (2012). Optimization with
sparsity-inducing penalties. Foundations and Trends® in Machine Learning,
4(1):1–106.

Bakin, S. et al. (1999). Adaptive regression and model selection in data mining
problems.

Bakker, B. and Heskes, T. (2003). Task clustering and gating for Bayesian multitask
learning. Journal of Machine Learning Research, 4(May):83–99.

Baldi, P. and Hornik, K. (1989). Neural networks and principal component analysis :
Learning from examples without local minima. Neural networks, 2(1):53–58.

Barbier, T. (2017). Modélisation de la consommation électrique à partir de grandes
masses de données pour la simulation des alternatives énergétiques du futur.
PhD thesis, MINES ParisTech.

Baxter, J. (2000). A model of inductive bias learning. Journal of artificial intelligence
research, 12:149–198.

Ben-David, S. and Schuller, R. (2003). Exploiting task relatedness for multiple task
learning. In Learning Theory and Kernel Machines, pages 567–580. Springer.

Bhojanapalli, S., Neyshabur, B., and Srebro, N. (2016). Global optimality of lo-
cal search for low rank matrix recovery. In Advances in Neural Information
Processing Systems, pages 3873–3881.

Binev, P., Cohen, A., Dahmen, W., and DeVore, R. (2007). Universal algorithms
for learning theory. part ii: Piecewise polynomial functions. Constructive ap-
proximation, 26(2):127–152.

Bolte, J., Daniilidis, A., and Lewis, A. (2007). The Łojasiewicz inequality for non-
smooth subanalytic functions with applications to subgradient dynamical sys-
tems. SIAM Journal on Optimization, 17(4):1205–1223.

Bolte, J., Sabach, S., and Teboulle, M. (2014). Proximal alternating linearized min-
imization or nonconvex and nonsmooth problems. Mathematical Programming,
146(1-2):459–494.

Bonnans, J. F. and Shapiro, A. (1998). Optimization problems with perturbations :
A guided tour. SIAM review, 40(2):228–264.

Boumal, N., Voroninski, V., and Bandeira, A. (2016). The non-convex Burer-
Monteiro approach works on smooth semidefinite programs. In Advances in
Neural Information Processing Systems, pages 2757–2765.

285



Chapter G

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

Breiman, L. and Friedman, J. H. (1985). Estimating optimal transformations for
multiple regression and correlation. Journal of the American statistical Associ-
ation, 80(391):580–598.

Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized
linear mixed models. Journal of the American statistical Association, 88(421):9–
25.

Bruhns, A., Deurveilher, G., and Roy, J.-S. (2005). A non linear regression model
for mid-term load forecasting and improvements in seasonality. In Proceedings
of the 15th Power Systems Computation Conference, pages 22–26. Citeseer.

Bunea, F., She, Y., and Wegkamp, M. H. (2011). Optimal selection of reduced
rank estimators of high-dimensional matrices. The Annals of Statistics, pages
1282–1309.

Bunea, F., She, Y., Wegkamp, M. H., et al. (2012). Joint variable and rank selec-
tion for parsimonious estimation of high-dimensional matrices. The Annals of
Statistics, 40(5):2359–2388.

Caruana, R. (1997). Multitask learning. Machine learning, 28(1):41–75.

Chen, B.-J., Chang, M.-W., et al. (2004). Load forecasting using support vector
machines: A study on eunite competition 2001. IEEE transactions on power
systems, 19(4):1821–1830.

Chen, L. and Huang, J. Z. (2012). Sparse reduced-rank regression for simultaneous
dimension reduction and variable selection. Journal of the American Statistical
Association, 107(500):1533–1545.

Chen, T. and Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In
Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, pages 785–794. ACM.

Chen, T., He, T., Benesty, M., Khotilovich, V., and Tang, Y. (2015). Xgboost:
extreme gradient boosting. R package version 0.4-2, pages 1–4.

Cho, H., Goude, Y., Brossat, X., and Yao, Q. (2013). Modeling and forecasting daily
electricity load curves: a hybrid approach. Journal of the American Statistical
Association, 108(501):7–21.

Cho, H., Goude, Y., Brossat, X., and Yao, Q. (2015). Modelling and forecasting
daily electricity load via curve linear regression. In Modeling and Stochastic
Learning for Forecasting in High Dimensions, pages 35–54. Springer.

Chouzenoux, E., Pesquet, J.-C., and Repetti, A. (2014). Variable metric forward-
backward algorithm for minimizing the sum of a differentiable function and a
convex function. Journal of Optimization Theory and Applications, 162(1):107–
132.

286



Chapter G

Cont, R. and Deguest, R. (2013). Equity correlations implied by index options :
estimation and model uncertainty analysis. Mathematical Finance: An Interna-
tional Journal of Mathematics, Statistics and Financial Economics, 23(3):496–
530.

Craven, P. and Wahba, G. (1978). Smoothing noisy data with spline functions.
Numerische mathematik, 31(4):377–403.

CRE (2019). L’électricité, comment ça marche ? http://modules-pedagogiques.
cre.fr/m1/index.html. Last accessed on August 05, 2019.

Cros, S. and Pinson, P. (2018). Prévision météorologique pour les énergies renouve-
lables. La Météorologie, 2018(100 Spécial Anniversaire 25 ans).

