Summary Algebraic and topological tensor spaces Tensor based Banach manifolds

Geometric structures and tensor based algorithms

Antonio Falcó

WORKSHOP NUMERICAL METHODS FOR HIGH-DIMENSIONAL PROBLEMS

∃ ⊳

Algebraic and topological tensor spaces Tensor based Banach manifolds

1 Algebraic and topological tensor spaces

2 Tensor based Banach manifolds

- Algebraic and Topological Tree Based Tensors (TBT)
- Main Results

∃ ⊳

Algebraic and topological tensor spaces Tensor based Banach manifolds

- A. Falcó, W. Hackbusch and A. Nouy. Geometric Structures in Tensor Representations. Preprint 9/2013 at Max Planck Institute for Mathematics in the Sciences (2013).
- A. Falcó and W. Hackbusch. Minimal subspaces in tensor representations. Foundations of Computational Mathematics, Volume 12, Issue 6 (2012), pp 765-803.

Algebraic tensor spaces

As a first example

$$a\bigotimes_{j=1}^{d}H^{N,p}(I_j) = \operatorname{span}\underbrace{\left\{f_1(x_1)\cdots f_d(x_d): f_i \in H^{N,p}(I_i)\right\}}_{\Sigma}$$

is a tensor space. In particular, we have

$$a\bigotimes_{j=1}^{d} L^{p}(I_{j}) = \operatorname{span} \underbrace{\{f_{1}(x_{1})\cdots f_{d}(x_{d}): f_{i} \in L^{p}(I_{i})\}}_{\Sigma}$$

for $1 \leq p < \infty$.

< ∃ →

Topological tensor spaces

$$H^{N,p}(I_1 imes \cdots imes I_d) = \lim_{\|\cdot\|_{N,p}} \bigotimes_{j=1}^d H^{N,p}(I_j)$$

is a Banach tensor space $p \neq 2$ and a Hilbert tensor space for p = 2. In particular, we have

$$L^p(I_1 \times \cdots \times I_d) = \lim_{\|\cdot\|_{0,p}} \bigotimes_{j=1}^d L^p(I_j)$$

for $1 \le p < \infty$. In general, for a norm $\|\cdot\|$ defined over an algebraic tensor space we will write:

$$\|\cdot\| \bigotimes_{j=1}^{d} V_j = \overline{\bigotimes_{j=1}^{d} V_j}^{\|\cdot\|}, \quad V_j \text{ is a vector space } !$$

프 > 프

Definition

Take an algebraic tensor space $\mathbf{V}_D := {}_a \bigotimes_{j=1}^d V_j$ and fix some *d*-tuple $\mathbf{r} \in \mathbb{N}^d$ The set of tensors of bounded rank \mathbf{r} is defined by

$$\mathcal{T}_{\mathbf{r}}(\mathbf{V}_{D}) := \left\{ \mathbf{v} \in \mathbf{V}_{D} : \mathbf{v} \in {}_{a} \bigotimes_{j=1}^{d} U_{j} \quad \text{dim } U_{j} \leq r_{\alpha} \text{ for all } j \right\}, \qquad (1)$$

and the set of tensors of fixed rank r is defined by

$$\mathcal{M}_{\mathbf{r}}(\mathbf{V}_D) := \{ \mathbf{v} \in \mathcal{T}_{\mathfrak{r}}(\mathbf{V}_D) : \dim U_j = r_j \text{ for all } j \}.$$
(2)

The good, the bad and the ugly (Sergio Leone-1966)

Take $\mathbf{V}_{123} := V_1 \otimes_a V_2 \otimes_a V_3$ and a norm $\|\cdot\|_{23}$ defined over $\mathbf{V}_{23} := V_2 \otimes_a V_3$. Let $\|\cdot\|_{123}$ be a norm defined over $V_1 \otimes_a \overline{\mathbf{V}_{23}}^{\|\cdot\|_{23}}$ Then we have either

$$\mathcal{M}_{\mathsf{r}}(\mathsf{V}_{123}) \subset \mathcal{T}_{\mathsf{r}}(\mathsf{V}_{123}) \subset \mathsf{V}_{123} \subset \overline{V_1 \otimes_{\mathsf{a}} \overline{\mathsf{V}_{23}}^{\|\cdot\|_{23}}}^{\|\cdot\|_{123}}$$

or

$$\mathcal{M}_{\mathsf{r}}(\mathsf{V}_{123}) \subset \mathcal{T}_{\mathsf{r}}(\mathsf{V}_{123}) \subset \mathsf{V}_{123} \subset \overline{V_1 \otimes_{a} \mathsf{V}_{23}}^{\|\cdot\|_{123}}$$

The best approximation and the geometric structure are norm dependent problems. The question is: Who is the good/bad/ugly?

