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Motivations

Aeroacoustic in civil aviation

Numerical methods for computing acoustic scattering in civil aviation contexts



Motivations

Parametric problems

Di�erent PDE's depending on physical assumptions, di�erent parameters to
take into account (position and frequency of the acoustic source, absorption
coe�cients, �ow)

Large scale computing

Uncertainty propagation, optimization, or real-time computation : need to solve
parametric problem for a large number of parameter values

Goal
Numerical procedure for fast computations of an approximation to the solution
of a large class of parametric problem, with fast and accurate quanti�cation of
the approximation error



Outline

Two aeroacoustic problems solved by integral equations
Acoustic scattering by impedant objects in the air at rest
Acoustic scattering in moving air

Some contributions to the Reduced Basis method
(A quick reminder on) The reduced basis method
An accurate and online-e�cient evaluation of the error bound
A nonintrusive technique for the RB method

Some numerical illustrations
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Acoustic scattering by impedant objects in the air at rest



Acoustics problem

Variational formulation
Find χ, λ : Γ→ C s.t. for all χt , λt

(
Nχ− ik

2µ
χ, χt

)
+
(
D̃λ, χt

)
=
(
γ1pinc, χ

t
)
,

(
Dχ, λt

)
−
(
Sλ+

iµ

2k
λ, λt

)
= −

(
γ0pinc, λ

t
)
,

• µ is the impedant coe�cient, quanti�es the absorbed and scattered parts
of the acoustic pressure �eld

• N, D, D̃ and S are integral operators involving the Green kernel associated
to the Helmholtz equation

G(x , y) =
exp(ik|x − y |)
4π|x − y |

• pinc(x) = A
exp(ik|x − xS |)
4π|x − xS |

for a monopole source of amplitude A located

at xS

• k =
2πf

c
, with f the frequency of the source



Acoustic scattering in moving air

uniform �ow
exterior domain

potential �ow

interior domain

solid object

incoming harmonic acoustic �eld



Aeroacoustics problem

Characteristics

• acoustics in a mean �ow not at rest

• unbounded domain of propagation

Tools

• Linearization of the Euler equations → convected Helmholtz equation

• Prandtl�Glauert transformation [Glauert (1928), Amiet and Sears (1970)]
→ transforms the uniformly convected Helmholtz eq. into the classical
Helmholtz eq. in the exterior domain

• Coupled BEM-FEM [McDonald and Wexler (1972), Zienkiewicz, Kelly and
Bettess (1977), Johnson and Nédélec (1980)]

• Stabilization with respect to resonant frequencies [Bu�a and Hiptmair
(2005), Hiptmair and Meury (2006)]



Variational formulation



V(f , f t) +
(
N(γ0f ), γ0f

t
)

Γ∞
+

((
D̃ − 1

2
I

)
(λ), γ0f

t

)
Γ∞

=
(
γ1finc, γ0f

t
)

Γ∞((
D − 1

2
I

)
(γ0f ), λt

)
Γ∞

−
(
S(λ), λt

)
Γ∞

+ i
(
p, λt

)
Γ∞

= −
(
γ0finc, λ

t
)

Γ∞(
N(γ0f ), pt

)
Γ∞

+

((
D̃ +

1

2
I

)
(λ), pt

)
Γ∞

− (p, pt)H1(Γ∞) =
(
γ1finc, p

t
)

Γ∞

• V(f , f t) =

∫
Ω−

rΞ∇f ·∇f t −
∫

Ω−
rk2βf f t + i

∫
Ω−

rkV ·
(
f∇f t − f t∇f

)
• N, D, D̃ and S are integral operators

• finc(x) = A
exp(ik|x − xS |)
4π|x − xS |

for a monopole source of amplitude A located

at xS

• k =
2πf

c
, with f the frequency of the source



Well-posed formulation

Fredholm alternative

• uniqueness : Rellich lemma and unique continuation property, with �weakly
regular� coe�cients [Garofalo et Lin (1987)]

• isolate a coercive part of the sesquilinear form (including stabilization)

