ETH zürich

On the Electron Correlation Problem in Quantum Chemistry

<u>Stefan Knecht</u> and Markus Reiher ETH Zürich, Laboratorium für Physikalische Chemie, Switzerland http://www.reiher.ethz.ch/people/knechste stefan.knecht@phys.chem.ethz.ch

DCHAB Departement Chemie und Angewandte Biowissenschaften

Outline

- Traditional and "New" Wave-Function based Correlation Methods for Strongly-Correlated Molecular Systems
- Insights from Applications in Quantum Chemistry
- Conclusions

HΔR

Angewandte Biowissenschaften

Electronic structure theory – the Hamiltonian

 Non-relativistic many-electron Hamiltonian in position space (Hartree atomic units):

$$\frac{H_{el}}{I} = \sum_{i}^{N} \left(-\frac{1}{2} \nabla_i^2 - \sum_{I} \frac{Z_I}{r_{iI}} \right) + \sum_{i < j}^{N} \frac{1}{r_{ij}}$$

with $r_{ij} = |r_i - r_j|$ and N being the number of electrons.

Eigenvalue equation: electronic Schrödinger equation:

$$H_{el}\Psi_{el}^{\{\mathbf{R}_I\}}(\{\mathbf{r}_i\}) = E_{el}(\{\mathbf{R}_I\})\Psi_{el}^{\{\mathbf{R}_I\}}(\{\mathbf{r}_i\})$$

• Central problem: How to approximate Ψ_{el} ?

Electronic structure theory – the two-dimensional view

How to approximate Ψ_{el} ?

- Construct many-electron (determinantal) basis set $\{\Phi_I\}$ from a given (finite) one-electron (orbital) basis set ϕ_i
- From the solution of the Roothaan–Hall equations, one obtains as n orbitals from n one-electron basis functions:

 $FC = SC\epsilon$

- From the *N* orbitals with the lowest energy, the Hartree–Fock (HF) Slater determinant Φ_0 is constructed
- The other determinants (configurations) are obtained by subsequent substitution of orbitals in the HF Slater determinant $\Phi_{0:}$

$$\{\Phi_I\} \to \Phi_i^a, \Phi_j^b, \ldots \to \Phi_{ij}^{ab}, \Phi_{ik}^{ac}, \ldots \to \Phi_{ijk}^{abc}, \Phi_{ijl}^{abd}, \ldots$$

DCHAB Departement Chemie und Angewandte Biowissenschaften

Electron Correlation

 Correlation energy in a given basis set as difference between the exact and the Hartree-Fock energy:

$$E_{corr} = E_{exact} - E_{HF}$$

- Dynamical correlation:
 - related to the movements of the individual electrons
 - short-range
- Non-dynamical or static correlation:
 - Electronic ground state as a function of many (nearly)-degenerate Slater determinants
 - Requires multi-determinantal reference wave function

Full Configuration Interaction (FCI)

- The number of possible determinants is determined by the number of virtual orbitals n–N
- Including all possible excited Slater determinants for a finite or infinite one-electron basis set leads to the socalled full CI approach
- Number of Slater determinants n_{SD} for N spin orbitals chosen from a set of n spin orbitals:

$$n_{\rm SD} = \frac{n!}{N!(n-N)!}$$

Example: There are $\approx 10^{12}$ different possibilities to distribute 21 electrons in 43 spin orbitals

• FCI only feasible for small basis sets!

Departement Chemie und Angewandte Biowissenschaften

HΔB

Approximate Correlation Methods I

• Truncated CI:

Hzürich

- Assumption: Substitution hierarchy is a useful measure to generate a systematically improvable many-electron basis set
- For example CISD:

$$\Psi_{el}^{CISD} = C_0 \Phi_0 + \sum_{(ai)} C_{(ai)} \Phi_i^a + \sum_{(ai)(bj)} C_{(ai,bj)} \Phi_{ij}^{ab}$$

- Truncated Coupled Cluster:
 - Exponential ansatz $\Psi_{el}^{CC} = \exp(T) \ \Phi_0$
 - excitation operator $T = T_1 + T_2 + T_3 + \dots$
 - Truncation of T defines the level of hierarchy: CCSD: T = T₁+T₂
 - Improves on truncated CI because of inclusion of disconnected terms, CC is size-consistent $\rightarrow \exp(T) = 1 + T + \frac{1}{2!}T^2 + \dots$

Departement Chemie und Angewandte Biowissenschaften

łΔB

Approximate Correlation Methods II

- Multi-configuration Self-Consistent-Field method (MCSCF): $\Psi_{el}^{MCSCF} = \exp(\hat{\kappa}) \left(\sum_{\nu} C_{\nu} \Phi_{\nu}\right)$
 - Simultaneous optimization of CI coefficients and orbital rotation parameters
 - used to generate qualitatively correct reference states for systems with quasi-degenerate electronic ground states (static correlation!)
 - Most popular approach: Complete Active Space SCF (CASSCF):
 - Perform Full CI for *n* electrons within a set of chosen, active orbitals *m*
 - CAS(n,m)