The answer my friend is blowing in the wind (Bob Dylan)

• If V_i is a normed space with norm $\|\cdot\|_i$, then $\overline{V}_i^{\|\cdot\|_i}$ is always a Banach space, and then we have

$$a\bigotimes_{j=1}^{d}V_{j} \subset a\bigotimes_{j=1}^{d}\overline{V}_{i}^{\|\cdot\|_{i}} \quad \text{then} \quad \overline{a\bigotimes_{j=1}^{d}V_{j}} \subset \overline{a\bigotimes_{j=1}^{d}\overline{V}_{i}^{\|\cdot\|_{i}}}$$

• The equality (that always holds in finite dimension)

$$\overline{\bigotimes_{a \bigotimes_{j=1}^{d} V_{j}}^{\|\cdot\|}} = \overline{\bigotimes_{a \bigotimes_{j=1}^{d} \overline{V}_{i}^{\|\cdot\|_{i}}}}^{\|\cdot\|_{i}}$$

is true when the tensor product is continuous.

A desirable property

The equality is also true when
$$\|\cdot\| \gtrsim \|\cdot\|_{\vee(\overline{V}_1^{\|\cdot\|_1},...,\overline{V}_d^{\|\cdot\|_d})}$$
. Clearly, the tensor product is continuous.

Definition (Injective norm)

Let V_i be a Banach spaces with norm $\|\cdot\|_i$ for $1 \le i \le d$. Then for $\mathbf{v} \in \mathbf{V} = {}_a \bigotimes_{j=1}^d V_j$ define $\|\cdot\|_{\vee} = \|\cdot\|_{\vee(V_1,...,V_d)}$ by

$$\left\|\mathbf{v}\right\|_{\vee} := \sup\left\{\frac{\left|\left(\varphi_{1}\otimes\varphi_{2}\otimes\ldots\otimes\varphi_{d}\right)(\mathbf{v})\right|}{\prod_{j=1}^{d}\|\varphi_{j}\|_{j}^{*}}: 0\neq\varphi_{j}\in V_{j}^{*}, 1\leq j\leq d\right\}.$$

▲ 프 ▶ 프

3 N

Theorem (Best approximation)

Let V_i be a Banach spaces with norm $\|\cdot\|_i$ for $1 \le i \le d$. and let $\|\cdot\|$ be a norm on the algebraic tensor space $\mathbf{V}_D := {}_a \bigotimes_{j=1}^d V_j$. If $\|\cdot\| \gtrsim \|\cdot\|_{\vee(V_1,...,V_d)}$ holds and $\overline{V_D}^{\|\cdot\|}$ is a reflexive Banach space. Then the set $\mathcal{T}_{\mathbf{r}}(\mathbf{V}_D)$ is (weakly closed) proximinal in $\overline{V_D}^{\|\cdot\|}$.

An optimization problem

Assume that there exists a manifold $\mathbb{M}=\mathcal{M}_r(V_{\mathit{D}})\subset \Sigma=\mathcal{T}_r(V_{\mathit{D}})$ such that

$$\min_{\mathbf{w}\in\Sigma}J(\mathbf{w})=\min_{\mathbf{w}\in\mathbb{M}}J(\mathbf{w})$$

holds. Then $\mathbf{v} \in \arg\min_{\mathbf{w} \in \Sigma} J(\mathbf{w})$ satisfies the following first order condition (Euler-Lagrange Equation):

$$\langle J'(\mathbf{v}), \dot{\mathbf{w}}
angle = 0$$
 for all $\dot{\mathbf{w}} \in \mathbb{T}_{\mathbf{v}}\mathbb{M}$.