• compact perturbation

Finite dimension approximation

• tetrahedral mesh, meshsize h

• �nite elements P1 for f and p, and �nite elements P0 for λ

• inf-sup stable discrete formulation (for h small enough)

Conclusion

• Direct use of BEM codes for Helmhotz

• Numerical method valid for all frequencies of the source

Well-posed variational formulation

[F.C., A. Ern and G. Sylvand (2014)]



Numerical illustration

Computation by Airbus (350k dof, FMM : 1h30 sur 32 proc)



Acoustic scattering by a turbojet

Computation by Airbus (4.7M ddl, FMM : 1h30 sur 160 proc)
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The reduced basis method

Parametrized problem - idealized case

aµ(uµ, v) = b(v) ∀v ∈ V

where

• µ ∈ P is the parameter

• aµ is a continuous and coercive bilinear form (uniformly in µ)

• b is a continuous linear form

• V is a N-dimensional linear space, approx. of a Hilbert space H, N � 1

Goal
Compute an approximation ûµ of uµ and (sharp) upper bound of |ûµ − uµ| in
complexity independent of N

Some early references

[Machiels, Maday, Oliveira, Patera and Rovas (2000)]
[Prud'homme, Rovas, Veroy, Machiels, Maday, Patera and Turinici (2002)]



Principles

O�ine stage

• some parameter values (µi )1≤i≤N̂ are chosen in Ptrial ⊂ P by a greedy

algorithm, N̂ � N

• the full solutions uµi are computed for all 1 ≤ i ≤ N̂

• approximation space V̂N̂ = Vect{uµ1 , · · · , uµN̂}

Online problem

Galerkin procedure on V̂N̂

aµ(ûµ, uµj ) = b(uµj ) ∀j ∈ {1, ..., N̂}

The decomposition of ûµ in V̂N̂ is denoted

ûµ =
N̂∑
i=1

γi (µ)uµi



A posteriori error bound

Residual
Let Gµ : H → H such that

〈Gµu, v〉H = aµ(u, v)− b(v)

where 〈·, ·〉H is the inner product of H

A posteriori error bound

E(µ) =
‖Gµûµ‖H

β
≥ ‖ûµ − uµ‖H

where β is the coercivity constant of aµ and ‖u‖H =
√
〈u, u〉H

Goal-oriented
Need to introduce a dual problem



Online-e�ciency

A�ne dependence

aµ(·, ·) has an a�ne dependence in µ if there exists µ 7→ αk(µ) and ak(·, ·),
1 ≤ k ≤ d , such that aµ(·, ·) =

∑d
k=1

αk(µ)ak(·, ·)

The key assumption

A�ne dependence allows to construct the online problem and compute the
error bound in complexity independent of N, since

aµ(uµi , uµj ) =
d∑

k=1

αk(µ)ak(uµi , uµj )

E(µ) =
1

β

〈Jb, Jb〉H − 2
d∑

k=1

N̂∑
i=1

αk(µ)γi (µ)〈Jb, Jak(uµi , ·)〉H

+
d∑

k=1

d∑
l=1

N̂∑
i=1

N̂∑
j=1

αk(µ)γi (µ)αl (µ)γj (µ)
〈
Jak(uµi , ·), Jap(uµj , ·)

〉
H

 1
2

where the only N-dependent quantities are µ-independent, and therefore can be
precomputed during the o�ine stage



Two bottlenecks are investigated

1 - the formula for the error bound is very sensitive to round-o� errors

Denote

• E1(µ) =
‖Gµûµ‖H

β

• E2(µ) = online-e�cient formula

E1(µ) = E2(µ) in exact arithmetics

Simple example

−u′′ + µu = 1

on ]0, 1[ with u(0) = u(1) = 0
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2 - the RB method is intrusive

The precomputations in aµ(uµi , uµj ) =
∑d

k=1
αk(µ)ak(uµi , uµj ) suppose that

we can modify the elementary assembly routines of the code



New formula for computing the error bound

Rewriting of E2
De�ne

• x(µ) ∈ RdN̂ , with components αk(µ)γi (µ), 1 ≤ k ≤ d , 1 ≤ i ≤ N̂

• σ = 1 + dN̂ + 1

2
dN̂(dN̂ + 1)

• X (µ) ∈ Rσ, with components (1, xI (µ), xI (µ)xJ(µ)), 1 ≤ I ≤ J ≤ dN̂

(βE(µ))2 is a linear form in X (µ) : ∃q ∈ Rσ, independent of µ, s.t.