Departement Chemie und Angewandte Biowissenschaften

The CASSCF model

DCHAB Departement Chemie und Angewandte Biowissenschaften

Approximate Correlation Methods III

- Truncated Multi-reference CI:
 - Same assumptions made as in the single-reference case
 - Φ_0 is replaced by a sum of reference configurations from for example a CASSCF wave function optimization
- Multi-reference CC:
 - Multi-reference analog of single-reference CC
 - No ultimate approach exists (yet)
 - Further reading: D. Lyakh *et al.*, Chem. Rev., 112, 182-243 (2012)
- Multi-reference Perturbation Theory (to 2nd order):
 - For example: MP2 theory for a CAS wave function
 - Different choices of 0th-order Hamiltonian: CASPT2 or NEVPT2

EHzürich

Approximate Correlation Methods IV

- Density Matrix Renormalization Group (DMRG):
 - Is a CAS approach
 - DMRG state is a superposition of FCI-type basis states
 - A FCI/CAS solution can be converged; but the basis cannot be completely known if DMRG shall be efficient
 - Can be extended by orbital optimization → DMRG-SCF
 - DMRG exploits a "linear" optimization algorithm
 - See talk by Ö. Legeza for details on algorithm and MPS formulation

ETHzürich

Approximate Correlation Methods V

- Methods not further mentioned here:
 - Greens function approaches → ADC(X) methods
 - Perturbation Theory
 - Response Theory
 - • •
- Further reading:
 - T. Helgaker, P. Jørgensen and, J. Olsen, *Molecular Electronic-Structure Theory*, Wiley (2000).
 - Special Issue in Chem. Rev. Vol. 112, 2012.

Electronic structure theory – the two-dimensional view

HAB

Angewandte Biowissenschaften

Electronic structure theory – the Hamiltonian II

Relativistic many-electron Hamiltonian:

$$\boldsymbol{H_{el}} = \sum_{i=1}^{N} \left(c \boldsymbol{\alpha}_i \cdot \mathbf{p}_i + \beta'_i m c^2 - \left(\sum_{I} \frac{Z_I}{r_i I} \mathbf{I}_{4 \times 4} \right) \right) + \sum_{i < j}^{N} \hat{g}_{ij}$$

- 4-component wave function Ψ_{el} (e+p-like solutions!)
- Two-electron interaction:

 - Coulomb: $\hat{g}_{ij} = \frac{\mathbf{I}_{4 \times 4} \otimes \mathbf{I}_{4 \times 4}}{r_{ij}}$ Coulomb-Breit: $\hat{g}_{ij} = \frac{\mathbf{I}_{4 \times 4} \otimes \mathbf{I}_{4 \times 4}}{r_{ij}} \frac{1}{2r_{ij}} \left(\boldsymbol{\alpha}_i \cdot \boldsymbol{\alpha}_j + \frac{(\boldsymbol{\alpha}_i \cdot \mathbf{r_{ij}})(\boldsymbol{\alpha}_j \cdot \mathbf{r_{ij}})}{r_{ij}^2} \right)$
 - Higher-orders of fine structure constant α (QED)
- Relativity adds new axis to electronic structure problem!

HΔR

Departement Chemie und Angewandte Biowissenschaften

Implications for choosing an appropriate QC Model

- Approximations to the "full" relativistic Hamiltonian:
 - From a four-component to a two-component (electrons only) wave function through block-diagonalization of the one-electron Hamiltonian

$$\hat{h}_{bd} = U^{\dagger} \begin{bmatrix} \hat{h}_{11} & \hat{h}_{12} \\ \hat{h}_{21} & \hat{h}_{22} \end{bmatrix} U = \begin{bmatrix} \hat{h}_{+} & 0 \\ 0 & \hat{h}_{-} \end{bmatrix}$$

- Neglect of spin-orbit effects: scalar-relativistic approach
- Treat spin-orbit effects a posteriori as perturbation to a scalarrelativistic correlation model
- Increase of computational cost \rightarrow loss of spin symmetry

Electronic structure theory – the three-dimensional view

DCHAB Departement Chemie und Angewandte Biowissenschaften

Further Literature On Relativistic QC

- Book: M. Reiher and A. Wolf, Relativistic Quantum Chemistry: The Fundamental Theory of Molecular Science (Wiley, 2009)
- J. Autschbach, *Perspective: Relativistic effects*, J. Chem. Phys. 136, 150902 (2012)
- T. Fleig, Relativistic wave-function based electron correlation methods, Chem. Phys. 395, 2 - 15 (2012)
- S. Knecht, O. Legeza, and M. Reiher, *Four-component* density matrix renormalization group, J. Chem. Phys. 140, 041101 (2014)

Applications

The electronic ground state of U₂

 U₂: electronic ground state is proposed to have a quintuple bond between the U atoms

L. Gagliardi and B. O. Roos, Quantum chemical calculations show that the uranium molecule U2 has a quintuple bond, Nature 433, 848-851 (2005).