Question

Is $\mathcal{M}_r(\mathbf{V}_D)$ a manifold? and a more important thing: Where is? (ambient space).

Image: Second second

Tensor Based manifolds: Hartree Banach manifold

$$\mathbb{M}_{\mathsf{Hartree}} = \left\{ f_1(x_1) \cdots f_d(x_d) : f_i \in H^{N,p}(I_i) \setminus \{0\} \right\} \subset H^{N,p}(I_1 \times \cdots \times I_d)$$

The natural coordinates of $\mathbb{M}_{Hartree} = \mathcal{M}_{(1,...,1)}(\ _{a} \bigotimes_{j=1}^{d} H^{1,p}(I_{j}))$

$$\mathbf{v} = \lambda f_1(x_1) \cdots f_d(x_d) = \lambda f_1 \otimes \cdots \otimes f_d,$$

are given as follows: Let $W_i(f_i) : H^{N,p}(I_i) = \operatorname{span}\{f_i\} \oplus W_i(f_i)$ for $1 \le i \le d$. Then $\mathbf{v} + \delta \mathbf{v}$ is in a "natural neighborhood" of \mathbf{v} if and only if

$$\mathbf{v} + \delta \mathbf{v} = \eta (f_1 + \delta f_1)(x_1) \cdots (f_d + \delta f_d)(x_d) \quad \delta f_i \in W_i(f_i) \quad 1 \leq i \leq d.$$

So the "coordinates" of $\mathbf{v} + \delta \mathbf{v}$ are $(\eta, \delta f_1, \dots, \delta f_d)$ (for \mathbf{v} are $(\lambda, 0, \dots, 0)$).

(A) (E) (A) (E) (A)

Tangent space

Under this coordinates the "natural tangent space" at $\mathbf{v}=\lambda\,f_1\otimes\cdots\otimes f_d$ is

$$\mathbb{T}_{\mathbf{v}}\mathbb{M}_{\mathsf{Hartree}} = \mathbb{R} imes \mathcal{W}_1(f_1) imes \cdots \mathcal{W}_d(f_d),$$

that is, a velocity \dot{v} in $\mathbb{T}_{\textbf{v}}\mathbb{M}_{\mathsf{Hartree}}$ is given by

$$\dot{\mathbf{v}} \equiv (\eta, \delta f_1, \dots, \delta f_d).$$

∃ >

Rank-one minimization

Since $\Sigma = \mathcal{T}_{(1,...,1)}({}_{a} \bigotimes_{j=1}^{d} H^{1,p}(I_{j})) = \overline{\mathbb{M}_{\mathsf{Hartree}}}^{\|\cdot\|_{N,p}} \subset H^{N,p}(I_{1} \times \cdots \times I_{d})$ is weakly closed, then the problem

 $\min_{\mathbf{w}\in\Sigma}J(\mathbf{w})$

is well-posed. If $\mathbf{0} \neq \mathbf{v} \in \arg\min_{\mathbf{w} \in \Sigma} J(\mathbf{w})$, then

$$\min_{\mathbf{w}\in\Sigma}J(\mathbf{w})=\min_{\mathbf{w}\in\mathbb{M}_{\mathsf{Hartree}}}J(\mathbf{w}).$$

Find $\lambda f_1(x_1) \cdots f_d(x_d) \in \mathbb{M}_{Hartree}$:

 $\langle J'(\lambda f_1(x_1)\cdots f_d(x_d)), \dot{\mathbf{v}} \rangle = 0 \quad \dot{\mathbf{v}} \in \mathbb{R} \times W_1(f_1) \times \cdots W_d(f_d).$

We need "to embed" $\dot{\mathbf{v}} \in \mathbb{R} \times W_1(f_1) \times \cdots \times W_d(f_d)$ into $H^{N,\rho}(I_1 \times \cdots \times I_d)$.