(βE(µ))2 =
σ∑

p=1

qpXp(µ)

Separated representation of Xp(µ)

Empirical Interpolation Method (EIM) [Barrault, Maday, Nguyen, Patera
(2004)]



Empirical Interpolation Method for Xp(µ)

• Initialization k = 1
• Compute p1 := argmax

p∈{1,...,s}
‖Xp(·)‖`∞(P

trial
)

• Compute µ1 := argmax
µ∈P

trial

|Xp1 (µ)| and set Pinter = {µ1}

• Set q1(·) :=
Xp1 (·)
Xp1 (µ1)

and B1
11

:= 1

• While k < σ̂
• Compute pk+1 := argmax

p∈{1,...,s}
‖(δkX )p(·)‖`∞(P

trial
)

• Compute µk+1 := argmax
µ∈P

trial

|(δkX )pk+1
(µ)| and set Pinter := Pinter ∪ {µk+1}

• Set qk+1(·) :=
(δkX )pk+1

(·)
(δkX )pk+1

(µk+1)
and Bk+1

ij
:= qj (µi ), 1 ≤ i , j ≤ k + 1

• k ← k + 1

where δk := Id− I k and

I kX (µ) :=
k∑

r=1

λkr (µ)X (µr ),

with λk(µ) ∈ Ck solves Bkλk(µ) = qk(µ)



Empirical Interpolation Method for Xp(µ)

Change of base

Since Vect
1≤m≤k

(qm(·)) = Vect
1≤m≤k

(Xpm (·)), there exists a matrix Γ ∈ Rk×k such

that, for all 1 ≤ l ≤ k,

k∑
m=1

Γlmqm(µ) = Xpm (µ), ∀µ ∈ P

Γ is constructed recursively :

• k = 1 :
Γ1,1 = Xp1(µ1),

• k → k + 1 :

Γk+1,k+1 = (δkX )pk+1
(µk+1),

Γl,k+1 = 0, ∀1 ≤ l ≤ k,

Γk+1,l = κl , ∀1 ≤ l ≤ k,

where κ is such that
∑k

m=1
Blmκm = Xpk+1

(µl ), for all 1 ≤ l ≤ k



New formula for computing the error bound

Separated representation of Xp(µ)

Xp(µ) ≈ (I σ̂X )p(µ) =
σ̂∑
i=1

σ̂∑
j=1

∆ijXpj (µ)Xp(µi ) σ̂ ≤ σ

where ∆ := B−t∆−1

New online estimator
Using the separated representation of X (µ) and exchanging summation order

(βE(µ))2 ≈
σ∑

p=1

qp


σ̂∑
i=1

σ̂∑
j=1

∆ijXpj (µ)Xp(µi )


=

σ̂∑
i=1


σ̂∑
j=1

∆ijXpj (µ)

︸ ︷︷ ︸
λi (µ)

{
σ∑

p=1

qpXp(µi )

}
︸ ︷︷ ︸

(βE(µi ))2

leading to

E3(µ) :=
1

β

(
σ̂∑
i=1

λi (µ) (βE1(µi ))2
) 1

2



New formula for computing the error bound

An online-e�cient formula
The accurate evaluations E1(µi ), 1 ≤ i ≤ σ̂, are precomputed during the o�ine
stage and λi (µ) are computed in complexity independent of N

Summary
E1(µ) E2(µ) E3(µ)

Accuracy scales like ε
√
ε ε

Online e�ciency No Yes Yes
where ε is the machine precision

Usefulness

• bad stability constant (can be the case for the Helmholtz equation)

• nonlinear problems. Brezzi-Rappaz-Raviart theory : no error bound is
possible until a very tight tolerance is reached (�overkill�). E3 used in [M.
Yano (2013)] for Boussinesq certi�ed RB at Grashof numbers of
engineering interest.

