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Context

multi-parameter problem :

x

y

u|t=0 = 0

B(u, v) = L(v) ∀v

space mesh      
time mesh

 «classical» approach : Mh
M∆t

Nh ×N∆t dof

Transient thermal problem u = 0 on ∂uΩ× I

c
∂u

∂t
−∇ · q = fd

q = k∇u

x, t, p

q · n = qd on ∂qΩ× I

∈ L
2(I)⊗H

1
0 (Ω)
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Model	
 reduction	
 using	
 PGD

computation/storage costs
«progressive Galerkin» approach

problem in space

m× (Nh +N∆t)u(x, t) ≈ um(x, t) =
m�

i=1

ψi(x)λi(t) dof

[Nouy 2010] [Chinesta et al. 2010, 2011] 

variants : convergence, orthogonalization of modes, updating of time functions, ...

um = um−1 + ψλ B(um,ψ∗λ+ ψλ∗) = L(ψ∗λ+ ψλ∗) ∀ψ∗,λ∗s.t.

ψ = Sm(λ) λ = Tm(ψ)problem in time 

(αSM+ βSK)X = F αT
λ(k+1) − λ(k)

∆t
+ βTλ

(k) = δ(k)T λ(0) = 0

B(um,ψ∗λ) = L(ψ∗λ) ∀ψ∗ B(um,ψλ∗) = L(ψλ∗) ∀λ∗



accuracy of  solution                   ? of quantities of interest             ?

6

PGD	
 modes
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Post-processing

B(um0 ,ψ
∗λm0) = L(ψ∗λm0) ∀ψ∗ ∈ Vh

for each PGD modem0 ∈ [1,m]

We stop PGD sub-iterations with a problem in space

assumption : radial loading

is equilibrated in a FE sense with                 , for all  

f
d
=

J�

j=1

αj(t)f
j
d
(x) q

d
=

J�

j=1

αj(t)q
j
d
(x)

q
0
=

J�

j=1

�
αj(t)q

j
0,f

(x) + βj(t)q
j
0,q

(x)
�

(f
d
, q

d
)

�

Ω

��

I
λm0(k∇um0 − q

0
)dt

�
∇ψ∗dΩ = −

�

Ω

m0�

i=1

��

I
cλm0 λ̇idt

�
ψiψ

∗dΩ ∀ψ∗ ∈ Vh

Q
m0

Gm0i

t

[Ladevèze & Chamoin 2012]



is equilibrated with       in a FE sense,           

9

m�

j=1

RijQj
ψi

q
m

= q
0
−

m�

i=1

m�

j=1

cλ̇iRijQj

Post-processing

Q
m0

is equilibrated with                       in a FE sense,           
m0�

i=1

Gm0iψi ∀t

∀t

         verify balance equations in a FE sense         

�

Ω
(q

m
− q

0
) ·∇u∗dΩ = −

�

Ω
c
∂um

∂t
dΩ ∀u∗ ∈ Vh, ∀t

um =
m�

i=1

λiψi
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Constitutive	
 relation	
 error	
 (CRE)
getting guaranteed and computable a posteriori error bounds 

Steady thermal problem

Primal approach (Ritz-Galerkin) : yields an upper bound to the potential energy

Dual approach: produces a lower bound to the potential energy

�

Ω
k∇u ·∇u∗dΩ =

�

Ω
fdu

∗dΩ+

�

∂qΩ
Fdu

∗dS ∀u∗ ∈ V

||û− u||2u = ||û||2u − ||u||2u − 2

�

Ω
k∇u ·∇(û− u)dΩ = 2[Ep(û)− Ep(u)]

||q̂ − q||2q = ||q̂||2q − ||q||2q − 2

�

Ω

1

k
q · (q̂ − q)dΩ = 2[Ec(q̂)− Ec(q)]

one way which can be described with different words 
(CRE, equilibrated residuals, flux-free,...)