Embedding manifold

Let us consider the standard inclusion map (the identity)

$$i: \mathbb{M}_{\mathsf{Hartree}} \to H^{N,p}(I_1 \times \cdots \times I_d), \quad \lambda f_1 \cdots f_d \mapsto \lambda \bigotimes_{i=1}^d f_i.$$

In local coordinates is a map
$$(i \circ \varphi_{\mathbf{v}}^{-1})$$
:
 $(\mathbb{R} \setminus \{0\}) \times W_1(f_1) \times \cdots W_d(f_d) \to H^{N,p}(I_1 \times \cdots \times I_d)$ given by
 $(\eta, \delta f_1, \dots, \delta f_d) \mapsto \eta(f_1 + \delta f_1) \cdots (f_d + \delta f_d).$

Its derivative $T_{\mathbf{v}}i := (i \circ \varphi_{\mathbf{v}}^{-1})'(\lambda, 0, \cdots, 0)$ is a linear map given by

$$\mathrm{T}_{\mathbf{v}}i(\gamma,\delta f_1,\ldots,\delta f_d)=\gamma\bigotimes_{i=1}^d f_j+\sum_{j=1}^d\lambda\,\delta f_j\otimes\bigotimes_{k\neq j}f_k.$$

э

< ∃ →

Is an embedding manifold ?

- Is $T_{\mathbf{v}}i : \mathbb{R} \times W_1(f_1) \times \cdots W_d(f_d) \to H^{N,p}(I_1 \times \cdots \times I_d)$ injective ?
- Is the linear subspace $T_{\mathbf{v}}i(\mathbb{R} \times W_1(f_1) \times \cdots W_d(f_d)) = \mathbf{Z}(\mathbf{v})$ where

$$\mathsf{Z}(\mathsf{v}) := egin{cases} \gamma \bigotimes_{i=1}^d f_j + \sum_{j=1}^d \lambda \, \delta f_j \otimes \bigotimes_{k
eq j} f_k : & (\gamma, \delta f_1, \dots, \delta f_d) \ \in \mathbb{T}_{\mathsf{v}} \mathbb{M}_{\mathsf{Hartree}} \end{cases}$$

closed and complemented in $H^{N,p}(I_1 \times \cdots \times I_d)$?

• Observe that the subspace

$$\mathsf{Z}(\mathsf{v}) = \bigotimes_{i=1}^d \operatorname{span}\{f_i\} \oplus \left(\bigoplus_{j=1}^d W_j(f_j) \otimes_{\mathsf{a}} \operatorname{span}\{\lambda \bigotimes_{k \neq j} f_k\}
ight).$$

-∢ ⊒ ▶

The answer my friend is blowing in the wind (Bob Dylan)

• If the tensor product \otimes is continuous then $\mathrm{T}_{\mathbf{v}}i$ is well defined and it is also injective.

Theorem

Let V_i be a Banach spaces with norm $\|\cdot\|_i$ for $1 \le i \le d$. and let $\|\cdot\|$ be a norm on the algebraic tensor space $\mathbf{V}_D := {}_a \bigotimes_{j=1}^d V_j$. If $\|\cdot\| \gtrsim \|\cdot\|_{\lor (V_1,...,V_d)}$ holds then for each $\mathbf{v} \in \mathcal{M}_r(\mathbf{V}_D)$ the linear subspace $\mathbf{Z}(\mathbf{v})$ is closed and complemented in $\overline{\mathbf{V}_D}^{\|\cdot\|}$, and hence $\mathcal{M}_r(\mathbf{V}_D)$ is a submanifold of $\overline{\mathbf{V}_D}^{\|\cdot\|}$.

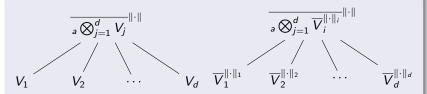
Comments

- The manifold of tensors of fixed rank is an analytical Banach manifold even if the tensor product map is not continuous.
- If the tensor product map is continuous then (i)we can compute Ti in order to transport velocities and (ii)the tangent space can be identify with a linear space Z(v) inside the tensor Banach space.
- If $\|\cdot\| \gtrsim \|\cdot\|_{\vee(V_1,\dots,V_d)}$ holds then the manifold of tensor of fixed rank is a submanifold inside the tensor Banach space.