Csiba, D. and Richtarik, P. (2017). Global convergence of arbitrary-block gra-
dient methods for generalized Polyak-Łojasiewicz functions. arXiv preprint
arXiv:1709.03014.

Cugliari, J., Goude, Y., and Poggi, J.-M. (2016). Disaggregated electricity fore-
casting using wavelet-based clustering of individual consumers. In 2016 IEEE
International Energy Conference (ENERGYCON), pages 1–6. IEEE.

Danskin, J. M. (1967). The theory of max-min and its application to weapons allo-
cation problems, volume 5. Springer Science & Business Media.

Darmois, G. (1935). Sur les lois de probabilités à estimation exhaustive. CR Acad.
Sci. Paris, 260(1265):85.

Dawid, A. P. (1984). Present position and potential developments: Some personal
views statistical theory the prequential approach. Journal of the Royal Statis-
tical Society: Series A (General), 147(2):278–290.

De Boor, C., De Boor, C., Mathématicien, E.-U., De Boor, C., and De Boor, C.
(1978). A practical guide to splines, volume 27. springer-verlag New York.

Devaine, M., Gaillard, P., Goude, Y., and Stoltz, G. (2013). Forecasting electricity
consumption by aggregating specialized experts. Machine Learning, 90(2):231–
260.

Dordonnat, V., Koopman, S. J., Ooms, M., Dessertaine, A., and Collet, J. (2008).
An hourly periodic state space model for modelling french national electricity
load. International Journal of Forecasting, 24(4):566–587.

Du, S. S., Jin, C., Lee, J. D., Jordan, M. I., Singh, A., and Poczos, B. (2017).
Gradient descent can take exponential time to escape saddle points. In Advances
in Neural Information Processing Systems, pages 1067–1077.

Dubois, B., Delmas, J.-F., and Obozinski, G. (2019). Fast algorithms for sparse
reduced-rank regression. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 2415–2424.

287

http://modules-pedagogiques.cre.fr/m1/index.html
http://modules-pedagogiques.cre.fr/m1/index.html


Chapter G

Duchemin, Q. (2018). Modèles de clustering pour la prévision de la consommation
électrique. Report, LIGM, UMR 8049, École des Ponts, UPEM, ESIEE Paris,
CNRS, UPE, Champs-sur-Marne, France.

Dudek, G. (2015). Short-term load forecasting using random forests. In Intelligent
Systems’ 2014, pages 821–828. Springer.

Dumont, M., Marée, R., Wehenkel, L., and Geurts, P. (2009). Fast multi-class image
annotation with random subwindows and multiple output randomized trees. In
Proc. International Conference on Computer Vision Theory and Applications
(VISAPP), volume 2, pages 196–203.

Durrleman, V. and El Karoui, N. (2008). Coupling smiles. Quantitative Finance,
8(6):573–590.

Eilers, P. H. and Marx, B. D. (1996). Flexible smoothing with B-splines and penal-
ties. Statistical science, pages 89–102.

Elhamifar, E. and Vidal, R. (2013). Sparse subspace clustering: Algorithm, theory,
and applications. IEEE transactions on pattern analysis and machine intelli-
gence, 35(11):2765–2781.

Evgeniou, T., Micchelli, C. A., and Pontil, M. (2005). Learning multiple tasks with
kernel methods. Journal of Machine Learning Research, 6(Apr):615–637.

Evgeniou, T. and Pontil, M. (2004). Regularized multi–task learning. In Proceedings
of the tenth ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 109–117. ACM.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood
and its oracle properties. Journal of the American statistical Association,
96(456):1348–1360.

Fan, S. and Hyndman, R. J. (2011). Short-term load forecasting based on a semi-
parametric additive model. IEEE Transactions on Power Systems, 27(1):134–
141.

Fisher, R. A. (1919). Xv.-the correlation between relatives on the supposition of
mendelian inheritance. Earth and Environmental Science Transactions of the
Royal Society of Edinburgh, 52(2):399–433.

Forster, B. (2011). Splines and multiresolution analysis. In Handbook of Mathemat-
ical Methods in Imaging, pages 1231–1270. Springer.

Frankel, P., Garrigos, G., and Peypouquet, J. (2015). Splitting methods with vari-
able metric for Kurdyka-Łojasiewicz functions and general convergence rates.
Journal of Optimization Theory and Applications, 165(3):874–900.

Friedman, J., Hastie, T., and Tibshirani, R. (2001). The elements of statistical
learning, volume 1. Springer series in statistics New York.

288



Chapter G

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting ma-
chine. Annals of statistics, pages 1189–1232.

Friedman, J. H. et al. (1991). Multivariate adaptive regression splines. The Annals
of Statistics, 19(1):1–67.

Friedman, J. H. and Stuetzle, W. (1981). Projection pursuit regression. Journal of
the American statistical Association, 76(376):817–823.

Friedman, J. H. and Stuetzle, W. (1982). Smoothing of scatterplots. Technical
report, Stanford University CA Project Orion.

Gaillard, P. and Goude, Y. (2015). Forecasting electricity consumption by aggre-
gating experts; how to design a good set of experts. In Modeling and stochastic
learning for forecasting in high dimensions, pages 95–115. Springer.

Gaillard, P., Goude, Y., and Nedellec, R. (2016). Additive models and robust ag-
gregation for GEFCom2014 probabilistic electric load and electricity price fore-
casting. International Journal of forecasting, 32(3):1038–1050.
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