−Ep(u)



12

provides for asymptotic convergence properties

||û− u||2u + ||q̂ − q||2q = 2[Ec(q̂) + Ep(û)] = ||q̂ − k∇û||2q

Constitutive	
 relation	
 error	
 (CRE)

||q̂∗ − q||2q =
1

2
E2

CRE(û, q̂
∗)

• Technical point: construction of q̂

post-processing  of the approximate solution  ̂u
(use of Galerkin properties in the FE context)

||û− u||u ≤ ECRE(û, q̂) ≤ C||û− u||u

[Ladevèze & Pelle 2004]

E2
CRE(û, q̂)

Prager-Synge equality

Hypercircle property
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Construction	
 of	
 	
 	
 

Use of classical techniques (hybrid flux - EET - EESPT) for FEM with two steps:

1) Definition of equilibrated fluxes on element edges (by means of prolongation 
condition with                           )

2) Solution of a local problem at the element level (use of PGD (offline))

[Ladevèze 75, Ladevèze et al 10, Pled et al 11] 

TECHNIQUES FOR CONSTRUCTING ADMISSIBLE STRESS FIELDS 437

5.4. Hub of main rotor

A part of the NH90 helicopter from the Eurocopter company is considered. The structure is the
hub of the main rotor which is used as a coupling sleeve between the helicopter frame and the rotor
system. The structure is clamped at one end and subjected to a unit traction force density t , normal
to the surface, on the other end. Let us notice that the loading plan is not exactly orthogonal to the
main axis of the structure. The geometry and mesh considered, made of 19 78 linear tetrahedral
elements and 5898 nodes (i.e. 1794 degrees of freedom), are shown in Figure 23. The reference
mesh is built up by splitting each tetrahedron into 64 tetrahedra. Therefore, it contains 1 265 792
linear tetrahedral elements and 250 274 nodes (i.e. 750 822 degrees of freedom). One can notice
that the FE mesh seems to be fairly distorted and, therefore, contains very ill-shaped elements.

5.4.1. Comparison of the three error estimators. The cost function J0 has been used for the
local minimization step. The highest stress region corresponds to the clamped surface, which
is not a design zone. Conversely, the selected region in Figure 24 plays an essential role in
design purposes and engineering interest. The FE stress field in the selected region is depicted
in Figure 24 and the admissible stress fields obtained from the three techniques are displayed in
Figure 25.

The exact value of the energy norm of the reference error has been directly calculated from the
reference solution

‖eh‖u,! =
√

‖u‖2
u,!−‖uh‖2

u,! #3852.53 (64)

Figure 23. Hub model problem (left) and associated FE mesh (right). Orange plans represent clamped
boundary conditions. Refer online version for interpretation of color.

Figure 24. Magnitude of the FE stress field.

Copyright ! 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 88:409–441
DOI: 10.1002/nme
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implemented in a C++ plateform

q̂

q
h
= k∇uh

local systems around 
each FE node
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Extension	
 of	
 CRE

Fundamental results

ECRE(û, q̂) = |||q̂ − k∇û|||q

Definition in the unsteady case

|||uex − û|||2u + |||qex − q̂|||2q +
�

Ω
(uex − û)2|T dΩ = E2

CRE(û, q̂)

guaranteed bounding of global and local errors

Rem : can be generalized to time-dependent nonlinear problems with dissipation

dissipation error [Ladevèze & Moës 98, Chamoin et al. 07] 

c

|||qex − q̂∗|||2 +
�

Ω
c(uex − û)2|T dΩ =

1

2
E2

CRE(û, q̂
∗)

q̂∗ =
1

2
(q̂ + k∇û)

{

�� T

0

�

Ω

1

k
• · • dΩdt

e2dis(Ẋ, Y ) = ϕ(Ẋ) + ϕ∗(Y )− Ẋ · Y
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CRE	
 applied	
 to	
 PGD	
 solution

•     is KA

is not SA in a FE sense, but                     is!!!

(û, q̂) is admissible (compatible+equilibrated) if :

û|t=0 = 0û

we choose

•              is SA(û, q̂)

û = um

(um, q(um))

û = 0 on ∂uΩ× I

�

Ω
q̂ ·∇u∗dΩ =

�

Ω
(fd − c

∂û

∂t
)u∗dΩ−

�

∂qΩ
qdu

∗dS ∀u∗, ∀t

technical point

(um, qm)
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Error	
 estimate
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ECRE

|||q̂|||q

asymptotic value = discretization error

convergence for m=3
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Splitting	
 of	
 error	
 sources
uex − uh,∆t

m = (uex − uh,∆t) + (uh,∆t − uh,∆t
m )