Summary Algebraic and topological tensor spaces Tensor based Banach manifolds

Algebraic and Topological Tree Based Tensors (TBT) Main Results

The moral of the tale



both tensor representations are the same when $\|\cdot\|\gtrsim\|\cdot\|_{\vee}$ and the existence of a best approximation holds. We assume a tensor representation like

$$\mathbf{v} = \sum_{i_1=1}^{r_1} \cdots \sum_{i_d=1}^{r_d} C_{i_1 \cdots i_d} \, \mathbf{u}_{i_1} \otimes \cdots \otimes \mathbf{u}_{i_d}$$

where $C_{i_1\cdots i_d} \in \mathbb{R}^{r_1 \times \cdots \times r_d}$ and $\{\mathbf{u}_{i_k}\}_{i_k=1}^{i_k=r_k}$ is a basis of a subspace U_k in V_k for $1 \le k \le d$. So $\mathbf{v} \in {}_{\mathsf{a}} \bigotimes_{k=1}^d U_k$ and rank $\mathbf{v} = (r_1, \ldots, r_d)$.

Algebraic Tree Based Tensors

Take $D = \{1, 2, \dots, d\}$ be the root then a tree T_D is defined by

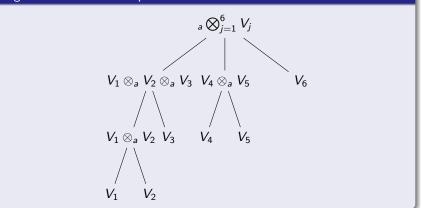
$$\mathbf{V}_D := {}_{a} \bigotimes_{\alpha \in \mathcal{S}(D)} \mathbf{V}_{\alpha} = {}_{a} \bigotimes_{\alpha \in \mathcal{S}(D)} \left({}_{a} \bigotimes_{\beta \in \mathcal{S}(\alpha)} \mathbf{V}_{\beta} \right) = \dots = {}_{a} \bigotimes_{j \in D} V_j$$

where for $\delta \in 2^D \setminus \{ \emptyset \}$ we put

$$\mathbf{V}_{\delta} := {}_{\mathsf{a}} \bigotimes_{j \in \delta} V_j$$

ヨト・モート

Algebraic Tree Based Representation



- < ∃ >

3 N

Summary Algebraic and topological tensor spaces Tensor based Banach manifolds

Algebraic and Topological Tree Based Tensors (TBT) Main Results

Tensor representation

$$\mathbf{v} = \sum_{i_{123}=1}^{r_{123}} \sum_{i_{45}=1}^{r_{45}} \sum_{i_{6}=1}^{r_{6}} C_{i_{123}i_{45}i_{6}} \mathbf{u}_{i_{123}} \otimes \mathbf{u}_{i_{45}} \otimes u_{i_{6}}$$

where

$$\mathbf{u}_{i_{123}} = \sum_{i_{12}=1}^{r_{12}} \sum_{i_3=1}^{r_3} C_{i_{123};i_{12}i_3} \mathbf{u}_{i_{12}} \otimes u_{i_3},$$

$$\mathbf{u}_{i_{12}} = \sum_{i_1=1}^{r_1} \sum_{i_2=1}^{r_2} C_{i_{12};i_1i_2} u_{i_1} \otimes u_{i_2},$$

and

$$\mathbf{u}_{i_{45}} \sum_{i_4=1}^{r_4} \sum_{i_5=1}^{r_5} C_{i_{45}; i_4 i_5} u_{i_4} \otimes u_{i_5}.$$

Now the rank $\mathbf{v} = (r_{123}, r_{45}, r_6, r_{12}, r_3, r_4, r_5, r_1, r_2)$

< ∃ >

Definition

Let T_D be a given dimension partition tree and fix some tuple $\mathfrak{r} \in \mathbb{N}^{T_D}$ for T_D . The set of TBF tensors of bounded TB rank \mathfrak{r} is defined by

$$\mathcal{BT}_{\mathfrak{r}}(\mathbf{V}_D) := \left\{ \mathbf{v} \in \mathbf{V}_D : \text{ dim } U^{\min}_{\alpha}(\mathbf{v}) \leq r_{\alpha} \text{ for all } \alpha \in T_D
ight\},$$
 (3)

and the set of TBF tensors of fixed TB rank r is defined by

$$\mathcal{FT}_{\mathfrak{r}}(\mathbf{V}_D) := \left\{ \mathbf{v} \in \mathcal{BT}_{\mathfrak{r}}(\mathbf{V}_D) : \dim U_{\alpha}^{\min}(\mathbf{v}) = r_{\alpha} \text{ for all } \alpha \in T_D \right\}.$$
(4)