- Scalar-relativistic CASSCF(6,20) calculations with an a posteriori perturbative treatment of spin-orbit coupling
- Our ansatz: relativistic two-component CASSCF(6,20) calculations with a variational inclusion of spin-orbit coupling → different electronic ground state and bond order of 4 for the uranium dimer!

S. Knecht et al., in preparation 2014.

The electronic ground state of U₂

DCHAB Departement Chemie und Angewandte Biowissenschaften

The electronic ground state of U₂ mixing of bonding and anti-bonding

classification of bonding and anti-bonding molecular orbitals: non- and scalar-relativistic picture

anti-bonding
$$\sigma_u = \pi_g = \delta_u = \phi_g = \dots$$

bonding $\sigma_g = \pi_u = \delta_g = \phi_u = \dots$

\downarrow spin-orbit coupling

anti-bonding
$$\sigma_{u} \quad \pi_{g} \quad \delta_{u} \quad \phi_{g} \quad \dots$$

bonding $\sigma_{g} \quad \pi_{u} \quad \delta_{g} \quad \phi_{u} \quad \dots$

DCHAB Departement Chemie und Angewandte Biowissenschaften

The electronic ground state of U₂

 $\Omega = 8_{g}$ ground state from Roos and Gagliardi

 $\begin{array}{rll} 7 \mathrm{s} \sigma_{\mathrm{g}}^{2.00} & 6 \mathrm{d} \sigma_{\mathrm{g}}^{0.97} & 6 \mathrm{d} \delta_{\mathrm{g}}^{0.98} & 5 \mathrm{f} \pi_{\mathrm{g}}^{0.37} & 5 \mathrm{f} \delta_{\mathrm{g}}^{0.63} & 5 \mathrm{f} \phi_{\mathrm{g}}^{1.00} \\ & 6 \mathrm{d} \pi_{\mathrm{u}}^{4.00} & 5 \mathrm{f} \pi_{\mathrm{u}}^{0.63} & 5 \mathrm{f} \delta_{\mathrm{u}}^{0.37} & 5 \mathrm{f} \phi_{\mathrm{u}}^{1.00} \end{array}$

 $\Omega = 9_g$ ground state from our relativistic CASSCF calculations:

approximate scalar-relativistic notation

 $\Omega = 8_g$ state from our relativistic CASSCF calculations:

approximate scalar-relativistic notation

DCHAB Departement Chemie und Angewandte Biowissenschaften

Mössbauer isomer shifts in Hg complexes

- Mössbauer spectroscopy: Recoil-free, resonant nuclear absorption and emission of gamma rays in solids
- E_{\rm \gamma} is modified by the local chemical environment $\Delta E_{\gamma} \propto \Delta \rho(0)$

with $\rho(0)$ being the density at the nucleus

Relativistic benchmark for the series HgF_n (n=0,1,2,4)
S. Knecht *et al.*, Theor. Chem. Acc., 129, 631 (2011)

Mössbauer isomer shifts in Hg complexes

Relativistic effects on absolute and relative $\rho^{Hg}(0)$ (a.u.)

Contact density (a_0^{-3}) :		absolute	relative to Hg		
Method	Hamiltonian	Hg	HgF	HgF_2	HgF_4
HF	DC	2363929.12	-114.48	-127.92	-98.09
HF	NR	361818.93	-11.92	-13.35	-6.77
		-84.69%	-89.59%	-89.56%	-93.10%

Mössbauer isomer shifts in Hg complexes

Correlation effects

Contact density (a_0^{-3}) :		absolute	relative to Hg		
Method	Hamiltonian	Hg	HgF	HgF_2	HgF_4
HF	DC	2363929.12	-114.48	-127.92	-98.09
CCSD(T)[all]	DC	2364016.40			
CCSD(T)[cv]	DC	2363990.74	-95.11	-110.46	-103.70
		-26 ppm	+20.36%	+15.80%	-5.41%

- Correlation effect on the absolute contact density are small but relative contact densities are of the same order
- Correlation effect on relative densities therefore important

HΔR

Departement Chemie und Angewandte Biowissenschaften

Nuclear size effects in rotational spectra

 Molecular field shift V^x arising from the finite size of the atomic nuclei as an additional correction factor to the Born-Oppenheimer approximation