PGD truncation error discretization error

estimated with a discretized reference model

post-processing of                    to get an admissible solution (ûh,∆t, q̂h,∆t)

ECRE,PGD = |||q̂h,∆t − k∇ûh,∆t|||q

ECRE,dis =
�

E2
CRE − E2

CRE,PGD

|||uex − uh,∆t
m |||2u� �� � = |||uh,∆t − uh,∆t

m |||2u� �� �+ |||uex − uh,∆t|||2u� �� �
total error

(um, q
m
)

in the sense of the new reference problem (weaker sense in space and time)
q̂h,∆t = NT [

� T

0
NNT dt]−1[R1, . . . , Rk]

Ri =

� T

0
q
m
Nidt
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Splitting	
 of	
 error	
 sources

1 2 3 4 5 6 7 8 9 10
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ECRE

2

EPGD
2

ECRE
2 EPGD

2

after 3 modes, discretization 
error is dominating

Possible to split space/time discretization errors

E2
CRE,dis = E2

CRE,h + E2
CRE,∆t

{

discretization error in space : 83%

|||q̂ − q̂h|||2q |||q̂h − q̂h,∆t|||2q

{
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AdaptivityIDEA : the model is adapted mode after mode 
by comparing contributions of error sources

compute mode 1

compute mode 2

compute mode 3

local refinement of mode 3 mesh

• first PGD modes give general aspects : coarse approximation is sufficient

• next modes need more accuracy : fine discretization required

compute mode 4

PGD error dominant

discretization error dominant

PGD error dominant

PGD error dominant
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Adjoint problem

An optimal PGD decomposition for         is usually not optimal for  

use of goal-oriented techniques

um I(um)

ũ|t=T = 0

solution       = influence function (impact of global error on local error) ũ

I(u) =

� T

0

�

Ω
(q

Σ
·∇u+ fΣu)dΩdt

Error	
 on	
 a	
 QoI

ũ = 0 on ∂uΩ× I

q̃ · n = 0 on ∂qΩ× I

−c
∂ũ

∂t
−∇ · q̃ = fΣ

q̃ = k∇ũ
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Goal-oriented	
 error	
 estimation

From an admissible solution (ˆ̃u, ˆ̃q)

Sources splitting

=

� T

0

�

Ω
(qex − q̂)

1

k
(ˆ̃q − k∇ˆ̃u)dΩdt+ Icorr(q̂, ˆ̃q)

I(uex)− I(um) =

� T

0

�

Ω

�
∂(uex − um)

∂t
ˆ̃u+∇(uex − um) · ˆ̃q

�
dΩdt

|I(uex)− I(um)− Icorr(q̂, ˆ̃q)| ≤ ECRE × ẼCRE

indicators are computed after changing reference problem

I(uex)− I(uh,∆t
m ) = [I(uex)− I(uh,∆t)]� �� �+ [I(uh,∆t)− I(uh,∆t

m )]� �� �
PGD truncation errordiscretization error

c

optimized bounding possible

[Chamoin et al 08, Pled et al 12] 



24

Solving	
 the	
 adjoint	
 problem

localized solution, with high gradients

x

y

I =< u >ω,T

ω

ũ(x, t) =
nPUM�

j=1

ϕj(x)ũ
hand(x, t)

� �� �

+ ũres(x, t)� �� �

local enrichment
(generalized Green’s function)

residual term, computed with PGD

 

 
FE temperature

1.5

1

0.5

0

0.5

1

1.5

x 10 4

≈
m�

i=1

ψres
i (x)λres

i (t)

a priori enrichment + PGD comput.

fΣ =
δT
|ω| in ω

[Chamoin & Ladevèze  2008] 
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Error	
 on	
 the	
 QoI

requires more PGD modes than for global adaptation 

space-time refinement different from the global case

discretization error becomes rapidly dominating

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

m

 

 
full
PGD
dis

ECRE · ẼCRE

|I(um) + Icorr|
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With	
 unknown	
 parameters	
 	
 

2 1.5 1 0.5 0 0.5 1 1.5 2
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

y

Ω1

ω

2Ω

3Ω
4Ω

k(x, θi) = 1 +
4�

i=1

giIΩi(x)θi

c(x, θ5) = 1 + 0, 2θ5

[g1, g2, g3, g4] = [0.1, 0.1, 0.2, 0.05]

θi ∈ [−2, 2]

•   

5 extra-coordinates
•   

piecewise homogeneous

homogeneous

u(x, t,p) ≈ um(x, t,p) ≡
m�

i=1

ψi(x)λi(t)Γi(p)

B(u, v) =

�

Θ
. . . L(v) =

�

Θ
. . .