Remark

$$\mathcal{BT}_{\mathfrak{r}}(\mathsf{V}_D) = \cup_{\mathfrak{s} \leq \mathfrak{r}} \mathcal{FT}_{\mathfrak{s}}(\mathsf{V}_D)$$

★ Ξ ►

3

Property

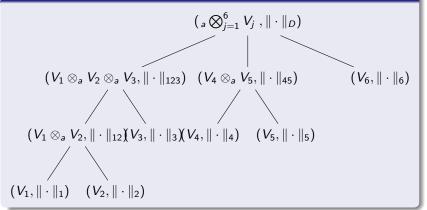
Assume that $\mathbf{v} \in \mathcal{FT}_{\mathfrak{r}}(\mathbf{V}_D)$ then for each $\alpha \in T_D \setminus \{\{1\}, \ldots, \{d\}\}$ it can be show that

$$C_{i_{\alpha};(i_{\beta})_{\beta\in S(\alpha)}} \in \mathbb{R}_{*}^{r_{\alpha}\times \left(\times_{\beta\in S(\alpha)}r_{\beta}\right)},$$

that is, rank $\mathcal{M}_{\alpha}(C_{i_{\alpha};(i_{\beta})_{\beta\in S(\alpha)}}) = r_{\alpha}$ and rank $\mathcal{M}_{\beta}(C_{i_{\alpha};(i_{\beta})_{\beta\in S(\alpha)}}) = r_{\beta}$ for all $\beta \in S(\alpha)$. Here rank means matrix rank and \mathcal{M}_{β} is the matrization of the tensor with respect the index β .

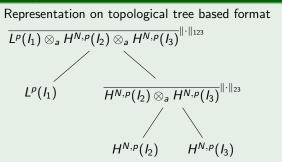
-∢ ⊒ ▶

Topological Tree Based representation



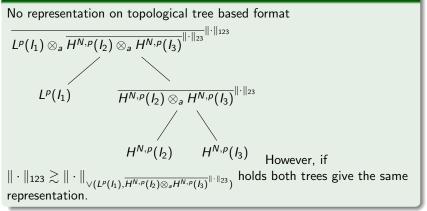
∃ >

Example



3

Example



글 🕨 🖌 글 🕨

Banach-Grassmann Manifold (A. Douady-1961)

For each $\alpha \in T_D \setminus \{D\}$, there exists $W^{\min}_{\alpha}(\mathbf{v})$ such that

$$\mathbf{V}_{lpha_{\|\cdot\|_lpha}} = U^{\mathsf{min}}_{lpha}(\mathbf{v}) \oplus W^{\mathsf{min}}_{lpha}(\mathbf{v})$$

Every U such that

$$\mathbf{V}_{lpha_{\parallel\cdot\parallel_{lpha}}}=U\oplus W^{\mathsf{min}}_{lpha}(\mathbf{v})$$

is characterized by the existence of a unique $L_{\alpha} \in \mathcal{L}(U_{\alpha}^{\min}(\mathbf{v}), W_{\alpha}^{\min}(\mathbf{v}))$ such that

$$U = \operatorname{span} \{ \mathbf{u}_{i_{\alpha}} + L_{\alpha}(\mathbf{u}_{i_{\alpha}}) : 1 \le i_{\alpha} \le r_{\alpha} \},\$$

where

$$U_{\alpha}^{\min}(\mathbf{v}) = \operatorname{span} \{ \mathbf{u}_{i_{\alpha}} : 1 \leq i_{\alpha} \leq r_{\alpha} \}.$$

글 에 세 글 어

3

Algebraic and Topological Tree Based Tensors (TBT) Main Results

Theorem

The set $\mathcal{FT}_{\mathfrak{r}}(\mathbf{V}_D)$ of TBF tensors with fixed TB rank is an analytical Banach manifold. This geometric structure is independent of the choice of the norm $\|\cdot\|_D$.