References
[F.C. (2012)]
[F.C., A. Ern and T. Lelièvre (2013)]



Illustration on a simple case

Back to the simple problem

−u′′ + µu = 1

on ]0, 1[ with u(0) = u(1) = 0

• d = 2, N̂ = 7
=⇒ σ = 120

• σ̂ = 23
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Acoustics problem

Γ1

acoustic monopole

Γ2


(
Nχ− ik

2µ
χ, χt

)
+
(
D̃λ, χt

)
=
(
γ1pinc, χ

t
)
,

(
Dχ, λt

)
−
(
Sλ+

iµ

2k
λ, λt

)
= −

(
γ0pinc, λ

t
)
,



Acoustics problem
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Two scattering balls, s.t.

• d = 5, N̂ = 8
=⇒ σ = 1681 (complex)

• σ̂ = 60



Nonintrusivity of reduced problem construction

Example of a�ne decomposition

Aµ,ij =

∫
Ω

∇ϕi · ∇ϕjdx︸ ︷︷ ︸
:=A0 ij

+µ

∫
Ω

ϕiϕjdx︸ ︷︷ ︸
:=A1 ij

, 1 ≤ i , j ≤ N

Computing A0 and A1 requires entering the assembly routines of the code

• not feasable for large industrial codes

• nonintrusivity : use only full matrix Aµ at user-selected µ's

Simple �x

Select two values of the parameter and observe that

Aµ =
µ2 − µ
µ2 − µ1

Aµ1 +
µ− µ1
µ2 − µ1

Aµ2

Goal 1
Extend this idea for more complex parameter dependencies



From a�ne dependence to nonintrusivity

General a�ne dependence

Aµ,ij =
ς∑

s=1

gs(µ)

∫
Ω

ψs,ij (x)dx

(previous example : ς = 2, g1(µ) = 1, ψ1,ij (x) = ∇ϕi (x) · ∇ϕj (x), g2(µ) = µ,
ψ2,ij (x) = ϕi (x)ϕj (x))

Key idea

Separate µ and s in gs(µ) using EIM (of rank d ≤ ς)

gs(µ) ≈ (Idg)(µ, s) =
d∑

k=1

{
d∑
l=1

∆klgsl (µ)

}
︸ ︷︷ ︸

:=βk (µ)

gs(µk)

Nonintrusive approximation

Exchange summation order

Aµ,ij ≈
ς∑

s=1

(Idg)(µ, s)

∫
Ω

ψs,ij (x)dx =
d∑

k=1

βk(µ)Aµk ,ij



Nona�ne parameter dependencies

General case

Aµ,ij =
ς∑

s=1

∫
Ω

gs(µ, x)ψs,ij (x)dx

Goal 2
Achieve nonintrusivity in this general setting

Step 1 - classical

Use ς EIM's (same rank d for simplicity) to separate (µ, x) in the gs 's :
Approximate Aµ,ij ≈ I gd Aµ,ij with

I gd Aµ,ij =
ς∑

s=1

d∑
k=1

{
d∑
l=1

∆s,klgs(µ, xs,m)

}
︸ ︷︷ ︸

:=zsk (µ)

∫
Ω

gs(µs,k , x)ψs,ij (x)dx︸ ︷︷ ︸
:=Qsk,ij



Nona�ne parameter dependencies

Regroup indices

s and k to write (dp = ςd)

I gd Aµ,ij =
dp∑
p=1

zp(µ)Qp,ij

Step 2 - key idea

Separate (µ, p) in zp(µ) using a second EIM (rank dz ≤ dp)

zp(µ) ≈
dz∑
k=1

dz∑
l=1

∆
(z)
kl zp(µ)

l

(µ)zp(µ
(µ)
k )



Nona�ne parameter dependencies

Nonintrusive formula
Exchanging summation order

Aµ,ij ≈ I gd Aµ,ij =
dp∑
p=1

{
dz∑
k=1

dz∑
l=1

∆
(z)
kl zp(µ)

l

(µ)zp(µ
(z)
k )