{

N�

n=1

γi,n(pn)
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∀(t, p) ∈ I ×ΘEquilibrium in a FE sense
�

Ω
q
m
·∇u∗dΩ =

�

Ω
(fd − c

∂ûm

∂t
)u∗dΩ−

�

∂qΩ
qdu

∗dS ∀u∗ ∈ Vh

�

Ω
(q

m
− q

0
) ·∇u∗dΩ = −

�

Ω
c
∂ûm

∂t
u∗dΩ = −

m�

i=1

cλ̇iΓi

�

Ω
ψiu

∗dΩ ∀u∗ ∈ Vh

At the end of sub-iterations to compute each PGD mode m0 ∈ [1,m]

B(um0 ,ψ
∗λm0Γm0) = L(ψ∗λm0Γm0) ∀ψ∗ ∈ Vh

SA	
 solution
[Ladevèze & Chamoin 2012]

{

loading

Q
m0

�

Ω

��

Θ

�

I
λm0Γm0(k∇um0 − q

0
)dtdp

�
∇ψ∗dΩ = −

�

Ω

m0�

i=1

��

Θ

�

I
cλm0Γm0 λ̇idtdp

�
ψiψ

∗dΩ ∀ψ∗ ∈ Vh

Am0i
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satisfies FE equilibration

SA	
 solution

is SA

Bounding result for outputs of interest

|I(p)− Im(p)− Icorr(p)| ≤ ECRE(p)ẼCRE(p)

ηinf (p) ≤ I(p) ≤ ηsup(p)

�

Ω
AΨmψ∗dΩ+

�

Ω
{Q}m1 ∇ψ∗dΩ = 0 ∀ψ∗ ∈ Vh

�

Ω
cΓm ⊗ Λ̇m ⊗Ψmψ∗dΩ+

�

Ω
c(Γm ⊗ Λ̇m ⊗ A−1{Q}m1 )∇ψ∗dΩ = 0 ∀ψ∗ ∈ Vh

(um,−cΓm ⊗ Λ̇m ⊗ A−1{Q}m1 + q
0
)

(um,−cΓm ⊗ Λ̇m ⊗ A−1{Q̂}m1 + q
0
)
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Goal-oriented	
 error	
 estimate

I1 = E[
1

|ω|

�

ω
u|T dω]•   

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25
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~
m

 

 
total
PGD
discretization

�
Θ ECRE · ẼCREdP

|I(um) + Icorr|
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I2 = sup
θi

1

|ω|

�

ω
u|T dω

Goal-oriented	
 error	
 estimate
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•   

supθ∈Θ ECRE · ẼCRE

|I(um) + Icorr|
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Adaptivity
�
Θ ECRE · ẼCREdP

|I(um) + Icorr|

supθ∈Θ ECRE · ẼCRE

|I(um) + Icorr|

For I1

I2For
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Optimization	
 with	
 PGD

• Steady state case

B(um0 ,ψ
∗Γm0) = L(ψ∗Γm0) ∀ψ∗ ∈ Vh

�

Ω

��

I
Γm0(k∇um0 − q

0
)dp

�
∇ψ∗dΩ = 0

auto-equilibrated (in a FE sense)Q
m0

βm0

q̂
m
(x, p) = q̂

0
(x) +

m�

m0=1

βm0(p)Q̂m0
(x)

�

Θ
E2

CRE(p)dpwith           minimizing
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Conclusions	
 and	
 prospects

 reliable control/adaptation of PGD approximation for global/local error based 
on CRE             robust virtual charts

 guaranteed bounds to assess performances of PGDs (pb dependent) and 
various error sources

 case of numerous parameters : integration issues (reference points)

 various 3D & complex multi-parameter pb (PhD P.E. Allier)

 nonlinear problems

 optimal PGD strategy based on CRE
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