Example

Let $V_{1_{\|\cdot\|_{1}}} := H^{1,p}(I_{1})$ and $V_{2_{\|\cdot\|_{2}}} = H^{1,p}(I_{2})$. Take $\mathbf{V}_{D} := H^{1,p}(I_{1}) \otimes_{a} H^{1,p}(I_{2})$, from Theorem 8 we obtain that $\mathcal{FT}_{\mathfrak{r}}(\mathbf{V}_{D})$ is a Banach manifold. However, we can consider as ambient manifold either $\overline{\mathbf{V}_{D}}^{\|\cdot\|_{D,1}} := H^{1,p}(I_{1} \times I_{2})$ or $\overline{\mathbf{V}_{D}}^{\|\cdot\|_{D,2}} = H^{1,p}(I_{1}) \otimes_{\|\cdot\|_{(0,1),p}} H^{1,p}(I_{2})$, where $\|\cdot\|_{(0,1),p}$ is the norm given by

$$\|f\|_{(0,1),p} := \left(\|f\|_p^p + \left\| \frac{\partial f}{\partial x_1} \right\|_p^p \right)$$

for $1 \leq p < \infty$.

(5)

▲ 国 ▶ | ▲ 国 ▶ | |

Assumption

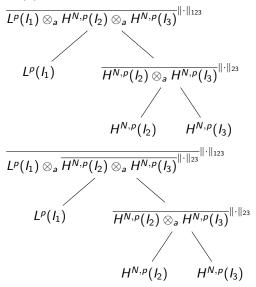
$$\|\cdot\|_{lpha}\gtrsim\|\cdot\|_{ee(\mathcal{S}(lpha))}$$
 for each $lpha\in\mathcal{T}_D\setminus\mathcal{L}(\mathcal{T}_D),$

Theorem

Let $\{\mathbf{V}_{\alpha_{\|\cdot\|_{\alpha}}}\}_{\alpha\in \mathcal{T}_{D}\setminus\{D\}}$ be a representation of a tensor Banach space $\mathbf{V}_{D_{\|\cdot\|_{D}}} = _{\|\cdot\|_{D}} \bigotimes_{j\in D} V_{j}$, in topological tree based format and assume that (5) holds. Then $\mathcal{FT}_{\mathfrak{r}}(\mathbf{V}_{D})$ is an embedded submanifold of $\mathbf{V}_{D_{\|\cdot\|_{D}}}$. Moreover, we can construct a complemented subspace $\mathbf{Z}^{(D)}(\mathbf{v})$ such that $\mathbf{Z}^{(D)}(\mathbf{v}) = T_{\mathbf{v}}i(\mathbb{T}_{\mathbf{v}}(\mathcal{FT}_{\mathfrak{r}}(\mathbf{V}_{D})))$ holds for $\mathbf{v} \in \mathcal{FT}_{\mathfrak{r}}(\mathbf{V}_{D})$. Summary Algebraic and topological tensor spaces Tensor based Banach manifolds

Algebraic and Topological Tree Based Tensors (TBT) Main Results

If (5) holds then both trees are the same



э

< ∃ >

Theorem

Let $\{\mathbf{V}_{\alpha_{\|\cdot\|_{\mathcal{A}}}}\}_{\alpha\in\mathcal{T}_{D}\setminus\{D\}}$ be a representation of a reflexive Banach tensor space $\mathbf{V}_{D_{\|\cdot\|_{D}}} = \|\cdot\|_{D} \bigotimes_{j\in D} V_{j}$, in topological tree based format and assume that (5) holds. Then for each $\mathbf{v} \in \mathbf{V}_{D_{\|\cdot\|_{D}}}$ there exists $\mathbf{u}_{best} \in \mathcal{BT}_{\mathfrak{r}}(\mathbf{V}_{D})$ such that

$$\|\mathbf{v} - \mathbf{u}_{best}\|_{D} = \min_{\mathbf{u} \in \mathcal{BT}_{\tau}(\mathbf{V}_{D})} \|\mathbf{v} - \mathbf{u}\|_{D},$$

here $\mathbf{V}_D = {}_a \bigotimes_{j \in D} V_j$.

프 🖌 🔺 프 🛌

3

Thank you for your attention !

< ≣⇒