}
Qp,ij

=
dz∑
k=1

{
dz∑
l=1

∆
(z)
kl zp(z)

l

(µ)

}
︸ ︷︷ ︸

:=β
(z)

k
(µ)

{
dp∑
p=1

zp(µ
(z)
k )Qp,ij

}
︸ ︷︷ ︸

=I
g
d
A
µ

(z)

k
,ij
≈A

µ
(z)

k
,ij

≈
dz∑
k=1

β
(z)
k (µ)A

µ
(z)

k
,ij



�Nonintrusive� Reduced Basis

Not black-box
Coe�cients of the reduced matrix

Âµ,ij =
dz∑
k=1

β
(z)
k (µ)Ût

i Aµ(z)

k

Ûj

Nonintrusive in the sense that we only need

• the function (µ,V ) 7→ AµV (quite a mild assumption). Any optimized
matrix-vector product available in the industrial code can be directly used

• to know the terms of the variational formulation

Reference
[F.C., A. Ern and T. Lelièvre], submitted
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Acoustic scattering by impedant objects in the air at rest

Mesh, 2240 dof

Parametric problem

• parameters : frequency of the source (plane wave), 3 impedant coe�cients

• quantity of interest : far-�eld acoustic scattered �eld on the axis of
symmetry



Acoustic scattering by impedant objects in the air at rest

Reduced basis

• approximation formula for the matrix : 20 terms, for the right-hand side of
the direct and dual problems : 13 terms

• 20 basis vectors (max of the error bound 10−6)

• speed-up factor > 104 ( 2.8 ms vs 30 s)



Acoustic scattering in moving air

Mesh, 1711 dof

Parametric problem

• parameters : frequency of the source (monopole), uniform perturbation of
the �ow (3 components)

• quantity of interest : acoustic potential at a point



Acoustic scattering in moving air

Frequency-dependent terms
Flow-dependent terms

V(f , f t) +
(
N(γ0f ), γ0f

t
)

Γ∞
+

((
D̃ − 1

2
I

)
(λ), γ0f

t

)
Γ∞

=
(
γ1finc, γ0f

t
)

Γ∞((
D − 1

2
I

)
(γ0f ), λt

)
Γ∞

−
(
S(λ), λt

)
Γ∞

+ i
(
p, λt

)
Γ∞

= −
(
γ0finc, λ

t
)

Γ∞(
N(γ0f ), pt

)
Γ∞

+

((
D̃ +

1

2
I

)
(λ), pt

)
Γ∞

− (p, pt)H1(Γ∞) =
(
γ1finc, p

t
)

Γ∞

with V(f , f t) =
∫

Ω− rΞ∇f ·∇f t −
∫

Ω− rk2βf f t + i
∫

Ω− rkV ·
(
f∇f t − f t∇f

)



Acoustic scattering in moving air

Reduced basis

• approximation formula for the matrix : 25 terms, for the right-hand side of
the direct and dual problems : 18 terms

• 20 basis vectors (max of the error bound 10−7)

• speed-up factor > 5× 103 ( 2.8 ms vs 14 s)



Towards industrial applications

�Scalable� implementation

• never save a matrix on hard-drive

• fast matrix-vector products (parallel FMM)

• parallel exploration of Ptrial

Mesh, 60866 dof

parameters : frequency of the source (monopole), 3 impedant coe�cients



Towards industrial applications

Reduced basis

• approximation formula for the matrix : 50 terms, for the right-hand side of
the direct problem : 60 terms

• 30 basis vectors

• o�ine stage : ≈ 2 days, exploration of Ptrial ≈ 1 hour at the 30th loop

• speed-up factor ≈ 1.6× 105 ( 15 ms vs 40 min)

• all computations of this laptop with 4 CPUs and 4 GB of RAM



Towards industrial applications

Figure: Left : direct solution, right : di�erence between direct and RB solutions

Real-time online computation

=⇒ demonstration
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