J. Schlembach and E. Tiemann, Chem. Phys., 68, 21 (1982)

Requires to compute the gradient of density at the nucleus

 $V^x \propto \left(\frac{d\rho(0)}{dR}\right)_{R_e}$

Computational benchmark for TII, PtSi and PbTe
S. Knecht and T. Saue, Chem. Phys., 401, 103 (2012)

Nuclear size effects in rotational spectra

Comparison of both the calculated and, where available, measured electron density gradient $\rho^{[1]X}$ (in Å⁻⁴) at the Tl, Pb, and Pt nuclei and the field shift parameter V^X (in 10⁴ Å⁻²). Besides our best theoretical estimates computed at the 4-component molecular mean-field CCSD(T)/TZ + 2s1p level (^{4c}DC^{**}) we also list non-relativistic (NR) DFT/SAOP/TZ + 2s1p data.

Method	Hamiltonian	ρ ^{[1]X}	V ^x
ТИ			
Experiment[A] ^a		120.6(38)	3.20(10)
Experiment[B] ^b		12.06(38)	
DFT/SAOP	NR	21.09	0.57
CCSD(T)	^{4c} DC**	142.26	3.81
DFT/SAOP ^c	(ZORA)	21.1	0.61 ^d
PbTe			
Experiment ^a		148(11)	2.12(16)
Experiment ^b		14.8(11)	
DFT/SAOP	NR	19.64	0.28
CCSD(T)	4cDC**	163.19	2.36
DFT/SAOP ^c	(ZORA)	21.1	0.33 ^d
PtSi			
experiment[C] ^e			-0.72(12)
DFT/SAOP	NR	-135.64	-1.14
CCSD(T)	^{4c} DC**	-599.83	-5.05
DFT/SAOP ^e	(ZORA)	-136.5	-1.10

^a Original result published in Ref. [27] in 1982.

^b Revised data published in Ref. [36] in 1985.

^c Ref. [38]; a QZ4P basis set was used in the DFT calculations.

^d Ref. [40].

e Ref. [39]; a QZ4P basis set was used in the DFT calculations.

DCHAB Departement Chemie und Angewandte Biowissenschaften

Spectroscopic constants of TIH

- TIH as "guinea pig" molecule for any new relativistic correlation method
- Comparison of our new relativistic DMRG implementation with CI and CC methods
- CAS space: 14 electrons in 94 spinors

S. Knecht, Ö. Legeza, and M. Reiher, J. Chem. Phys., 140, 041101 (2014)

Spectroscopic constants of TIH

TABLE II. Spectroscopic constants of ²⁰⁵TlH obtained from 4c-DMRG[512, $\delta \varepsilon_{sweep} = 0$], CI, and CC calculations in comparison with other theoretical and experimental work.

Method	\mathbf{r}_e (Å)	$\omega_e~({\rm cm}^{-1})$	$\omega_e x_e \; ({\rm cm}^{-1})$
4c-DMRG(14,94)[512]	1.873	1411	26.64
4c-CISD(14,94)	1.856	1462	23.11
4c-CISDTQ(14,94)	1.871	1405	20.11
4c-MP2(14,94)	1.828	1546	47.27
4c-CCSD(14,94)	1.871	1405	19.36
4c-CCSD(T)(14,94)	1.873	1400	23.52
4c-CCSDT(14,94)	1.873	1398	22.28
4c-CCSDT(Q)(14,94)	1.873	1397	21.01
4c-CCSDTQ(14,94)	1.873	1397	22.24
CCSD(T) ^a	1.876	1385	n/a
CCSD(T) ^b	1.877	1376	n/a
MRD-CI ^C	1.870	1420	n/a
SO-MCQDPT ^d	1.876	1391	29.42
Experimente	1.872	1390.7	22.7

^a4c-DC CCSD(T) [14 electrons], see Ref. 35.

b4c-DC-Gaunt CCSD(T) [36 electrons], see Ref. 35.

CGRECP spin-orbit MRD-CI, see Ref. 34.

^dModel-core potential spin-orbit MCQDPT, see Ref. 40.

eExperimental data taken from Refs. 34 and 55-57.

Conclusions

- Electron correlation plays an important role in describing the electronic structure and properties of molecular systems
- Relativistic effects may not be non-negligible for light systems and are mandatory for heavy-element compounds
- Efficient and "new" wave-function based electron correlation methods are highly appreciated

Acknowledgments

- Markus Reiher (Zürich)
- Örs Legeza (Budapest)
- Trond Saue (Toulouse)
- Hans Jørgen Aa. Jensen (Odense)
- Timo Fleig (Toulouse)

Thank you for your kind attention!